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Abstract

Induction is the discovery of models given samples.
This paper demonstrates formally from first principles that there

exists an optimally likely model for any sample, given certain general
assumptions. Also, there exists a type of encoding, parameterised by
the model, that compresses the sample. Further, if the model has cer-
tain entropy properties then it is insensitive to small changes. In this
case, approximations to the model remain well-fitted to the sample.
That is, accurate classification is practicable for some samples.

Then the paper derives directly from theory a practicable unsuper-
vised machine learning algorithm that optimises the likelihood of the
model by maximising the alignment of the model variables. Align-
ment is a statistic which measures the law-likeness or the degree of
dependency between variables. It is similar to mutual entropy but is
a better measure for small samples. If the sample variables are not
independent then the resultant models are well-fitted. Furthermore,
the models are structures that can be analysed because they consist
of trees of context-contingent sub-models that are built layer by layer
upwards from the substrate variables. In the top layers the variables
tend to be diagonalised or equational. In this way, the model variables
are meaningful in the problem domain.

If there exist causal alignments between the induced model vari-
ables and a label variable, then a semi-supervised sub-model can be
obtained by minimising the conditional entropy. Similar to a Bayesian
network, this sub-model can then make predictions of the label.

The paper shows that this semi-supervised method is related to the
supervised method of optimising artificial neural networks by least-
squares gradient-descent. That is, some gradient-descent parameter-
isations satisfy the entropy properties required to obtain likely and
well-fitted neural nets.
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1 Preface

Although this document is still in the format of a paper, it has grown to
be the length of a book. In order to be more accessible there is an ‘Overview’
section at the beginning that covers the important points of the theory and
some interesting parts of the practice. The overview also has a summary
of the set-theoretic notation used throughout. The complete theory and
various practical implementations are the following sections. The section
‘Induction’ also begins with a review of relevant parts of the earlier sections.
The paper finishes with some appendices on various related issues, including
an appendix ‘Useful functions’.

Readers interested mainly in implementation should focus on sections
‘Overview’, ‘Substrate structures’, ‘Shuffled history’, ‘Rolls’, ‘Computation
time and representation space’, ‘Rolled alignment’, ‘Decomposition align-
ment’, ‘Computation of alignment’, ‘Tractable alignment-bounding’ and ‘Prac-
ticable alignment-bounding’.

Terms in italics have a mathematical definition to avoid ambiguity. So
‘independent ’ is a well defined property, whereas ‘independent’ has its dic-
tionary definition.

For further discussion see https://greenlake.co.uk/.

2 Overview

This section provides an overview of the main points of the paper. Detailed
explanations are excluded for brevity. The overview is presented as a series
of assertions of fact, but only some are proven and many are conjectured, es-
pecially statements regarding correlations. In some cases, however, there are
multiple strands of evidence that corroborate a conjecture. This is particu-
larly true for the conjectures regarding the general induction of models given
samples. Given a set of induction assumptions these conjectures relate (i)
the maximisation of the likelihood of a sample, and also the minimisation of
the likelihood’s sensitivity to model and distribution, to (ii) properties such
as encoding space, entropy and alignment. The different sets of induction
assumptions can be categorised in various complementary ways: (a) classical
induction versus aligned induction, (b) law-like conditional draws of samples
from distributions versus the compression of encodings of samples by model,
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(c) simple transform models versus layered, contingent models, and (d) in-
tractable theoretical induction assumptions versus tractable and practicable
induction assumptions. The existence of working implementations of prac-
ticable induction such as artificial neural networks and alignment inducers
provides concrete support to the theory.

2.1 Notation

The notation is briefly summarised below. The appendices contain further
details.

The notation used throughout this discussion is conventional set-theoretic
with some additions. Sets are often defined using set-builder notation, for
example Z = {f(x) : x ∈ X, p(x)} where f(x) is a function, X is another set
and p(x) is a predicate.

Tuples, or lists, can be defined similarly where the order is not important,
for example,

∑
(f(x) : x ∈ X, p(x)).

The powerset function is defined as P(A) := {X : X ⊆ A}.

The partition function B is the set of all partitions of an argument set. A par-
tition is a set of non-empty disjoint subsets, called components, which union
to equal the argument, ∀P ∈ B(A) ∀C ∈ P (C 6= ∅), ∀P ∈ B(A) ∀C,D ∈
P (C 6= D =⇒ C ∩D = ∅) and ∀P ∈ B(A) (

⋃
P = A).

A relation A ∈ P(X ×Y) between the set X and the set Y is a set of pairs,
∀(x, y) ∈ A (x ∈ X ∧ y ∈ Y). The domain of a relation is dom(A) := {x :
(x, y) ∈ A} and the range is ran(A) := {y : (x, y) ∈ A}.

Functions are special cases of relations such that each element of the do-
main appears exactly once. Functions can be finite or infinite. For example,
{(1, 2), (2, 4)} ⊂ {(x, 2x) : x ∈ R}. The powerset of functional relations
between sets is denoted →. For example, {(x, 2x) : x ∈ R} ∈ R → R. The
application of the function F ∈ X → Y to an argument x ∈ X is denoted
by F (x) ∈ Y or Fx ∈ Y . Functions F ∈ X → Y and G ∈ Y → Z can
be composed G ◦ F ∈ X → Z. The inverse of a function, inverse ∈ (X →
Y) → (Y → P(X )), is defined inverse(F ) := {(y, {x : (x, z) ∈ F, z = y}) :
y ∈ ran(F )}, and is sometimes denoted F−1. The range of the inverse is a
partition of the domain, ran(F−1) ∈ B(dom(F )).
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Functions may be recursive. Algorithms are represented as recursive func-
tions.

The powerset of bijective relations, or one-to-one functions, is denoted ↔.
The cardinality of the domain of a bijective function equals the range, F ∈
dom(F )↔ ran(F ) =⇒ |dom(F )| = |ran(F )|.

Total functions are denoted with a colon. For example, the left total function
F ∈ X :→ Y requires that dom(F ) = X but only that ran(F ) ⊆ Y .

An order D on some set X is a choice of the enumerations, D ∈ X :↔:
{1 . . . |X|}. Given the order, any subset Y ⊆ X can be enumerated. De-
fine order(D, Y ) ∈ Y :↔: {1 . . . |Y |} such that ∀a, b ∈ Y (Da ≤ Db =⇒
order(D, Y )(a) ≤ order(D, Y )(b)).

The set of natural numbers N is taken to include 0. The set N>0 excludes 0.
The space of a non-zero natural number is the natural logarithm, space(n) :=
lnn. The set of rational numbers is denoted Q. The set of log-rational
numbers is denoted ln Q>0 = {ln q : q ∈ Q>0}. The set of real numbers is
denoted R.

The factorial of a non-zero natural number n ∈ N>0 is written n! =∏
{1 . . . n}.

The unit-translated gamma function is the real function that corresponds
to the factorial function. It is defined (Γ!) ∈ R→ R as Γ!x = Γ(x+1) which
is such that ∀n ∈ N>0 (Γ!n = Γ(n+ 1) = n!).

Given a relation A ⊂ X ×Y such that an order operator is defined on the
range, Y , the max function returns the maximum subset, max ∈ P(X×Y)→
(X → Y)

max(A) := {(x, y) : (x, y) ∈ A, ∀(r, s) ∈ A (s ≤ y)}

For convenience define the functions maxd(A) := dom(max(A)) and maxr(A) :=
m, where {m} = ran(max(A)). The corresponding functions for minimum,
min, mind and minr, are similarly defined.

Given a relation A ⊂ X×Y such that the arithmetic operators are defined on
the range, Y , the sum function is defined sum(A) :=

∑
(y : (x, y) ∈ A). The
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relation can be normalised, normalise(A) := {(x, y/sum(A)) : (x, y) ∈ A}.
Define notation Â := normalise(A). A normalised relation is such that its
sum is one, sum(Â) = 1.

The set of probability functions P is the set of rational valued functions
such that the values are bounded [0, 1] and sum to 1, P ⊂ X → Q[0,1] and
∀P ∈ P (sum(P ) = 1). The normalisation of a positive rational valued func-
tion F ∈ X → Q≥0 is a probability function, F̂ ∈ P .

The entropy of positive rational valued functions, entropy ∈ (X → Q≥0) →
Q≥0 ln Q>0, is defined as entropy(N) := −

∑
(N̂x ln N̂x : x ∈ dom(N), Nx >

0). The entropy of a singleton is zero, entropy({(·, 1)}) = 0. Entropy is max-
imised in uniform functions as the cardinality tends to infinity, entropy(X ×
{1/|X|}) = ln |X|.

Given some finite function F ∈ X → Y , where 0 < |F | < ∞, a probabil-
ity function may be constructed from its distribution, {(y, |X|) : (y,X) ∈
F−1}∧ ∈ (Y → Q≥0) ∩ P . The probability function of an arbitrarily chosen
finite function is likely to have high entropy.

A probability function P (z) ∈ (X :→ Q≥0) ∩ P , parameterised by some
parameter z ∈ Z = dom(P ), has a corresponding likelihood function L(x) ∈
Z :→ Q≥0, parameterised by coordinate x ∈ X, such that L(x)(z) =
P (z)(x). The maximum likelihood estimate z̃ of the parameter, z, at co-
ordinate x ∈ X is the mode of the likelihood function,

{z̃} = maxd(L(x))

= maxd({(z, P (z)(x)) : z ∈ Z})
= {z : z ∈ Z, ∀z′ ∈ Z (P (z)(x) ≥ P (z′)(x))}

A list is a object valued function of the natural numbers L(X ) ⊂ N→ X ,
such that ∀L ∈ L(X ) (L 6= ∅ =⇒ dom(L) = {1 . . . |L|}). Two lists L,M ∈
L(X ) may be concatenated, concat(L,M) := L ∪ {(|L|+ i, x) : (i, x) ∈M}.

A tree is recursively defined as a tree valued function of objects, trees(X ) =
X → trees(X ). The nodes of the tree T ∈ trees(X ) are nodes(T ) := T ∪⋃
{nodes(R) : (x,R) ∈ T}, and the elements are elements(T ) := dom(nodes(T )).

The paths of a tree paths(T ) ⊂ L(X ) is a set of lists. Given a set of lists
Q ⊂ L(X ) a tree can be constructed tree(Q) ∈ trees(X ).
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2.2 Maximum Entropy

Let X ⊂ X be a finite set of micro-states, 0 < |X| < ∞. Consider
a system of n distinguishable particles, each in a micro-state. The set of
states of the system is the set of micro-state functions of particle identifier,
{1 . . . n} :→ X. The cardinality of the set of states is |X|n.

Each state implies a distribution of particles over micro-states,

I =
{

(R, {(x, |C|) : (x,C) ∈ R−1}) : R ∈ {1 . . . n} :→ X
}

That is, a state R ∈ {1 . . . n} :→ X has a particle distribution I(R) ∈ X →
{1 . . . n} such that sum(I(R)) = n.

The cardinality of states for each particle distribution, I(R), is the multi-
nomial coefficient,

W = {(N, |D|) : (N,D) ∈ I−1}

= {(N, n!∏
(x,·)∈N Nx!

) : (N, ·) ∈ I−1}

That is, there are W (I(R)) states that have the same particle distribution,
I(R), as state R. The normalisation of the state distribution over particle
distributions is a probability function, Ŵ ∈ ((X → {1 . . . n})→ Q>0) ∩ P .

In the case where the number of particles is large, n � lnn, the logarithm
of the multinomial coefficient of a particle distribution N ∈ X → {1 . . . n}
approximates to the scaled entropy,

ln
n!∏

(x,·)∈N Nx!
≈ n× entropy(N)

so the probability of the particle distribution varies with its entropy, Ŵ (N) ∼
entropy(N).

The least probable particle distributions are singletons,

mind(W ) =
{
{(x, n)} : x ∈ X

}
because they have only one state, ∀x ∈ X (W ({(x, n)}) = 1). The entropy
of a singleton distribution is zero, entropy({(x, n)}) = 0.
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In the case where the number of particles per micro-state is integral, n/|X| ∈
N>0, the modal particle distribution is the uniform distribution,

maxd(W ) =
{
{(x, n/|X|) : x ∈ X}

}
The entropy of the uniform distribution is maximised, entropy({(x, n/|X|) :
x ∈ X}) = ln |X|.

The normalisation of a particle distribution N ∈ X → {1 . . . n} is a micro-
state probability function, N̂ ∈ (X → Q≥0) ∩P , which is independent of the

number of particles, sum(N̂) = 1.

So in the case where a problem domain is parameterised by an unknown
micro-state probability function otherwise arbitrarily chosen from a known
subset Q ⊆ (X → Q≥0) ∩ P , where the number of particles is known to
be large, the maximum likelihood estimate P̃ ∈ Q is the probability func-
tion with the greatest entropy, ∀P ∈ Q (entropy(P̃ ) ≥ entropy(P )) or
P̃ ∈ maxd({(P, entropy(P )) : P ∈ Q}).

2.3 Histograms

2.3.1 States, histories and histograms

The set of all variables is V . The set of all values is W . A system
U ∈ V → P(W) is a functional mapping between variables and non-empty
sets of values, ∀(v,W ) ∈ U (|W | > 0). The variables of a system is the
domain, vars(U) := dom(U).

In a system of finite variables, ∀v ∈ vars(U) (|Uv| <∞), each variable has a
set of discrete values. The values need not be ordered. The valency of a vari-
able v is the cardinality of its values, |Uv|. The volume of a set of variables
in a system V ⊆ vars(U) is the product of the valencies,

∏
v∈V |Uv| ≥ 1.

The set of states is the set of value valued functions of variable, S =
V → W . The variables of a state S ∈ S is the function domain, vars(S) :=
dom(S).

The state, S, is in a system U if (i) the variables of the state are vari-
ables of the system, vars(S) ⊆ vars(U), and (ii) the value of each variable in
the state is in the system, ∀v ∈ vars(S) (Sv ∈ Uv).

Given a set of variables in a system V ⊆ vars(U), the cartesian set of all
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possible states is
∏

v∈V ({v}×Uv), which has cardinality equal to the volume∏
v∈V |Uv|.

The variables V = vars(S) of a state S may be reduced to a given subset
K ⊆ V by taking the subset of the variable-value pairs,

S % K := {(v, u) : (v, u) ∈ S, v ∈ K}

A set of states Q ⊂ S in the same variables ∀S ∈ Q (vars(S) = V ) may be
split into a subset of its variables K ⊆ V and the complement V \K,

split(K,Q) = {(S % K, S % (V \K)) : S ∈ Q}

Two states S, T ∈ S are said to join if their union is also a state, S ∪ T ∈ S.
That is, a join is functional,

S ∪ T ∈ S ⇐⇒ |vars(S) ∪ vars(T )| = |S ∪ T |
⇐⇒ ∀v ∈ vars(S) ∩ vars(T ) (Sv = Tv)

States in disjoint variables always join, ∀S, T ∈ S (vars(S) ∩ vars(T ) =
∅ =⇒ S ∪ T ∈ S). States in the same variables only join if they are equal,
∀S, T ∈ S (vars(S) = vars(T ) =⇒ (S ∪ T ∈ S ⇐⇒ S = T )).

The set of event identifiers is the universal set X . An event (x, S) is a
pair of an event identifier and a state, (x, S) ∈ X ×S. A history H is a state
valued function of event identifiers, H ∈ X → S, such that all of the states
of its events share the same set of variables, ∀(x, S), (y, T ) ∈ H (vars(S) =
vars(T )). The set of histories is denoted H ⊂ X → S.

The set of variables of a history is the set of the variables of any of the
events of the history, vars(H) = vars(S) where (x, S) ∈ H.

The event identifiers of a history need not be ordered, so a history is not
necessarily sequential or chronological.

The inverse of a history, H−1, is called the classification. So a classifica-
tion is an event identifier set valued function of state, H−1 ∈ S → P(X ).
The event identifier components are non-empty, ∀(S,X) ∈ H−1 (X 6= ∅).

The reduction of a history is the reduction of its events, H%V := {(x, S%V ) :
(x, S) ∈ H}.

8



The addition operation of histories is defined as the disjoint union of the
events if both histories have the same variables,

H1 +H2 := {((x, ·), S) : (x, S) ∈ H1} ∪ {((·, y), T ) : (y, T ) ∈ H2}

where vars(H1) = vars(H2). The size of the sum equals the sum of the sizes,
|H1 +H2| = |H1|+ |H2|.

The multiplication operation of histories is defined as the product of the
events where the states join,

H1 ∗H2 := {((x, y), S ∪ T ) : (x, S) ∈ H1, (y, T ) ∈ H2,

∀v ∈ vars(S) ∩ vars(T ) (Sv = Tv)}

The size of the product equals the product of the sizes if the variables are
disjoint, vars(H1) ∩ vars(H2) = ∅ =⇒ |H1 ∗ H2| = |H1| × |H2|. The
variables of the product is the union of the variables if the size is non-zero,
H1 ∗H2 6= ∅ =⇒ vars(H1 ∗H2) = vars(H1) ∪ vars(H2).

The set of all histograms A is a subset of the positive rational valued func-
tions of states, A ⊂ S → Q≥0, such that each state of each histogram has
the same set of variables, ∀A ∈ A ∀S, T ∈ dom(A) (vars(S) = vars(T )).

The set of variables of a histogram A ∈ A is the set of the variables of
any of the elements of the histogram, vars(A) = vars(S) where (S, q) ∈ A.
The dimension of a histogram is the cardinality of its variables, |vars(A)|.
The counts of a histogram is the range. The states of a histogram is the
domain. Define the shorthand AS := dom(A). The size of a histogram
is the sum of the counts, size(A) := sum(A). The size is always positive,
size(A) ≥ 0. If the size is non-zero the normalised histogram has a size of
one, size(A) > 0 =⇒ size(Â) = 1. In this case the normalised histogram is
a probability function, size(A) > 0 =⇒ Â ∈ P .

The volume of a histogram A of variables V in a system U is the volume
of the variables,

∏
v∈V |Uv|.

A histogram with no variables is called a scalar. The scalar of size z
is {(∅, z)}. Define scalar(z) := {(∅, z)}. A singleton is a histogram with
only one state, {(S, z)}. A uniform histogram A has unique non-zero count,
|{c : (S, c) ∈ A, c > 0}| = 1.
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The set of integral histograms is the subset of histograms which have integal
counts Ai = A ∩ (S → N). A unit histogram is a special case of an integral
histogram in which all its counts equal one, ran(A) = {1}. The size of a
unit histogram equals its cardinality, size(A) = |A|. A set of states Q ⊂ S in
the same variables may be promoted to a unit histogram, QU := Q×{1} ∈ Ai.

The unit effective histogram of a histogram is the unit histogram of the states
where the count is non-zero. Define the shorthand AF := {(S, 1) : (S, c) ∈
A, c > 0} ∈ Ai.

Given a system U define the cartesian histogram of the set of variables V as
V C :=

(∏
v∈V ({v} × Uv)

)
× {1} ∈ Ai. The size of the cartesian histogram

equals its cardinality which is the volume of the variables, size(V C) = |V C| =∏
v∈V |Uv|. The unit effective histogram is a subset of the cartesian histogram

of its variables, AF ⊆ V C, where V = vars(A). A complete histogram has the
cartesian set of states, AS = V CS.

A partition P is a partition of the cartesian states, P ∈ B(V CS). The parti-
tion is a set of disjoint components, ∀C,D ∈ P (C 6= D =⇒ C ∩ D = ∅),
that union to equal the cartesian states,

⋃
P = V CS. The unary partition is

{V CS}. The self partition is V CS{} = {{S} : S ∈ V CS}. A partition variable
P ∈ vars(U) in a system U is such that its set of values equals its set of com-
ponents, UP = P . So the valency of a partition variable is the cardinality of
the components, |UP | = |P |.

A regular histogram A of variables V in system U has unique valency of
its variables, |{|Uv| : v ∈ V }| = 1. The volume of a regular histogram is
dn = |V C| =

∏
v∈V |Uv|, where valency d is such that {d} = {|Uv| : v ∈ V }

and dimension n = |V |.

The counts of the integral histogram A ∈ Ai of a history H ∈ H are the
cardinalities of the event identifier components of its classification, A =
histogram(H) where histogram(H) := {(S, |X|) : (S,X) ∈ H−1}. In this case
the histogram is a distribution of events over states. If the history is bijective,
H ∈ X ↔ S, then its histogram is a unit histogram, A = ran(H)× {1}.

A sub-histogram A of a histogram B is such that the effective states of A are
a subset of the effective states of B and the counts of A are less than or equal
to those of B, A ≤ B := AFS ⊆ BFS ∧ ∀S ∈ AFS (AS ≤ BS). The histogram
of a sub-history G ⊆ H is a sub-histogram, histogram(G) ≤ histogram(H).
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The reduction of a histogram is the reduction of its states, adding the counts
where two different states reduce to the same state,

A%V := {(R,
∑

(c : (T, c) ∈ A, T ⊇ R)) : R ∈ {S%V : S ∈ AS}}

Reduction leaves the size of a histogram unchanged, size(A%V ) = size(A),
but the number of states may be fewer, |(A%V )S| ≤ |AS|. The reduction to
the empty set is a scalar, A%∅ = {(∅, z)}, where z = size(A). The histogram
of a reduction of a history equals the reduction of the histogram of the history,

histogram(H % V ) = histogram(H) % V

The addition of histograms A and B is defined,

A+B :=

{(S, c) : (S, c) ∈ A, S /∈ BS} ∪
{(S, c+ d) : (S, c) ∈ A, (T, d) ∈ B, S = T} ∪
{(T, d) : (T, d) ∈ B, T /∈ AS}

where vars(A) = vars(B). The sizes add, size(A + B) = size(A) + size(B).
The histogram of an addition of histories equals the addition of the histograms
of the histories,

histogram(H1 +H2) = histogram(H1) + histogram(H2)

The multiplication of histograms A and B is the product of the counts where
the states join,

A∗B := {(S∪T, cd) : (S, c) ∈ A, (T, d) ∈ B, ∀v ∈ vars(S)∩vars(T ) (Sv = Tv)}

If the variables are disjoint, the sizes multiply, vars(A) ∩ vars(B) = ∅ =⇒
size(A ∗ B) = size(A) × size(B). Multiplication by a scalar scales the size,
size(scalar(z)∗A) = z×size(A). The histogram of a multiplication of histories
equals the multiplication of the histograms of the histories,

histogram(H1 ∗H2) = histogram(H1) ∗ histogram(H2)

The reciprocal of a histogram is 1/A := {(S, 1/c) : (S, c) ∈ A, c > 0}. Define
histogram division as B/A := B ∗ (1/A).

A histogram A is causal in a subset of its variables K ⊂ V if the reduc-
tion of the effective states to the subset, K, is functionally related to the
reduction to the complement, V \K,

{(S % K, S % (V \K)) : S ∈ AFS} ∈ KCS → (V \K)CS
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or

split(K,AFS) ∈ KCS → (V \K)CS

A histogram A is diagonalised if no pair of effective states shares any value,
∀S, T ∈ AFS (S 6= T =⇒ S ∩ T = ∅). A diagonalised histogram A is fully
diagonalised if its effective cardinality equals the minimum valency of its
variables, |AF| = minr({(v, |Uv|) : v ∈ V }). The cardinality of the effective
states of a fully diagonalised regular histogram is the valency, |AF| = d, where
{d} = {|Uv| : v ∈ V }. In a diagonalised histogram the causality is bijective
or equational,

∀u,w ∈ V ({(S%{u}, S%{w}) : S ∈ AFS} ∈ {u}CS ↔ {w}CS)

Given some slice state R ∈ KCS, where K ⊂ V and V = vars(A), the slice
histogram, A ∗ {R}U ⊂ A, is said to be contingent on the incident slice state.
For example, if the slice histogram is diagonalised, diagonal(A∗{R}U % (V \
K)), then the histogram, A, is said to be contingently diagonalised.

The perimeters of a histogram A ∈ A is the set of its reductions to each of
its variables, {A%{w} : w ∈ V }, where V = vars(A). The independent of a
histogram is the product of the normalised perimeters scaled to the size,

AX := Z ∗
∏
w∈V

Â%{w}

where z = size(A) and Z = scalar(z) = A%∅. The independent of a his-
togram is such that (i) the states are a superset, AXS ⊇ AS, (ii) the size
is unchanged, size(AX) = size(A), and (iii) the variables are unchanged,
vars(AX) = vars(A). A histogram is said to be independent if it equals
its independent, A = AX. The independent of an independent histogram
is the independent, AXX = AX. The scaled product of (i) any reduction
of a normalised independent histogram to any subset of its variables K ⊆
V , and (ii) the reduction to the complement, V \ K, is the independent,
Z ∗ (ÂX % K) ∗ (ÂX % (V \K)) = AX.

Scalar histograms are independent, {(∅, z)} = {(∅, z)}X. Singleton histograms,
|AF| = 1, are independent, {(S, z)} = {(S, z)}X. If the histogram is mono-
variate, |V | = 1, then it is independent A = A%{w} = AX where {w} = V .
Uniform-cartesian histograms, which are scalar multiples of the cartesian,
A = V C

z where V C
z = scalar(z/v) ∗ V C, z = size(A) and v = |V C|, are inde-

pendent, V C
z = V CX

z .
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A completely effective pluri-variate independent histogram, AXF = V C where
|V | > 1, for which all of the variables are pluri-valent, ∀w ∈ V (|Uw| > 1),
must be non-causal,

∀K ⊂ V (K /∈ {∅, V } =⇒
{(S % K, S % (V \K)) : S ∈ AXFS} /∈ KCS → (V \K)CS)

The set of substrate histories HU,V,z is the set of histories having event
identifiers {1 . . . z}, fixed size z and fixed variables V ,

HU,V,z := {1 . . . z} :→ V CS

= {H : H ⊆ {1 . . . z} × V CS, dom(H) = {1 . . . z}, |H| = z}

The cardinality of the substrate histories is |HU,V,z| = vz where v = |V C|. If
the volume, v, is finite, the set of substrate histories is finite, |HU,V,z| <∞.

The corresponding set of integral substrate histograms AU,i,V,z is the set of
complete integral histograms in variables V with size z,

AU,i,V,z := {histogram(H) : H ∈ HU,V,z}
= {A : A ∈ V CS :→ {0 . . . z}, size(A) = z}

Note that the histogram function is redefined here to return complete his-
tograms, histogram(H) := {(S, |X|) : (S,X) ∈ H−1} + V CS × {0}.

The cardinality of integral substrate histograms is the cardinality of weak
compositions,

|AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!

If the volume, v, is finite, the set of integral substrate histograms is finite,
|AU,i,V,z| <∞.

2.3.2 Entropy and alignment

The entropy of a non-zero histogram A ∈ A is defined as the expected
negative logarithm of the normalised counts,

entropy(A) := −
∑
S∈AFS

ÂS ln ÂS
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(Note that in conventional terminology the entropy would be written H[V ].)
The sized entropy is z × entropy(A) where z = size(A). The entropy of a
singleton is zero, z × entropy({(·, z)}) = 0. Entropy is highest in cartesian
histograms, which are uniform and have maximum effective volume. The
maximum sized entropy is z × entropy(V C

z ) = z ln v where v = |V C|.

Given a histogram A and a set of query variables K ⊂ V , the scaled label
entropy is the degree to which the histogram is ambiguous or non-causal in
the query variables, K. It is the sum of the sized entropies of the contingent
slices reduced to the label variables, V \K,∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

The scaled label entropy is also known as the scaled query conditional en-
tropy, ∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

= −
∑
S∈AFS

AS ln
AS

(A%K ∗ V C)S

= −
∑
S∈AFS

AS ln(A/(A%K))S

= z × entropy(A)− z × entropy(A%K)

The query conditional entropy is a special case of negative relative entropy,
entropy(A)− entropy(A%K) = − entropyRelative(A,A%K). See appendix
‘Entropy and Gibbs’ inequality’. (Note that in conventional terminology the
query conditional entropy would be written H[V \K | K] = H[V ] −H[K].
See the discussion of Bayes’ theorem in section ‘Transforms and probability’,
below.)

When the histogram, A, is causal in the query variables, split(K,AFS) ∈
KCS → (V \K)CS, the label entropy is zero because each slice is an effective
singleton, ∀R ∈ (A%K)FS (|AF ∗ {R}U| = 1). In this case the label state is
unique for every effective query state. By contrast, when the label variables
are independent of the query variables, A = Z ∗ Â%K ∗ Â%(V \K), the label
entropy is maximised.

The multinomial coefficient of a non-zero integral histogram A ∈ Ai is

z!∏
S∈AS AS!

∈ N>0
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where z = size(A) > 0. In the case where the histogram is non-integral the
multinomial coefficient is defined by the unit-translated gamma function,

Γ!z∏
S∈AS Γ!AS

Given an arbitrary substrate history H ∈ HU,V,z and its histogram A =
histogram(H), the cardinality of histories having the same histogram, A, is
the multinomial coefficient,

|{G : G ∈ HU,V,z, histogram(G) = A}| =
z!∏

S∈AS AS!

In the case where the counts are not small, z � ln z, the logarithm of the
multinomial coefficient approximates to the sized entropy,

ln
z!∏

S∈AS AS!
≈ z × entropy(A)

so the entropy, entropy(A), is a measure of the probability of the histogram
of a randomly chosen history. Singleton histograms are least probable and
uniform histograms are most probable.

The sized relative entropy between a histogram and its independent is the
sized mutual entropy, ∑

S∈AFS

AS ln
AS
AX
S

It can be shown that the size scaled expected logarithm of the independent
with respect to the histogram equals the size scaled expected logarithm of
the independent with respect to the independent,∑

S∈AFS

AS lnAX
S =

∑
S∈AXFS

AX
S lnAX

S

so the sized mutual entropy is the difference between the sized independent
entropy and the sized histogram entropy,∑

S∈AFS

AS ln
AS
AX
S

= z × entropy(AX)− z × entropy(A)

The sized mutual entropy can be viewed as a measure of the probability of
the independent, AX, relative to the histogram, A, given arbitrary substrate
history. Equivalently, sized mutual entropy can be viewed as a measure of
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the surprisal of the histogram, A, relative to the independent, AX. That is,
sized mutual entropy is a measure of the dependency between the variables
in the histogram, A.

The sized mutual entropy is the sized relative entropy so it is always pos-
itive,

z × entropy(AX)− z × entropy(A) ≥ 0

and so the independent entropy is always greater than or equal to the his-
togram entropy

entropy(AX) ≥ entropy(A)

That is, histograms of substrate histories arbitrarily chosen from a uniform
distribution are probably independent or nearly independent. The expected
sized mutual entropy is low.

An example of a dependency between variables is where a histogram A is
causal in a subset of its variables K ⊂ V . In this case the histogram cannot
be independent, A 6= AX, and so the sized mutual entropy must be greater
than zero,

{(S % K, S % (V \K)) : S ∈ AFS} ∈ KCS → (V \K)CS =⇒
z × entropy(AX)− z × entropy(A) > 0

The alignment of a histogram A ∈ A is defined

algn(A) :=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

where Γ! is the unit-translated gamma function.

In the case where both the histogram and its independent are integral, A,AX ∈
Ai, then the alignment is the difference between the sum log-factorial counts
of the histogram and its independent,

algn(A) =
∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S !

Alignment is the logarithm of the ratio of the independent multinomial coef-
ficient to the multinomial coefficient,

algn(A) = ln

(
z!∏

S∈AXS AX
S !
/

z!∏
S∈AS AS!

)
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so alignment is the logarithm of the probability of the independent, AX, rel-
ative to the histogram, A. Equivalently, alignment is the logarithm of the
surprisal of the histogram, A, relative to the independent, AX. Alignment is
a measure of the dependency between the variables in the histogram, A.

Alignment is approximately equal to the sized mutual entropy,

algn(A) ≈ z × entropy(AX)− z × entropy(A)

=
∑
S∈AFS

AS ln
AS
AX
S

so the histogram of an arbitrary history usually has low alignment. Note
that, because sized entropy is only an approximation to the logarithm of the
multinomial coefficient, especially at low sizes, alignment is the better mea-
sure of the surprisal of the histogram, A, relative to the independent, AX,
than sized mutual entropy.

The alignment of an independent histogram, A = AX, is zero. In particu-
lar, scalar histograms, V = ∅, mono-variate histograms, |V | = 1, uniform
cartesian histograms, A = V C

z , and effective singleton histograms, |AF| = 1,
all have zero alignment.

The maximum alignment of a histogram A occurs when the histogram is
both uniform and fully diagonalised. No pair of effective states shares any
value, ∀S, T ∈ AFS (S 6= T =⇒ S ∩ T = ∅), and all counts are equal along
the diagonal, ∀S, T ∈ AFS (AS = AT ). The maximum alignment of a regular
histogram with dimension n = |V | and valency d is

d ln Γ!
z

d
− dn ln Γ!

z

dn

The maximum alignment is approximately z ln dn−1 = z ln v/d, where v = dn.
It can be compared to the maximum sized entropy of the ‘co-histogram’ re-
duced by one variable along the diagonal.

Although alignment varies against sized entropy, algn(A) ∼ −z×entropy(A),
the maximum alignment does not occur when the entropy is minimised. At
minimum entropy the histogram is a singleton, but the alignment is zero be-
cause singletons are independent.

An example of an aligned histogram A is where the histogram is causal in a
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subset of its variables K ⊂ V . In this case the histogram cannot be indepen-
dent, A 6= AX, and so the alignment must be greater than zero,

{(S%K, S%(V \K)) : S ∈ AFS} ∈ KCS → (V \K)CS =⇒ algn(A) > 0

At maximum alignment the histogram is fully diagonalised, so all pairs of
variables are necessarily bijectively causal or equational,

∀u,w ∈ V ({(S%{u}, S%{w}) : S ∈ AFS} ∈ {u}CS → {w}CS)

The alignment is approximately equal to the scaled mutual entropy, so the
alignment varies against the scaled label entropy or scaled query conditional
entropy,

algn(A) ≈ z × entropy(AX)− z × entropy(A)

∼ z × entropy(A%K) + z × entropy(A%(V \K))− z × entropy(A)

∼ −(z × entropy(A)− z × entropy(A%K))

= −
∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

The conditional entropy is directed from the query variables to the label
variables, whereas the alignment is symmetrical with respect to the variables.

2.3.3 Encoding and compression

A substrate history probability function P ∈ (HU,V,z :→ Q≥0) ∩ P is a
normalised distribution over substrate histories,

∑
(PH : H ∈ HU,V,z) = 1.

The entropy of the probability function is entropy(P ). Note that history
probability function entropy is not to be confused with histogram entropy. A
history probability function is a distribution over histories, HU,V,z → Q≥0,
whereas a histogram is a distribution of events over states, V CS → Q≥0.

History coders define the conversion of lists of histories, L(H), to and from
the natural numbers, N. A substrate history coder C ∈ coders(HU,V,z) defines
an encode function of any list of substrate histories into a positive integer,
encode(C) ∈ L(HU,V,z) :→ N, and the corresponding decode function of the
integer back into the list of histories, decode(C) ∈ N × N →: L(HU,V,z),
given the length of the list.

A third function is the space function, space(C) ∈ HU,V,z :→ ln N>0, which
defines the logarithm of the cardinality of the encoding states of a substrate
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history. The encoding integer of a single history is always less than this
cardinality, ∀H ∈ HU,V,z (encode(C)({(1, H)}) < exp(space(C)(H))). The
space of an encoded list of histories is the sum of the spaces of the histories.
The space function is also denoted Cs = space(C).

Given a substrate history probability function P ∈ (HU,V,z :→ Q≥0) ∩ P , the
expected substrate history space is

∑
(PHC

s(H) : H ∈ HU,V,z). The expected
space is always greater than or equal to the probability function entropy (or
Shannon entropy in nats),

∑
(PHC

s(H) : H ∈ HU,V,z) ≥ entropy(P ).

A minimal history coder Cm,U,V,z ∈ coders(HU,V,z) encodes the history by
encoding the index of an enumeration of the entire set of substrate histories,
encode(Cm,U,V,z)({(1, H)}) ∈ {0 . . . vz−1}. The space is fixed, Cs

m,U,V,z(H) =
ln |HU,V,z| = z ln v. In the case where the probability function is uniform,
P = HU,V,z × {1/vz}, the expected space equals the probability function en-
tropy,

∑
(PHC

s
m,U,V,z(H) : H ∈ HU,V,z) = entropy(P ) = z ln v. In other

words, when the history is arbitrary then the minimal history coder has the
least expected space.

There are two canonical history coders, the index history coder CH and
the classification coder CG. The index substrate history coder CH,U,V,z ∈
coders(HU,V,z) is the simpler of the two. It encodes each history by indexing
the volume for each event. The space of an index into a volume v = |V CS| is
ln v. So the total space of any substrate history H ∈ HU,V,z is

Cs
H,U,V,z(H) = z ln v

The space is fixed because it does not depend on the histogram, A. The index
history space equals the minimal history space, Cs

H,U,V,z(H) = Cs
m,U,V,z(H) =

z ln v, but the encode functions are different. In the case of an arbitrary
history, or uniform history probability function, the index history coder also
has least expected space.

The classification substrate history coder CG,U,V,z ∈ coders(HU,V,z) encodes
each history in two steps. First the histogram is encoded by choosing one of
the integral substrate histograms, AU,i,V,z. The choice has fixed space

ln |AU,i,V,z| = ln
(z + v − 1)!

z! (v − 1)!

Given the histogram, A, the cardinality of classifications equals the multino-
mial coefficient. Now the choice of the classification, H−1, is encoded in a

19



space equal to the logarithm of the multinomial coefficient,

ln
z!∏

S∈AS AS!

The total space to encode the history in the classification substrate history
coder is

Cs
G,U,V,z(H) = ln

(z + v − 1)!

z! (v − 1)!
+ ln

z!∏
S∈AS AS!

The space is not fixed because it depends on the histogram, A.

The classification space may be approximated in terms of sized entropy,

Cs
G,U,V,z(H) ≈ (z + v) ln(z + v) − z ln z − v ln v + z × entropy(A)

The maximum sized entropy, z × entropy(A), is z ln v, so when the entropy
is high the classification space is greater than the index space, Cs

G,U,V,z(H) >
Cs

H,U,V,z(H), but when the entropy is low the classification space is less than
the index space, Cs

G,U,V,z(H) < Cs
H,U,V,z(H). The break-even sized entropy is

approximately

z × entropy(A) ≈ z ln v − ((z + v) ln(z + v) − z ln z − v ln v)

In the case where the size is much less than the volume, z � v, the break-even
sized entropy is approximately z × entropy(A) ≈ z ln z.

2.4 Induction without model

Induction may be defined as the determination of the likely properties of
unknown history probability functions.

Let P be a substrate history probability function, P ∈ (HU,V,z :→ Q≥0) ∩ P .
Let the domain of the probability function, dom(P ) = HU,V,z, be known. The
simplest case of induction is that nothing else is known about the probability
function, P . If the probability function is assumed to be the normalisation
of the distribution of a finite history valued function of undefined particle,
X → H, and this particle function is assumed to be chosen arbitrarily, then
the maximum likelihood estimate P̃ for the probability function, P , max-
imises the entropy, entropy(P̃ ), at the mode. So the likely history probability
function, P̃ , is the uniform distribution,

P̃ = HU,V,z × {1/vz}

That is, the likely substrate histories are arbitrary or random.
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The next case is where a history H ∈ HU,V,z is known to be necessary,
P (H) = 1. In this case the probability function, P , is,

P = {(H, 1)} ∪
{(G, 0) : G ∈ HU,V,z, G 6= H}

If the history, H, is known, then the probability function, P , is known. The
maximum likelihood estimate equals the probability function, P̃ = P . The
entropy is zero, entropy(P̃ ) = 0.

2.4.1 Classical induction

In classical induction the history probability functions are constrained by
histogram.

Let his = histogram. Now consider the case where the histogram A ∈ AU,i,V,z
is known to be necessary,

∑
(P (H) : H ∈ HU,V,z, his(H) = A) = 1. The

maximum likelihood estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ∈ HU,V,z, his(H) = A}∧ ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

= {(H, 1/ z!∏
S∈AS AS!

) : H ∈ HU,V,z, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

where ()∧ = normalise. That is, the maximum likelihood estimate, P̃ , is such
that all histories with the histogram, his(H) = A, are uniformly probable and
all other histories, his(G) 6= A, are impossible, P̃ (G) = 0. If the histogram,
A, is known, then the likely probability function, P̃ , is known. Note that the
likely history probability function entropy varies with the histogram entropy,
entropy(P̃ ) ∼ entropy(A).

Next consider the case where either histogram A or histogram B are known
to be necessary,

∑
(P (H) : H ∈ HU,V,z, (his(H) = A ∨ his(H) = B)) = 1.

The maximum likelihood estimate which maximises the entropy, entropy(P̃ ),
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is

P̃ = {(H, 1) : H ∈ HU,V,z, (his(H) = A ∨ his(H) = B)}∧ ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

= {(H, 1/
(

z!∏
S∈AS AS!

+
z!∏

S∈BS BS!

)
) :

H ∈ HU,V,z, (his(H) = A ∨ his(H) = B)} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

That is, the maximum likelihood estimate, P̃ , is such that all histories with
either histogram, A or B, are uniformly probable and all other histories,
his(G) 6= A and his(G) 6= B, are impossible, P̃ (G) = 0. If the histograms, A
and B, are known, then the likely probability function, P̃ , is known.

Given a history HE ∈ HU,V,zE , of size zE = |HE|, consider the case where
its subsets of size z are known to be necessary,

∑
(P (H) : H ⊆ HE, |H| =

z) = 1. The given history, HE, is called the distribution history. A subset
H ⊆ HE is a sample history drawn from the distribution history, HE. The
maximum likelihood estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, |H| = z}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE}

= {(H, 1/
(
zE
z

)
) : H ⊆ HE, |H| = z} ∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE of size |H| = z are uniformly probable and all other histories,
G * HE, are impossible, P̃ (G) = 0. If the distribution histogram, HE, is

known, then the likely probability function, P̃ , is known.

Now consider the case where the drawn histogram A is known to be nec-
essary,

∑
(P (H) : H ⊆ HE, his(H) = A) = 1. The maximum likelihood
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estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, his(H) = A}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

= {(H, 1/
∏
S∈AS

(
ES
AS

)
) : H ⊆ HE, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

where the distribution histogram E = his(HE).

That is, the maximum likelihood estimate, P̃ , is such that all drawn his-
tories H ⊆ HE with the histogram, his(H) = A, are uniformly probable and
all other histories, G * HE or his(G) 6= A, are impossible, P̃ (G) = 0. If the
histogram, A, is known and the distribution histogram, HE, is known, then
the likely probability function, P̃ , is known.

The historical distribution Qh,U is defined

Qh,U(E, z)(A) :=
∏
S∈AS

(
ES
AS

)
=
∏
S∈AS

ES!

AS! (ES − AS)!

where A ≤ E. The frequency of histogram A in the historical distribution,
Qh,U , parameterised by draw (E, z), is the cardinality of histories drawn
without replacement having histogram A,

Qh,U(E, z)(A) = |{H : H ⊆ HE, his(H) = A}|

The historical probability distribution is normalised,

Q̂h,U(E, z)(A) := 1/

(
zE
z

)
×Qh,U(E, z)(A)

The likely history probability function, P̃ , can be re-written in terms of the
historical distribution,

P̃ = {(H, 1/Qh,U(E, z)(A)) : H ⊆ HE, his(H) = A} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}
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So the likely history probability function entropy, entropy(P̃ ), is maximised
when the historical distribution frequency, Qh,U(E, z)(A), is maximised.

Consider the case where the histogram, A, is known, but the distribution
histogram, E, is unknown and hence the likely history probability function,
P̃ , is unknown. The historical probability distribution is a probability func-
tion, Q̂h,U(E, z) ∈ P , parameterised by the distribution histogram, E, so
there is a corresponding likelihood function Lh,U(A) ∈ AU,i,V,zE → Q≥0 such

that Lh,U(A)(E) = Q̂h,U(E, z)(A). The maximum likelihood estimate Ẽ for
the distribution histogram, E, is a modal value of this likelihood function,

Ẽ ∈ maxd(Lh,U(A))

= maxd({(D,Qh,U(D, z)(A)) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the histogram, A, is known. If it is assumed that
the distribution histogram equals the likely distribution histogram, E = Ẽ,
then the likely history probability is known, P̃ (H) = 1/Qh,U(Ẽ, z)(A) where
his(H) = A.

The multinomial distribution Qm,U is defined

Qm,U(E, z)(A) :=
z!∏

S∈AS AS!

∏
S∈AS

EAS
S

where AF ≤ EF. The frequency of histogram A in the multinomial distri-
bution, Qm,U , parameterised by draw (E, z), is the cardinality of histories
drawn with replacement having histogram A,

Qm,U(E, z)(A) = |{L : L ∈ Hz
E, his({((i, x), S) : (i, (x, S)) ∈ L}) = A}|

where Hz
E ∈ L(HE) is the set of lists of the distribution history events of

length z.

The multinomial probability distribution is normalised,

Q̂m,U(E, z)(A) :=
1

zzE
×Qm,U(E, z)(A)

=
z!∏

S∈AS AS!

∏
S∈AS

ÊAS
S

so the multinomial probability, Q̂m,U(E, z)(A) = Q̂m,U(Ê, z)(A), does not de-
pend on the distribution histogram size, zE.
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As the distribution histogram size, zE, tends to infinity, the historical prob-
ability tends to the multinomial probability. That is, for large distribution
histogram size, zE � z, the historical probability may be approximated by
the multinomial probability, Q̂h,U(E, z)(A) ≈ Q̂m,U(E, z)(A).

In the case where the distribution histogram is known to be cartesian, E =
V C
zE

, but the distribution histogram size, zE, is unknown, except that it is
known to be large, zE � z, then the case where the drawn histogram, A,
is known to be necessary,

∑
(P (H) : H ⊆ HE, his(H) = A) = 1, approxi-

mates to the case where the substrate histogram, A, is known to be necessary,∑
(P (H) : H ∈ HU,V,z, his(H) = A) = 1. That is,

P̃ = {(H, 1/
∏
S∈AS

(
V C
zE

(S)

A(S)

)
) : H ⊆ HE, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

≈ {(H, 1/ z!∏
S∈AS AS!

) : H ∈ HU,V,z, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

In this case, the likely history probability function entropy varies with the
histogram entropy, entropy(P̃ ) ∼ entropy(A).

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,Qm,U(D, z)(A)) : D ∈ AU,V,1})

The mean of the multinomial probability distribution is the sized distribution
histogram,

mean(Q̂m,U(E, z)) = scalar(z) ∗ Ê

so the maximum likelihood estimate, Ẽ, for the distribution probability his-
togram, Ê, is the sample probability histogram, Â,

Ẽ = Â
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If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then the likely history proba-
bility varies against the sample-distributed multinomial probability, P̃ (H) ∼
1/Q̂m,U(Â, z)(A).

The sample-distributed multinomial log-likelihood is

ln Q̂m,U(A, z)(A) = ln z!− z ln z −
∑
S∈AS

lnAS! +
∑
S∈AFS

AS lnAS

which varies against the sum of the logarithms of the counts

ln Q̂m,U(A, z)(A) ∼ −
∑
S∈AFS

lnAS

So the log-likelihood varies weakly against the histogram entropy,

ln Q̂m,U(A, z)(A) ∼ − entropy(A)

If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then the likely history prob-
ability function entropy varies against the histogram entropy, entropy(P̃ ) ∼
− entropy(A), in contrast to the case where the distribution histogram is
cartesian.

The Fisher information of a probability function varies with the negative
curvature of the likelihood function near the maximum likelihood estimate of
the parameter. So the Fisher information is a measure of the sensitivity of
the likelihood function with respect to the maximum likelihood estimate. The
Fisher information of the multinomial probability distribution, Q̂m,U(E, z), is
the sum sensitivity

sum(sensitivity(U)(Q̂m,U(E, z))) =
∑
S∈V CS

z

ÊS(1− ÊS)

The sum sensitivity varies against the sized entropy,

sum(sensitivity(U)(Q̂m,U(E, z))) ∼ −z × entropy(E)

So, in the case of sample-distributed multinomial probability distribution,
Q̂m,U(A, z), the sum sensitivity varies weakly with the log-likelihood,

sum(sensitivity(U)(Q̂m,U(A, z))) ∼ −z × entropy(A)

∼ ln Q̂m,U(A, z)(A)

26



If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then, as the likely history
probability function entropy, entropy(P̃ ), increases, the sensitivity to the dis-
tribution histogram, Ẽ, increases.

The lower the entropy of the sample the more likely the normalised sam-
ple histogram, Â, equals the normalised distribution histogram, Ê, but the
larger the likely difference between them if they are not equal.

Now consider the case where either the drawn histogram A or the drawn
histogram B are known to be necessary,

∑
(P (H) : H ⊆ HE, (his(H) =

A ∨ his(H) = B)) = 1. The maximum likelihood estimate which maximises
the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, (his(H) = A ∨ his(H) = B)}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

= {(H, 1/(Qh,U(E, z)(A) +Qh,U(E, z)(B))) :

H ⊆ HE, (his(H) = A ∨ his(H) = B)} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with either histogram, A or B, are uniformly probable and all other
histories, G * HE or his(G) 6= A and his(G) 6= B, are impossible, P̃ (G) = 0.
If the histograms, A and B, are known and the distribution histogram, HE,
is known, then the likely probability function, P̃ , is known.

The likely probability of drawing histogram A from necessary drawn his-
tograms A or B is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =
Qh,U(E, z)(A)

Qh,U(E, z)(A) +Qh,U(E, z)(B)

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the historical frequencies, Qh,U(E, z)(A) + Qh,U(E, z)(B),
is maximised.

Consider the case where the drawn histograms, A and B, are known, but
the distribution histogram, E, is unknown and hence the likely history prob-
ability function, P̃ , is unknown. The maximum likelihood estimate Ẽ for the
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distribution histogram, E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D,Qh,U(D, z)(A) +Qh,U(D, z)(B)) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the drawn histograms, A and B, are known. If
it is assumed that the distribution histogram equals the likely distribution
histogram, E = Ẽ, then the likely history probability is known, P̃ (H) =
1/(Qh,U(Ẽ, z)(A) +Qh,U(Ẽ, z)(B)) where his(H) = A or his(H) = B.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,Qm,U(D, z)(A) +Qm,U(D, z)(B)) : D ∈ AU,V,1})

Now the likely distribution histogram, Ẽ, is known if there is a computable
solution and the drawn histograms, A and B, are known.

Consider the case where the histogram is uniformly possible. Instead of
assuming the substrate history probability function P ∈ (HU,V,z :→ Q≥0)∩P
to be the distribution of an arbitrary history valued function of undefined
particle, X → H, assume that it is the distribution of an arbitrary history
valued function, X → H, given an arbitrary histogram valued function, X →
A. In this case, the history valued function is chosen arbitrarily from the
constrained subset{
{((x,A, y), H) : (x, (A,G)) ∈ F, (y,H) ∈ G, his(H) = A} :

F ∈ X → (A× (X → H))
}
⊂ X → H

In the case where there is no distribution history, the maximum likelihood
estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ∈ HU,V,z, his(H) = A}∧ : A ∈ AU,i,V,z
})∧

= {(H, 1/|AU,i,V,z| × 1/
z!∏

S∈AS AS!
) : H ∈ HU,V,z, A = his(H)}

That is, the maximum likelihood estimate, P̃ , is such that all histograms are
uniformly probable, ∀A ∈ AU,i,V,z (

∑
(P̃ (H) : H ∈ HU,V,z, his(H) = A) =
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1/|AU,i,V,z|), and then all histories with the same histogram, his(H) = A, are
uniformly probable. The likely probability function, P̃ , is known.

In the case where there is a distribution history HE, the maximum likeli-
hood estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H) = A}∧ : A ∈ AU,i,V,z
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/Qh,U(E, z)(A)) : H ⊆ HE, his(H) = A} :

A ∈ AU,i,V,z
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn his-
tograms, A ≤ E, are uniformly probable, and then all drawn histories H ⊆
HE with the same histogram, his(H) = A, are uniformly probable. If the
distribution histogram, HE, is known, then the likely probability function, P̃ ,
is known.

Consider the case where a drawn sample A is known, but the distribution
histogram, E, is unknown and hence the likely history probability function,
P̃ , is unknown. The maximum likelihood estimate Ẽ for the distribution
histogram, E, is the same as for necessary histogram,

Ẽ ∈ maxd({(D,Qh,U(D, z)(A)) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the histogram, A, is known. If it is assumed that the
distribution histogram equals the likely distribution histogram, E = Ẽ, then
the likely history probability is known, P̃ (H) = 1/|{A : A ∈ AU,i,V,z, A ≤
Ẽ}| × 1/Qh,U(Ẽ, z)(A) where his(H) = A.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,Qm,U(D, z)(A)) : D ∈ AU,V,1})
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Again, the maximum likelihood estimate, Ẽ, for the distribution probability
histogram, Ê, is the sample probability histogram, Â,

Ẽ = Â

If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then the likely history proba-
bility varies against the sample-distributed multinomial probability, P̃ (H) ∼
1/|AU,i,V,z| × 1/Q̂m,U(Â, z)(A).

So the properties of uniform possible histogram are similar to necessary his-
togram except that more histories are possible but less probable.

2.4.2 Aligned induction

In aligned induction the history probability functions are constrained by
independent histogram.

The independent histogram valued function of integral substrate histograms
YU,i,V,z is defined

YU,i,V,z := {(A,AX) : A ∈ AU,i,V,z}

The finite set of iso-independents of independent histogram AX is

Y −1
U,i,V,z(A

X) = {B : B ∈ AU,i,V,z, BX = AX}

Given any subset of the integral substrate histograms I ⊆ AU,i,V,z that con-
tains the histogram, A ∈ I, the degree to which the subset is said to be
aligned-like is called the iso-independence. The iso-independence is defined
as the ratio of (i) the cardinality of the intersection between the integral sub-
strate histograms subset and the set of integral iso-independents, and (ii) the
cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ Y −1

U,i,V,z(A
X)|

|I ∪ Y −1
U,i,V,z(A

X)|
≤ 1

Consider the case where the independent AX of drawn histories is known
to be necessary,

∑
(P (H) : H ⊆ HE, his(H)X = AX) = 1. The maximum
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likelihood estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, his(H)X = AX}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X 6= AX}

= {(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) :

H ⊆ HE, his(H)X = AX} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X 6= AX}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with the independent, his(H)X = AX, are uniformly probable and
all other histories, G * HE or his(G)X 6= AX, are impossible, P̃ (G) = 0. If
the independent, AX, is known and the distribution histogram, HE, is known,
then the likely probability function, P̃ , is known.

The likely probability of drawing histogram A from necessary drawn inde-
pendent AX is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the iso-independent historical frequencies,

∑
Qh,U(E, z)(B) :

B ∈ Y −1
U,i,V,z(A

X), is maximised.

Consider the case where the independent, AX, is known, but the distribution
histogram, E, is unknown and hence the likely history probability function,
P̃ , is unknown. The maximum likelihood estimate Ẽ for the distribution
histogram, E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the independent, AX, is known. If it is assumed that
the distribution histogram equals the likely distribution histogram, E = Ẽ,
then the likely history probability is known, P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) :

B ∈ Y −1
U,i,V,z(A

X)) where his(H)X = AX.
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In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) : D ∈ AU,V,1})

which has a solution Ẽ = ÂX. So the maximum likelihood estimate, Ẽ,
for the distribution probability histogram, Ê, is the independent probability
histogram, ÂX,

Ẽ = ÂX

In the case where the independent is integral, AX ∈ Ai, the sum of the iso-
independent independent-distributed multinomial probabilities varies with the
independent independent-distributed multinomial probability,∑

(Qm,U(AX, z)(B) : B ∈ Y −1
U,i,V,z(A

X)) ∼ Qm,U(AX, z)(AX)

So, if it is assumed that the distribution probability histogram equals the
likely distribution probability histogram, Ê = Ẽ = ÂX, then the likely history
probability varies against the independent-distributed multinomial probability
of the independent, P̃ (H) ∼ 1/Q̂m,U(AX, z)(AX).

In this case, the likely probability of drawing histogram A from necessary
drawn independent AX is approximately∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A)

≈ Qm,U(AX, z)(A)∑
Qm,U(AX, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

∼ Qm,U(AX, z)(A)

Qm,U(AX, z)(AX)

The negative logarithm of the ratio of the histogram independent-distributed
multinomial probability to the independent independent-distributed multino-
mial probability equals the alignment,

− ln
Qm,U(AX, z)(A)

Qm,U(AX, z)(AX)
= algn(A)
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So the logarithm of the likely probability of drawing histogram A from neces-
sary drawn independent AX varies against the alignment,

ln
∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) ∼ − algn(A)

The independent, AX, which has zero alignment, algn(AX) = 0, is the most
probable histogram, ∀B ∈ Y −1

U,i,V,z(A
X) (Qm,U(AX, z)(AX) ≥ Qm,U(AX, z)(B)).

As the alignment increases, algn(A) > 0, the likely histogram probability,
Qm,U(AX, z)(A)/

∑
(Qm,U(AX, z)(B) : B ∈ Y −1

U,i,V,z(A
X)), decreases.

The likely history probability function entropy varies with the independent
entropy, entropy(P̃ ) ∼ entropy(AX).

Define the dependent histogram AY ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
histogram A conditional that it is an iso-independent,

{AY} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,V,z})

Note that the dependent, AY, is not always computable, but an approxima-
tion to any accuracy can be made to it. In the case where the histogram is
independent, the dependent equals the independent, A = AX =⇒ AY =
A = AX. The dependent alignment is greater than or equal to the histogram
alignment, algn(AY) ≥ algn(A) ≥ algn(AX) = 0. In the case where the his-
togram is uniformly diagonalised, the histogram alignment, algn(A), is at the
maximum, and the dependent equals the histogram, AY = A.

Now consider the case where, given necessary drawn independent AX, it
is known, in addition, that the sample histogram A is the most probable his-
togram, regardless of its alignment. That is, the likely probability of drawing
histogram A from necessary drawn independent AX,∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

is maximised.

In the case where the sample, A, is known, but the distribution histogram,
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E, is unknown, the maximum likelihood estimate Ẽ for the distribution his-
togram, E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the sample, A, is known. If it is assumed that the
distribution histogram equals the likely distribution histogram, E = Ẽ, then
the likely history probability is known, P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) : B ∈

Y −1
U,i,V,z(A

X)) where his(H)X = AX.

If the histogram is independent, A = AX, then the additional constraint
of probable sample makes no change to the maximum likelihood estimate, Ẽ,

A = AX =⇒

maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,i,V,zE})

= maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) : D ∈ AU,i,V,zE})

If the histogram is not independent, algn(A) > 0, however, then the likely
history probability function entropy, entropy(P̃ ), is lower than it is in the
case of necessary independent unconstrained by probable sample.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, is now approximated by a modal value of the
conditional likelihood function,

Ẽ ∈ maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,V,1})

The solution to this is the normalised dependent, Ẽ = ÂY. The maximum
likelihood estimate is near the sample, Ẽ ∼ Â, only in as much as it is far from
the independent, Ẽ � ÂX. This may be compared to the case unconstrained
by probable sample where the maximum likelihood estimate equals the inde-
pendent, Ẽ = ÂX. In the probable sample case the sized maximum likelihood
estimate is aligned, algn(AY) > 0, so there are fewer ways to draw the iso-
independents and the likely history probability function entropy, entropy(P̃ ),
is lower. At maximum alignment, where the histogram is uniformly diago-
nalised, the dependent equals the histogram, AY = A, and the likely history
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probability function entropy, entropy(P̃ ), is least.

The iso-independent conditional multinomial probability distribution is de-
fined,

Q̂m,y,U(E, z)(A) :=
1

|ran(YU,i,V,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ Y −1
U,i,V,z(A

X)

So the optimisation can be rewritten,

Ẽ ∈ maxd({(D, Q̂m,y,U(D, z)(A)) : D ∈ AU,V,1})

The logarithm of the independent-distributed iso-independent conditional multi-
nomial probability varies against the alignment,

ln
Qm,U(AX, z)(A)∑

Qm,U(AX, z)(B) : B ∈ Y −1
U,i,V,z(A

X)
∼ − algn(A)

Conversely, the logarithm of the dependent-distributed iso-independent con-
ditional multinomial probability varies with the alignment,

ln
Qm,U(AY, z)(A)∑

Qm,U(AY, z)(B) : B ∈ Y −1
U,i,V,z(A

X)
∼ algn(A)

That is, the log-likelihood varies with the sample alignment,

ln Q̂m,y,U(AY, z)(A) ∼ algn(A)

In the case where the alignment is low the sum sensitivity varies with the
alignment

sum(sensitivity(U)(Q̂m,y,U(AY, z))) ∼ algn(A)

and in the case where the alignment is high the sum sensitivity varies against
the alignment

sum(sensitivity(U)(Q̂m,y,U(AY, z))) ∼ − algn(A)

At intermediate alignments the sum sensitivity is independent of the align-
ment.

So, in the probable sample case, if it is assumed that the distribution proba-
bility histogram equals the likely distribution probability histogram, Ê = Ẽ =
ÂY, then the likely history probability function entropy varies against the
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alignment, entropy(P̃ ) ∼ − algn(A).

As the alignment, algn(A), increases towards its maximum, the likely dis-
tribution probability histogram tends to the histogram, Ẽ = ÂY ∼ Â, and the
log-likelihood, ln Q̂m,y,U(AY, z)(A), increases, but the sensitivity to distribu-
tion histogram, E, decreases. In other words, the more aligned the sample
the more likely the normalised sample histogram, Â, equals the normalised
distribution histogram, Ê, and the smaller the likely difference between them
if they are not equal.

Consider the case where the independent is uniformly possible. Assume
that the substrate history probability function P ∈ (HU,V,z :→ Q≥0) ∩ P is
the distribution of an arbitrary history valued function, X → H, given an
arbitrary independent valued function, X → A. In this case, the history
valued function is chosen arbitrarily from the constrained subset{
{((x,A, y), H) : (x, (A,G)) ∈ F, (y,H) ∈ G, his(H)X = A} :

F ∈ X → (A× (X → H))
}
⊂ X → H

Uniformly possible independent is a weaker constraint than uniformly possi-
ble histogram, so the subset of history valued functions is larger.

In the case where there is a distribution history HE, the maximum likeli-
hood estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H)X = A}∧ : A ∈ ran(YU,i,V,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) :

H ⊆ HE, his(H)X = A} : A ∈ ran(YU,i,V,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn indepen-
dents are uniformly probable, and then all drawn histories H ⊆ HE with the
same independent, his(H)X = A, are uniformly probable. If the distribution
histogram, HE, is known, then the likely probability function, P̃ , is known.

The properties of uniformly possible independent are the same as for nec-
essary independent, except that the probabilities are scaled. So, in the case
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where the distribution histogram, E, is unknown, and the distribution his-
togram size, zE, is also unknown, except that it is known to be large, zE � z,
then the likely history probability varies against the independent-distributed
multinomial probability of the independent,

P̃ (H) ∼ 1/|ran(YU,i,V,z)| × 1/Q̂m,U(AX, z)(AX)

That is, more histories are possible but less probable.

2.5 Models

2.5.1 Transforms

Transforms are the simplest models. All models can be converted to trans-
forms.

Given a histogram X ∈ A and a subset of its variables W ⊆ vars(X), the pair
T = (X,W ) forms a transform. The variables, W , are the derived variables.
The complement V = vars(X) \W are the underlying variables. The set of
all transforms is

T := {(X,W ) : X ∈ A, W ⊆ vars(X)}

The transform histogram is X = his(T ). The transform derived is W =
der(T ). The transform underlying is V = und(T ). The set of underlying
variables of a transform is also called the substrate.

The null transform is (X, ∅). The full transform is (X, vars(X)).

Given a histogram A ∈ A, the multiplication of the histogram, A, by the
transform T ∈ T equals the multiplication of the histogram, A, by the trans-
form histogram X = his(T ) followed by the reduction to the derived variables
W = der(T ),

A ∗ T = A ∗ (X,W ) := A ∗X % W

If the histogram variables are a superset of the underlying variables, vars(A) ⊇
und(T ), then the histogram, A, is called the underlying histogram and the
multiplication, A ∗ T , is called the derived histogram. The derived histogram
variables equals the derived variables, vars(A ∗ T ) = der(T ).

The application of the null transform of the cartesian is the scalar, A ∗
(V C, ∅) = A%∅ = scalar(size(A)), where V = vars(A). The application of
the full transform of the cartesian is the histogram, A∗(V C, V ) = A%V = A.
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Given a histogram A ∈ A and a transform T ∈ T , the formal histogram is
defined as the independent derived, AX ∗T . The abstract histogram is defined
as the derived independent, (A ∗ T )X.

In the case where the formal and abstract are equal, AX ∗ T = (A ∗ T )X,
the abstract equals the independent abstract, (A∗T )X = AX ∗T = (AX ∗T )X,
and so only depends on the independent, AX, not on the histogram, A. The
formal equals the formal independent, AX ∗ T = (A ∗ T )X = (AX ∗ T )X, and
so is itself independent.

A transform T ∈ T is functional if there is a causal relation between the
underlying variables V = und(T ) and the derived variables W = der(T ),

split(V,XFS) ∈ V CS → WCS

where X = his(T ). The set of functional transforms Tf ⊂ T is the subset of
all transforms that are causal.

A functional transform T ∈ Tf has an inverse,

T−1 := {((S%V, c), S%W ) : (S, c) ∈ X}−1

A transform T is one functional in system U if the reduction of the transform
histogram to the underlying variables equals the cartesian histogram, X%V =
V C. So the causal relation is a derived state valued left total function of
underlying state, split(V,XS) ∈ V CS :→ WCS. The set of one functional
transforms TU,f,1 ⊂ Tf is

TU,f,1 = {({(S ∪R, 1) : (S,R) ∈ Q},W ) :

V,W ⊆ vars(U), V ∩W = ∅, Q ∈ V CS :→ WCS}

The application of a one functional transform to an underlying histogram
preserves the size, size(A ∗ T ) = size(A).

The one functional transform inverse is a unit component valued function
of derived state, T−1 ∈ WCS → P(V C). That is, the range of the in-
verse corresponds to a partition of the cartesian states into components,
ran(T−1) ∈ B(V C).

The application of a one functional transform T to its underlying cartesian
V C is the component cardinality histogram, V C ∗ T = {(R, |C|) : (R,C) ∈
T−1}. The effective cartesian derived volume is less than or equal to the
derived volume, |(V C ∗ T )F| = |T−1| ≤ |WC|.
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A one functional transform T ∈ TU,f,1 may be applied to a history H ∈ H
in the underlying variables of the transform, vars(H) = und(T ), to construct
a derived history,

H ∗ T := {(x,R) : (x, S) ∈ H, {R} = ({S}U ∗ T )FS}

The size is unchanged, |H ∗T | = |H|, and the event identifiers are conserved,
dom(H ∗ T ) = dom(H).

Given a partition P ∈ B(V CS) of the cartesian states of variables V , a one
functional transform can be constructed. The partition transform is

PT := ({(S ∪ {(P,C)}, 1) : C ∈ P, S ∈ C}, {P})

The set of derived variables of the partition transform is a singleton of the
partition variable, der(PT) = {P}. The derived volume is the component
cardinality, |{P}C| = |P |. The underlying variables are the given variables,
und(PT) = V .

The unary partition transform is Tu = {V CS}T. The self partition trans-
form is Ts = V CS{}T.

Given a one functional transform T ∈ TU,f,1, the natural converse is

T † := (X/(X%W ), V )

where (X,W ) = T and V = und(T ). The natural converse may be expressed
in terms of components,

T † := (
∑

(R,C)∈T−1

{R}U ∗ Ĉ, V )

Given a histogram A ∈ A in the underlying variables, vars(A) = V , the
naturalisation is the application of the natural converse transform to the
derived histogram, A ∗ T ∗ T †. The naturalisation can be rewritten A ∗
X % W ∗X / (X%W ) % V . The naturalisation is in the underlying variables,
vars(A ∗ T ∗ T †) = V . The size is conserved, size(A ∗ T ∗ T †) = size(A). The
naturalisation derived equals the derived, A ∗ T ∗ T † ∗ T = A ∗ T .

The naturalisation equals the sum of the scaled components, A ∗ T ∗ T † =∑
scalar((A ∗ T )R) ∗ Ĉ : (R,C) ∈ T−1. So each component is uniform,

∀(R,C) ∈ T−1 (|ran(A ∗ T ∗ T † ∗ C)| = 1).
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The naturalisation of the unary partition transform, Tu = {V CS}T, is the
sized cartesian, A ∗ Tu ∗ T †u = V C

z , where z = size(A). The naturalisation of
the self partition transform, Ts = V CS{}T, is the histogram, A ∗ Ts ∗ T †s = A.

A histogram is natural when it equals its naturalisation, A = A ∗ T ∗ T †.
The cartesian is natural, V C = V C ∗ T ∗ T †.

Given a one functional transform T ∈ TU,f,1 with underlying variables
V = und(T ), and a histogram A ∈ A in the same variables, vars(A) = V ,
the sample converse is

(Â ∗X, V )

where X = his(T ).

Related to the sample converse, the actual converse is defined as the summed
normalised application of the components to the sample histogram,

T�A := (
∑

(R,C)∈T−1

{R}U ∗ (A ∗ C)∧, V )

The application of the actual converse transform to the derived histogram
equals the histogram, A ∗ T ∗ T�A = A.

Given a one functional transform T ∈ TU,f,1 with underlying variables
V = und(T ), and a histogram A ∈ A in the same variables, vars(A) = V ,
the independent converse is defined as the summed normalised independent
application of the components to the sample histogram,

T †A := (
∑

(R,C)∈T−1

{R}U ∗ (A ∗ C)∧X, V )

The idealisation is the application of the independent converse transform to
the derived histogram, A∗T ∗T †A. The idealisation is in the underlying vari-
ables, vars(A∗T ∗T †A) = V . The size is conserved, size(A∗T ∗T †A) = size(A).
The idealisation derived equals the derived, A ∗ T ∗ T †A ∗ T = A ∗ T .

The idealisation equals the sum of the independent components, A ∗ T ∗
T †A =

∑
(A ∗ C)X : (R,C) ∈ T−1. So each component is independent,

∀(R,C) ∈ T−1 (A ∗ T ∗ T †A ∗ C = (A ∗ T ∗ T †A ∗ C)X = (A ∗ C)X).
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The idealisation of the unary partition transform, Tu = {V CS}T, is the sized
cartesian, A∗Tu ∗T †Au = V C

z . The idealisation of the self partition transform,
Ts = V CS{}T, is the histogram, A ∗ Ts ∗ T †As = A.

The idealisation independent equals the independent, (A ∗ T ∗ T †A)X = AX.
The idealisation formal equals the formal, (A ∗ T ∗ T †A)X ∗ T = AX ∗ T . The
idealisation abstract equals the abstract, (A ∗ T ∗ T †A ∗ T )X = (A ∗ T )X.

A histogram is ideal when it equals its idealisation, A = A ∗ T ∗ T †A.

The sense in which a transform is a simple model can be seen by considering
queries on a sample histogram. Let histogram A have a set of variables
V = vars(A) which is partitioned into query variables K ⊂ V and label
variables V \ K. Let T = (X,W ) be a one functional transform having
underlying variables equal to the query variables, und(T ) = K. Given a
query state Q ∈ KCS that is ineffective in the sample, Q /∈ (A%K)FS, but is
effective in the sample derived, R ∈ (A ∗ T )FS where {R} = ({Q}U ∗ T )FS,
the probability histogram for the label is

({Q}U ∗ T ∗ (Â ∗X, V ))∧ % (V \K) ∈ A ∩ P

where the sample converse transform is (Â ∗ X, V ). This can be expressed
more simply in terms of the actual converse,

{Q}U ∗ T ∗ T�A % (V \K) ∈ A ∩ P

The query of the sample via model can also be written without the trans-
forms, ({Q}U∗X % W ∗X ∗A)∧ % (V \K). The query state, Q, in the query
variables, K, is raised to the query derived state, R, in the derived variables,
W , then lowered to effective sample states, in the sample variables, V , and
finally reduced to label states, in the label variables, V \K. Even though the
sample itself does not contain the query, {Q}U ∗ Â = ∅, the sample derived
does contain the query derived, {R}U ∗ (Â ∗ T ) 6= ∅, and so the resultant la-
bels are those of the corresponding effective component, (A ∗C)∧ % (V \K),
where (R,C) ∈ T−1.

The set of substrate histories HU,V,z is defined above as the set of histories
having event identifiers {1 . . . z}, fixed size z and fixed variables V ,

HU,V,z := {1 . . . z} :→ V CS
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The corresponding set of integral substrate histograms AU,i,V,z is the set of
complete integral histograms in variables V with size z,

AU,i,V,z := {A : A ∈ V CS :→ {0 . . . z}, size(A) = z}

The set of substrate transforms TU,V is the subset of one functional trans-
forms, TU,V ⊂ TU,f,1, that have underlying variables V and derived variables
which are partitions,

TU,V = {(
∏

(X,·)∈F

X,
⋃

(·,W )∈F

W ) : F ⊆ {PT : P ∈ B(V CS)}}

Let v be the volume of the substrate, v = |V C|. The cardinality of the
substrate transforms set is |TU,V | = 2bell(v), where bell(n) is Bell’s number,
which has factorial computation complexity. If the volume, v, is finite, the
set of substrate transforms is finite, |TU,V | <∞.

2.5.2 Transform entropy

Let T be a one functional transform, T ∈ TU,f,1, having underlying vari-
ables V = und(T ). Let A be a histogram, A ∈ A, in the underlying vari-
ables, vars(A) = V , having size z = size(A) > 0. The underlying volume is
v = |V C|. The derived volume is w = |T−1|.

The derived entropy or component size entropy is

entropy(A ∗ T ) := −
∑

(R,·)∈T−1

(Â ∗ T )R × ln (Â ∗ T )R

The derived entropy is positive and less than or equal to the logarithm of the
derived volume, 0 ≤ entropy(A ∗ T ) ≤ lnw.

Complementary to the derived entropy is the expected component entropy,

entropyComponent(A, T ) :=
∑

(R,C)∈T−1

(Â ∗ T )R × entropy(A ∗ C)

=
∑

(R,·)∈T−1

(Â ∗ T )R × entropy({R}U ∗ T�A)

The cartesian derived entropy or component cardinality entropy is

entropy(V C ∗ T ) := −
∑

(R,·)∈T−1

(V̂ C ∗ T )R × ln (V̂ C ∗ T )R
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The cartesian derived entropy is positive and less than or equal to the loga-
rithm of the derived volume, 0 ≤ entropy(V C ∗ T ) ≤ lnw.

The cartesian derived derived sum entropy or component size cardinality sum
entropy is

entropy(A ∗ T ) + entropy(V C ∗ T )

The component size cardinality cross entropy is the negative derived his-
togram expected normalised cartesian derived count logarithm,

entropyCross(A ∗ T, V C ∗ T ) := −
∑

(R,·)∈T−1

(Â ∗ T )R × ln (V̂ C ∗ T )R

The component size cardinality cross entropy is greater than or equal to the
derived entropy, entropyCross(A ∗ T, V C ∗ T ) ≥ entropy(A ∗ T ).

The component cardinality size cross entropy is the negative cartesian de-
rived expected normalised derived histogram count logarithm,

entropyCross(V C ∗ T,A ∗ T ) := −
∑

(R,·)∈T−1

(V̂ C ∗ T )R × ln (Â ∗ T )R

The component cardinality size cross entropy is greater than or equal to the
cartesian derived entropy, entropyCross(V C ∗ T,A ∗ T ) ≥ entropy(V C ∗ T ).

The component size cardinality sum cross entropy is,

entropy(A ∗ T + V C ∗ T )

The component size cardinality sum cross entropy is positive and less than or
equal to the logarithm of the derived volume, 0 ≤ entropy(A ∗T +V C ∗T ) ≤
lnw.

In all cases the cross entropy is maximised when high size components are low
cardinality components, (Â∗T )R � (V̂ C ∗T )R or size(A∗C)/z � |C|/v, and
low size components are high cardinality components, (Â ∗ T )R � (V̂ C ∗ T )R
or size(A ∗ C)/z � |C|/v, where (R,C) ∈ T−1.

The cross entropy is minimised when the normalised derived histogram equals
the normalised cartesian derived, Â ∗ T = V̂ C ∗ T or ∀(R,C) ∈ T−1 (size(A ∗
C)/z = |C|/v). In this case the cross entropy equals the corresponding com-
ponent entropy.
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The component size cardinality relative entropy is the component size cardi-
nality cross entropy minus the component size entropy,

entropyRelative(A ∗ T, V C ∗ T )

:=
∑

(R,·)∈T−1

(Â ∗ T )R × ln
(Â ∗ T )R

(V̂ C ∗ T )R

= entropyCross(A ∗ T, V C ∗ T ) − entropy(A ∗ T )

The component size cardinality relative entropy is positive, entropyRelative(A∗
T, V C ∗ T ) ≥ 0.

The component cardinality size relative entropy is the component cardinality
size cross entropy minus the component cardinality entropy,

entropyRelative(V C ∗ T,A ∗ T )

:=
∑

(R,·)∈T−1

(V̂ C ∗ T )R × ln
(V̂ C ∗ T )R

(Â ∗ T )R

= entropyCross(V C ∗ T,A ∗ T ) − entropy(V C ∗ T )

The component cardinality size relative entropy is positive, entropyRelative(V C∗
T,A ∗ T ) ≥ 0.

The size-volume scaled component size cardinality sum relative entropy is
the size-volume scaled component size cardinality sum cross entropy minus
the size-volume scaled component size cardinality sum entropy,

(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

The size-volume scaled component size cardinality sum relative entropy is
positive, (z+v)×entropy(A∗T+V C∗T )−z×entropy(A∗T )−v×entropy(V C∗
T ) ≥ 0. The size-volume scaled component size cardinality sum relative en-
tropy is less than the size-volume scaled logarithm of the derived volume,
(z+v)×entropy(A∗T+V C∗T ) −z×entropy(A∗T ) −v×entropy(V C∗T ) <
(z + v) lnw.

In all cases the relative entropy is maximised when (a) the cross entropy
is maximised and (b) the component entropy is minimised. That is, the
relative entropy is maximised when both (i) the component size entropy,
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entropy(A ∗T ), and (ii) the component cardinality entropy, entropy(V C ∗T ),
are low, but low in different ways so that the component size cardinality sum
cross entropy, entropy(A ∗ T + V C ∗ T ), is high.

Let histogram A have a set of variables V = vars(A) which is partitioned
into query variables K ⊂ V and label variables V \ K. Let T ∈ TU,f,1 be
a one functional transform having underlying variables equal to the query
variables, und(T ) = K. As shown above, given a query state Q ∈ KCS that
is effective in the sample derived, R ∈ (A ∗ T )FS where {R} = ({Q}U ∗ T )FS,
the probability histogram for the label is

{Q}U ∗ T ∗ T�A % (V \K) ∈ A ∩ P

If the normalised histogram, Â ∈ A∩P , is treated as a probability function of
a single-state query, the scaled expected entropy of the modelled transformed
conditional product, or scaled label entropy, is∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K))

=
∑

(R,·)∈T−1

(A ∗ T )R × entropy({R}U ∗ T�A % (V \K))

This is similar to the definition of the scaled expected component entropy,
above,

z × entropyComponent(A, T ) :=
∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C)

=
∑

(R,·)∈T−1

(A ∗ T )R × entropy({R}U ∗ T�A)

but now the component is reduced to the label variables, V \K.

The label entropy, may be contrasted with the alignment between the derived
variables, W , and the label variables, V \K,

algn(A ∗ his(T ) % (W ∪ V \K))
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The alignment varies against the scaled label entropy or scaled query condi-
tional entropy. Let B = A ∗ his(T ) % (W ∪ V \K),

algn(A ∗ his(T ) % (W ∪ V \K))

= algn(B)

≈ z × entropy(BX)− z × entropy(B)

∼ z × entropy(B%W ) + z × entropy(B%(V \K))− z × entropy(B)

∼ −(z × entropy(B)− z × entropy(B%W ))

= −
∑

R∈(B%W )FS

(B%W )R × entropy(B ∗ {R}U % (V \K))

= −
∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K))

The label entropy, may also be compared to the slice entropy, which is the
sum of the sized entropies of the contingent slices reduced to the label vari-
ables, V \K, ∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

In the case where the relation between the derived variables and the label
variables is functional or causal,

split(W, (A ∗ his(T ) % (W ∪ V \K))FS) ∈ WCS → (V \K)CS

the label entropy is zero,∑
(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K)) = 0

So label entropy is a measure of the ambiguity in the relation between the
derived variables and the label variables. Negative label entropy may be
viewed as the degree to which the derived variables of the model predict
the label variables. In the cases of low label entropy, or high causality, the
derived variables and the label variables are correlated and therefore aligned,
algn(A ∗ his(T ) % (W ∪ V \ K)) > 0. In these cases the derived histogram
tends to the diagonal, algn(A ∗ T ) > 0.

2.5.3 Functional definition sets

This section may be skipped until section ‘Artificial neural networks’.
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A functional definition set F ∈ F is a set of unit functional transforms,
∀T ∈ F (T ∈ Tf). Functional definition sets are also called fuds. Fuds are
constrained such that derived variables can appear in only one transform.
That is, the sets of derived variables are disjoint,

∀F ∈ F ∀T1, T2 ∈ F (T1 6= T2 =⇒ der(T1) ∩ der(T2) = ∅)

The set of fud histograms is his(F ) := {his(T ) : T ∈ F}. The set of fud
variables is vars(F ) :=

⋃
{vars(X) : X ∈ his(F )}. The fud derived is

der(F ) :=
⋃
T∈F der(T ) \

⋃
T∈F und(T ). The fud underlying is und(F ) :=⋃

T∈F und(T ) \
⋃
T∈F der(T ). The set of underlying variables of a fud is also

called the substrate.

A functional definition set is a model, so it can be converted to a functional
transform,

FT := (
∏

his(F ) % (der(F ) ∪ und(F )), der(F ))

The resultant transform has the same derived and underlying variables as
the fud, der(FT) = der(F ) and und(FT) = und(F ).

The set of one functional definition sets FU,1 in system U is the subset
of the functional definition sets, FU,1 ⊂ F , such that all transforms are one
functional and the fuds are not circular. The transform of a one functional
definition set is a one functional transform, ∀F ∈ FU,1 (FT ∈ TU,f,1).

A dependent variable of a one functional definition set F ∈ FU,1 is any vari-
able that is not a fud underlying variable, vars(F ) \ und(F ). Each dependent
variable depends on an underlying subset of the fud, depends ∈ F ×P(V)→
F where ∀w ∈ vars(F ) \ und(F ) (depends(F, {w}) ⊆ F ).

Each dependent variable is in a layer. The layer is the length of the longest
path of underlying transforms to the dependent variable. Given fud F ∈ FU,1,
let l be the highest layer, l = layer(F, der(F )), where layer ∈ F ×P(V)→ N
is defined in terms of depends ∈ F × P(V) → F . Let Fi be the subset of
the fud in a particular layer, Fi = {T : T ∈ F, layer(F, der(T )) = i}. Then
F =

⋃
i∈{1...l} Fi.

A one functional definition set F ∈ FU,1 is non-overlapping if the sets
of variables of the underlying transforms of each of the fud derived vari-
ables are disjoint, ∀v, w ∈ der(F ) (v 6= w ∧ vars(depends(F, {v})) ∩
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vars(depends(F, {w})) = ∅). A one functional transform T ∈ TU,f,1 is non-
overlapping if it is equal to the transform of a non-overlapping fud, T = FT.
If the transform, T , is non-overlapping, then its formal is always independent,
AX ∗T = (AX ∗T )X, where A is any underlying histogram, vars(A) ⊇ und(T ).

Given a set of substrate variables V , the set of substrate functional defi-
nition sets FU,V is the subset of one functional definition sets, FU,V ⊂ FU,1,
that (i) have underlying variables which are subsets of the substrate, ∀F ∈
FU,V (und(F ) ⊆ V ), and (ii) consist of partition transforms, ∀F ∈ FU,V ∀T ∈
F ∃P ∈ B(und(T )CS) (T = PT). In addition, partition circularities are ex-
cluded by ensuring that the partitions are unique in the fud when flattened
to substrate.

Let v be the volume of the substrate, v = |V C|. If the volume, v, is fi-
nite, the set of substrate fuds is finite, |FU,V | <∞.

Avoiding partition circularities is computationally expensive. The infinite-
layer substrate functional definition sets F∞,U,V is the superset of the sub-
strate functional definition sets, F∞,U,V ⊃ FU,V , that drop the exclusion of
partition circularities. The infinite-layer substrate fud set is defined recur-
sively,

F∞,U,V = {F : F ⊆ powinf(U, V )(∅), und(F ) ⊆ V }

where

powinf(U, V )(F ) := F ∪G ∪ powinf(U, V )(F ∪G) :

G = {PT : K ⊆ vars(F ) ∪ V, P ∈ B(KCS)}

The cardinality of the infinite-layer substrate fud set is infinite, |F∞,U,V | =∞.

2.5.4 Decompositions

This section may be skipped until section ‘Tractable and practicable aligned
induction’.

A functional definition set decomposition is a model that consists of a tree
of fuds that are contingent on components.

The set of functional definition set decompositions DF is a subset of the
trees of pairs of (i) states, S, and (ii) functional definition sets, F

DF ⊂ trees(S × F)
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Let D be a fud decomposition, D ∈ DF. The set of fuds is fuds(D) :=
{F : ((·, F ), ·) ∈ nodes(D)}. The underlying is und(D) :=

⋃
{und(F ) : F ∈

fuds(D)}. The set of underlying variables of a decomposition is also called
the substrate.

Fud decompositions are constrained such that each of the states in child
pairs are states in the derived variables of the parent fud,

∀D ∈ DF ∀((·, F ), E) ∈ nodes(D) ∀((S, ·), ·) ∈ E (S ∈ dom((FT)−1))

The root nodes have no parent and so their states are constrained to be null,
∀D ∈ DF ∀((S, ·), ·) ∈ D (S = ∅). Given a fud decomposition D ∈ DF hav-
ing underlying variables V = und(D), each fud F ∈ fuds(D) is contingent
on the component C ∈ B(V C) implied by the union of the ancestor derived
states in the derived variables of the union of the ancestor fuds. Let L be
a path in the fud decomposition, L ∈ paths(D). Then for each child fud
(·, F ) = Li, where i ∈ {2 . . . |L|}, the union of the ancestor derived states
is R =

⋃
{S : j ∈ {2 . . . i}, (S, ·) = Lj}, the union of the ancestor fuds is

G =
⋃
{H : j ∈ {1 . . . i− 1}, (·, H) = Lj}, and so the contingent component

is (GT)−1(R). In the case where the underlying of the ancestor fud, G, is the
whole substrate, und(G) = V , then the component is C = (GT)−1(R) ⊆ V C.

The function cont ∈ DF → P(A × F) returns the set of component-fud
pairs of the fud decomposition. When the fud decomposition, D, is applied to
a histogram A ∈ A in variables vars(A) = V , each fud transform is applied
to the contingent slice, A ∗ C ∗ FT where (C,F ) ∈ cont(D). Two fuds on
the same path (·, F1) ∈ Lj and (·, F2) ∈ Li where L ∈ paths(D) and j < i,
are such that the fud (C1, F1) ∈ cont(D) nearer the root has a component
which is a superset of the component of the fud (C2, F2) ∈ cont(D) nearer
the leaves, C1 ⊃ C2. So the slice nearer the root is greater than or equal to
the slice nearer the leaves, A ∗ C1 ≥ A ∗ C2. That is, the fuds are more and
more selectively contingent along the fud decomposition’s paths, and so are
applied to smaller and smaller slices.

In the case where each of the slice derived are diagonalised, ∀(C,F ) ∈
cont(D) (diagonal(A ∗ C ∗ FT)), the fud decomposition, D, is a contingent,
layered, redundant model of the sample histogram, A.

A fud decomposition is a model, so it can be converted to a functional
transform, DT ∈ Tf . The partition of the fud decomposition transform is
equal to the set of components corresponding to those fud derived states that
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are not parent derived states in the decomposition tree,
⋃
{dom((FT)−1)\{S :

((S, ·), ·) ∈ E} : ((·, F ), E) ∈ nodes(D)}. The resultant transform has the
same underlying variables as the fud decomposition, und(DT) = und(D).

The tree of a fud decomposition is sometimes unwieldy, so consider the
fud decomposition fud, DF ∈ F , which is the intermediate fud used in the
construction of the fud decomposition transform, DT. The decomposition
fud is defined as the union of the decomposition fuds and the nullable fud,
DF :=

⋃
fuds(D) ∪ nullable(U)(DD). The nullable fud, nullable(U)(DD), is

defined in section ‘Decompositions’, below. It consists of a layer of transforms
which is added on top of the union of the decomposition fuds,

⋃
fuds(D).

Each derived variable in the fud union, w ∈ der(F ) where F ∈ fuds(D), is
in the underlying of a corresponding transform, w ∈ und(Tw), in the nullable
layer. The transform derived consists of a nullable variable {w′} = der(Tw).
This nullable variable, w′, has the same values as its underlying variable, w,
but with an additional null value, Uw′ = Uw ∪ {null}. If the fud, F , is not
the root fud, there is also a contingent variable c with values corresponding
to the fud’s in-slice and out-slice states, Uc = {in, out}. That is, given
contingent state S ∈ CS, where (C,F ) ∈ cont(D), the derived state, R, is
such that (c, in) ∈ R. Similarly, if S ∈ V CS \ CS, then (c, out) ∈ R. The
underlying of nullable variable’s transform will also contain the contingent
variable, {c, w} = und(Tw). The nullable variable, w′, is constrained by the
transform, Tw, to be in the null value whenever the contingent variable, c, is in
the out value, and to be in the value of the underlying variable, w, otherwise.
That is, (c, out) ∈ R =⇒ (w′, null) ∈ R, and (c, in) ∈ R =⇒ (w′, Rw) ∈ R.
In this way, there is no need to navigate the slices of the decomposition. The
fud decomposition fud, DF, can be analysed by examining the effective states
of reductions to its nullable derived variables, der(DF).

Given a set of substrate variables V , the set of substrate fud decompositions
DF,U,V is a subset of fud decompositions, DF,U,V ⊂ DF, that contain only sub-
strate fuds, ∀D ∈ DF,U,V ∀F ∈ fuds(D) (F ∈ FU,V ). In addition, each fud is
unique in a path, ∀D ∈ DF,U,V ∀L ∈ paths(D) (|{F : (·, (·, F )) ∈ L}| = |L|).

Let v be the volume of the substrate, v = |V C|. If the volume, v, is fi-
nite, the set of substrate fud decompositions is finite, |DF,U,V | <∞.

Similarly, the infinite-layer substrate fud decompositions DF,∞,U,V is the su-
perset of the substrate fud decompositions, DF,∞,U,V ⊃ DF,U,V , that contain
only infinite-layer substrate fuds, ∀D ∈ DF,∞,U,V ∀F ∈ fuds(D) (F ∈ F∞,U,V ).
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The cardinality of the infinite-layer substrate fud decomposition set is infinite,
|DF,∞,U,V | =∞.

2.6 Induction with model

2.6.1 Classical induction

Given substrate transform T ∈ TU,V , the derived histogram valued integral
substrate histograms function DU,i,T,z is defined

DU,i,T,z := {(A,A ∗ T ) : A ∈ AU,i,V,z}

The finite set of iso-deriveds of derived histogram A ∗ T is

D−1
U,i,T,z(A ∗ T ) = {B : B ∈ AU,i,V,z, B ∗ T = A ∗ T}

The degree to which an integral iso-set I ⊆ AU,i,V,z that contains the his-
togram, A ∈ I, is said to be law-like is called the iso-derivedence. The
iso-derivedence is defined as the ratio of (i) the cardinality of the intersec-
tion between the integral iso-set and the set of integral iso-deriveds, and (ii)
the cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ D−1

U,i,T,z(A ∗ T )|
|I ∪ D−1

U,i,T,z(A ∗ T )|
≤ 1

In classical modelled induction the history probability functions are con-
strained by derived histogram.

Let P be a substrate history probability function, P ∈ (HU,V,z :→ Q≥0) ∩ P .
Given a history HE ∈ HU,V,zE , of size zE = |HE|, consider the case where
the derived histogram A ∗ T of drawn histories is known to be necessary,∑

(P (H) : H ⊆ HE, his(H) ∗ T = A ∗ T ) = 1. The maximum likelihood
estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, his(H) ∗ T = A ∗ T}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) ∗ T 6= A ∗ T}

= {(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) :

H ⊆ HE, his(H) ∗ T = A ∗ T} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) ∗ T 6= A ∗ T}
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That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with the derived, his(H) ∗ T = A ∗ T , are uniformly probable and
all other histories, G * HE or his(G) ∗T 6= A ∗T , are impossible, P̃ (G) = 0.
If (i) the transform, T , is known, (ii) the derived, A ∗ T , is known and (iii)
the distribution histogram, HE, is known, then the likely probability function,
P̃ , is known.

The likely probability of drawing histogram A from necessary drawn derived
A ∗ T is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the iso-derived historical frequencies,

∑
Qh,U(E, z)(B) :

B ∈ D−1
U,i,T,z(A ∗ T ), is maximised.

Consider the case where the transform, T , is known and the derived, A ∗ T ,
is known, but the distribution histogram, E, is unknown and hence the likely
history probability function, P̃ , is unknown. The maximum likelihood esti-
mate Ẽ for the distribution histogram, E, is a modal value of the likelihood
function,

Ẽ ∈ maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known and the derived, A ∗ T , is
known. If it is assumed that the distribution histogram equals the likely
distribution histogram, E = Ẽ, then the likely history probability is known,
P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) : B ∈ D−1

U,i,T,z(A∗T )) where his(H)∗T = A∗T .

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) : D ∈ AU,V,1})

The normalised naturalisation, Â ∗ T ∗ T †, is a solution. The naturalisation,
A ∗ T ∗ T †, is the independent analogue of the iso-deriveds. So the maximum
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likelihood estimate, Ẽ, for the distribution probability histogram, Ê, is the
naturalisation probability histogram, Â ∗ T ∗ T †,

Ẽ = Â ∗ T ∗ T †

In the case where the naturalisation is integral, A ∗ T ∗ T † ∈ Ai, the sum
of the iso-derived naturalisation-distributed multinomial probabilities varies
with the naturalisation naturalisation-distributed multinomial probability,∑

Qm,U(A ∗ T ∗ T †, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ) ∼

Qm,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

So, if it is assumed that the distribution probability histogram equals the
likely distribution probability histogram, Ê = Ẽ = Â ∗ T ∗ T †, then the likely
history probability varies against the naturalisation-distributed multinomial
probability of the naturalisation, P̃ (H) ∼ 1/Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †).

The cardinality of the set of integral iso-deriveds may be stated explicitly
as the product of the weak compositions of the components,

|D−1
U,i,T,z(A ∗ T )| =

∏
(R,C)∈T−1

((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

So the integral iso-deriveds log-cardinality varies against the size-volume
scaled component size cardinality sum relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

where size z = size(A) = size(A ∗ T ) and volume v = |V C|. In the do-
main where the size is less than or equal to the volume, z ≤ v, the integral
iso-deriveds log-cardinality varies against the size scaled component size car-
dinality relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −z × entropyRelative(A ∗ T, V C ∗ T )

So the logarithm of the likely probability of drawing histogram A from neces-
sary drawn derived A ∗ T varies with the relative entropy,

ln
∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) ∼

z × entropyRelative(A ∗ T, V C ∗ T )
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The naturalisation, A∗T∗T †, is the most probable histogram, ∀B ∈ D−1
U,i,T,z(A∗

T ) (Qm,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †) ≥ Qm,U(A ∗ T ∗ T †, z)(B)). In the case
where the histogram is natural, A = A ∗ T ∗ T †, then, as the relative entropy,
entropyRelative(A ∗ T, V C ∗ T ), increases, the likely histogram probability,
Qm,U(A, z)(A)/

∑
(Qm,U(A, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )), increases.

The likely history probability function entropy varies with the naturalisation
entropy, entropy(P̃ ) ∼ entropy(A ∗ T ∗ T †), and against the relative entropy,
entropy(P̃ ) ∼ − entropyRelative(A ∗ T, V C ∗ T ).

Consider the case where a drawn histogram A is known, but neither the
distribution histogram, E, is known nor the transform, T , is known, and
hence the likely history probability function, P̃ , is unknown. The maximum
likelihood estimate (Ẽ, T̃ ) for the pair of the distribution histogram, E, and
the transform, T , is a modal value of the likelihood function,

(Ẽ, T̃ ) ∈
maxd({((D,M),

∑
(Qh,U(D, z)(B) : B ∈ D−1

U,i,M,z(A ∗M))) :

D ∈ AU,i,V,zE , M ∈ TU,V })

All solutions are such that the transform maximum likelihood estimate is
unary, T̃ = Tu where Tu = {V CS}T. This is the trivial case where the set of
iso-derived histograms is the entire set of substrate histograms, D−1

U,i,Tu,z
(A ∗

Tu) = AU,i,V,z. In this case necessary derived, H ⊆ HE and his(H) ∗ Tu =
A∗Tu, reduces to drawn history, H ⊆ HE. If it is assumed that the transform
equals the likely transform, T = T̃ = Tu, then the likely history probability
function which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1/
(
zE
z

)
) : H ⊆ HE, |H| = z} ∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, in the case of unknown transform, the maximum likelihood estimate,
P̃ , is such that all drawn histories H ⊆ HE of size |H| = z are uniformly
probable and all other histories, G * HE, are impossible, P̃ (G) = 0.

Define the derived-dependent AD(T ) ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the

54



histogram, A, conditional that it is an iso-derived,

{AD(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,V,z})

The derived-dependent, AD(T ), is the dependent analogue of the iso-deriveds.
Note that the derived-dependent, AD(T ), is not always computable, but an
approximation to any accuracy can be made to it. In the case where the
histogram is natural, the derived-dependent equals the naturalisation, A =
A ∗ T ∗ T † =⇒ AD(T ) = A = A ∗ T ∗ T †.

Now consider the case where, given necessary drawn derived A ∗ T , it is
known, in addition, that the sample histogram A is the most probable his-
togram of the iso-derived. That is, the likely probability of drawing histogram
A from necessary drawn derived A ∗ T ,∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )

is maximised.

In the case where the transform, T , is known and the sample, A, is known,
but the distribution histogram, E, is unknown, the maximum likelihood esti-
mate Ẽ for the distribution histogram, E, is a modal value of the likelihood
function,

Ẽ ∈ maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known and the sample, A, is known.
If it is assumed that the distribution histogram equals the likely distribu-
tion histogram, E = Ẽ, then the likely history probability is known, P̃ (H) =
1/
∑

(Qh,U(Ẽ, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )) where his(H) ∗ T = A ∗ T .

If the histogram is natural, A = A ∗ T ∗ T †, then the additional constraint of
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probable sample makes no change to the maximum likelihood estimate, Ẽ,

A = A ∗ T ∗ T † =⇒

maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,i,V,zE})

= maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) : D ∈ AU,i,V,zE})

If the histogram is not natural, A 6= A ∗ T ∗ T †, however, then the likely his-
tory probability function entropy, entropy(P̃ ), is lower than it is in the case
of necessary derived unconstrained by probable sample.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, is now approximated by a modal value of the
conditional likelihood function,

Ẽ ∈ maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,V,1})

The solution to this is the normalised derived-dependent, Ẽ = ÂD(T ). The
maximum likelihood estimate is near the sample, Ẽ ∼ Â, only in as much as
it is far from the naturalisation, Ẽ � Â ∗ T ∗ T †.

The iso-derived conditional multinomial probability distribution is defined

Q̂m,d,T,U(E, z)(A) :=
1

|ran(DU,i,T,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

So the optimisation can be rewritten,

Ẽ ∈ maxd({(D, Q̂m,d,T,U(D, z)(A)) : D ∈ AU,V,1})
In the case where the histogram is natural, A = A ∗ T ∗ T †, the log likelihood
varies against the iso-derived log-cardinality,

ln Q̂m,d,T,U(A, z)(A) ∝ ln
Qm,U(A, z)(A)∑

Qm,U(A, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

∼ − ln |D−1
U,i,T,z(A ∗ T )|

So the log likelihood varies with the size-volume scaled component size car-
dinality sum relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
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In the domain where the size is less than or equal to the volume, z ≤ v, the
log likelihood varies with the size scaled component size cardinality relative
entropy,

ln Q̂m,d,T,U(A, z)(A) ∼ z × entropyRelative(A ∗ T, V C ∗ T )

In other words, the log likelihood is maximised where (i) the derived entropy,
entropy(A ∗ T ), is minimised, and (ii) the cross entropy, entropyCross(A ∗
T, V C ∗ T ), is maximised, so that high counts are in low cardinality compo-
nents and high cardinality components have low counts.

If the histogram is natural, A = A ∗ T ∗ T †, and the component size car-
dinality relative entropy is high, entropyCross(A ∗ T, V C ∗ T ) > ln |T−1|, it
can also be shown that the log likelihood varies against the derived multino-
mial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ − ln Q̂m,U(A ∗ T, z)(A ∗ T )

In this case the sum sensitivity of the iso-derived conditional multinomial
probability distribution varies with the underlying-derived multinomial prob-
ability distribution sum sensitivity difference,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼
sum(sensitivity(U)(Q̂m,U(A, z)))− sum(sensitivity(U)(Q̂m,U(A ∗ T, z)))

and so is less than or equal to the sum sensitivity of the multinomial proba-
bility distribution,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ≤ sum(sensitivity(U)(Q̂m,U(A, z)))

Furthermore, the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼ − ln Q̂m,d,T,U(A, z)(A)

That is, in the high relative entropy natural case, the maximisation of the
log-likelihood also tends to minimise the sum sensitivity to the maximum
likelihood estimate. This is opposite to the relationship between the sum
sensitivity and the log-likelihood in classical non-modelled induction, which
was found to be weakly positively correlated.

As the relative entropy, entropyRelative(A ∗ T, V C ∗ T ), increases, the log-
likelihood, ln Q̂m,d,T,U(A, z)(A), increases, but the sensitivity to distribution
histogram, E, decreases. In other words, the higher the sample relative en-
tropy the more likely the normalised sample histogram, Â, equals the nor-
malised distribution histogram, Ê, and the smaller the likely difference be-
tween them if they are not equal.
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Given necessary derived and probable sample, consider the case where a
drawn histogram A is known, but neither the distribution histogram, E, is
known nor the transform, T , is known, and hence the likely history probability
function, P̃ , is unknown. The maximum likelihood estimate (Ẽ, T̃ ) for the
pair of the distribution histogram, E, and the transform, T , is a modal value
of the likelihood function,

(Ẽ, T̃ ) ∈

maxd({((D,M),
Qh,U(D, z)(A)∑

Qh,U(D, z)(B) : B ∈ D−1
U,i,M,z(A ∗M)

) :

D ∈ AU,i,V,zE , M ∈ TU,V })

All solutions are such that the transform maximum likelihood estimate is
self, T̃ = Ts where Ts = V CS{}T. This is the trivial case where the set of
iso-derived histograms is just the sample, D−1

U,i,Ts,z
(A ∗ Ts) = {A}. In this

case necessary derived, his(H) ∗ Ts = A ∗ Ts, reduces to necessary histogram,
his(H) = A. If it is assumed that the transform equals the likely transform,
T = T̃ = Ts, then the likely history probability function which maximises the
entropy, entropy(P̃ ), is

P̃ = {(H, 1/Qh,U(E, z)(A)) : H ⊆ HE, his(H) = A} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

That is, in the case of unknown transform, the maximum likelihood estimate,
P̃ , is such that all drawn histories H ⊆ HE with the histogram, his(H) = A,
are uniformly probable and all other histories, G * HE or his(G) 6= A, are

impossible, P̃ (G) = 0.

In this case the maximum likelihood estimate, Ẽ, for the distribution proba-
bility histogram, Ê, is the sample probability histogram, Â,

Ẽ = Â = Â ∗ Ts ∗ T †s

Consider the case where the derived is uniformly possible. Given substrate
transform T ∈ TU,V , assume that the substrate history probability function
P ∈ (HU,V,z :→ Q≥0) ∩ P is the distribution of an arbitrary history valued
function, X → H, given an arbitrary derived valued function, X → A. In this
case, the history valued function is chosen arbitrarily from the constrained
subset{
{((x,A′, y), H) : (x, (A′, G)) ∈ F, (y,H) ∈ G, his(H) ∗ T = A′} :

F ∈ X → (A× (X → H))
}
⊂ X → H
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Uniformly possible derived is a weaker constraint than uniformly possible his-
togram, so the subset of history valued functions is larger.

This subset of the substrate history probability functions can be generalised
for all substrate transforms as the subset derived from⋃

T∈Tf

(X → (A ×T (X → H)))

where Tf is the set of all functional transforms, and the fibre product ×T is
defined

A ×T (X → H) :=

{(A′, G) : (A′, G) ∈ A× (X → H), ∀(·, H) ∈ G (his(H) ∗ T = A′)}

In the case where there is a distribution history HE and a substrate transform
T ∈ TU,V , the maximum likelihood estimate which maximises the entropy,
entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H) ∗ T = A′}∧ : A′ ∈ ran(DU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ D−1
U,i,T,z(A

′))) :

H ⊆ HE, his(H) ∗ T = A′} : A′ ∈ ran(DU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn deriveds
are uniformly probable, and then all drawn histories H ⊆ HE with the same
derived, his(H) ∗ T = A′, are uniformly probable. If the distribution his-
togram, HE, is known and the substrate transform, T , is known, then the
likely probability function, P̃ , is known.

In the case where the distribution histogram is uniform, Ê = V̂ C, so that
all histories are substrate histories, {H : H ∈ HU,V,z, his(H) ∗ T = A′}, the
more probable histograms, A ∈ maxd({(B,

∑
(P̃H : H ∈ HU,V,z, his(H) =

B)) : B ∈ AU,i,V,z}), tend to be such that they are uniform within the com-
ponent, ∀C ∈ TP ∀R, S ∈ C (AR ≈ AS), or naturalised, A ≈ A ∗ T ∗ T †.

The properties of uniformly possible derived are the same as for necessary
derived, except that the probabilities are scaled. So, in the case where the dis-
tribution histogram, E, is unknown, and the distribution histogram size, zE,
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is also unknown, except that it is known to be large, zE � z, then the likely
history probability varies against the naturalisation-distributed multinomial
probability of the naturalisation,

P̃ (H) ∼ 1/|ran(DU,i,T,z)| × 1/Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

That is, more histories are possible but less probable.

Now consider the case where, given uniform possible derived, it is known,
in addition, that the sample histogram A is the most probable histogram of
its iso-derived.

The iso-derived conditional multinomial probability distribution, is defined
above as

Q̂m,d,T,U(E, z)(A) :=
1

|ran(DU,i,T,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

The iso-derived conditional multinomial probability already includes the uni-
form possible scaling factor of 1/|ran(DU,i,T,z)|.

The cardinality of the derived, |ran(DU,i,T,z)|, is equal to the cardinality of
the derived substrate histograms,

|ran(DU,i,T,z)| =
(z + w′ − 1)!

z! (w′ − 1)!

where w′ = |T−1|. So the additional term, − ln |ran(DU,i,T,z)|, in the uniform

possible log likelihood, ln Q̂m,d,T,U(E, z)(A), varies against the derived volume,
w′, where the derived volume is less than the size, w′ < z, otherwise against
the size scaled log derived volume, z lnw′,

− ln |ran(DU,i,T,z)| ∼ − ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

In the case where the sample is natural, A = A ∗T ∗T †, the uniform possible
log likelihood varies (i) against the derived volume, w′, where the derived
volume is less than the size, w′ < z, otherwise against the size scaled log
derived volume, z lnw′, and (ii) with the size-volume scaled component size
cardinality sum relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ (z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
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In other words, the log likelihood is maximised where (i) the derived volume,
w′, is minimised, (ii) the derived entropy, entropy(A ∗ T ), is minimised, and
(iii) the cross entropy, entropyCross(A ∗ T, V C ∗ T ), is maximised, so that
high counts are in low cardinality components and high cardinality compo-
nents have low counts.

As in the case of necesary derived and probable sample, above, if the his-
togram is natural, A = A∗T ∗T †, and the component size cardinality relative
entropy is high, entropyCross(A ∗ T, V C ∗ T ) > lnw′, the sum sensitivity of
the iso-derived conditional multinomial probability distribution is less than
or equal to the sum sensitivity of the multinomial probability distribution,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ≤ sum(sensitivity(U)(Q̂m,U(A, z)))

and varies against the log-likelihood,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼ − ln Q̂m,d,T,U(A, z)(A)

Given uniform possible derived and probable sample, consider the case
where a drawn histogram A is known, but neither the distribution histogram,
E, is known nor the transform, T , is known, and hence the likely history
probability function, P̃ , is unknown. In the case where the distribution his-
togram size, zE, is also unknown, except that it is known to be large, zE � z,
then the maximum likelihood estimate (Ẽ, T̃ ) for the pair of the distribution
histogram, E, and the transform, T , is approximated by a modal value of the
conditional likelihood function,

(Ẽ, T̃ ) ∈ maxd({((D,M), Q̂m,d,M,U(D, z)(A)) : D ∈ AU,V,1, M ∈ TU,V })

If there is a unique maximum for the distribution probability histogram, Ẽ,
this can be rewritten in terms of the derived-dependent,

T̃ ∈ maxd({(M, Q̂m,d,M,U(AD(M), z)(A)) : M ∈ TU,V })

The derived-dependent, AD(T ), is not always computable, but an approxima-
tion to any accuracy can be made to it, so a computable approximation of the
maximum likelihood estimate, T̃ , can be made for the unknown transform, T .
In some cases the likely transform, T̃ , is not trivial, T̃ 6= Tu and T̃ 6= Ts.

If it is also known that the sample is natural, the optimisation can be re-
stricted to natural transforms, A = A ∗ T ∗ T † =⇒ AD(T ) = A. In this case
the optimisation is

T̃ ∈ maxd({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})
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or

T̃ ∈ maxd({(M,
1

|ran(DU,i,M,z)|
Qm,U(A, z)(A)∑

Qm,U(A, z)(B) : B ∈ D−1
U,i,M,z(A ∗M)

) :

M ∈ TU,V , A = A ∗M ∗M †})

The numerator is constant, so the optimisation can be simplified,

T̃ ∈ mind({(M, |ran(DU,i,M,z)|
∑

Qm,U(A, z)(B) : B ∈ D−1
U,i,M,z(A ∗M)) :

M ∈ TU,V , A = A ∗M ∗M †})

In this case the maximum likelihood estimate, Ẽ, for the distribution proba-
bility histogram, Ê, is the sample probability histogram, Â,

Ẽ = Â = Â ∗ T̃ ∗ T̃ †

Note that, although computable, this optimisation is intractable because the
cardinality of the substrate transforms, |TU,V |, is factorial in the volume, v.
Tractable optimisations require the computation to be at most polynomial.

Note, also, that, although the sensitivity to distribution, E, is defined above
for uniform possible derived, the sensitivity to model, T , is not yet defined.

2.6.2 Specialising coder induction

It is shown above that there are two canonical history coders, the index
history coder CH and the classification coder CG. Given variables V and size
z, the index substrate history coder, CH,U,V,z, encodes each substrate history
H ∈ HU,V,z in a fixed space of Cs

H,U,V,z(H) = z ln v, where volume v = |V C|.
By contrast, the classification substrate history coder, CG,U,V,z, encodes each
history in a space which depends on the histogram A = his(H),

Cs
G,U,V,z(H) = ln

(z + v − 1)!

z! (v − 1)!
+ ln

z!∏
S∈AS AS!

When the histogram entropy, entropy(A), is high the classification space is
greater than the index space, Cs

G,U,V,z(H) > Cs
H,U,V,z(H), but when the entropy

is low the classification space is less than the index space, Cs
G,U,V,z(H) <

Cs
H,U,V,z(H). In the case where the size is much less than the volume, z � v,

the break-even sized entropy is approximately z × entropy(A) ≈ z ln z.
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Given substrate transform T ∈ TU,V , the specialising derived substrate
history coder, CG,H,U,T,z, is intermediate between the classification coder,
CG,U,V,z, and the index coder, CH,U,V,z. Given a substrate history H ∈ HU,V,z,
the derived history, H ∗T , is encoded in a classification coder, CG,U,W,z, where
derived variables W = der(T ). Then each sub-history HC , corresponding to
a component of the partition, HC ⊆ H, where (R,C) ∈ T−1, is encoded in a
index coder, CH,U,C,zC , where zC = (A ∗ T )R. The specialising space is

Cs
G,H,U,T,z(H) = ln

(z + w′ − 1)!

z! (w′ − 1)!
+ ln

z!∏
(R,·)∈T−1(A ∗ T )R!

+∑
(R,C)∈T−1

(A ∗ T )R ln |C|

where w′ = |T−1|.

In the case where the transform is self, T = Ts where Ts = V CS{}T, then the
specialising space equals the classification space, Cs

G,H,U,Ts,z
(H) = Cs

G,U,V,z(H).
In the case where the transform is unary, T = Tu where Tu = {V CS}T, then
the specialising space equals the index space, Cs

G,H,U,Tu,z
(H) = Cs

H,U,V,z(H).

The specialising space depends only on the transform, T , and the derived,
A ∗ T . Define the specialising space function sp(T )(A ∗ T ) := Cs

G,H,U,T,z(H).

The specialising space varies (i) with the derived volume, w′, where the de-
rived volume is less than the size, w′ < z, otherwise with the size scaled
log derived volume, z lnw′, and (ii) against the size scaled component size
cardinality relative entropy,

Cs
G,H,U,T,z(H) ∼ (w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyRelative(A ∗ T, V C ∗ T )

In general, the specialising space is less than either of the two canonical
spaces where the derived entropy, entropy(A ∗ T ), is low, but the expected
component entropy, entropyComponent(A, T ), is high. So the specialising
space is minimised when (a) the derived volume, w′, is minimised, (b) the
derived entropy, entropy(A ∗ T ), is minimised, (c) high size components are
low cardinality components and low size components are high cardinality
components, and (d) the expected component entropy is maximised.

In specialising induction the history probability functions are constrained
by specialising space which in turn depends on derived histogram.
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In the discussion of ‘Maximum Entropy’, above, it was shown that, of a
subset of the micro-state valued functions of distinguishable particle, the
maximum likelihood estimate of the implied probability function is the prob-
ability function with the greatest entropy.

Consider a system of r undefined particles where the micro-state is a sub-
strate history, H ∈ HU,V,z. The set of substrate history valued functions hav-
ing exactly r particles with integer identifier is {1 . . . r} :→ HU,V,z ⊂ X →
H. Given substrate transform T ∈ TU,V , let the subset S ⊂ {1 . . . r} :→
HU,V,z be such that the expected specialising space is a constant, ∀R ∈
S (
∑

(Cs
G,H,U,T,z(H)/r : (·, H) ∈ R) = ε). Of this subset, S, the implied

probability function with the greatest entropy, P̃ ∈ maxd({(N, entropy(N)) :
R ∈ S, N = {(H, |C|/r) : (H,C) ∈ R−1}}), approximates to a Boltzmann
distribution.

Given substrate transform T ∈ TU,V , the maximum likelihood estimate P̃
of the substrate history probability function P ∈ (HU,V,z :→ Q≥0)∩P , which
maximises the entropy, entropy(P̃ ), is

P̃ = {(H, exp(−Cs
G,H,U,T,z(H))) : H ∈ HU,V,z}∧

= {(H, exp(−sp(T )(his(H) ∗ T ))) : H ∈ HU,V,z}∧

= {(H, exp(−sp(T )(his(H) ∗ T ))∑
exp(−sp(T )(his(G) ∗ T )) : G ∈ HU,V,z

) : H ∈ HU,V,z}

where exp is the exponential function. The likely probability of a history,
P̃ (H), is inversely proportional to the bounding integer, for which the space
is the logarithm, of the integer encoding of the history in the specialising
coder. The maximum likelihood estimate, P̃ , is such that all substrate histo-
ries H ∈ HU,V,z with the same specialising space, Cs

G,H,U,T,z(H), are equally

probable and all histories are possible, P̃ (H) > 0. If the transform, T , is
known, then the likely probability function, P̃ , is known and an approxima-
tion to the expected specialising space, ε, is known.

The specialising space, sp(T )(his(H) ∗ T ) = Cs
G,H,U,T,z(H), depends only on

the transform, T , and the derived, his(H) ∗ T , so all substrate histories with
the same derived, his(H) ∗ T = A ∗ T , are equally probable. All histories are
possible, P̃ (H) > 0, so specialising coder induction is similar to uniformly
possible derived induction, above, except that the deriveds are not necesssar-
ily equally probable.
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The likely history probability function entropy, entropy(P̃ ), is maximised
when the expected numerator, exp(−sp(T )(his(H) ∗ T )), is minimised. The
expected specialising space is

∑
(P̃ (H)× sp(T )(his(H)∗T ) : H ∈ HU,V,z) ≈ ε,

so the likely history probability function entropy varies with the expected spe-
cialising space, entropy(P̃ ) ∼ ε.

Now consider the case where, given specialising, it is known, in addition,
that the sample histogram A is the most probable histogram. That is, the
likely probability of histogram A,∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

z!∏
S∈AS AS!

× exp(−sp(T )(A ∗ T ))∑
exp(−sp(T )(his(G) ∗ T )) : G ∈ HU,V,z

is maximised.

The specialising probability distribution is defined

Q̂G,H,T,U(z) := {(A, z!∏
S∈AS AS!

× exp(−sp(T )(A ∗ T ))) : A ∈ AU,i,V,z}∧

The specialising log likelihood varies (i) with the size scaled underlying en-
tropy (ii) against the derived volume, w′, where the derived volume is less
than the size, w′ < z, otherwise against the size scaled log derived volume,
z lnw′, and (iii) with the size scaled component size cardinality relative en-
tropy,

ln Q̂G,H,T,U(z)(A) ∼ z × entropy(A)

− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ z × entropyRelative(A ∗ T, V C ∗ T )

In other words, the log likelihood is maximised where (i) the derived vol-
ume, w′, is minimised, (ii) the derived entropy, entropy(A ∗ T ), is min-
imised, (iii) the cross entropy, entropyCross(A ∗ T, V C ∗ T ), is maximised,
so that high counts are in low cardinality components and high cardinal-
ity components have low counts, and (iv) the expected component entropy,
entropyComponent(A, T ), is maximised.

In the case of probable sample, the likely history probability function en-
tropy varies against the relative entropy, entropy(P̃ ) ∼ − entropyRelative(A∗
T, V C ∗ T ). Similarly, the expected specialising space varies against the rela-
tive entropy, ε ∼ − entropyRelative(A ∗ T, V C ∗ T ).

65



Given specialising and probable sample, consider the case where the histogram
A is known, but the transform, T , is unknown, and hence the likely history
probability function, P̃ , is unknown. The maximum likelihood estimate T̃
for the transform, T , is approximated by a modal value of the specialising
likelihood,

T̃ ∈ maxd({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })

Note that, as in the case of uniform possible derived induction, although
computable, this optimisation is intractable because the cardinality of the
substrate transforms, |TU,V |, is factorial in the volume, v.

Unlike uniform possible derived induction, in specialising induction there is
no distribution history, HE, and so no sensitivity to distribution, E. A sensi-
tivity to model, T , can be defined, however, as the negative logarithm of the
cardinality of the maximum likelihood estimate models,

− ln |max({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })|

That is, as the cardinality of the modal models of the log likelihood func-
tion increases, the sensitivity to model decreases. It can be shown that the
sensitivity to model varies against the size-volume scaled component size
cardinality sum relative entropy,

− ln |max({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })| ∼
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

So the sensitivity to model varies against the log likelihood,

− ln |max({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })| ∼ − ln Q̂G,H,T,U(z)(A)

As the relative entropy, entropyRelative(A ∗ T, V C ∗ T ), increases, the log-
likelihood, ln Q̂G,H,T,U(z)(A), increases, but the sensitivity to model, T , de-
creases. In other words, the higher the sample relative entropy the more likely
the maximum likelihood estimate, T̃ , equals the model, T , and the smaller
the likely difference between them if they are not equal.

It is shown above, in the case of uniform possible derived and natural
sample, A = A ∗ T ∗ T †, that the log likelihood varies against the derived vol-
ume and with the size-volume scaled component size cardinality sum relative
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entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ (z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

so the iso-derived conditional log likelihood varies with the specialising log
likelihood,

ln Q̂m,d,T,U(A, z)(A) ∼ ln Q̂G,H,T,U(z)(A)

and the iso-derived conditional model sensitivity varies against the iso-derived
conditional log likelihood,

− ln |max({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})| ∼
− ln Q̂m,d,T,U(A, z)(A)

The iso-derived conditional model sensitivity may be compared to the iso-
derived conditional distribution sensitivity which also varies against the iso-
derived conditional log likelihood,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼ − ln Q̂m,d,T,U(A, z)(A)

That is, in classical modelled induction, the log likelihood is maximised and
the sensitivities to both distribution and model are minimised where (i) the
derived volume is minimised, (ii) the derived entropy is minimised, (iii) the
cross entropy is maximised, so that high counts are in low cardinality compo-
nents and high cardinality components have low counts, and (iv) the expected
component entropy is maximised.

2.6.3 Artificial neural networks

In the discussion of classical modelled induction, above, it is shown that,
given uniform possible derived and probable sample A ∈ AU,V,z, where the
sample is natural, A = A ∗ T ∗ T †, the maximum likelihood estimate T̃ for
unknown transform T ∈ TU,V , is

T̃ ∈ maxd({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})

Similarly, given specialising and probable sample, the maximum likelihood
estimate, T̃ , for the transform, T , is approximated by a modal value of the
specialising likelihood,

T̃ ∈ maxd({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })
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In both cases, although computable, the optimisations are intractable be-
cause the cardinality of the substrate transforms, |TU,V |, is factorial in the
volume, v. In order to make the optimisation tractable and then practicable,
the search must be restricted to a subset of the models.

Artificial neural network induction is an example of practicable classical
modelled induction. Here the models are artificial neural networks which
correspond to functional definition sets of transforms representing the neu-
rons. The optimisation consists of a sequence of these networks. The graph of
the network remains constant, but the weights between neurons of successive
networks are altered to decrease a loss function step by step. The weights of
the initial network are chosen at random. The optimisation proceeds until
the loss falls below a threshold. The fud of the terminating network is then
the practicable model. The network graph is chosen depending on the given
sample. In some cases of configuration the entropy properties of the resultant
model are those of classical induction.

The one functional transforms, TU,f,1, are derived state valued left total
functions of underlying state,

∀T ∈ TU,f,1 (split(V,XS) ∈ V CS :→ WCS)

where (X,W ) = T and V = und(T ). In order to construct a coordinate from
a state define ()[] ∈ S → L(W) as

S[] := {(i, u) : ((v, u), i) ∈ order(DV×W , S)}

where DV×W is an order on the variables and values. The converse function
to construct a state from a coordinate ()V ∈ L(W)→ S is

SV := {(v, Si) : (v, i) ∈ order(DV , V )}

Now one functional transforms may be represented as derived value coordi-
nate valued left total functions of underlying value coordinate,

{(S[], R[]) : (S,R) ∈ split(V,XS)} ∈ {S[] : S ∈ V CS} :→ {R[] : R ∈ WCS}
⊂ Wn →Wm

where n = |V | and m = |W |.

So an alternative definition for a one functional transform is a tuple of (i)
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the underlying variables, V , (ii) the derived variables, W , and (iii) a derived
value coordinate valued left total function of underlying value coordinate, f ,

TU,f,1 =

{(V,W, f) : V,W ∈ P(vars(U)), V ∩W = ∅,
f ∈ {S[] : S ∈ V CS} :→ {R[] : R ∈ WCS}}

The histogram of a function-defined one functional transform T = (V,W, f) ∈
TU,f,1 is

histogram(T ) := {S ∪ f(S[])W : S ∈ V CS} × {1}

In the special case where the transform is mono-derived-variate, T = (V, {w}, f),
the function may be simplified to f ∈ {S[] : S ∈ V CS} :→ Uw, and the his-
togram is

histogram(T ) := {S ∪ {(w, f(S[]))} : S ∈ V CS} × {1}

In the further special case of mono-derived-variate transform where its vari-
ables are real, ∀v ∈ V (Uv = R) and Uw = R, then the function is a real
valued left total function of a real coordinate, f ∈ Rn :→ R. Here the
cartesian states are V CS =

∏
v∈V ({v} ×R), so the histogram is

histogram(T ) = {S ∪ {(w, f(S[]))} : S ∈
∏
v∈V

({v} ×R)} × {1}

= {SV ∪ {(w, f(S))} : S ∈ Rn} × {1}

The cartesian volume is infinite, |V C| = |Rn|, so the cardinality of the his-
togram is infinite, |histogram(T )| = |Rn|.

The reals form a metric space so a real valued function of real coordinates
may be discretised given a finite subset of the reals D ⊂ R : |D| < ∞. The
discretised function is

discrete(D,n)(f) := {(X, nearest(D, f(X))) : X ∈ Dn} ∈ Dn :→ D

where nearest ∈ P(R)×R→ R is defined

nearest(D, r) := t : {t} ∈ mind({(s, (|r − s|, s)) : s ∈ D})

The cardinality of the discretised transform’s histogram is finite,

|histogram((V, {w}, discrete(D,n)(f)))| = |Dn| = |D|n
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An example of a transform defined by a real valued function occurs in the
function composition of artificial neural networks. Here a transform repre-
sents a model of a neuron called a perceptron, T = (V,w, fσ(Q)), where the
dimension is n = |V | and the function fσ(Q) ∈ Rn :→ R is parameterised by
(i) some differentiable function σ ∈ R :→ R, called the activation function,
and (ii) a vector of weights, Q ∈ Rn+1, and is defined

fσ(Q)(S) := σ(
∑

i∈{1...n}

QiSi + Qn+1)

The function composition of artificial neural networks may be represented
by fuds of these transforms. Define nets as a subset of the set of lists of
tuples of the graph and real weights,

nets := {G : G ∈ L(P(V)× V × L(R)), ∀(·, (V, ·, Q)) ∈ G (|Q| = |V |+ 1)}

Define the set of transforms, fud(σ) ∈ nets→ P(Tf) as

fud(σ)(G) :=

{({SV ∪ {(w, fσ(Q)(S))} : S ∈ Rn} × {1}, {w}) :

(·, (V,w,Q)) ∈ G, n = |V |}

The fud search is restricted to the neural net substrate fud set, F∞,U,V,σ =
F∞,U,V ∩ (fud(σ) ◦ nets).

An example of a neural net substrate fud F ∈ F∞,U,V,σ has l = layer(F, der(F ))
layers of fixed breadth equal to the underlying dimension, ∀i ∈ {1 . . . l} (|Fi| =
n) where n = |V | and Fi = {T : T ∈ F, layer(F, der(T )) = i}, such
that the underlying of each transform is the derived of the layer below,
∀T ∈ F1 (und(T ) = V ) and ∀i ∈ {2 . . . l} ∀T ∈ Fi (und(T ) = der(Fi−1)).

The optimisation of artificial neural networks can be divided into unsuper-
vised and supervised types. In the supervised case there is additional knowl-
edge. First, there exists an unknown distribution histogram E from which the
known sample histogram, A, is drawn, A < E. Secondly, the substrate can be
partitioned into query variables K ⊂ V and label variables, V \K, such that
the distribution histogram, E, is causal between the query variables and the
label variables,

split(K,EFS) ∈ KCS → (V \K)CS

and so the sample histogram, A, is also causal,

split(K,AFS) ∈ KCS → (V \K)CS
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That is, in the supervised case, there is a functional relation such that there
is exactly one label state for every effective query state. In an optimisation,
a fud F ∈ F∞,U,K,σ has its underlying variables restricted to the query vari-
ables, und(F ) ⊆ K. The optimisation maximises the causality between the
derived variables and the label variables by minimising the loss function. At
the optimum there is no error and the relation is functional,

split(WF , (A ∗XF % (WF ∪ V \K))FS) ∈ WCS
F → (V \K)CS

where XF = histogram(FT) and WF = der(F ). At zero loss the label state
is implied for all query states that are effective in the sample derived,

split(K, (KC ∗ FT ∗ (A ∗XF ) % (V \K))FS) ∈ KCS → (V \K)CS

That is, a query state Q ∈ KCS that is effective in the sample derived
R ∈ (A ∗ FT)FS, where {R} = ({Q}U ∗ FT)FS, but that is not necessar-
ily effective in the sample itself, Q /∈ (A%K)FS, still has an implied label
state, {L} = (A ∗XF ∗ {R}U % (V \K))FS where L ∈ (V \K)CS.

In the case where the derived variables of the fud is a literal frame of the
label variables, WF :↔: (V \K) and ∀v ∈ (V \K) (Uv ⊆ R), the least squares
loss function lsq ∈ A× F × P(V)→ R is

lsq(A,F,K) :=
∑

(S,c)∈A∗XF

(
c×

∑
i∈{1...m}

((S%WF )
[]
i − (S%(V \K))

[]
i )

2
)

where m = |WF | = |(V \K)|. The loss function is a continuous real valued
function and so its derivative with respect to each weight can be defined. In
this case the optimisation is least squares gradient descent.

If the optimisation of artificial neural networks is of the unsupervised type,
there is no knowledge of a causal label. Here the method of least squares
gradient descent is still used but the label is simply a copy of the substrate,
V , itself. Usually the network graph is constrained so that a middle layer
a ∈ {2 . . . l − 1} has narrower breadth than the substrate, |Fa| < n.

In the computations of alignment and entropy that follow, the derived vari-
ables are discretised to the values of the label variables, D = ∪{Uv : v ∈
(V \K)}.

In some cases of sample and network optimisation configuration, the neg-
ative least squares loss (a) varies against the effective derived volume

− lsq(A,FD, K) ∼ − |(A ∗ FT
D)F|
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(b) varies against the derived entropy of the fud transform,

− lsq(A,FD, K) ∼ − entropy(A ∗ FT
D)

(c) varies with the component size cardinality relative entropy,

− lsq(A,FD, K) ∼ entropyRelative(A ∗ FT
D , V

C ∗ FT
D)

and (d) varies with the expected component entropy,

− lsq(A,FD, K) ∼ entropyComponent(A,FT
D)

The initial fud FR has arbitrary weights, so is likely to have a high least
squares loss. That is, far from the derived variables and the label variables
being causally related, WCS

D → (V \K)CS, they are likely to be independent,

algn(A ∗XFR
∗ {WCS{}T

D , (V \K)CS{}T}T) ≈ 0

where {WCS{}T
D , (V \ K)CS{}T} is the fud of the self transforms of the (i)

discretised derived variables and (ii) label variables.

As the optimisation proceeds from the initial fud, FR, to the optimal fud
F , the loss decreases and the relation between the top layer and the label
becomes more causal,

algn(A ∗XF ∗ {WCS{}T
D , (V \K)CS{}T}T) > 0

The negative least squares loss varies with the alignment of the self partition
transforms, so varies against the derived entropy of the fud transform,

− lsq(A,FD, K) ∼ algn(A ∗XF ∗ {WCS{}T
D , (V \K)CS{}T}T)

∼ −z × entropy(A ∗ FT
D)

That is, as the loss, lsq(A,FD, K), is minimised, the derived entropy, entropy(A∗
FT
D), tends to be minimised. The minimisation of derived entropy is a prop-

erty of classical induction.

The negative least squares loss only varies with the component size cardi-
nality relative entropy, entropyRelative(A ∗ FT

D , V
C ∗ FT

D), in the case where
the histogram, A, is clustered by the label variables. This requires alignment
within the query variables, algn(A%K) > 0. Clustering may be described as
follows.
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Consider the case of a multi-variate set of real valued query variables K,
where k = |K| ≥ 2 and ∀x ∈ K (Ux ⊆ R), and a neural net fud F ∈ F∞,U,K,σ
consisting of two transforms, F = {T1, T2}, each having the query variables
as the underlying, und(T1) = und(T2) = K. For a coordinate S ∈ Rk the
weights of the transforms form a pair of hyperplanes,∑

i∈{1...k}

Q1,iSi + Q1,k+1 = 0

and ∑
i∈{1...k}

Q2,iSi + Q2,k+1 = 0

where Q1, Q2 ∈ Rk+1 are the weights correspondng to T1, T2. If the hyper-
planes of the arbitrarily weighted initial fud, FR, intersect, the acute angle
between them is expected to be 45◦. That is, given an activation function,
σ, which is a step function, or a binary set of discrete values, D = {0, 1},
the probability distribution of the component cardinalities of the initial fud
is bi-modal. If (·, C1), (·, C2) ∈ (FT

R,{0,1})
−1 are such that |C1| < |C2|, then it

is expected that 3|C1| = |C2|. So the component cardinality entropy of the
initial fud is expected to be less than maximal,

entropy(KC ∗ FT
R,D) < entropy(WC

D)

The derived entropy of the initial fud is expected to be approximately equal
to the component cardinality entropy,

entropy(A ∗ FT
R,D) ≈ entropy(KC ∗ FT

R,D)

and so the component size cardinality relative entropy of the initial fud is
expected to be small,

entropyRelative(A ∗ FT
R,D, K

C ∗ FT
R,D) ≈ 0

If the histogram, A, is approximately uniformly distributed over the volume,
then the component size cardinality relative entropy remains small during the
optimisation,

entropyRelative(A ∗ FT
D , K

C ∗ FT
D) ≈ 0

In contrast, consider the case where the histogram, A, is not uniformly dis-
tributed, but clustered by label state. Let YL ⊂ KCS be the set of the centres
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of the clusters for effective label state L ∈ (A%(V \K))FS. The maximum
radius rL ∈ R>0 is such that

∀S ∈ AFS ♦L = S%(V \K) ∃Q ∈ YL (
∑

i∈{1...k}

(Q
[]
i − S

[]
i )2 ≤ r2

L)

Let rC be the radius of component C. In the case where the histogram is
clustered such that the cluster radius of a label state is much smaller than
the least initial component radius, ∀(·, C) ∈ (FT

R,{0,1})
−1 (rL � rC), then

optimised rotations of the hyperplanes, that sweep up nearby clusters in
the same label state, tend to be such that the magnitude of the change in
the fractional component size, |(A ∗ FT

2,D)(R) − (A ∗ FT
1,D)(R)|/z, is greater

than magnitude of the change in the fractional component cardinality, |(KC ∗
FT

2,D)(R)−(KC∗FT
1,D)(R)|/|KC|. So, in the clustered case, as the optimisation

decreases the derived entropy, entropy(A ∗ FT
D), the component sizes and

component cardinalities become less synchronised and the component size
cardinality relative entropy increases,

− lsq(A,FD, K) ∼ −z × entropy(A ∗ FT
D)

∼ z × entropyRelative(A ∗ FT
D , K

C ∗ FT
D)

= z × entropyRelative(A ∗ FT
D , V

C ∗ FT
D)

The same reasoning applies to fuds consisting of more than two transforms,
|F | > 2, but note that at higher fud cardinalities the initial component cardi-
nality entropy, entropy(KC ∗ FT

R,D), tends to be multi-modal and so approx-
imates more closely to the uniform cartesian derived entropy, entropy(WC

D).
So there is less freedom for the relative entropy of the fud to increase during
optimisation. In the case of multi-layer fuds, however, the breadth can be
constrained and so the relative entropy of deeper, narrrower fuds may be
higher than in shallower, wider fuds of the same cardinality.

In general, in the clustered case, the optimised fud is such that high counts
are in low cardinality components and high cardinality components have low
counts. The maximisation of relative entropy is a property of classical induc-
tion.

The accuracy of the approximation of artificial neural network induction to
classical induction can be defined as the ratio of the practicable model sample-
distributed iso-derived conditional log likelihood to the maximum model sample-
distributed iso-derived conditional log likelihood,

0 <
Q̂m,d,FT,U(A, z)(A)

Q̂m,d,T̃ ,U(A, z)(A)
≤ 1
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The accuracy varies against the sensitivity to model,

Q̂m,d,FT,U(A, z)(A)

Q̂m,d,T̃ ,U(A, z)(A)
∼ −(− ln |max({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V })|)

and so varies with the log-likelihood,

Q̂m,d,FT,U(A, z)(A)

Q̂m,d,T̃ ,U(A, z)(A)
∼ ln Q̂m,d,T,U(A, z)(A)

That is, although the model obtained from least squares gradient descent is
merely an approximation, in the cases where the log-likelihood is high, and so
the sensitivity to model is low, the approximation may be reasonably close
nonetheless.

2.6.4 Aligned induction

Given substrate transform T ∈ TU,V , the abstract histogram valued integral
substrate histograms function YU,i,T,W,z is defined

YU,i,T,W,z := {(A, (A ∗ T )X) : A ∈ AU,i,V,z}

The finite set of iso-abstracts of abstract histogram (A ∗ T )X is

Y −1
U,i,T,W,z((A ∗ T )X) = {B : B ∈ AU,i,V,z, (B ∗ T )X = (A ∗ T )X}

The degree to which an integral iso-set I ⊆ AU,i,V,z that contains the his-
togram, A ∈ I, is said to be entity-like is called the iso-abstractence. The
iso-abstractence is defined as the ratio of (i) the cardinality of the intersec-
tion between the integral iso-set and the set of integral iso-abstracts, and (ii)
the cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ Y −1

U,i,T,W,z((A ∗ T )X)|
|I ∪ Y −1

U,i,T,W,z((A ∗ T )X)|
≤ 1

Law-like iso-sets are subsets of the set of iso-abstracts,

D−1
U,i,T,z(A ∗ T ) ⊆ Y −1

U,i,T,W,z((A ∗ T )X)

and so are also entity-like.
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The formal histogram valued integral substrate histograms function YU,i,T,V,z
is defined

YU,i,T,V,z := {(A,AX ∗ T ) : A ∈ AU,i,V,z}

The finite set of iso-formals of formal histogram AX ∗ T is

Y −1
U,i,T,V,z(A

X ∗ T ) = {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T}

Aligned-like iso-sets are subsets of the set of iso-formals,

Y −1
U,i,V,z(A

X) ⊆ Y −1
U,i,T,V,z(A

X ∗ T )

The formal-abstract pair valued integral substrate histograms function YU,i,T,z
is defined

YU,i,T,z := {(A, (AX ∗ T, (A ∗ T )X)) : A ∈ AU,i,V,z}

The finite set of iso-transform-independents of (AX ∗ T, (A ∗ T )X) is

Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X)) =

{B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

The iso-transform-independents is the intersection of the iso-formals and the
iso-abstracts,

Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X)) = Y −1
U,i,T,V,z(A

X ∗ T ) ∩ Y −1
U,i,T,W,z((A ∗ T )X)

In aligned modelled induction the history probability functions are con-
strained by formal and abstract histograms.

Let P be a substrate history probability function, P ∈ (HU,V,z :→ Q≥0) ∩ P .
Given a history HE ∈ HU,V,zE , of size zE = |HE|, consider the case where both
the formal histogram AX ∗T of drawn histories is known to be necessary and
the abstract histogram (A ∗ T )X of drawn histories is known to be necessary,∑

(P (H) : H ⊆ HE, his(H)X ∗ T = AX ∗ T, (his(H) ∗ T )X = (A ∗ T )X) = 1.
The maximum likelihood estimate which maximises the entropy, entropy(P̃ ),
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is

P̃ = {(H, 1) :

H ⊆ HE, his(H)X ∗ T = AX ∗ T, (his(H) ∗ T )X = (A ∗ T )X}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X ∗ T 6= AX ∗ T} ∪
{(G, 0) : G ∈ HU,V,z, (his(G) ∗ T )X 6= (A ∗ T )X}

= {(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X)))) :

H ⊆ HE, his(H)X ∗ T = AX ∗ T, (his(H) ∗ T )X = (A ∗ T )X} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X ∗ T 6= AX ∗ T} ∪
{(G, 0) : G ∈ HU,V,z, (his(G) ∗ T )X 6= (A ∗ T )X}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with both the formal, his(H)X ∗ T = AX ∗ T and the abstract,
(his(H) ∗ T )X = (A ∗ T )X, are uniformly probable and all other histories,
G * HE or his(G)X ∗T 6= AX ∗T or (his(G)∗T )X 6= (A∗T )X, are impossible,

P̃ (G) = 0. If (i) the transform, T , is known, (ii) the formal, AX∗T , is known,
(iii) the abstract, (A ∗T )X, is known and (iv) the distribution histogram, HE,
is known, then the likely probability function, P̃ , is known.

The likely probability of drawing histogram A from necessary drawn formal
AX ∗ T and necessary drawn abstract (A ∗ T )X is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗ T, (A ∗ T )X))

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the iso-transform-independent historical frequencies,∑

Qh,U(E, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))

is maximised.

Consider the case where the transform, T , is known, the formal, AX ∗ T ,
is known, and the abstract, (A ∗ T )X, is known, but the distribution his-
togram, E, is unknown and hence the likely history probability function, P̃ , is
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unknown. The maximum likelihood estimate Ẽ for the distribution histogram,
E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X)))) :

D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known, the formal, AX ∗ T , is known,
and the abstract, (A ∗ T )X, is known. If it is assumed that the distribution
histogram equals the likely distribution histogram, E = Ẽ, then the likely his-
tory probability is known, P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗

T, (A ∗ T )X))) where his(H)X ∗ T = AX ∗ T and (his(H) ∗ T )X = (A ∗ T )X.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X)))) :

D ∈ AU,V,1})

If it is known, in addition, that the formal equals the abstract, AX ∗ T =
(A∗T )X, then the normalised naturalised abstract, (Â∗T )X∗T †, is a solution.
In this case the naturalised abstract, (A ∗ T )X ∗ T †, or naturalised formal,
AX ∗T ∗T † = (A∗T )X ∗T †, is the independent analogue of the iso-transform-
independents. So the maximum likelihood estimate, Ẽ, for the distribution
probability histogram, Ê, is the naturalised abstract probability histogram, (Â∗
T )X ∗ T †,

Ẽ = (Â ∗ T )X ∗ T †

Formal-abstract equivalence, AX ∗T = (A∗T )X, is also called mid transform.
In this case the abstract equals the independent abstract, (A∗T )X = AX∗T =
(AX∗T )X, and so does not depend on the histogram alignment, algn(A). The
formal equals the formal independent, AX ∗ T = (A ∗ T )X = (AX ∗ T )X, and
so does not depend on its own alignment, algn(AX ∗ T ) = 0.

The naturalised abstract is the independent analogue of the iso-transform-
independents, so, in the case where the naturalised abstract is integral, (A ∗
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T )X∗T † ∈ Ai, the sum of the iso-transform-independent naturalised-abstract-
distributed multinomial probabilities varies with the naturalised-abstract nat-
uralised abstract-distributed multinomial probability,∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X)) ∼

Qm,U((A ∗ T )X ∗ T †, z)((A ∗ T )X ∗ T †)

So, if it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = (Â ∗ T )X ∗ T †, then the likely
history probability varies against the naturalised-abstract-distributed multi-
nomial probability of the naturalised abstract, P̃ (H) ∼ 1/Q̂m,U((A ∗ T )X ∗
T †, z)((A ∗ T )X ∗ T †). The likely history probability function entropy varies
with the naturalised abstract entropy, entropy(P̃ ) ∼ entropy((A ∗ T )X ∗ T †).

Given necessary formal, necessary abstract and mid transform, consider
the case where a drawn histogram A is known, but neither the distribution
histogram, E, is known nor the transform, T , is known, and hence the likely
history probability function, P̃ , is unknown. The maximum likelihood estimate
(Ẽ, T̃ ) for the pair of the distribution histogram, E, and the transform, T , is
a modal value of the likelihood function,

(Ẽ, T̃ ) ∈
maxd({((D,M),

∑
(Qh,U(D, z)(B) : B ∈ Y −1

U,i,M,z((A
X ∗M, (A ∗M)X)))) :

D ∈ AU,i,V,zE , M ∈ TU,V , AX ∗M = (A ∗M)X})

In some cases of drawn sample, A, the transform maximum likelihood esti-
mate, T̃ , is not trivial. That is, the transform maximum likelihood estimate
is not necessarily unary, Tu = {V CS}T, nor self, Ts = V CS{}T. In the cases
where the transform maximum likelihood estimate is trivial, T̃ ∈ {Tu, Ts},
aligned modelled induction reduces to aligned non-modelled induction,

P̃ = {(H, 1) : H ⊆ HE, his(H)X = AX}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X 6= AX}

Define the transform-dependent AY(T ) ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
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histogram, A, conditional that it is an iso-transform-independent,

{AY(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗ T, (A ∗ T )X))

) :

D ∈ AU,V,z})

The transform-dependent, AY(T ), is the dependent analogue of the iso trans-
form independents. Note that the transform-dependent, AY(T ), is not always
computable, but an approximation to any accuracy can be made to it. In the
case where the formal equals the abstract, AX ∗ T = (A ∗ T )X, and the his-
togram equals the naturalised abstract, the transform-dependent equals the
naturalised abstract, A = (A ∗ T )X ∗ T † =⇒ AY(T ) = A = (A ∗ T )X ∗ T †.

Now consider the case where, given necessary formal, necessary abstract
and mid transform, it is known, in addition, that the sample histogram A
is the most probable histogram of the iso-transform-independents. That is,
the likely probability of drawing histogram A from necessary formal-abstract
(AX ∗ T, (A ∗ T )X),∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗ T, (A ∗ T )X))

is maximised.

In the case where the transform, T , is known and the sample, A, is known,
but the distribution histogram, E, is unknown, the maximum likelihood esti-
mate Ẽ for the distribution histogram, E, is a modal value of the likelihood
function,

Ẽ ∈ maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗ T, (A ∗ T )X))

) :

D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known and the sample, A, is known.
If it is assumed that the distribution histogram equals the likely distribu-
tion histogram, E = Ẽ, then the likely history probability is known, P̃ (H) =
1/
∑

(Qh,U(Ẽ, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))) where his(H)X ∗ T =

AX ∗ T and (his(H) ∗ T )X = (A ∗ T )X.
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If the histogram is naturalised abstract, A = (A ∗ T )X ∗ T †, then the ad-
ditional constraint of probable sample makes no change to the maximum
likelihood estimate, Ẽ,

A = (A ∗ T )X ∗ T † =⇒

maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗ T, (A ∗ T )X))

) :

D ∈ AU,i,V,zE})
= maxd({(D,

∑
(Qh,U(D, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗ T, (A ∗ T )X)))) :

D ∈ AU,i,V,zE})

If the histogram is not naturalised abstract, A 6= (A ∗T )X ∗T †, however, then
the likely history probability function entropy, entropy(P̃ ), is lower than it is
in the case of necessary formal-abstract unconstrained by probable sample.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, is now approximated by a modal value of the
conditional likelihood function,

Ẽ ∈ maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,T,z((A
X ∗ T, (A ∗ T )X))

) :

D ∈ AU,V,1})

The solution to this is the normalised transform-dependent, Ẽ = ÂY(T ). The
maximum likelihood estimate is near the sample, Ẽ ∼ Â, only in as much as
it is far from the naturalised abstract, Ẽ � (Â ∗ T )X ∗ T †.

The iso-transform-independent conditional multinomial probability distribu-
tion is defined

Q̂m,y,T,U(E, z)(A) :=

1

|ran(YU,i,T,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))

So the optimisation can be rewritten,

Ẽ ∈ maxd({(D, Q̂m,y,T,U(D, z)(A)) : D ∈ AU,V,1})
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Consider the case where the distribution equals the transform-dependent,
Ê = ÂY(T ). First, the logarithm of the iso-transform-independent conditional
multinomial probability of the histogram, A, with respect to the dependent
analogue or transform-dependent, AY(T ), varies against the logarithm of the
iso-transform-independent conditional multinomial probability with respect
to the independent analogue or naturalised abstract, (A ∗ T )X ∗ T †,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))

∼ − ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))

Second, the negative logarithm of the iso-transform-independent conditional
multinomial probability of the histogram, A, with respect to the naturalised
abstract, (A ∗ T )X ∗ T †, varies with the negative logarithm of the lifted iso-
transform-independent conditional multinomial probability of the derived, A∗
T , with respect to the abstract, (A ∗ T )X,

− ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))

∼ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ Y ′−1
U,i,T,z((A

X ∗ T, (A ∗ T )X))

where Y
′−1
U,i,T,z((A

X ∗T, (A∗T )X)) = {B ∗T : B ∈ Y −1
U,i,T,z((A

X ∗T, (A∗T )X))}.

Third, the negative logarithm of the lifted iso-transform-independent con-
ditional multinomial probability with respect to the abstract, (A ∗T )X, varies
with the negative logarithm of the relative multinomial probability with re-
spect to the abstract, (A ∗ T )X, which is the derived alignment,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ Y ′−1
U,i,T,z((A

X ∗ T, (A ∗ T )X))

∼ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)((A ∗ T )X)

= algn(A ∗ T )

So the log-likelihood varies with the derived alignment,

ln Q̂m,y,T,U(AY(T ), z)(A) ∼ algn(A ∗ T )

The mid transform constraint allows the log-likelihood, which is a function of
the histogram, A, to be lifted to the derived alignment, which is a function of
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the derived, A ∗ T . So a model optimisation need only search in the derived
volume, |T−1|, which is typically much smaller than the underlying volume,
|T−1| � |V C|. It is this relation between the log-likelihood and the derived
alignment that makes aligned induction practicable.

The case of classical modelled induction, where the derived is necessary,
may be termed law-like because the set of iso-derived, D−1

U,i,T,z(A ∗T ), is law-
like. All drawn histories H ⊆ HE, are such that their derived histograms are
fixed, his(H) ∗ T = A ∗ T .

By contrast, the case of aligned modelled induction, where the abstract is nec-
essary, may be termed entity-like because the set of iso-abstracts, Y −1

U,i,T,W,z((A∗
T )X), is entity-like. All drawn histories are such that their abstract histograms
are fixed, (his(H) ∗ T )X = (A ∗ T )X. That is, the derived variables are sepa-
rately necessary, ∀u ∈ W (his(H) ∗ T % {u} = A ∗ T % {u}). Necessary ab-
stract is a weaker constraint than necessary derived because the iso-abstracts
are a superset of the iso-derived, D−1

U,i,T,z(A ∗ T ) ⊆ Y −1
U,i,T,W,z((A ∗ T )X). In

fact, aligned induction is stricter than pure entity-like because the formal
is necessary too, his(H)X ∗ T = AX ∗ T , and so aligned induction is also
aligned-like, Y −1

U,i,V,z(A
X) ⊆ Y −1

U,i,T,V,z(A
X ∗ T ). Aligned induction, however, is

not necessarily law-like, his(H) ∗T 6= A ∗T , and so does not always approxi-
mate to classical induction. Mid transform is stricter still, but this constraint
does not necessarily increase law-likeness, but merely allows lifting.

Consider the case where, given necessary formal, necessary abstract, mid
transform and probable sample, it is known, in addition, that the sample his-
togram is ideal, A = A ∗ T ∗ T †A. The idealisation independent equals the
independent, (A∗T ∗T †A)X = AX, so the idealisation is aligned-like. The ideal
sample approximates to the independent analogue of the iso-derived, which
is the naturalisation, A ≈ A∗T ∗T †, and so, if it is also the case that derived
alignment is high, algn(A ∗ T ) � 0, the iso-transform-independent condi-
tional multinomial log-likelihood with respect to the dependent analogue or
transform-dependent, AY(T ), varies with the iso-derived conditional multino-
mial log-likelihood with respect to the independent analogue or naturalisation,
A ∗ T ∗ T †,

ln Q̂m,y,T,U(AY(T ), z)(A) ∼ ln Q̂m,d,T,U(A ∗ T ∗ T †, z)(A)

∼ ln Q̂m,d,T,U(A, z)(A)

83



So the log likelihood varies with the size-volume scaled component size car-
dinality sum relative entropy,

ln Q̂m,y,T,U(AY(T ), z)(A) ∼
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

and the maximum likelihood estimate derived approximates to the normalised
sample derived,

Ẽ ∗ T = ÂY(T ) ∗ T
≈ Â ∗ T

In the case where the underlying alignment is intermediate, algn(A) � 0,
and the component size cardinality relative entropy is high, entropyCross(A∗
T, V C ∗ T ) > ln |T−1|, the sum sensitivity varies against the log likelihood,

sum(sensitivity(U)(Q̂m,y,T,U(AY(T ), z))) ∼ − ln Q̂m,y,T,U(AY(T ), z)(A)

and the model sensitivity varies against the log likelihood,

− ln |max({(M, Q̂m,y,M,U(AY(M), z)(A)) : M ∈ TU,V ,
AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})|

∼ − ln Q̂m,y,T,U(AY(T ), z)(A)

That is, given mid-ideal transform, the maximisation of the derived alignment
tends to make the properties of aligned modelled induction similar to those
of classical modelled induction.

Given necessary formal-abstract, mid-ideal transform and probable sample,
consider the case where a drawn histogram A is known, but neither the dis-
tribution histogram, E, is known nor the transform, T , is known, and hence
the likely history probability function, P̃ , is unknown. In the case where the
distribution histogram size, zE, is also unknown, except that it is known to
be large, zE � z, then the maximum likelihood estimate (Ẽ, T̃ ) for the pair
of the distribution histogram, E, and the transform, T , is approximated by a
modal value of the conditional likelihood function,

(Ẽ, T̃ ) ∈

maxd({((D,M),
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ Y −1
U,i,M,z((A

X ∗M, (A ∗M)X))
) :

D ∈ AU,V,1, M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})
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So the likely distribution equals the likely transform-dependent, Ẽ = ÂY(T̃ ),
and the likely model is such that

T̃ ∈

maxd({(M,
Qm,U(AY(M), z)(A)∑

Qm,U(AY(M), z)(B) : B ∈ Y −1
U,i,M,z((A

X ∗M, (A ∗M)X))
) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

The log-likelihood varies with the derived alignment, so an approximation to
the likely model is

T̃ ∈ maxd({(M, algn(A ∗M)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

This optimisation is still intractable, because the cardinality of the substrate
transforms, |TU,V |, is factorial in the volume, v. The computation of the
derived alignment, algn(A∗M), is tractable, however, and so limited searches
can be made tractable and then practicable.

In classical modelled induction the constraint must be weakened from nec-
essary derived to uniform possible derived if the likely model is to be non-
trivial, T̃ /∈ {Tu, Ts}. Uniform possible is not required for aligned modelled
induction because the likely model is sometimes non-trivial when constrained
by necessary formal-abstract, which is already weaker than necessary derived.

Consider, however, the case where the formal-abstract pair is uniformly pos-
sible. Given substrate transform T ∈ TU,V , assume that the substrate history
probability function P ∈ (HU,V,z :→ Q≥0) ∩ P is the distribution of an ar-
bitrary history valued function, X → H, given an arbitrary formal-abstract
valued function, X → A2. In this case, the history valued function is chosen
arbitrarily from the constrained subset{
{((x,A′, B′, y), H) : (x, ((A′, B′), G)) ∈ F, (y,H) ∈ G,

his(H)X ∗ T = A′, (his(H) ∗ T )X = B′} :

F ∈ X → (A2 × (X → H))
}
⊂ X → H

In the case of mid transform, AX ∗ T = (A ∗ T )X, the constrained subset is
simpler,{
{((x,A′, y), H) : (x, (A′, G)) ∈ F, (y,H) ∈ G,

his(H)X ∗ T = (his(H) ∗ T )X = A′} :

F ∈ X → (A× (X → H))
}
⊂ X → H
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This subset of the substrate history probability functions can be generalised
for all substrate transforms as the subset derived from⋃

T∈Tf

(X → (A ×T (X → H)))

where Tf is the set of all functional transforms, and the fibre product ×T is
defined

A ×T (X → H) :=

{(A′, G) : (A′, G) ∈ A× (X → H),

∀(·, H) ∈ G (his(H)X ∗ T = (his(H) ∗ T )X = A′)}

In the case of uniform possible formal-abstract, where there is a distribution
history HE and a substrate transform T ∈ TU,V , the maximum likelihood
estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H)X ∗ T = A′, (his(H) ∗ T )X = B′}∧ :

(A′, B′) ∈ ran(YU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1
U,i,T,z((A

′, B′))) :

H ⊆ HE, his(H)X ∗ T = A′, (his(H) ∗ T )X = B′} :

(A′, B′) ∈ ran(YU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn formal-
abstracts are uniformly probable, and then all drawn histories H ⊆ HE with
the same formal-abstract, his(H)X ∗ T = A′ and (his(H) ∗ T )X = B′, are
uniformly probable. If the distribution histogram, HE, is known and the sub-
strate transform, T , is known, then the likely probability function, P̃ , is known.

The properties of uniformly possible formal-abstract are the same as for nec-
essary formal-abstract, except that the probabilities are scaled by the fraction
1/|ran(YU,i,T,z)|.

Given uniform possible formal-abstract, mid-ideal transform and probable
sample, consider the case where a drawn histogram A is known, but neither
the distribution histogram, E, is known nor the transform, T , is known, and
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hence the likely history probability function, P̃ , is unknown. In the case where
the distribution histogram size, zE, is also unknown, except that it is known
to be large, zE � z, then the maximum likelihood estimate (Ẽ, T̃ ) for the
pair of the distribution histogram, E, and the transform, T , is approximated
by a modal value of the conditional likelihood function,

(Ẽ, T̃ ) ∈
maxd({((D,M), Q̂m,y,M,U(D, z)(A)) :

D ∈ AU,V,1, M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

So the likely distribution equals the likely transform-dependent, Ẽ = ÂY(T̃ ),
and the likely model is such that

T̃ ∈ maxd({(M, Q̂m,y,M,U(AY(M), z)(A)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

The log-likelihood varies with the derived alignment, so an approximation to
the likely model is

T̃ ∈ maxd({(M, algn(A ∗M)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

Note, however, that this approximation is looser than in the necessary formal-
abstract case because the scaling fraction, 1/|ran(YU,i,T̃ ,z)|, is ignored.

2.6.5 Tractable and practicable aligned induction

In the discussion of aligned induction above it is shown that, given neces-
sary formal-abstract, mid-ideal transform and probable sample, the maximum
likelihood estimate T̃ for the transform, T , is approximated by a maximisa-
tion of the derived alignment,

T̃ ∈ maxd({(M, algn(A ∗M)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

This optimisation is intractable because the cardinality of the substrate trans-
forms, |TU,V |, is factorial in the volume, v. Consider how limited searches can
be made tractable and then practicable.

Given sample histogram A ∈ AU,i,V,z, the tractable limited-models summed
alignment valency-density substrate aligned non-overlapping infinite-layer fud
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decomposition inducer is defined

I
′∗
z,Sd,D,F,∞,n,q(A) =

{(M, I∗≈R(
∑

algn(A ∗ C ∗ FT)/w
1/mF

F : (C,F ) ∈ cont(M))) :

M ∈ DF,∞,U,V ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(M) (algn(A ∗ C ∗ FT) > 0)}

where derived variables WF = der(F ), derived volume wF = |WC
F |, derived

dimension mF = |WF | and I∗≈R computes an approximation to a real num-

ber. The geometric average of the fud derived valencies is w
1/mF

F .

Here the model has been extended from transforms, M ∈ TU,V , to func-
tional definition set decompositions, M ∈ DF,∞,U,V . At the same time the
set of fud decompositions has been restricted to those having (a) fuds that
are non-overlapping, Fn, (b) fuds with a limited-underlying, limited-derived,
limited-layer and limited-breadth structure, Fq = Fu ∩Fd ∩Fh ∩Fb, and (c)
fuds with derived alignment, algn(A ∗ C ∗ FT) > 0. The tractable optimal
model is

DSd ∈ maxd(I
′∗
z,Sd,D,F,∞,n,q(A))

The maximisation of the contingent fud derived alignment valency-density,
algn(A∗C∗FT)/w

1/mF

F , of the non-overlapping fud (C,F ) ∈ cont(DSd) for the
sample slice A∗C, tends to mid fud transform, (A∗C)X∗FT ≈ (A∗C ∗FT)X.
Then the maximisation of the summed alignment valency-density,

∑
algn(A∗

C ∗FT)/w
1/mF

F : (C,F ) ∈ cont(DSd), for all of the contingent slices, tends to
mid-ideal fud decomposition transform, A ≈ A ∗ DT

Sd ∗ D
T†A
Sd . The summed

alignment valency-density varies with the derived alignment, algn(A ∗DT
Sd),

so the tractable model approximates to the likely model, DT
Sd ≈ T̃ , depend-

ing on the limits chosen.

The derived alignment accuracy of the approximation can be defined as the
exponential of the difference in derived alignments,

0 <
exp(algn(A ∗DT

Sd))

exp(algn(A ∗ T̃ ))
≤ 1

This definition of accuracy is consistent with the gradient of the likelihood
function at the mode, so the derived alignment accuracy varies against the
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sensitivity to model,

exp(algn(A ∗DT
Sd))

exp(algn(A ∗ T̃ ))
∼

−(− ln |max({(M, algn(A ∗M)) : M ∈ TU,V ,
AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})|)

The log-likelihood varies against the sensitivity to model, so the derived align-
ment accuracy varies with the derived alignment,

exp(algn(A ∗DT
Sd))

exp(algn(A ∗ T̃ ))
∼ algn(A ∗ T )

That is, although the model obtained from the tractable summed align-
ment valency-density inducer is merely an approximation, in the cases where
the log-likelihood or derived alignment is high, and so the sensitivity to
model/distribution is low, the approximation may be reasonably close nonethe-
less.

The maximisation of derived alignment tends to make the properties of
mid-ideal aligned induction similar to those of natural classical induction.
This is also the case for the tractable optimisation, so the tractable model
approximates to the likely classical model, DT

Sd ≈ T̃ , where

T̃ ∈ maxd({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})

That this is true may be seen by considering the entropy properties. The
correlations for summed alignment valency-density are similar to those for
iso-derived log-likelihood. The summed alignment valency-density (a) varies
against the derived volume w′ = |(DT

Sd)−1|,

algnValDensSum(U)(A,DSd) ∼ 1/w′

(b) varies against the derived entropy,

algnValDensSum(U)(A,DSd) ∼ −z × entropy(A ∗DT
Sd)

(c) varies with the component size cardinality relative entropy,

algnValDensSum(U)(A,DSd) ∼ z × entropyRelative(A ∗DT
Sd, V

C ∗DT
Sd)

and (d) varies with the expected component entropy,

algnValDensSum(U)(A,DSd) ∼ z × entropyComponent(A,DT
Sd)
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where

algnValDensSum(U)(A,D) :=∑
algn(A ∗ C ∗ FT)/w

1/mF

F : (C,F ) ∈ cont(D)

The maximisation of the derived alignment valency-density, algn(A ∗ C ∗
FT)/w

1/mF

F , of the contingent fud (C,F ) ∈ cont(DSd), tends to diagonalise
the mid fud transform, diagonal(A ∗ C ∗ FT), so minimising the fud derived
entropy, entropy(A ∗ C ∗ FT), and hence minimising the overall decomposi-
tion transform derived entropy, entropy(A∗DT

Sd). The component cardinality
entropy, entropy(C ∗FT), also decreases but is synchronised with the derived
entropy, entropy(A ∗C ∗ FT), so the mid component size cardinality relative
entropy tends to remain small, entropyRelative(A∗C ∗FT, C ∗FT) ≈ 0. The
maximisation of the valency-density, however, shortens the diagonal and so
the off-diagonal derived states tend to be ineffective. The recursive slicing
during the decomposition then removes the ineffective components, concen-
trating the effective derived states in smaller components, and so maximising
the overall decomposition transform component size cardinality relative en-
tropy, entropyRelative(A ∗DT

Sd, V
C ∗DT

Sd), when fully idealised.

The limited-models summed alignment valency-density substrate aligned
non-overlapping infinite-layer fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q, lim-
its the optimisation to make aligned induction tractable. By additionally
imposing a sequence on the search and other constraints, tractable induction
is made practicable in the highest-layer summed shuffle content alignment
valency-density fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d. (The details of
the implementation are defined later.) Now, given a set of search parameters
P , the fud decomposition is

DScsd,P ∈ maxd(I
′∗
z,Scsd,D,F,∞,q,P,d(A))

The set of practicable searched models is approximately a subset of the
tractable searched models, so the practicable derived alignment is less than
or equal to the tractable derived alignment,

algn(A ∗DT
Scsd,P ) ≤ algn(A ∗DT

Sd)

Even so, in the cases where the log-likelihood or derived alignment is high,
and so both the sensitivity to model and the sensitivity to distribution are
low, the approximation to the maximum likelihood estimate, DT

Scsd,P ≈ T̃ ,
may be reasonably close nonetheless.
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The highest-layer summed shuffle content alignment valency-density fud
decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d, is an example of practicable aligned
induction. Artificial neural network induction is an example of practicable
classical induction. Let the ANN classical model FT

gr,lsq,P ≈ T̃ be obtained
by least squares gradient descent given a sample A subject to the constraints
of (i) real valued variables, (ii) causal histogram, (iii) a literal frame, and (iv)
clustered histogram. The ANN classical induction is supervised, requiring
that there is a causal relation between query variables K ⊂ V and label
variables, V \K,

split(K,AFS) ∈ KCS → (V \K)CS

At the optimum there is no error and the relation between the classical
derived variables and the label variables is functional,

split(W, (A ∗X % (W ∪ V \K))FS) ∈ WCS → (V \K)CS

where (X,W ) = FT
gr,lsq,P .

By contrast, aligned induction is unsupervised, so no label is required. Aligned
induction, however, must have alignments between the underlying variables,

algn(A) > 0

If there is a label, the aligned induction model does not necessarily have a
causal relation between the derived variables and the label variables, so the
label entropy may be non-zero,∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K)) ≥ 0

or ∑
(R,·)∈T−1

(A ∗ T )R × entropy({R}U ∗ T�A % (V \K)) ≥ 0

where T = DT
Scsd,P .

The ANN classical induction also requires that the sample, A, is clustered.
This implies that the query variables, K, are real-valued, so that there is a
metric. The practicable aligned inducer requires that the underlying vari-
ables be discrete, so they must be bucketed if they are in fact continuous.
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The ANN fud, Fgr,lsq,P , has a fixed graph so that the derived variables have
a literal frame mapping to the label variables in the loss function. This
graph is defined a priori in the parameter set, P , and depends on the query
variables, K, and the label variables, V \ K. The aligned inducer model,
DScsd,P , is a fud decomposition in which the fuds are built upwards from the
substrate, and the only parameters are limits to gross fud structure. In addi-
tion, a decomposition allows fuds to be built on contingent slices, A∗C where
(C,F ) ∈ cont(DScsd,P ), which depend on the components corresponding to
effective derived states of ancestor fuds. In this way, the derived variables
near the root of the decomposition are most general, applying to the largest
slices, while the derived variables near the leaves of the decomposition are
most specific, applying to the smallest slices as the alignments are removed
in the idealisation. So in the decomposition, DScsd,P , each contingent fud de-
rived, A ∗ C ∗ FT, may be meaningful in the problem domain. By contrast,
the ANN fud derived variables apply to the entire query volume, KC, and so
the derived, A ∗ FT

gr,lsq,P , is less context specific.

3 Terminology

3.1 Systems

The set of all systems U is the set of all functional relations between the
set of all variables V and non-empty subsets of the set of all values W ,

U = V → (P(W) \ {∅})

where P is the powerset function.

The function vars ∈ U → P(V) is the set of variables in a system U ∈ U . It
is a synonym for the domain of U ,

vars(U) := dom(U) = {v : (v,W ) ∈ U}

The set of values is Uv for some variable v ∈ vars(U). The valency of a
variable is the cardinality of its values, |Uv|. The values of a variable are
unordered.

The set U of all systems is defined such that each variable must have at
least one value,

∀U ∈ U ∀v ∈ vars(U) (|Uv| ≥ 1)

In a system of finite variables, ∀v ∈ vars(U) (|Uv| <∞), each variable has a
set of discrete values.
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For any subset of variables in a system, V ⊆ vars(U), define the parame-
terised function volume, volume(U) ∈ P(vars(U))→ N>0

volume(U)(V ) :=
∏
v∈V

|Uv|

In the case that V = ∅, define volume(U)(∅) := 1.

3.2 States

The set of all states S is the set of all functional relations between the set
of all variables V and the set of all values W ,

S = V → W

State S ∈ S is a functional relation between variables and values,

∀S ∈ S (|vars(S)| = |S|)

where the function vars ∈ S → P(V) is the set of variables in the state

vars(S) := dom(S) = {v : (v, w) ∈ S}

So a variable is an index of the state. The cardinality of the set of variables
|vars(S)| is the dimension. The variables of a set of states is vars ∈ P(S)→
P(V) defined vars(Q) :=

⋃
{vars(S) : S ∈ Q}.

The parameterised set SU where SU ⊆ S of all states in a particular system
U is further constrained such that the variables of the state is a subset of
the variables of its system

∀U ∈ U ∀S ∈ SU (vars(S) ⊆ vars(U))

Also, each value of any variable-value pair in a state must be an element of
the set of values for that variable in the system

∀U ∈ U ∀S ∈ SU ∀(v, w) ∈ S (w ∈ Uv)

For any subset of variables in a system, V ⊆ vars(U), define a parameterised
cartesian set of states, cartesian(U) ∈ P(vars(U))→ P(SU)

cartesian(U)(V ) :=
∏
v∈V

{(v, w) : w ∈ Uv}

or
cartesian(U)(V ) :=

∏
v∈V

{v} × Uv

and cartesian(U)(∅) := {∅}. So volume(U)(V ) = |cartesian(U)(V )|.
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The function filter ∈ P(V)× S → S is defined

filter(V, S) := {(v, u) : (v, u) ∈ S, v ∈ V }

Define the shorthand (%) ∈ S × P(V) → S as S%V := filter(V, S). The
application of a filter is also known as a reduction.

The function split ∈ P(V)× P(S)→ P(S × S) is defined

split(V,Q) := {(filter(V, S), filter(vars(S) \ V, S))) : S ∈ Q}

Two states S, T ∈ S are said to join if their union is also a state, S ∪ T ∈ S.
That is, a join is functional,

S ∪ T ∈ S ⇐⇒ |vars(S) ∪ vars(T )| = |S ∪ T |
⇐⇒ ∀v ∈ vars(S) ∩ vars(T ) (Sv = Tv)

States in disjoint variables always join, ∀S, T ∈ S (vars(S) ∩ vars(T ) =
∅ =⇒ S ∪ T ∈ S). States in the same variables only join if they are equal,
∀S, T ∈ S (vars(S) = vars(T ) =⇒ (S ∪ T ∈ S ⇐⇒ S = T )).

The literal reframing reframe ∈ (V ↔ V)× S → S is defined

reframe(X,S) :=

{(Xv, u) : (v, u) ∈ S, v ∈ dom(X)} ∪ {(v, u) : (v, u) ∈ S, v /∈ dom(X)}

which is defined if ran(X)∩ (vars(S)\dom(X)) = ∅. If the state S is in some
system U , S ∈ SU , then the reframed state is in U , reframe(X,S) ∈ SU , if
∀(v, w) ∈ X (Uv ⊆ Uw).

The non-literal reframing reframe ∈ (V ↔ (V × (W ↔ W)) × S → S is
defined

reframe(X,S) :=

{(w,Wu) : (v, u) ∈ S, v ∈ dom(X), (w,W ) = Xv, u ∈ dom(W )} ∪
{(w, u) : (v, u) ∈ S, v ∈ dom(X), (w,W ) = Xv, u /∈ dom(W )} ∪
{(v, u) : (v, u) ∈ S, v /∈ dom(X)}

which is defined if dom(ran(X))∩(vars(S)\dom(X)) = ∅. If the state S is in
some system U , S ∈ SU , then the reframed state is in U , reframe(X,S) ∈ SU ,
if ∀(w,W ) ∈ ran(X) (ran(W ) ⊆ Uw).

When there exists a literal or non-literal frame between sets of variables
V,W ⊂ vars(U) in a system, |V | = |W | ∧ (∃Q ∈ V ·W ∀(v, w) ∈ Q (|Uv| =
|Uw|)), they are said to have the same geometry.
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3.3 Histories

An event identifier is any member of the universal set X . An event is a
pair of an event identifier and a state, X × S. A history H is a state valued
function of event identifiers. The set of all histories H is a subset of all
functional relations of events

H ⊂ X → S

Note that the event identifier in a history need not form a contiguous se-
quence nor a chronological series. There is no order required or implied with
respect to the event identifier.

The size of a history is defined, size ∈ H → N,

size(H) := |H|

The set of states of a history is defined, states ∈ H → P(S). It is the range
of the history

states(H) := ran(H) = {S : (x, S) ∈ H}

Define the shorthand ()S ∈ H → P(S) as HS := states(H).

The set of event identifiers of a history is the domain of the history, ids ∈
H → P(X )

ids(H) := dom(H) = {x : (x, S) ∈ H}

A history’s states must all have exactly the same set of variables

∀H ∈ H ∀S ∈ states(H) (vars(S) = vars(H))

where vars ∈ H → P(V) is defined

vars(H) := {v : S ∈ states(H), v ∈ vars(S)}

The parameterised subset HU where HU ⊆ H is the set of all histories in
system U such that

∀U ∈ U ∀H ∈ HU (states(H) ⊆ SU)

The parameterised volume of a history is the volume of its variables vars(H) ⊆
vars(U), defined volume(U) ∈ HU → N>0

volume(U)(H) := volume(U)(vars(H))
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Define the reduction of a history as the reduction of its events, reduce ∈
P(V)→ (H → H) as

reduce(V )(H) := {(x, S%V ) : (x, S) ∈ H}

Define H%V := reduce(V )(H).

The addition operation of histories is defined as the disjoint union if both
histories have the same variables. Define (+) ∈ H ×H → H as

H1 +H2 := {((x, ·), S) : (x, S) ∈ H1} ∪ {((·, y), T ) : (y, T ) ∈ H2}

where vars(H1) = vars(H2). The size of the sum equals the sum of the sizes,
|H1 +H2| = |H1|+ |H2|.

The multiplication operation of histories is defined as the product where
the states join. Define (∗) ∈ H ×H → H as

H1 ∗H2 := {((x, y), S ∪ T ) : (x, S) ∈ H1, (y, T ) ∈ H2,

∀v ∈ vars(S) ∩ vars(T ) (Sv = Tv)}

The size of the product equals the product of the sizes if the variables are
disjoint, vars(H1) ∩ vars(H2) = ∅ =⇒ |H1 ∗ H2| = |H1| × |H2|. The
variables of the product is the union of the variables if the size is non-zero,
H1 ∗H2 6= ∅ =⇒ vars(H1 ∗H2) = vars(H1) ∪ vars(H2).

3.4 Histograms

3.4.1 Definition

A histogram A is a functional relation between states and positive rational
counts. The set of all histograms A is a subset

A ⊂ S → Q≥0

The histogram is a functional relation so any state may appear no more than
once in the histogram. The histogram is indexable by state

∀A ∈ A (|states(A)| = |A|)

where states ∈ A → P(S) is defined

states(A) := dom(A) = {S : (S, c) ∈ A}
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Define the shorthand ()S ∈ A → P(S) as AS := states(A).

Similar to history, a histogram’s states must all have exactly the same set of
variables, so defining vars ∈ A → P(V),

vars(A) := {v : S ∈ states(A), v ∈ vars(S)}

require that

∀A ∈ A ∀S ∈ states(A) (vars(S) = vars(A))

Also, the counts of a histogram must always be positive,

∀A ∈ A ∀S ∈ states(A) (AS ≥ 0)

The size of a histogram is size ∈ A → Q≥0,

size(A) :=
∑

AS : S ∈ states(A)

and size(∅) := 0. The size must always be greater than or equal to zero,

∀A ∈ A (size(A) ≥ 0)

The empty histogram A equals the empty set, A = ∅. Its size is zero,
size(∅) = 0. The empty histogram has no variables, vars(∅) = ∅.

The scalar histogram of some positive count c ∈ Q≥0 is defined A = {(∅, c)}.
Define the constructor scalar ∈ Q≥0 → A such that scalar(c) := {(∅, c)}. A
scalar histogram has no variables, ∀c ∈ Q≥0 (vars(scalar(c)) = ∅).

A trimmed histogram has only non-zero counts. Define trim ∈ A → A

trim(A) := {(S, c) : (S, c) ∈ A, c > 0}

Histogram A is congruent to histogram B, if both have the same variables
and size. Define congruent ∈ A×A → B

congruent(A,B) := (vars(A) = vars(B)) ∧ (size(A) = size(B))

Histogram A is equivalent to histogram B, if the non-zero count states are
equal,

A ≡ B := trim(A) = trim(B)

Note that this definition implies that zero histograms, which are those that are
such that all counts are zero, even if in different variables, are all equivalent.
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A sub-histogram A of a histogram B is such that the trimmed states of A
are a subset of the states of B and the counts of A are less than or equal to
those of B, (≤) ∈ A×A → B

A ≤ B := (st(tm(A)) ⊆ st(B)) ∧ (∀S ∈ st(tm(A)) (AS ≤ BS))

where st = states and tm = trim. The relation is a pre-order. The empty
histogram A = ∅ is a sub-histogram of all histograms, ∀B ∈ A (∅ ≤ B).
Equivalent histograms are sub-histograms of each other, A ≡ B =⇒ (A ≤
B) ∧ (B ≤ A). The super-histogram operator is typed (≥) ∈ A × A →
B and defined A ≥ B := B ≤ A. The proper sub-histogram is defined
A < B := (A ≤ B) ∧ ¬(A ≡ B), and the proper super-histogram is defined
A > B := (A ≥ B)∧¬(A ≡ B). It is not necessary that the relation between
A and B is sub-histogram or super-histogram. It may be the case that neither
holds ∃A,B ∈ A (vars(A) = vars(B) ∧ ¬(A ≤ B ∨ A ≥ B)).

A system can be implied by a histogram. Define implied ∈ A → U as

implied(A) := {(v, {Sv : S ∈ AS}) : v ∈ vars(A)}

Given a system U , the parameterised subset AU where AU ⊆ A is the set of
all histograms in U such that

∀A ∈ AU (states(A) ⊆ SU)

Similar to history, the parameterised volume of a histogram is the volume
of its variables vars(A) ⊆ vars(U), defined volume(U) ∈ AU → N>0

volume(U)(A) := volume(U)(vars(A))

If a pair of histograms A and B, in the same system U , have a variables
mapping X such that ∃X ∈ vars(A) · vars(B) ∀(v, u) ∈ X (Uv = Uu) then
the variables of A and the variables of B are said to be literal frames of each
other mapped by X.

The function reframe ∈ (V ↔ V)×A → A is defined

reframe(X,A) := {(reframe(X,S), c) : (S, c) ∈ A}

which is defined if ran(X)∩ (vars(A)\dom(X)) = ∅. If the histogram A is in
some system U , A ∈ AU , then reframe(X,A) ∈ AU if ∀(v, w) ∈ X (Uv ⊆ Uw).
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If a pair of histograms A and B, in the same system U , have a variables
mapping X such that ∃X ⊂ {(v, (w,W )) : Q ∈ vars(A) · vars(B), (v, w) ∈
Q, W ∈ Uv · Uw} (X ∈ VU ↔ (VU × (WU ↔ WU))) then the variables of A
and the variables of B are said to be non-literal frames of each other mapped
by X.

The function reframe ∈ (V ↔ (V × (W ↔W))×A → A is defined

reframe(X,A) := {(reframe(X,S), c) : (S, c) ∈ A}

which is defined if reframe(X,S) is defined for each state. In other words,
reframe(X,A) is defined if dom(ran(X)) ∩ (vars(A) \ dom(X)) = ∅. If the
histogram A is in some system U , A ∈ AU , then the reframed histogram is
in U , reframe(X,A) ∈ AU , if ∀(w,W ) ∈ ran(X) (ran(W ) ⊆ Uw).

The function resize ∈ Q≥0 ×A → A is defined

resize(z, A) := {(S, cz/zA) : (S, c) ∈ A, zA = size(A)}

which is defined if size(A) > 0. The resize is such that size(resize(z, A)) = z.

Define the ceiling and floor functions that return integral histograms. Define
ceiling ∈ A → Ai

ceiling(A) := {(S, d) : (S, c) ∈ A, d ∈ N, d ≥ c, d− c < 1}

where the integral histograms is the set Ai = A ∩ (S → N). Define floor ∈
A → Ai

floor(A) := {(S, d) : (S, c) ∈ A, d ∈ N, d ≤ c, c− d < 1}

Thus size(floor(A)) ≤ size(A) ≤ size(ceiling(A)).

3.4.2 Unit histograms

A unit histogram AU ∈ A is a special case in which all its counts equal 1.
Define unit ∈ A → Ai

unit(A) := states(A)× {1} = {(S, 1) : (S, c) ∈ A}

where the integral histograms is the set Ai = A ∩ (S → N). Define the
shorthand AU := unit(A). Thus ∀S ∈ states(AU) (AU

S = 1). In such a
histogram, size(AU) = |states(AU)| = |AU|. Unit histograms provide a useful
shorthand for the states. Define a convenience function to promote a set of
states to a unit histogram, define unit ∈ P(S) → (S → {1}) as unit(Q) :=
Q × {1}, with a shorthand QU := unit(Q). Depending on the argument set
of states Q the function QU may be a histogram, ∃Q ∈ P(S) (unit(Q) ∈ Ai).
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A zero histogram AZ ∈ A is a special case in which all its counts equal 0.
Define zero ∈ A → Ai

zero(A) := states(A)× {0}

and the shorthand AZ := zero(A).

There are a couple of useful variations on the theme of unit histograms,
unit effective histogram AF ∈ Ai and unit cartesian histogram AC ∈ AU,i.

The unit effective histogram AF of a histogram A only includes states where
the count is non-zero. Defining effective ∈ A → Ai

effective(A) := {(S, 1) : (S, c) ∈ A, c > 0} = unit(trim(A))

Define the shorthand AF := effective(A).

Histogram equivalence can be defined in terms of effective histograms, A ≡
B := {(S,AS) : S ∈ AFS} = {(T,BT ) : T ∈ BFS}.

The function cartesian(U) ∈ P(vars(U)) → P(SU) is the cartesian set of
states for some set of variables in a system. Define a shorthand V C which is
the histogram for this set, ()C ∈ P(vars(U))→ AU,i

V C := cartesian(U)(V )× {1}

where the context of system U is implicit. Define a similar shorthand for the
unit cartesian histogram AC ∈ AU,i which includes all states of vars(A) in
system U , ()C ∈ AU → AU,i

AC := (vars(A))C

assuming the context of system U . Clearly the unit cartesian histogram
AC does not depend on the counts in A, only on the variables of A in the
system U . Also ∀A ∈ AU (AF ≤ AC) and ∀A ∈ AU (|AF| ≤ |AC|) and
∀A ∈ AU (|AC| = volume(U)(A)).

A histogram is complete in some system when the unit histogram equals
the unit cartesian histogram, AU = AC.

The unit effective complement histogram of a histogram A is AC \ AF.
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3.4.3 Arithmetic operators

The addition operation of histograms is defined if both histograms have
the same variables. For histograms A and B, if vars(A) = vars(B), define
(+) ∈ A×A → A

A+B :=

{(S, c) : (S, c) ∈ A, S /∈ states(B)} ∪
{(S, c+ d) : (S, c) ∈ A, (T, d) ∈ B, S = T} ∪
{(T, d) : (T, d) ∈ B, T /∈ states(A)}

Clearly size(A + B) = size(A) + size(B). Completeness is cumulative for
addition, (A+B)U = AU ∪BU. Addition is associative and commutative.

Negative counts are not allowed, so subtraction is not constructed in terms
of addition of a negative but instead as a binary operation (−) ∈ A×A → A

A−B :=

{(S, c) : (S, c) ∈ A, S /∈ states(B)} ∪
{(S, c− d) : (S, c) ∈ A, (T, d) ∈ B, S = T, c ≥ d} ∪
{(S, 0) : (S, c) ∈ A, (T, d) ∈ B, S = T, c < d} ∪
{(T, 0) : (T, d) ∈ B, T /∈ states(A)}

Subtraction explicitly prevents negative counts. Completeness is cumulative
for subtraction, (A − B)U = AU ∪ BU. Construct a zero, the identity his-
togram for addition, AC − AC. To make a histogram complete add the zero,
A+ AC − AC.

The sub-histogram relation can be defined in terms of addition and sub-
traction operators, A ≤ B ⇐⇒ (B − A+ A) ≡ B.

To define the multiplication operation of histograms cross the states of
each histogram, keeping only those that join, where a pair of states S and
T join if their union is a state, |vars(S ∪ T )| = |S ∪ T |. In other words, the
intersection of the variables of the states must also be the intersection of the
variable-value pairs. Defining (∗) ∈ A×A → A,

A ∗B := {(S ∪ T, cd) : (S, c) ∈ A, (T, d) ∈ B, |vars(S ∪ T )| = |S ∪ T |}

Define A ∗ ∅ := ∅ and ∅ ∗ A := ∅.
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Multiplication unions the variables of non-empty histograms, vars(A ∗ B) =
vars(A) ∪ vars(B). If both A and B are unit, their product A ∗ B is also
unit. If the variables of A and B are disjoint, then the cross is cartesian and
|A∗B| = |A|×|B| and size(A∗B) = size(A)×size(B). Multiplication is com-
plete if the variables of A and B are disjoint and A and B are both complete.
Multiplication is associative and commutative. Multiplication and addition
together are distributive. If negative counts were allowed, histograms would
obey the algebra of fields. The identity histogram for multiplication is the
unit cartesian histogram, AC. Multiplication of a histogram A by a scalar w
can be accomplished by promoting the scalar to a histogram with an empty
state, A ∗ {(∅, c)} or A ∗ scalar(c), so that size(A ∗ scalar(c)) = size(A)× c.

Division is calculated by defining the reciprocal of a histogram as the re-
ciprocal of its counts, (1/) ∈ A → A,

1/A := {(S, 1/c) : (S, c) ∈ A, c > 0}

Define 1/∅ := ∅. Define division (/) ∈ A × A → A, as B/A := B ∗ (1/A).
The reciprocal 1/A ignores any count which is zero. The reciprocal 1/A is
defined even if size(A) = 0. The reciprocal 1/A is as complete as the effective
states of A, (1/A)U = AF ⊆ AU. If A is a zero histogram then the reciprocal
is empty (1/A) = ∅. A unit histogram is its own reciprocal 1/AU = AU.
Division is often used when normalising by a scalar.

3.4.4 Reduction

Define reduction of a histogram as the reduction of the set of its variables
to some subset, reduce ∈ P(V)→ (A → A)

reduce(V )(A) := {(S,
∑

(c : (T, c) ∈ A, T ⊇ S)) : S ∈ {R%V : R ∈ AS}}

Define the shorthand operator (%) ∈ A×P(V)→ A asA%V := reduce(V )(A).
By definition, ∀V ∈ P(V) (vars(A%V ) = V ∩ vars(A)). Reduction leaves
the size of a histogram unchanged, size(A%V ) = size(A), but the number of
states may be fewer, |A%V | ≤ |A|. Reduction of a histogram by its own vari-
ables leaves the histogram unchanged, A%vars(A) = A. Reduction of a his-
togram by the empty set, leaves a scalar, A%∅ = {(∅, c)} where c = size(A).
Sometimes it shall be assumed that the set Z is a relation between all his-
tograms and the scalars of their sizes, Z = {(A, scalar(size(A))) : A ∈ A}.
For example, ZX = X%∅ = {(∅, size(X))}.

102



A histogram A is completely effective in some set of variables V if (A%V )F =
(A%V )C. Similarly, A is cartesian in some set of variables V if A%V =
(A%V )C. If A is cartesian in V then it is also completely effective in V .

3.4.5 Histogram expressions

A histogram expression N ∈ EU in system U is an expression consisting
of the histogram arithmetic operators, the histogram reduction operator, con-
stant histograms and free variable identifiers. A histogram expression can be
evaluated by substitution of the free variable identifiers by histograms and
then evaluation of the dependent operators to yield a resultant histogram.
The histogram expression application is denoted N(A) ∈ AU , N(A,B) ∈ AU ,
N(A,B,C) ∈ AU , etc where A,B,C ∈ AU .

A model M ∈ MU ⊂ EU is a special case of a histogram expression which
has a single free variable identifier. A model’s resultant histogram, M(A),
is in the same variables as the argument histogram, vars(M(A)) = vars(A).
A further constraint is that at some point during the evaluation none of the
variables of the argument histogram remain, having been removed by reduc-
tion. Thus a model can be thought of as a path from an argument histogram
in some set of underlying variables via an intermediate set of derived vari-
ables and back to the given set of variables. The underlying variables are
called the substrate.

See appendix ‘Histogram expressions’ for more formal definitions.

3.4.6 Types of histogram

An empty histogram A equals the empty set, A = ∅. Its size is zero,
size(∅) = 0. An empty histogram has no variables, vars(∅) = ∅. Its volume is
one in all systems, |∅C| = 1.

A zero histogram A is a non-empty histogram that has unique zero count,
A 6= ∅ ∧ trim(A) = ∅. Its size is zero. The only zero histogram that has no
variables is the scalar histogram {(∅, 0)}. All zero histograms are equivalent
to the empty histogram, ∀A ∈ A (trim(A) = ∅ =⇒ A ≡ ∅).

A uniform histogram A has unique non-zero count, |ran(trim(A))| = 1. A
bi-form histogram A has two non-zero counts, |ran(trim(A))| = 2.
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The counts of an integral histogram are positive integers, ran(A) ⊂ N.
The set of all integral histograms Ai is

Ai = A ∩ (S → N) = {A : A ∈ A, ran(A) ⊂ N}

A singleton histogram A has unique non-zero state, |trim(A)| = 1.

A regular histogram A of variables V = vars(A) 6= ∅ in system U has
unique valency of its variables, |{|Uv| : v ∈ V }| = 1. The volume of a
regular histogram is dn where valency d is such that {d} = {|Uv| : v ∈ V }
and dimension n = |V |. (The use of d here suggests diagonal rather than
dimension.)

If a histogram A has no variables, vars(A) = ∅, then either the histogram
is empty A = ∅ or it is a scalar A = {(∅, c)} of some positive count c ∈ Q≥0.
Define constructor scalar ∈ Q≥0 → A such that scalar(c) := {(∅, c)}.

When a histogram has exactly one variable, |vars(A)| = 1, it is mono-variate.

Pluri-variate histograms can be classified by incidence, incidence ∈ A ×
S ×N→ A

incidence(A, S, i) := {(T, d) : (T, d) ∈ trim(A), |S ∩ T | = i}

where i is the degree of incidence of state S. If state S ∈ states(A), the
maximum cardinality of incidence |incidence(A, S, i)| for a particular degree
of incidence i of a regular histogram of variables V of valency d and volume
dn where dimension n = |V | is

n!

i!(n− i)!
(d− 1)n−i

The maximum cardinality of incidence having some degree of incidence is
dn − (d− 1)n.

A pluri-variate histogram, |vars(A)| > 1, is causal if the effective states
can be functionally split. Define causal ∈ A → B

causal(A) := |V | > 1 ∧ (∃K ⊂ V (K 6= V =⇒ split(K,AFS) ∈ S → S))

where V = vars(A). If A is causal the variables K are said to cause the
remaining variables V \K.
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A histogram is planar if all effective states are incident on some value u
of variable w, AF ⊆ {S : S ∈ V CS, (w, u) ∈ S}U. Define planar ∈ A → B

planar(A) := ∃(w, u) ∈
⋃

AFS ∀S ∈ AFS ((w, u) ∈ S)

A pluri-variate histogram, |vars(A)| > 1, is anti-planar if each reduction has
at least two effective states. Define antiplanar ∈ A → B

antiplanar(A) := |V | > 1 ∧ (∀w ∈ V (|(A%{w})F| > 1))

A pluri-variate histogram, |vars(A)| > 1, is diagonalised if no pair of ef-
fective states shares any value, ∀S, T ∈ AFS (S 6= T =⇒ S ∩ T = ∅) or
∀(S, c) ∈ trim(A) (trim(A)\{(S, c)} = incidence(A, S, 0)). Define diagonal ∈
A → B

diagonal(A) := |V | > 1 ∧ (∀S, T ∈ AFS (S 6= T =⇒ |S ∩ T | = 0))

A diagonalised histogram A is fully diagonalised if its non-zero cardinality
equals its minimum valency of its variables, |trim(A)| = minr({(v, |Uv|) : v ∈
vars(A)}). Define diagonalFull(U) ∈ A → B in system U

diagonalFull(U)(A) := diagonal(A) ∧ |AF| = minr({(v, |Uv|) : v ∈ V })

where V = vars(A). A full diagonal has the maximum cardinality of effective
states of diagonal histogram for the given variables, diagonalFull(U)(A) =⇒
|AF| = maxr({(B, |B|) : B ⊆ V C, diagonal(B)}). In a fully diagonalised reg-
ular histogram of valency d, where {d} = {|Uv| : v ∈ V }, the cardinality of
non-zero states is |AF| = d. The cardinality of the subsets of a regular carte-
sian which are fully diagonalised is |{A : A ⊆ AC, diagonalFull(U)(A)}| =
(d!)n−1 where {d} = {|Uv| : v ∈ V }, n = |V | and V 6= ∅.

An anti-diagonal histogram A is such that all pairs of effective states share
at least one value. Define antidiagonal ∈ A → B

antidiagonal(A) := ∀S, T ∈ AFS (|S ∩ T | > 0)

A full anti-diagonal histogram A is such that all states that are incident on
some value u of variable w are effective, AF = {S : S ∈ V CS, (w, u) ∈
S}U. Thus a full anti-diagonal histogram is planar. The cardinality of a
full anti-diagonal regular histogram of valency d and dimension n is dn−1.
The cardinality of fully anti-diagonal planar subsets of a cartesian, V C, is∑

w∈V |Uw|. If V is regular this is nd.
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A histogram is a line if each pair of non-zero states differs in no more than
one of the variables, ∀S, T ∈ AFS (|S ∩T | >= n− 1) where V = vars(A) and
n = |V |. Define line ∈ A → B

line(A) := ∀S, T ∈ AFS (|S ∩ T | >= n− 1)

A pluri-variate histogram is a crown if (i) it is anti-planar, and (ii) each pair
of non-zero states differs in exactly two of the variables, ∀S, T ∈ AFS (S 6=
T =⇒ |S ∩ T | = n − 2) where V = vars(A) and n = |V |. Define crown ∈
A → B

crown(A) := antiplanar(A) ∧ (∀S, T ∈ AFS (S 6= T =⇒ |S ∩ T | = n− 2))

A crown histogram A is a full crown if its non-zero cardinality equals the
dimension. Define crownFull ∈ A → B

crownFull(A) := crown(A) ∧ |AF| = n

where V = vars(A). Crown histograms are also called orthogonal. The
pivot of a full crown is the zero state which is the union of the intersections⋃
{S ∩ T : S, T ∈ AFS} ∈ ACS \ AFS.

A histogram is an axial histogram A if there exists exactly one pivot state
P ∈ V CS such that non-zero states differ in no more than one of the variables,
∀S ∈ AFS (|S ∩ P | >= n− 1) where V = vars(A) and n = |V |

axial(A) := |{P : P ∈ (
∏
w∈V

A%{w})FS, (∀S ∈ AFS (|S ∩P | >= n−1))}| = 1

So an axial histogram is intermediate between a line and a crown. The pivot
state the union of the intersections P =

⋃
{S ∩ T : S, T ∈ AFS}. If A

is tri-variate, n = 3, then some non-full anti-diagonal histograms, ∀S, T ∈
AFS (|S ∩ T | ≥ 1), are axial. An anti-diagonal histogram is less orthogonal
than axial which in turn is less orthogonal than crown. An axial histogram
A is full if its effective cardinality equals one plus the sum of the valencies
less one, |AF| = 1 +

∑
w∈V (|Uw| − 1). A full axial regular histogram has

effective cardinality of 1 + n(d− 1). The cardinality of fully axial subsets of
a cartesian, V C, is the volume,

∏
w∈V |Uw|. If V is regular this is dn.

A skeletal histogram is such that all reductions to pairs of variables are
linear or axial. Define skeletal ∈ A → B

skeletal(A) := ∀K ⊆ V (|K| = 2 =⇒ line(A%K) ∨ axial(A%K))
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where V = vars(A). All axial histograms are skeletal, axial(A) =⇒ skeletal(A).
If a skeletal histogram is not itself axial, then it has no pivot state

skeletal(A) ∧ ¬axial(A) =⇒
⋃
{S ∩ T : S, T ∈ AFS} /∈ ACS

A singleton histogram can be defined in terms of effective states too,
∀S, T ∈ AFS (|S ∩ T | = n).

A histogram is pivoted if there exists exactly one effective state P ∈ AFS

which shares no value with any other effective state, ∀S ∈ AFS (S 6= P =⇒
S ∩ P = ∅). The state P is called the pivot. Define pivot ∈ A → B

pivot(A) := |{P : P ∈ AFS, (∀S ∈ AFS (S 6= P =⇒ S ∩ P = ∅))}| = 1

A histogram is a full pivot if |AF| = 1 +
∏

w∈V (|Uw| − 1). If the valency of
a regular full pivoted histogram is two, d = 2, then the histogram is a full
diagonal. Thus a pivoted histogram can be viewed as weakly diagonal. A full
pivoted histogram is less diagonal than a full diagonal subset because it is
more cartesian. A full pivoted regular histogram has effective cardinality of
1 + (d− 1)n. The cardinality of full pivoted subsets of a cartesian, V C, is the
volume,

∏
w∈V |Uw|. If V is regular this is dn.

A histogram is anti-pivoted if there exists exactly one zero state P ∈ (AC\AF)
which shares at least one value with all effective states, ∀S ∈ AFS (S∩P 6= ∅).
Define antipivot ∈ A → B

antipivot(A) := |{P : P ∈ (
∏
w∈V

A%{w})FS\AFS, (∀S ∈ AFS (S∩P 6= ∅))}| = 1

An anti-pivoted histogram, A, is the unit effective complement of a pivoted
histogram, antipivot(A) =⇒ pivot(AC\AF). Thus the cardinality of the full
anti-pivot equals the volume minus the cardinality of the full pivot, |AF| =
|AC|−(1+

∏
w∈V (|Uw|−1)). If the dimension equals two, n = 2, the effective

full anti-pivot, AF, unioned with the effective singleton at the pivot state,
P /∈ AFS, equals the effective full axial, AF ∪ {P}U. Thus the cardinality of
the bi-variate full anti-pivot equals the cardinality of the superset full axial
less one, |AF| =

∑
w∈V (|Uw| − 1). A bi-variate full anti-pivoted histogram is

more orthogonal than its full axial superset because it is less cartesian. A full
anti-pivoted regular histogram has effective cardinality of dn− (1 + (d− 1)n).
The cardinality of full anit-pivoted subsets of a cartesian, V C, is the volume,∏

w∈V |Uw|. If V is regular this is dn.
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Histograms may be classified in terms of their counts. A histogram is unit
if A = AU. A histogram is complete in some system when AU = AC. A
histogram is unit or zero if A ⊇ AF. A non-empty histogram is zero or none
if AF = ∅. A histogram is one or cartesian if A = AC. A histogram is one or
zero in some system if it is complete and unit or zero (AU = AC)∧ (A ⊇ AF).
A histogram is not zero or any if AF 6= ∅. A histogram is none zero or all or
completely effective in some system when AF = AC.

A histogram is a cartesian sub-volume if the cartesian product of the val-
ues for each variable in the trimmed states is equal to the trimmed states∏
{{filter({v}, S) : S ∈ states(trim(A))} : v ∈ vars(A)} = states(trim(A))

Full planar histograms, linear histograms and singleton histograms are all
cartesian sub-volumes.

A cardinal substrate histogram is such that the variables and values are
integral, V = {1 . . . |V |} where V = vars(A), and ∀w ∈ V ♦W = {Sw : S ∈
AS} (W = {1 . . . |W |}). Define the set of cardinal substrate histograms Ac

Ac = {A : A ∈ A, V = vars(A), V = {1 . . . |V |},
∀w ∈ V ♦W = {Sw : S ∈ AS} (W = {1 . . . |W |})}

A cardinal substrate histogram in system U , A ∈ AU ∩ Ac, is such that
∀w ∈ V (Uw = {1 . . . |Uw|}).

A histogram A ∈ AU in system U that is not necessarily a cardinal sub-
strate histogram, A ∈ Ac ∨ A /∈ Ac, can be reframed to a cardinal substrate
histogram of the same geometry given enumerations in the variables and val-
ues. Let X ∈ V ↔ (N>0× (W ↔ N>0)) such that {(w, i) : (w, (i, ·)) ∈ X} ∈
enums(V ) where V = vars(A), and ∀(·, (·, Y )) ∈ X (Y ∈ enums(dom(Y ))), so
that reframe(X,A) is defined and reframe(X,A) ∈ Ac. The frame mapping,
X, is called a cardinal substrate permutation. There are |V |!

∏
w∈V |Uw|! car-

dinal substrate permutations of a histogram A ∈ AU in system U . If histogram
A is regular having dimension n = |V | and valency {d} = {|Uw| : w ∈ V }
then the cardinality of cardinal substrate permutations is n!(d!)n.

Given some slice state R ∈ KCS, where K ⊂ V and V = vars(A), the
slice histogram, A ∗ {R}U ⊂ A, is said to be contingent on the incident slice
state, A ∗ {R}U = incidence(A,R, |R|). For example, if the slice histogram is
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diagonalised, diagonal(A∗{R}U % (V \K)), then the histogram, A, is said to
be contingently diagonalised. Let slices ∈ P(V)×A → (S → A) be defined

slices(K,A) := {(R,A ∗ {R}U) : R ∈ (A%K)S}

A histogram P ∈ A is a probability function if its size is 1, size(P ) = 1 =⇒
P ∈ P , where the set of probability functions, P , is defined in appendix ‘Prob-
ability functions’. In this case the histogram is called a probability histogram.

In the case where a histogram P ′ ∈ A has a size less than or equal to 1,
it is a weak probability function, size(P ′) ≤ 1 =⇒ P ′ ∈ P ′, and is called a
weak probability histogram.

The normalisations of two histograms may be compared as probability his-
tograms by calculating the relative entropy. Let Â = normalise(A). Let
A1, A2 ∈ A be such that vars(A1) = vars(A2), size(A1) > 0 and size(A2) > 0,
then Â1, Â2 ∈ A ∩ P and the relative entropy of A2 with respect to A1 is

entropyRelative(A1, A
′
2) =

∑
S∈AFS

1

Â1(S) ln
Â1(S)

Â′2(S)

where A′2 = A2 + (AF
1 − AF

2 )∧. The relative entropy is with respect to the
effective states of histogram A1. The histogram A2 is stuffed with one event
uniformly distributed over the ineffective states with respect to the histogram
A1, (AF

1−AF
2 )∧. In the case where histogram A2 is as effective as the histogram

A1, then no stuffing is needed, AF
2 ≥ AF

1 =⇒ A′2 = A2. The relative
entropy is zero when the histograms are equal, entropyRelative(A1, A1) =
0. Maximum relative entropy occurs when there is no effective intersection
AF

1 ∩AF
2 = ∅ and the histogram A1 is uniform over all but one state S ∈ V CS,

entropyRelative(resize(z, V C − {S}U), resize(z, {S}U)) = ln(z + 1)/(v − 1)
where v = |V C| and z ≥ v ≥ 2.

3.4.7 Classifications

A histogram may be obtained from a history by counting the event iden-
tifiers of each state, histogram ∈ H → A,

histogram(H) := count(flip(H)) = count({(S, x) : (x, S) ∈ H})

That is, the histogram, histogram(H), is the distribution of events over states
of the history H.

109



Let A = histogram(H) where H ∈ HU , then A ∈ AU , |A| ≤ |H|, states(A) =
states(H), vars(A) = vars(H), size(A) = size(H), and volume(U)(A) =
volume(U)(H). If each state appears only once in a history the resultant
histogram will be unit and |A| = |H|.

The converse operation to construct a history from a histogram can be imple-
mented only if the counts in the histogram are all integral, ∀(S, c) ∈ A (c ∈
N), or A ∈ S → N. If that is the case, then a history can be created, for
example {((S, i), S) : (S, c) ∈ A, c > 0, i ∈ {1 . . . c}}.

All histories have the equivalent histogram in the set of integral histograms

∀H ∈ H (histogram(H) ∈ Ai)

A converse operation can be defined history ∈ Ai → H

history(A) := {((S, i), S) : (S, c) ∈ trim(A), i ∈ {1 . . . c}}

But note that in general history(histogram(H)) 6= H.

Now consider the intermediate step between history and classification.
Classify a history H by its states, to make a functional relation between
the states and subsets of the history, J ∈ S → H

J = {(S, {(x, T ) : (x, T ) ∈ H, T = S}) : S ∈ states(H)}

This structure is constrained ∀(S, F ) ∈ J (states(F ) = {S}) and
∑

(|F | :
F ∈ ran(J)) = |ids(H)|. The second constraint means that the event iden-
tifiers are unique in the whole structure J . The next step from histories to
classifications is to throw away the duplicated state.

Let G be the set of classifications, G ⊂ S → (P(X )\{∅}). The set of states
of a classification is defined, states ∈ G → P(S) as states(G) := dom(G). A
classification’s states must all have exactly the same set of variables

∀G ∈ G ∀S ∈ states(G) (vars(S) = vars(G))

where vars ∈ G → P(V) is defined

vars(G) := {v : S ∈ states(G), v ∈ vars(S)}

In addition, the classification partitions its event identifiers,

∀G ∈ G ∀(S,C), (T,D) ∈ G (S 6= T =⇒ C ∩D = ∅)
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or
∀G ∈ G (ran(G) ∈ B(ids(G)))

where ids ∈ G → P(X ) is defined ids(G) :=
⋃

ran(G). Define size ∈ G → N
as size(G) := |ids(G)|.

A classification is the inverse of a history. That is, a classification is an
event identifier component valued function of state. Define classification ∈
H → G

classification(H) := inverse(H)

= {(S, {x : (x, T ) ∈ H, T = S}) : S ∈ states(H)}

Another inverse restores the history, define history ∈ G → H

history(G) := {(x, S) : (S,C) ∈ G, x ∈ C}

Thus classifications and histories are isomorphic

∀H ∈ H (history(classification(H)) = H)

∀G ∈ G (classification(history(G)) = G)

or G ∼= H.

To construct a histogram from a classification, define histogram ∈ G → Ai

histogram(G) := {(S, |C|) : (S,C) ∈ G}

So the construction of a histogram from a history can also be defined

histogram(H) = {(S, |C|) : (S,C) ∈ H−1}

where H−1 := classification(H).

The histogram of a reduction of a history equals the reduction of the his-
togram of the history,

histogram(H % V ) = histogram(H) % V

The histogram of an addition of histories equals the addition of the histograms
of the histories,

histogram(H1 +H2) = histogram(H1) + histogram(H2)

Multiplication is also homomorphic,

histogram(H1 ∗H2) = histogram(H1) ∗ histogram(H2)
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3.4.8 Histogram entropy

The definitions of probability function and entropy in the context of his-
tograms that follow are discussed more generally in appendices ‘Probability
functions’ and ‘Entropy and Gibbs’ inequality’, below.

Let A ∈ A be a non-zero histogram of size z = size(A) > 0. The normalised
histogram,

Â = normalise(A) = {(S, c/z) : (S, c) ∈ A}

is a probability function, Â ∈ P . That is, the normalised counts are between
zero and one, ran(Â) ⊂ Q[0,1], and sum to one,

∑
S∈AS ÂS = 1.

Entropy is defined for any probability function, so may be defined for non-zero
histograms, entropy ∈ A → Q≥0 ln Q>0, as

entropy(A) := −
∑
S∈AFS

ÂS ln ÂS

Entropy is undefined for zero or empty histograms, AF = ∅. The scaled en-
tropy or size scaled entropy is z × entropy(A).

Entropy is positive, entropy(A) ≥ 0. The minimum entropy occurs where
the histogram is singleton,

∀S ∈ V CS (entropy({(S, z)}) = 0)

That is, the least uniform histograms, which have singular effective volume,
|{(S, z)}F| = 1, have the lowest entropy.

If the histogram is integral, A ∈ Ai, the entropy is less than or equal to the log-
arithm of the size, entropy(A) ≤ ln z. Given a set of variables V = vars(A)
the maximum entropy occurs where the histogram is the scaled cartesian,
entropy(V C

z ) = ln z, where v = |V C|, z/v ∈ N>0, and V C
z = scalar(z/v)∗V C.

That is, the most uniform histogram, ran(V C
z ) = {z/v}, with the highest

effective volume, |(V C
z )F| = v, has the highest entropy.

Any non-empty, finite X -valued function of Y implies a distribution of Y
over X and hence a probability function by normalisation,

∀R ∈ Y → X (0 < |R| <∞ =⇒ {(x, |C|) : (x,C) ∈ R−1}∧ ∈ P)
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Similarly, every non-empty, finite history implies an integral histogram which
is the distribution of event identifiers over states. The normalised histogram
is a probability function,

∀H ∈ H (0 < |H| <∞ =⇒ {(S, |C|/|H|) : (S,C) ∈ H−1} ∈ A ∩ P)

Let I ∈ H → A be the histogram valued function of all possible histories of
size z in variables V ,

I = {(H, {(S, |C|) : (S,C) ∈ H−1}) : H ∈ {1 . . . z} :→ V CS}
= {(H, histogram(H)) : H ∈ {1 . . . z} :→ V CS}

Let W ∈ A → N>0 be the cardinality of histories for each histogram,

W = {(A, |D|) : (A,D) ∈ I−1}

= {(A, z!∏
S∈AS AS!

) : (A, ·) ∈ I−1}

The cardinality of histories for a histogram A is the multinomial coefficient,

W (A) =
z!∏

S∈AS AS!
∈ N>0

In the case where the histogram counts are large, ∀(·, c) ∈ A (c > 0 =⇒ c�
ln c), Stirling’s approximation, lnn! = n lnn− n+ O(lnn), may be applied,

lnW (A) = ln z!−
∑
S∈AS

lnAS!

≈ (z ln z − z)−
∑
S∈AFS

(AS lnAS − AS)

= −z
∑
S∈AFS

ÂS ln ÂS

= z × entropy(A)

That is, the logarithm of the probability of a histogram of an arbitrary history
of size z in variables V varies with the entropy of the histogram,

ln Ŵ (A) ∼ entropy(A)

The history probability function, ({1 . . . z} :→ V CS)×{1/vz} ∈ P , is uniform,
but the corresponding histogram probability function, Ŵ ∈ P , is not uniform.

The least probable histograms are the singletons,

mind(W ) = {{(S, z)} : S ∈ V CS}
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which have a cardinality of one, minr(W ) = 1,

{{(S, z)} : S ∈ V CS} :↔: {{1 . . . z} × {S} : S ∈ V CS}

and zero entropy, ∀A ∈ mind(W ) (entropy(A) = 0).

The modal histogram is the scaled cartesian,

maxd(W ) = {V C
z }

which has a cardinality of maxr(W ) = z!/((z/v)!)v, and maximum entropy,
ln maxr(Ŵ ) ∼ entropy(V C

z ) = ln z.

3.5 Transforms

3.5.1 Definition

A histogram X which has its variables partitioned into two components,
the underlying variables V and the derived variables W , such that vars(X) =
V ∪W , forms a pair (X,W ) called a transform. The underlying and derived
variables are disjoint V ∩ W = ∅. The set of all transforms T such that
T ⊂ A× P(V) is

T = {(X,W ) : X ∈ A, W ∈ P(vars(X))}

Define various accessor functions, histogram ∈ T → A as histogram((X,W )) :=
X, and underlying ∈ T → P(V) as underlying((X,W )) := vars(X) \W , and
derived ∈ T → P(V) as derived((X,W )) := W .

The transform function is a special case of a histogram expression that
applies the transform to some histogram A by multiplying by the transform
histogram and then reducing by the derived variables, transform ∈ T ×A →
A

transform((X,W ), A) := A ∗X % W

Extend the histogram multiplication operator to transforms to make a con-
venient shorthand, (∗) ∈ A× T → A

A ∗ (X,W ) := transform((X,W ), A)

= A ∗X % W

Often the variables of A will be the same as the underlying variables of the
transform, but this is not necessary.
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There are a some special cases of transforms of a histogram A in variables
V = vars(A). A disjoint transform T = (X, vars(X)) has an empty set of
underlying variables underlying(T ) = ∅. If V ∩ derived(T ) = ∅ and because
V ∩ underlying(T ) = ∅

transform((X, vars(X)), A) = ZA ∗X

where ZA is the scalar histogram ZA = {(∅, size(A))}.

On the other hand, the null transform T = (X, ∅) has an empty set of
derived variables derived(T ) = ∅

transform((X, ∅), A) = ZA∗X

where V = underlying(T ) and ZA∗X is the scalar histogram ZA∗X = {(∅, size(A∗
X))}.

The empty transform, (∅, ∅), is both null and disjoint, but when applied
to histogram A produces the empty histogram, A ∗ (∅, ∅) = ∅.

The set of all transforms TU ⊂ T in a particular system U is defined
explicitly

TU = {(X,W ) : Y ⊆ vars(U), W ⊆ Y, X ∈ cartesian(U)(Y )→ Q≥0}

A transform T ∈ TU in system U , having transform histogram X = his(T ),
underlying variables V = und(T ) and derived variables W = der(T ), is a
frame transform if there exists either (i) a literal frame map Y ∈ V · W ,
or (ii) a non-literal frame map Y ∈ V · (W × (WU ↔ WU)), such that
reframe(Y,X%V ) is defined in system U . The underlying dimension of frame
transforms equals the derived dimension, |V | = |W |. The valencies of the
variables of the pairs of the frame map are equal. That is, for (i) the literal
case, ∀(v, w) ∈ Y (|Uv| = |Uw|), and for (ii) the non-literal case, ∀(v, (w, ·)) ∈
Y (|Uv| = |Uw|). Hence the underlying volume equals the derived volume,
|V C| = |WC|. A special case of a frame transform is a reframe transform,
where the derived histogram equals the reframe of the underlying histogram,
X%W = reframe(Y,X%V ), or (V C ∗ T )F = reframe(Y, V C).

If a pair of transforms R, T ∈ TU in the same system U have variables
such that ∃Y ∈ vars(R) ·vars(T ) ∀(v, u) ∈ Y (Uv = Uu) then the variables of
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R and the variables of T are said to be literal frames of each other mapped
by Y . If underlying(R) = underlying(T ) then the variables of R and the
variables of T are derived frames.

The function reframe ∈ (V ↔ V)× T → T is defined

reframe(Y, T ) := (reframe(Y, his(T )),

{Yw : w ∈ der(T ) ∩ dom(Y )} ∪ (der(T ) \ dom(Y )))

his = histogram and der = derived. reframe(Y, T ) is defined if the underlying
reframe(Y, his(T )) is defined.

Similarly for pairs of transforms having variables which are non-literal frames
of each other. Define reframe ∈ (V ↔ (V × (W ↔W))× T → T

reframe(Y, T ) := (reframe(Y, his(T )),

{w′ : w ∈ der(T ) ∩ dom(Y ), (w′, ·) = Yw} ∪
(der(T ) \ dom(Y )))

reframe(Y, T ) is defined if reframe(Y, his(T )) is defined.

An important subset of the transforms is the set of functional transforms.
The functional transforms Tf ⊂ T is the subset of all transforms which form
a functional relation between the underlying states and the derived states
having non-zero count

Tf = {T : T ∈ T , X = his(T ), V = und(T ), split(V,XFS) ∈ S → S}

where the his = histogram and und = underlying. The histogram of a func-
tional transform is causal, causal(his(T )). The underlying variables, und(T ),
are said to cause the derived variables, der(T ).

If a transform is functional, T ∈ Tf , then an inverse function can be de-
fined. First define another function stateDeriveds ∈ T → P(S) as

stateDeriveds((X,W )) := states(X%W )

Then define inverse ∈ Tf → (S → A)

inverse(T ) := {(R, {(S \R, c) : (S, c) ∈ X, S ⊇ R}) : R ∈ std(T )}
= {(R,X ∗ {R}U % V ) : R ∈ std(T )}
= {(R,B%V ) : (R,B) ∈ slices(W,X)}
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where std = stateDeriveds, X = his(T ), W = der(T ) and V = und(T ). So
dom(inverse(T )) = std(T ) and

∑
ran(inverse(T )) = X % V .

The inverse function can be defined in terms of the relational inverse function,
inverse ∈ (X → Y)→ (Y → P(X ))

inverse(T ) := inverse({((S%V, c), S%W ) : (S, c) ∈ X})

where (X,W ) = T and V = und(T ). The inverse function can be defined in
terms of incidence

inverse(T )(R) = incidence(X,R, |R|) % V

where R ∈ std(T ).

A functional transform T ∈ Tf is said to be effective with respect to a
histogram A ∈ A, where vars(A) = underlying(T ), if the effective underlying
states of the transform are a superset of the effective states of the histogram,
(X%V )F ≥ AF where X = his(T ) and V = his(T ). Define the function
effective ∈ A × Tf → Tf which returns the smallest cardinality effective
transform of a transform T with respect to a histogram A as

effective(A, T ) := (
∑
{(A ∗ C)F ∗ {R}U : (R,C) ∈ inverse(T )}, der(T ))

The function effective(A, T ) is undefined if there is no effective intersection
X = ∅. The transform T of the cartesian histogram V C is already minimally
effective, effective(V C, T ) = T .

A functional transform T ∈ Tf has a set of reduced transforms with respect
to a histogram A ∈ A, where vars(A) = underlying(T ). The transform is
functional and so has an inverse. If the transform is effective with respect
to the given histogram, (X%V )F ≥ AF, the set of the trimmed applications
of the elements of the range of the inverse, ran(inverse(T )) ⊂ A, partitions
the given trimmed histogram, (X%V )F ≥ AF =⇒ {trim(A ∗ C) : C ∈
ran(inverse(T ))} \ {∅} ∈ B(trim(A)). Each of the reduced transforms has a
subset of the derived variables such that the partition of the set of trimmed
applications is unchanged. Define reductions ∈ A× Tf → P(Tf)

reductions(A, T ) :=

{R : K ⊆ W, R = (X%(V ∪K), K),

{AF ∗D : (·, D) ∈ R−1} \ {∅} = {AF ∗ C : (·, C) ∈ T−1} \ {∅}}
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where T−1 = inverse(T ), (X,W ) = T and V = vars(A) ⊇ und(T ). The
set of reductions contains the transform itself, T ∈ reductions(A, T ). The
set of reductions of a null transform is the singleton of the null transform,
reductions(A, (X%V, ∅)) = {(X%V, ∅)}. The application of a reduction has
the same size as the transformed histogram, ∀R ∈ reductions(A, T ) (size(A ∗
R) = size(A ∗ T )). If a transformed histogram is diagonal, diagonal(A ∗ T ),
then the set of reductions has cardinality equal to the cardinality of the
powerset of the derived variables, diagonal(A ∗ T ) =⇒ |reductions(A, T )| =
|P(W )|−1 = 2|W |−1, which is at least the cardinality of the derived variables.
That is, the transform can be reduced to any of the derived variables

diagonal(A ∗ T ) =⇒ {(X%(V ∪ {w}), {w}) : w ∈ W} ⊆ reductions(A, T )

The subset of functional transforms that contains only transforms in a
particular system U is TU,f = TU ∩ Tf . A functional transform T ∈ TU,f is
left total if it is completely effective in its underlying (X%V )F = V C, where
(X,W ) = T and V = und(T ). Similarly T is right total if it is completely
effective in its derived (X%W )F = WC. A full functional transform T is
(i) left total, (ii) right total, and (iii) such that the underlying volume equals
the derived volume, |V C| = |WC|. A full functional transform is bijective be-
tween its underlying states and derived states, split(V,XS) ∈ V CS ↔ WCS. A
special case of a full functional transform is a frame full functional transform,
where V and W are frames of each other, ∃Y ∈ V ·W ∀(v, w) ∈ Y (|Uv| =
|Uw|). In this case, not only are the underlying volume and the derived
volume equal, |V C| = |WC|, but the underlying dimension equals the de-
rived dimension, |V | = |W |, and the underlying valencies equal the derived
valencies, ∀(v, w) ∈ Y (|Uv| = |Uw|). A special case of a frame full func-
tional transform is a value full functional transform which is a reframe trans-
form, X%W = reframe(Y,X%V ). In this case the derived states, (X%W )S,
are reframed underlying states, (X%V )S. That is, ∃Y ∈ V · W ∀(v, w) ∈
Y (split({v}, (X%{v, w})S) ∈ {v}CS ↔ {w}CS).

The subset of transforms that contains only unit transforms is defined
TU ⊂ T

TU = {T : T ∈ T , X = his(T ), X = XU}
The subset of unit functional transforms in a particular system U is TU,f,U =
TU ∩ Tf ∩ TU.

Consider unit functional transform T ∈ TU,f,U that is also left total (X%V )F =
V C where X = his(T ) and V = und(T ). Left total unit functional trans-
forms are also known as one functional transforms T ∈ TU,f,1. The size
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and cardinality of the histogram of the transform equals the volume of
the underlying variables size(X) = |X| = |V C|. A one functional trans-
form is size-conservative when applied to a given argument histogram A,
size(A ∗ T ) = size(A), where und(T ) = vars(A). The empty transform is not
one functional, (∅, ∅) /∈ TU,f,1.

A one functional transform T ∈ TU,f,1 is a functor (or monoid homomor-
phism) of the histogram addition operator, (A ∗ T ) + (I ∗ T ) = (A + I) ∗ T
where I ∈ A and vars(I) = und(T ) = vars(A). A one functional transform
is also a functor of histogram subtraction, (A ∗ T ) − (D ∗ T ) = (A −D) ∗ T
where D ∈ A and vars(D) = und(T ) = vars(A) if the subtraction has an
inverse addition, A−D +D = A, or D ≤ A.

The histogram X of one functional transform T is argument-conservative
where it is multiplied by an argument histogram A and then reduced by
the variables of A, if the derived variables of T are disjoint, vars(A) ∩
derived(T ) = ∅. That is, A ∗X % vars(A) = A. Also, size(A ∗X) = size(A)
and |A ∗ X| = |A|. These constraints hold even if the variables of A and
the underlying variables of T do not overlap, vars(A) ∩ vars(T ) = ∅. One
can think of the histograms of left total unit functional transforms as adding
derived variables while conserving the given histogram as an invariant.

If unit functional transform T ∈ TU,f,U is not left total, then there are weaker
constraints A∗X % vars(A) ⊆ A, size(A∗X) ≤ size(A) and |A∗X| ≤ |A|. By
contrast if T is a full functional transform, but is not necessarily unit, it may
not be argument-conservative but it does obey the constraint |A ∗ T | = |A|.

The set of one functional transforms TU,f,1 can be constructed explicitly

TU,f,1 =

{(X,W ) : V,W ∈ P(vars(U)), V ∩W = ∅,
Q ∈ cartesian(U)(V )→ cartesian(U)(W ), |Q| = |V C|,
X = {(S ∪R, 1) : (S,R) ∈ Q}}

The set of one functional models MU,f,1 is such that each model M ∈MU,f,1

has a corresponding one functional transform, transform(M) ∈ TU,f,1, where
transform ∈

⋃
U∈U(MU,f,1 → TU,f,1). There is a shorthand defined MT :=

transform(M).
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The one functional transforms, TU,f,1, are derived state valued left total
functions of underlying state,

∀T ∈ TU,f,1 (split(V,XS) ∈ V CS :→ WCS)

where (X,W ) = T and V = und(T ). In order to construct a coordinate from
a state define ()[] ∈ S → L(W) as

S[] := {(i, u) : ((v, u), i) ∈ order(DV×W , S)}

where DV×W is an order on the variables and values. The converse function
to construct a state from a coordinate ()V ∈ L(W)→ S is

SV := {(v, Si) : (v, i) ∈ order(DV , V )}

Now one functional transforms may be represented as derived value coordi-
nate valued left total functions of underlying value coordinate,

{(S[], R[]) : (S,R) ∈ split(V,XS)} ∈ {S[] : S ∈ V CS} :→ {R[] : R ∈ WCS}
⊂ Wn →Wm

where n = |V | and m = |W |.

So an alternative definition for a one functional transform is a tuple of (i)
the underlying variables, V , (ii) the derived variables, W , and (iii) a derived
value coordinate valued left total function of underlying value coordinate, f ,

TU,f,1 =

{(V,W, f) : V,W ∈ P(vars(U)), V ∩W = ∅,
f ∈ {S[] : S ∈ V CS} :→ {R[] : R ∈ WCS}}

The histogram of a function-defined one functional transform T = (V,W, f) ∈
TU,f,1 is

histogram(T ) := {S ∪ f(S[])W : S ∈ V CS} × {1}

In the special case where the transform is mono-derived-variate, T = (V, {w}, f),
the function may be simplified to f ∈ {S[] : S ∈ V CS} :→ Uw, and the his-
togram is

histogram(T ) := {S ∪ {(w, f(S[]))} : S ∈ V CS} × {1}

In the further special case of mono-derived-variate transform where its vari-
ables are real, ∀v ∈ V (Uv = R) and Uw = R, then the function is a real
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valued left total function of a real coordinate, f ∈ Rn :→ R. Here the
cartesian states are V CS =

∏
v∈V ({v} ×R), so the histogram is

histogram(T ) = {S ∪ {(w, f(S[]))} : S ∈
∏
v∈V

({v} ×R)} × {1}

= {SV ∪ {(w, f(S))} : S ∈ Rn} × {1}

The cartesian volume is infinite, |V C| = |Rn|, so the cardinality of the his-
togram is infinite, |histogram(T )| = |Rn|.

The reals form a metric space so a real valued function of real coordinates
may be discretised given a finite subset of the reals D ⊂ R : |D| < ∞. The
discretised function is

discrete(D,n)(f) := {(X, nearest(D, f(X))) : X ∈ Dn} ∈ Dn :→ D

where nearest ∈ P(R)×R→ R is defined

nearest(D, r) := t : {t} ∈ mind({(s, (|r − s|, s)) : s ∈ D})

The cardinality of the discretised transform’s histogram is finite,

|histogram((V, {w}, discrete(D,n)(f)))| = |Dn| = |D|n

An example of a transform defined by a real valued function occurs in the
function composition of artificial neural networks. Here a transform repre-
sents a model of a neuron called a perceptron T = (V, {w}, f(K,Q)) where
the function f(K,Q) ∈ Rn :→ R is parameterised by (i) some differentiable
function K ∈ R :→ R, called the activation function, and (ii) a vector of
weights, Q ∈ Rn+1, and is defined

f(K,Q)(X) := K(
∑

i∈{1...n}

QiXi + Qn+1)

A functional transform T ∈ Tf may be applied to a history H ∈ H in
the underlying variables of the transform, vars(H) = und(T ), to construct a
derived history. Define transform ∈ Tf ×H → H as

transform(T,H) := {(x, PS) : (x, S) ∈ H}

where V = und(T ), and P = split(V, his(T )FS) ∈ S → S. Let H ∗ T :=
transform(T,H). So vars(H ∗ T ) = W where W = der(T ). If the transform
is one functional, T ∈ TU,f,1, the size is unchanged, |H ∗ T | = |H|, and the
event identifiers are conserved, ids(H ∗ T ) = ids(H).
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3.5.2 Converses

The simple converse of a transform T ∈ T is straightforwardly defined
as the pair of the reciprocal of the histogram and the underlying variables.
Define converseSimple ∈ T → T as

converseSimple(T ) := (1/X, V )

where X = histogram(T ) and V = und(T ).

The natural converse, which is denoted by a dagger, is similar but also
scales inversely by the effective incident volume of each of the derived states.
Define converseNatural ∈ T → T as

converseNatural(T ) := (
XF

X%W
,V )

where (X,W ) = T and V = und(T ). Denote the natural converse with a
dagger, T † = converseNatural(T ).

In the case of the natural converse T † = (X/(X%W ), V ) of unit functional
transform T ∈ TU,f,U, the incident volume of any state S ∈ states(X) is
(X%W )R = incidence(X,R, |W |) where R = filter(W,S). The counts of the
natural converse histogram of a unit functional transform are greater than
zero and less than or equal to one, ∀(S, c) ∈ X/(X%W ) (0 < c ≤ 1). The
reduction of the natural converse histogram of a unit functional transform to
the derived states is a unit histogram, (X/(X%W ))%W ⊆ WC.

In the case of the natural converse T † = (X/(X%W ), V ) of a one func-
tional transform T ∈ TU,f,1, the natural converse may be expressed in terms
of components,

T † := (
∑

(R,C)∈T−1

{R}U ∗ Ĉ, V )

where the normalisation is defined Â = A/(A%∅).

There are other converses which are variations on the definition of natural
converse that scale each state S ∈ states(X) inversely by different degrees of
incidence incidence(X,R, i) where R = filter(W,S) and i ∈ {0 . . . |W | − 1}.
For example, a complement, |X| − incidence(X,R, |W |).

Converses may be parameterised by a normalised sample histogram Â ∈ A,
having variables V = vars(A), which is such that size(Â) = 1. Given a
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transform T = (X,W ) ∈ T , having underlying variables equal to the sample
variables, und(T ) = V , the sample converse converseSample ∈ A × T → T
is defined as

converseSample(A, T ) := (Â ∗X, V )

In the case of unit functional transform T ∈ TU,f,U, andA = (X/(X%W ))%V ,
the sample converse equals the natural converse,

converseSample(X/(X%W ), T ) = converseNatural(T )

The actual converse is very similar to the natural converse except that the
normalised application of the component to an argument histogram is used,
rather than just the normalised component. The actual converse is defined
converseActual ∈ A× Tf → T

converseActual(B, T ) :=

(
∑ B ∗ C

(B ∗ C)%∅
∗ {R}U : (R,C) ∈ inverse(T ), V )

where size(B) > 0 and vars(B) = V = underlying(T ). Define notation

T�B = converseActual(B, T )

The argument transform must be functional T ∈ Tf . The actual converse
may be expressed more concisely,

T�B := (
∑

(R,C)∈T−1

{R}U ∗ (B ∗ C)∧, V ) (1)

The actual converse, T�A, equals the sample converse, (Â ∗X, V ), if each of
the components are normalised,

∀(R,C) ∈ T−1 ({R}U ∗X ∗ Â = {R}U ∗ (A ∗ C)∧)

A converse transform T is conversely functional if the transform formed
from its underlying variables is functional, (his(T ), und(T )) ∈ Tf . The con-
verse of a full functional transform is also a full functional transform. If a full
functional transform is also unit, then it is its own natural converse. In fact,
the converse of a unit full functional transform is an identity, A∗T ∗T † = A,
where und(T ) = vars(A).
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An action C = (L,R) = ((X,W ), (Y, V )) is special case of a model his-
togram expression which is a pair of transforms having the same variables
vars(X) = vars(Y ) and such that the underlying variables for the first trans-
form are the derived variables of the second transform and vice-versa,

underlying(L) = derived(R)

derived(L) = underlying(R)

The set of all actions actions ⊂ T × T is defined

actions = {((X,W ), (Y, V )) : (X,W ), (Y, V ) ∈ T , V ∩W = ∅, vars(X) = vars(Y )}

Define function action ∈ actions×A → A

action(((X,W ), (Y, V )), A) := transform((Y, V ), transform((X,W ), A))

= A ∗ (X,W ) ∗ (Y, V )

= A ∗X % W ∗ Y % V

The simple action is defined as a transform and its simple converse

((X,W ), (
1

X
, V ))

where (X,W ) is a transform with derived variables W and underlying vari-
ables V . Similarly, sample actions are the pair of the transform and its
sample converse

(T, (Â ∗X, V ))

Again, natural actions are the pair of the transform and its natural converse

(T, T †) = ((X,W ), (
XF

X%W
,V ))

The natural action expression applied to a given argument A is the natu-
ralisation,

action((T, T †), A) = A ∗ T ∗ T † = A ∗X % W ∗ XF

X%W
% V

The natural action conserves the size of the given argumentA if the transform
T is one functional T ∈ TU,f,1

size(A ∗ T ∗ T †) = size(A)
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Note that there are some functional transforms that conserve size but are
not one functional. These, however, must be none zero and uniform in each
of the derived states, ∀R ∈ states(X%W ) (|{c : (S, c) ∈ X, R ⊆ S}| = 1).
For each of the actions constructed from one of these functional transforms
and the natural converse, there is an equivalent action constructed from a
one functional transform, because the uniform count cancels out.

The set of states of a one functional naturalisation is a superset of the set of
states of the given argument A

states(A ∗ T ∗ T †) ⊇ states(A)

Or to put it another way, the one functional naturalisation may be more
effective (A∗T ∗T †)F ≥ AF. In the extreme case of a one full functional nat-
uralisation the argument histogram is unchanged, A ∗ T ∗ T † = A, because
one full functional natural converses are inverses. At the other extreme
the null one functional naturalisation scales the cartesian of the underlying
A ∗ T ∗ T † = ZA ∗ V C/(V C%∅).

The extremes between the null |A∗T ∗T †| = |V C| and the full |A∗T ∗T †| =
|A|, show that the cardinality of the states of the applied action lies between
|A| and |V C|, that is |A| ≤ |A ∗ T ∗ T †| ≤ |AC|.

In addition, one functional naturalisations are limited in the changes that can
be made to the counts of the argument histogram A where the variables V of
A are the underlying variables of the first transform of the action. Consider a
single state (S, c) ∈ A, and a one functional natural action (T, T †) and the de-
rived state Q such that {(Q, 1)} = {(S, 1)} ∗T . Let (X,W ) = T . In the case
where there is only one incident state on Q, (X%W )Q = |X ∗ {(Q, 1)}| = 1,
then (A ∗ T )Q = c and so (A ∗ T ∗ T †)S = c. In the case where the incident
volume (X%W )Q = 2 then there is another state R other than S contribut-
ing to (A ∗ T )Q. That is, X ∗ {(Q, 1)} = {(Q ∪ S, 1), (Q ∪ R, 1)} such that
0 ≤ AR ≤ z − c where z = size(A). Thus z/2 ≥ (A ∗ T ∗ T †)S ≥ c/2. Fi-
nally, extend the incident volume to (X%W )Q = v−1 where v = |V C|. Here
z/(v−1) ≥ (A∗T ∗T †)S ≥ c/(v−1). Overall, z/2 ≥ (A∗T ∗T †)S ≥ c/(v−1)
except in the case where c ≥ z/2 and the incident volume (X%W )Q = 1.
The count of a state is limited in its possible increase under the action. It
cannot decrease to below its original count approximately inversely scaled by
the volume.

The action of a one functional transform T ∈ TU,f,1 and its actual converse,
(T, T�B), is size conserving if all of the components of T are non-zero when
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applied to B. Thus
size(A ∗ T ∗ T�B) = size(A)

where ∀C ∈ ran(inverse(T )) (size(B ∗ C) > 0). In fact, the action is size-
conserving under the weaker condition that the transform applied to B is at
least as effective as the transform applied to A, (B ∗ T )F ≥ (A ∗ T )F.

When B = A, then the application of the action (T, T�A) is equivalent to A

A ∗ T ∗ T�A ≡ A

The application of the action (T, T�A) to the scaled cartesian is called the
unnaturalisation,

V C
z ∗ T ∗ T�A

where V = vars(A), z = size(A), v = |V C| and V C
z = scalar(z/v) ∗ V C.

3.5.3 Transforms and probability

Let probability histogram P ∈ A ∩ P have variables vars(P ) = X ∪ Y
where X and Y are disjoint, X ∩ Y = ∅. A probability histogram has unit
size, size(P ) = 1.

The conditional probability histogram given X is P/(P%X). The conditional
probability histogram given Y is P/(P%Y ). Bayes’ theorem may be expressed
in terms of conditional probability histograms. Let P [Y |X] = P/(P%X),
P [X|Y ] = P/(P%Y ), P [Y ] = P%Y and P [X] = P%X, then

P [Y |X] =
P [X|Y ] P [Y ]

P [X]

=
P/(P%Y ) ∗ (P%Y )

P%X

=
P

P%X
= P [Y |X]

Let query probability histogram Q ∈ A ∩ P have variables vars(Q) =
X. The product of the query probability histogram, Q, and the probability
histogram, P , is a weak probability histogram,

Q ∗ P ∈ A ∩ P ′

A weak probability histogram has size less than or equal to one, size(Q∗P ) ≤
1.
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If the set of query variables is empty, X = ∅, then the query histogram
is scalar one, Q = {(∅, 1)}, and the product is the given histogram, Q∗P = P .

If the effective states of the histograms do not intersect, then the product
is the empty histogram, which has a size of 0,

QF ∩ (P%X)F = ∅ =⇒ Q ∗ P = ∅

If the probability histogram is as effective as the query probability histogram
and either histogram is an effective singleton then the product is a probability
histogram,

(QF ≤ (P%X)F) ∧ (|QF| = 1) =⇒ Q ∗ P ∈ A ∩ P

The transform implied by P and Q is TP = (P, Y ) ∈ T . The transformed
product is

Q ∗ TP = Q ∗ (P, Y ) = Q ∗ P % Y ∈ A ∩ P ′

The conditional transform implied by P and Q is T ′P = (P/(P%X), Y ) ∈ T .
The transformed conditional product is

Q ∗ T ′P = Q ∗
(

P

P%X
, Y

)
=
Q ∗ P
P%X

% Y ∈ A ∩ P ′

In the case where the reduction of P is as effective as Q, the transformed
conditional product is a probability histogram,

QF ≤ (P%X)F =⇒ Q ∗ T ′P = Q ∗
(

P

P%X
, Y

)
∈ A ∩ P

because (P/(P%X))%X = (P%X)F. In this case the conditional product
R = Q ∗P/(P%X) is such that R%X = Q and R%Y = Q ∗ (P/(P%X), Y ).

If the set of variables Y is empty, Y = ∅, then vars(P ) = X, P%X = P and
P/(P%X) = PF. If in addition P is as effective as Q, QF ≤ PF, then the
transformed conditional product is scalar one, Q ∗ (P/(P%X), Y ) = Q%∅ =
{(∅, 1)}.

If (i) the reduced probability histogram P%X is uniform, P%X = (P%X)FS×
{1/|(P%X)FS|}, and (ii) the probability histogram is as effective as the query
probability histogram, QF ≤ (P%X)F, then the transformed conditional prod-
uct is the normalised transformed product probability histogram,

(|ran(P%X)| = 1) ∧ (QF ≤ (P%X)F) =⇒

Q ∗ T ′P = Q ∗
(

P

P%X
, Y

)
= (Q ∗ (P, Y ))∧ = (Q ∗ TP )∧ ∈ A ∩ P
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where (Q ∗ (P, Y ))∧ = normalise(Q ∗ (P, Y )) and (Q ∗ TP )∧ = normalise(Q ∗
TP ).

If the probability histogram is the normalised cartesian histogram P = (X ∪
Y )C∧ = normalise((X∪Y )C), then the transformed product is the normalised
cartesian in variables Y ,

P = (X ∪ Y )C∧ =⇒ Q ∗ TP = Q ∗ ((X ∪ Y )C∧, Y ) = Y C∧ ∈ A ∩ P

where Y C∧ = normalise(Y C) = scalar(1/|Y C|)∗Y C. That is, the transformed
product, Q∗TP , is a constant, Y C∧, and so independent of the query probability
histogram, Q.

The opposite extreme to normalised cartesian histogram, (X ∪ Y )C∧, is
where the probability histogram, P , is causal, causal(P ). In particular, if the
variables Y are a function of the variables X, split(X,PFS) ∈ XCS → Y CS,
then the transform implied by Q and P , TP = (P, Y ), is functional, TP ∈ Tf .
In this case, the conditional transform is also functional, T ′P ∈ Tf .

If the probability histogram, P , is (i) causal between variables X and vari-
ables Y , so that TP ∈ Tf , and (ii) completely effective in variables X, so that
(P%X)F = XC, then the conditional transform is one functional,

(TP ∈ Tf) ∧ ((P%X)F = XC) =⇒ T ′P =

(
P

P%X
, Y

)
∈ TU,f,1

In this case the reduction of the probability histogram is necessarily as effective
as the query probability histogram, QF ≤ (P%X)F = XC, and hence the
transformed conditional product is necessarily a probability histogram,

(P%X)F = XC =⇒ Q ∗ T ′P = Q ∗
(

P

P%X
, Y

)
∈ A ∩ P

So the one functional probability histogram, P , is a one functional model,
P ∈ MU,f,1, such that PT = T ′P , with underlying variables und(PT) = X
and derived variables der(PT) = Y .

Conversely, all one functional transforms are conditional in the underlying
variables,

∀T ∈ TU,f,1 (his(T ) = his(T ) / (his(T ) % und(T )))

because the transform histogram reduction to underlying variables is carte-
sian,

∀T ∈ TU,f,1 (his(T ) % und(T ) = (und(T ))C)
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If the probability histogram, P , is causal between the variables X and Y ,
split(X,PFS) ∈ XCS → Y CS, then the transform is functional, TP ∈ Tf ,
and so may have size-conserving converses. The natural converse is T †P =
(P/(P%Y ), X) ∈ T . The natural converse is the conditional transform im-
plied by P and N , where N is a query probability histogram in variables Y ,
N ∈ A ∩ P and vars(N) = Y . That is, the transformed conditional product
of N and P is

N ∗ T †P = N ∗
(

P

P%Y
,X

)
∈ A ∩ P ′

If the probability histogram, P , is as effective as N , then the transformed
conditional product is a probability histogram,

NF ≤ (P%Y )F =⇒ N ∗ T †P = N ∗
(

P

P%Y
,X

)
∈ A ∩ P

The natural action applied to query probability histogram Q is

Q ∗ TP ∗ T †P = Q ∗ (P, Y ) ∗
(

P

P%Y
,X

)
∈ A ∩ P ′

If the probability histogram is bijective, split(X,PFS) ∈ XCS ↔ Y CS, then
the transform is a full functional transform. The simple converse is also
functional, (1/P,X) ∈ Tf , and the simple action leaves the query unchanged,
Q ∗ (P, Y ) ∗ (1/P,X) = Q, if QF ≤ (P%X)F. The natural converse is also
functional, T †P ∈ Tf , and so it has a natural converse, which equals the simple
converse implied by P and N ,

T ††P =

(
P/(P%Y )

P%X
, Y

)
= (1/P, Y )

So the natural action applied to N is

N ∗ T †P ∗ T
††
P = N ∗

(
P

P%Y
,X

)
∗ (1/P, Y ) ∈ A ∩ P ′

The normalisation of a non-zero sample histogram A ∈ AU , having non-
empty variables V = vars(A) 6= ∅, is a probability histogram, Â ∈ A ∩ P ,
because size(Â) = 1, where Â = A/(A%∅). The normalisation of a non-zero
query histogram Q ∈ AU , having variables K = vars(Q) that are a subset
of the sample variables, K ⊆ V , is a probability histogram, Q̂ ∈ A ∩ P . The
transform implied by A and Q is TA = (Â, (V \K)) ∈ T . The transformed
product is Q̂ ∗ TA = Q̂ ∗ (Â, (V \K)) ∈ A ∩ P ′. The conditional transform
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implied by A and Q is T ′A = (A/(A%K), (V \ K)) ∈ T . The transformed
conditional product is Q̂ ∗ T ′A = Q̂ ∗ (A/(A%K), (V \ K)) ∈ A ∩ P ′. In
the case where the reduction of A is as effective as Q, the transformed condi-
tional product is a probability histogram, QF ≤ (A%K)F =⇒ Q̂∗T ′A ∈ A∩P .

If the effective states of the query histogram, Q, and the sample histogram,
A, do not intersect, then both the transformed product and transformed con-
ditional product are empty, QF ∩ (A%K)F = ∅ =⇒ Q̂ ∗ TA = ∅ and
QF∩ (A%K)F = ∅ =⇒ Q̂∗T ′A = ∅. Less drastically, if the sample histogram
is not as effective as the query histogram, |QF ∩ (A%K)F| < |QF|, then the
transformed conditional product cannot be a probability histogram, Q̂ ∗ T ′A /∈
P . However, if there exists a one functional transform T = (M,W ) ∈ TU,f,1,
having underlying variables J = und(T ) which are a subset of the sample
variables, J ⊆ V , then a model analog to the product may be computed
via the intermediate derived variables, W . In the case where the underlying
variables are a subset of the query variables, J ⊆ K, the model substitute
for the transformed product, Q̂ ∗ TA ∈ A ∩ P ′, is

Q̂ ∗M % W ∗M ∗ Â % (V \K) ∈ A ∩ P ′

This is equivalent to the application of the normalised sample action, (T, (Â∗
M,V )), to the query probability histogram, Q̂, followed by reduction to V \K,

Q̂ ∗ T ∗ (Â ∗M,V ) % (V \K) ∈ A ∩ P ′

Now the intersection of effective states is (Q ∗ T )F ∩ (A ∗ T )F. The states for
which there is no effective derived sample state, (Q∗T )F\(A∗T )F, are said to
be over-fitted. That is, over-fitted states, (((Q∗T )F \ (A∗T )F)∗T †)S ⊆ KCS,
have zero probability.

The modelled transformed product procedure is: (i) the transform, T =
(M,W ), is applied, raising the query into the derived variables, vars(Q̂ ∗
(M,W )) = W , then (ii) the sample converse transform, (Â ∗M,V ), is ap-
plied, lowering back to the sample variables, vars(Q̂ ∗ T ∗ (Â ∗M,V )) = V ,
which is followed by (iii) the removal of the query variables, vars(Q̂∗T ∗ (Â∗
M,V ) % (V \K)) = V \K.

In the case where the underlying variables are a proper superset of the query
variables, J ⊃ K, the query histogram can be expanded by assuming a uni-
form probability function in the additional variables,

(J \K)C∧ = (J \K)CS × {1/|(J \K)C|} ∈ A ∩ P
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The expanded query probability histogram is Q̂J = Q̂∗ (J \K)C∧ ∈ A∩P . It
has variables vars(Q̂J) = K ∪J . Now the application of the model transform
is functional, split(K ∪ J, (Q̂J ∗ M)S) ∈ (K ∪ J)CS → W S. The modelled
transformed product becomes

Q̂J ∗ T ∗ (Â ∗M,V ) % (V \K) ∈ A ∩ P ′

In the absence of a wholly effective intersection between the query and the
sample, |QF ∩ (A%K)F| < |QF|, a model analog for the transformed con-
ditional product, Q̂ ∗ T ′A = Q̂ ∗ (A/(A%K), (V \ K)), can be defined by
normalising the application of the normalised sample action to the query
probability histogram,

(Q̂J ∗ T ∗ (Â ∗M,V ))∧ % (V \K) ∈ A ∩ P

if the intersection of derived effective states is not empty, (Q∗T )F∩(A∗T )F 6=
∅. The normalisation is equivalent to assuming that the reduced sample
probability histogram, Â%K, is uniform,

Â%K = (Â%K)FS × {1/|(Â%K)F|} ∈ A ∩ P

The renormalisation means that neither (i) the expansion, Q̂J = Q̂∗(J\K)C∧,
nor (ii) the normalisations of the query or sample histograms, Q̂ and Â,
need be calculated, so the modelled transformed conditional product can be
simplified to

(Q ∗ T ∗M ∗ A)∧ % (V \K) ∈ A ∩ P

if (Q ∗ T )F ∩ (A ∗ T )F 6= ∅.

The modelled transformed conditional product may be expressed in terms
of the actual converse transform,

Q ∗ T ∗ T�A % (V \K) ∈ A ∩ P

where the actual converse transform is defined

T�A := (
∑

(R,C)∈T−1

{R}U ∗ (A ∗ C)∧, V ) (2)

where the normalisation is defined Â = A/(A%∅) so that normalised zero
histograms are empty, (V CZ)∧ = ∅.

If the effective sample reduction to underlying variables is cartesian, (A%K)F =
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KC, then the actual converse transform is conditional in the derived vari-
ables,

his(T�A) = his(T�A) / (his(T�A) % W ) (3)

because actual converse transform histogram reduction to derived variables
is cartesian, his(T�A) % W = WC. Note that, strictly speaking, this is only
the case where the transform is non-overlapping (see section ‘Overlapping
transforms‘ below).

In the case where the sample histogram is natural, A = A ∗ T ∗ T †, the
actual converse equals the natural converse, T�A = T †, and the query ap-
plication simplifies to Q ∗ T ∗ T † % (V \K), which does not depend on the
sample, A, only on the model, T .

The relative entropy of the modelled transformed conditional product, (Q ∗
T ∗M ∗A)∧ % (V \K) ∈ A∩P , with respect to the transformed conditional
product, Q̂ ∗ T ′A = Q̂ ∗ (A/(A%K), (V \ K)) ∈ A ∩ P , in case when the
reduction of A is as effective as Q, QF ≤ (A%K)F, is

entropyRelative(Q ∗ A / (A%K) % (V \K), Q ∗ T ∗M ∗ A % (V \K))

or

entropyRelative(Q ∗ A / (A%K) % (V \K), Q ∗ T ∗ T�A % (V \K))

There is no need to stuff ineffective states because the modelled transformed
conditional product is as effective as the transformed conditional product,
(Q ∗ T ∗ T�A)F ≥ (Q ∗ A)F.

The relative entropy is zero when the modelled transformed conditional prod-
uct equals the transformed conditional product. This is the case, for example,
for the self partition transform (see below), T = V CS{}T, or the full functional
transform (see below), T = {{v}CS{}T : v ∈ V }T.

In the case where the transform is unary (see below), T = {V CS}T, the
modelled transformed conditional product is Â % (V \ K). This equals the
transformed conditional product only if the histogram, A, is partially inde-
pendent (see below), Â = (Â % K) ∗ (Â % (V \K)).

Let the difference between the sample variables and the query variables,
V \ K, be called the label variables. If the histogram, A, is such that it is
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causal between the query variables and the label variables, split(K,AFS) ∈
KCS → (V \ K)CS, then all queries consisting of one of the effective states
have unique label state, ∀Q ∈ (A%K)FS (|{Q}U ∗ A / (A%K) % (V \
K)| = 1), and so have zero transformed conditional product entropy, ∀Q ∈
(A%K)FS (entropy({Q}U ∗ A / (A%K) % (V \ K)) = 0). In this case the
relative entropy is the cross entropy, − ln(({Q}U ∗ T ∗ T�A % (V \K))(R)),
where {R} = ({Q}U ∗ A / (A%K) % (V \K))S.

If the normalised histogram, Â ∈ A ∩ P , is treated as a probability function
of a single-state query, the expected entropy of the transformed conditional
product is zero in the case of causal histogram,∑
Q∈(A%K)FS

size({Q}U ∗ Â)× entropy({Q}U ∗ A / (A%K) % (V \K)) = 0

This may be compared to the expected entropy of the modelled transformed
conditional product, or label entropy,∑

(R,·)∈T−1

(Â ∗ T )R × entropy({R}U ∗ T�A % (V \K))

=
∑

(R,C)∈T−1

(Â ∗ T )R × entropy(A ∗ C % (V \K))

Let non-zero test histogram B ∈ AU have variables equal to the sample
variables, vars(B) = vars(A) = V , and be such that it is causal between the
query variables and the label variables, split(K,BFS) ∈ KCS → (V \K)CS.
The test histogram implies a query probability histogram, B̂%K ∈ A ∩ P .

Let R ∈ V :↔: VR be a mapping from the sample variables, V , to a disjoint
reframed set, VR, such that the reframe is literal, ∀(v, w) ∈ R (Uw = Uv).
The test histogram may be extended by dotting with the reframe,

BR = {(S ∪ reframe(R, S), c) : (S, c) ∈ B} ∈ AU

The reframe variables are disjoint, VR ∩ V = ∅, and so the extended test
histogram has double the variables, |vars(BR)| = 2|V |. The extended test
histogram is still causal, split(K,BFS

R ) ∈ KCS → (V \K ∪ VR)CS.

Given the one functional transform T = (M,W ) ∈ TU,f,1, such that the
reframe variables are disjoint with the derived variables, VR ∩W = ∅, the
modelled transformed conditional product for the test histogram, B, is

(B̂R%(K∪VR)∗ (J \K)C∧ ∗M % (W ∪VR)∗M ∗ Â)∧ % (V \K∪VR) ∈ A∩P
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if (B%K ∗ T )F ∩ (A ∗ T )F 6= ∅.

This may be simplified to

(BR%(K ∪ VR) ∗M % (W ∪ VR) ∗M ∗ A)∧ % (V \K ∪ VR) ∈ A ∩ P

The modelled label variables, V \K, may be compared to the reframed test
label variables, VR\KR, for each K ∼= KR, to judge the accuracy of the model
in terms of the test.

Note that in the case where an expansion is necessary, J \ K 6= ∅, the
additional label variables, J \ K, necessarily contradict the reframed label
variables, JR \KR, unless they are all mono-valent. That is,

split(J \K, (B̂R%(K ∪ VR) ∗ (J \K)C∧ % (JR \KR ∪ J \K))FS) /∈
(J \K)CS ↔ (JR \KR)CS

where ∃v ∈ J \K (|Uv| > 1).

In the case where no expansion is necessary, J \ K = ∅, and there is a
single effective test state, |BF| = 1, the modelled transformed conditional
product is

((B%K) ∗ T ∗M ∗ A)∧ % (V \K) ∗ (BF
R%VR) ∈ A ∩ P

3.5.4 Transform entropy

Now consider derived entropy. Let T be a one functional transform, T ∈
TU,f,1, having underlying variables V = und(T ). Let A be a non-zero his-
togram, A ∈ AU , in variables V = vars(A) having size z = size(A) > 0. The
underlying volume is v = |V C|.

The normalised derived histogram Â ∗ T ∈ P is a probability function,

Â ∗ T = {(R, q/z) : (R, q) ∈ A ∗ T}
= {(R, size(A ∗ C)/z) : (R,C) ∈ T−1}

In the case where the histogram is integral, A ∈ Ai, then a history H =
history(trim(A)) is implied such that z = |H| = size(A) > 0. In this case the
normalised derived histogram is Â ∗ T = {(R, |D|/z) : (R,D) ∈ (H ∗ T )−1}.

The normalised cartesian derived V̂ C ∗ T ∈ P is a probability function,

V̂ C ∗ T = {(R, q/v) : (R, q) ∈ V C ∗ T}
= {(R, |C|/v) : (R,C) ∈ T−1}
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The derived entropy or component size entropy is the negative derived his-
togram expected normalised derived histogram count logarithm,

entropy(A ∗ T ) := − expected(Â ∗ T )(ln(Â ∗ T ))

where lnA = {(S, ln c) : (S, c) ∈ A, c > 0}. The derived entropy is positive
and less than or equal to the logarithm of the size, 0 ≤ entropy(A∗T ) ≤ ln z.

Complementary to the derived entropy is the size expected component en-
tropy,

entropyComponent(A, T ) :=

expected(Â ∗ T )({(R, entropy(A ∗ C)) : (R,C) ∈ T−1})

or

entropyComponent(A, T ) :=
∑

(R,C)∈T−1

(Â ∗ T )R × entropy(A ∗ C)

The size expected component entropy can be expressed in terms of the actual
converse,

entropyComponent(A, T ) =
∑

(R,·)∈T−1

(Â ∗ T )R × entropy({R}U ∗ T�A)

The component cardinality entropy is the negative cartesian derived expected
normalised cartesian derived count logarithm,

entropy(V C ∗ T ) := − expected(V̂ C ∗ T )(ln(V̂ C ∗ T ))

The cartesian derived entropy is positive and less than or equal to the loga-
rithm of the volume, 0 ≤ entropy(V C ∗ T ) ≤ ln v.

The cartesian derived derived sum entropy or component size cardinality sum
entropy is

entropy(A ∗ T ) + entropy(V C ∗ T ) :=

(− expected(Â ∗ T )(ln(Â ∗ T ))) + (− expected(V̂ C ∗ T )(ln(V̂ C ∗ T )))

The component size cardinality cross entropy is the negative derived his-
togram expected normalised cartesian derived count logarithm,

entropyCross(A ∗ T, V C ∗ T ) := − expected(Â ∗ T )(ln(V̂ C ∗ T ))
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By Gibbs’ inequality the component size cardinality cross entropy is greater
than or equal to the derived entropy, entropyCross(A∗T, V C∗T ) ≥ entropy(A∗
T ).

The component cardinality size cross entropy is the negative cartesian de-
rived expected normalised derived histogram count logarithm,

entropyCross(V C ∗ T,A ∗ T ) := − expected(V̂ C ∗ T )(ln(Â ∗ T ))

The component cardinality size cross entropy is greater than or equal to the
cartesian derived entropy, entropyCross(V C ∗ T,A ∗ T ) ≥ entropy(V C ∗ T ).

The component size cardinality sum cross entropy is,

entropy(A ∗ T + V C ∗ T ) :=

− expected((A ∗ T + V C ∗ T )∧)(ln((A ∗ T + V C ∗ T )∧))

The component size cardinality sum cross entropy is positive and less than
or equal to the logarithm of the sum of the size and volume, 0 ≤ entropy(A∗
T + V C ∗ T ) ≤ ln(z + v).

In all cases the cross entropy is maximised when high size components are
low cardinality components, (Â∗T )R � (V̂ C ∗T )R or size(A∗C)/z � |C|/v,
and vice-versa, (Â ∗ T )R � (V̂ C ∗ T )R or size(A ∗ C)/z � |C|/v.

The cross entropy is minimised when the normalised derived histogram equals
the normalised cartesian derived, Â ∗ T = V̂ C ∗ T or ∀(R,C) ∈ T−1 (size(A ∗
C)/z = |C|/v). In this case the cross entropy equals the corresponding com-
ponent entropy.

The component size cardinality relative entropy is the component size cardi-
nality cross entropy minus the component size entropy,

entropyRelative(A ∗ T, V C ∗ T )

:= expected(Â ∗ T )

(
ln

Â ∗ T
V̂ C ∗ T

)
= entropyCross(A ∗ T, V C ∗ T ) − entropy(A ∗ T )

The component size cardinality relative entropy is positive, entropyRelative(A∗
T, V C ∗ T ) ≥ 0.
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The multinomial distribution, Qm,U , is described in section ‘Multinomial dis-
tributions’, below. The size scaled component size cardinality relative entropy
approximates to the negative logarithm of the derived multinomial probability
with respect to the cartesian derived,

z × entropyRelative(A ∗ T, V C ∗ T ) ≈ − ln Q̂m,U(V C ∗ T, z)(A ∗ T )

The component cardinality size relative entropy is the component cardinality
size cross entropy minus the component cardinality entropy,

entropyRelative(V C ∗ T,A ∗ T )

:= expected(V̂ C ∗ T )

(
ln
V̂ C ∗ T
Â ∗ T

)
= entropyCross(V C ∗ T,A ∗ T ) − entropy(V C ∗ T )

The component cardinality size relative entropy is positive, entropyRelative(V C∗
T,A ∗ T ) ≥ 0.

The volume scaled component cardinality size relative entropy approximates
to the negative logarithm of the cartesian derived multinomial probability
with respect to the derived,

v × entropyRelative(V C ∗ T,A ∗ T ) ≈ − ln Q̂m,U(A ∗ T, v)(V C ∗ T )

where the derived is as effective as the cartesian derived, (A ∗ T )F ≥ (V C ∗
T )F =⇒ |(A ∗ T )F| = |T−1|.

The size-volume scaled component size cardinality sum relative entropy is
the size-volume scaled component size cardinality sum cross entropy minus
the size-volume scaled component size cardinality sum entropy,

(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

The size-volume scaled component size cardinality sum relative entropy is
positive, (z+v)×entropy(A∗T+V C∗T )−z×entropy(A∗T )−v×entropy(V C∗
T ) ≥ 0. The size-volume scaled component size cardinality sum relative en-
tropy is less than the size-volume scaled logarithm of the derived volume,
(z+v)×entropy(A∗T+V C∗T ) −z×entropy(A∗T ) −v×entropy(V C∗T ) <
(z + v) lnw.
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In all cases the relative entropy is maximised when (a) the cross entropy
is maximised and (b) the component entropy is minimised. The relative en-
tropy is always positive by Gibbs’ inequality, see Appendix ‘Entropy and
Gibbs’ inequality’, below. So the cross entropy is greater than or equal to
the component entropy.

3.6 Functional definition sets

A functional definition set F ∈ F is a set of unit functional transforms
subject to the constraint that derived variables may appear in only one trans-
form. That is, the sets of derived variables are disjoint. Then F ⊂ P(Tf,U)
where Tf,U = Tf ∩ TU, and

∀F ∈ F ∀(A,W ), (B,X) ∈ F ((A,W ) 6= (B,X) =⇒ W ∩X = ∅)

Defining accessor functions, the domain of a functional definition set has a
synonym histograms ∈ F → P(A)

histograms(F ) := dom(F ) = {A : (A,W ) ∈ F}

Define vars ∈ F → P(V)

vars(F ) :=
⋃
{vars(A) : A ∈ histograms(F )}

Define accessors of a functional definition set such that its derived and un-
derlying variables are disjoint. That is, derived ∈ F → P(V),

derived(F ) :=
⋃
T∈F

derived(T ) \
⋃
T∈F

underlying(T )

And underlying ∈ F → P(V),

underlying(F ) :=
⋃
T∈F

underlying(T ) \
⋃
T∈F

derived(T )

The underlying variables of a fud are sometimes called the substrate.

A functional definition set is a histogram expression which can be simplified
to an equivalent transform, transform ∈ F → Tf,U

transform(F ) := (
∏

histograms(F ) % (der(F ) ∪ und(F )), der(F ))

where der = derived and und = underlying. Also, define FT = transform(F ).
The resultant equivalent transform is also a unit functional transform with
the same derived and underlying variables, der(FT) = der(F ) and und(FT) =
und(F ).
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In order to apply a functional definition set F to a histogram A apply
the equivalent transform, A ∗ FT. However, the evaluation of this his-
togram expression requires the computation of an intermediate histogram∏

histograms(F ), with cardinality of nearly |vars(F )C|, before the multiplica-
tion with A and subsequent reduction to the derived variables, der(F ), takes
place. (See ‘Computation of functional definition sets’, below.) This cardi-
nality may be much greater than that of the given histogram |A|. An alterna-
tive method of application, for example, is to navigate through the functional
definition set reducing any non-derived variables as soon as possible. Define
apply ∈ F × A → A as apply(F,A) := apply(und(F ), der(F ), his(F ), A)
where apply ∈ P(V)× P(V)× P(A)×A → A is defined recursively as

apply(V,W,M,A) := if(X 6= ∅, apply(V,W,N,C), A%W ) :

X = {(|B|, B,Q)) : D ∈M, vars(D) ∩ (vars(A) ∪ V ) 6= ∅,
Q = M \ {D}, B = (A ∗D) % (W ∪

⋃
{vars(E) : E ∈ Q})},

{(·, C,N)} = mind(order(DN×A×X , X))

The enumeration DN×A×X orders by size, histogram and then arbitrarily,
DN×A×X ∈ enums(N×A×X ). The apply function assumes that the variables
V and W are connected transitively via the variables of the histograms of the
fud. Only those histograms that are in the closure of the union of variables V
and vars(A) are applied. In the case where there is no path from V to W , the
function returns A%W . All of the histograms of the fud, F , are in the closure
of the underlying, und(F ), so in the case where V = und(F ) the application
of the fud equals the application of the transform, apply(F,A) = A∗FT. Also
there are other implementations depending on the computational constraints.

Following from the constraint on the derived variables define definitions ∈
F → (V → Tf,U) as

definitions(F ) := {(w, (A,W )) : (A,W ) ∈ F, w ∈ W}

The subset of the functional definition set which recursively contains all
the underlying transforms for a given set of variables is defined depends ∈
F × P(V) → F as depends(F,W ) := depends(F,W, ∅) where depends ∈
F × P(V)× P(V)→ F is defined

depends(F,W,X) :=⋃
{{T} ∪ depends(F, und(T ), X ∪ {w}) :

w ∈ W ∩ dom(def(F )) \X, T = def(F )(w)}

where def = definitions.
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Fuds can contain both null transforms, der(T ) = ∅, and disjoint trans-
forms, und(T ) = ∅, if the transforms are functional. Null transforms are
always functional because there is only one derived state, ∅. Disjoint trans-
forms are only functional if the derived states forms a singleton, |std(T )| = 1.
This is the case, for example, when the derived variables are all mono-valent
in the system U , {|Uw| : w ∈ der(T )} = {1}.

A fud circularity in a functional definition set can occur where a de-
fined variable w appears in its own depends fud w ∈ vars(depends(F, {w}) \
{definitions(F )(w)}). Define circular ∈ F → B as

circular(F ) :=

∃w ∈ dom(def(F )) (w ∈ vars(depends(F, {w}) \ {def(F )(w)}))

A fud circularity cannot occur in the definition transform definitions(F )(w)
because the derived variables and underlying variables are disjoint. The fud
circularity must be in a layer below.

Contradictions created by fud circularities can prevent the equivalent trans-
form FT from being one functional, FT /∈ TU,f,1, even if the fud contains only
one functional transforms, F ∈ P(TU,f,1).

The one functional definition set subset FU,1 ⊂ F in system U is defined
such that all transforms are one functional and the fud is not circular,

∀F ∈ FU,1 (F ∈ P(TU,f,1) ∧ ¬ circular(F ))

Thus the equivalent transform of a one functional definition set is a one
functional transform, ∀F ∈ FU,1 (FT ∈ TU,f,1).

A one functional definition set F ∈ FU,1 implies a one functional definition
set G ∈ FU,1 such that all the transforms in G have a single derived variable,
∀T ∈ G (|der(T )| = 1), and such that the equivalent transforms are equal,
GT = FT. Define mono ∈ FU,1 → FU,1

mono(F ) :=
⋃
{{(X%(vars(X) \W ∪ {w}), {w}) : w ∈ W} : (X,W ) ∈ F}

A non-circular functional definition set can be viewed as a tree of variables,
trees(V). To construct the variables tree from the functional definition set,
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define treeVariable ∈ F → trees(V) as treeVariable(F ) := {(v, treev(F, v, ∅)) :
v ∈ der(F )}. Define treev ∈ F × V × P(V)→ trees(V) as

treev(F, v,X) :=

if(v ∈ dom(def(F )),

{(w, treev(F,w,X ∪ {w})) : w ∈ und(def(F )(v)) \X}, ∅)

Thus vars(F ) = elements(treeVariable(F )).

Another tree is a tree of transforms. Define treeTransform ∈ F → trees(Tf,U)
as treeTransform(F ) := {(T, treet(F, T, und(F ))) : v ∈ der(F ), T = def(F )(v)}.
Define treet ∈ F × Tf,U × P(V)→ trees(Tf,U) as

treet(F, T,X) :=

{(R, treet(F,R,X ∪ {w})) : w ∈ und(T ) \X, R = def(F )(w)}

The depends-subset of a non-circular functional definition set could be de-
fined

depends(F,W ) :=⋃
elements(nodes(treeTransform(F ))(def(F )(w))) : w ∈ W ∩ dom(def(F ))}

The layer in a non-circular functional definition set is the length of the
longest path to the leaves from any of a given set of variables. Define layer ∈
F × P(V) → N as layer(F,W ) := layer(F,W, und(F )), and layer ∈ F ×
P(V)× P(V)→ N as

layer(F,W,X) :=

maxr({(w, layer(F, und(T ), X ∪ {w}) + 1) :

w ∈ W ∩ dom(def(F )) \X, T = def(F )(w)} ∪ {(∅, 0)})

The layer can also be defined using generic tree semantics, layer(F,W ) :=
maxr({(w, |L|) : w ∈ W, L ∈ paths(treeTransform(depends(F, {w})))}).

The transforms of a non-circular fud F ∈ F can be arranged in a list of
layer fuds L ∈ L(P(F )) such that each transform is in the highest layer
of its derived variables, L = inverse({(T, layer(F, der(T ))) : T ∈ F}). The
set of layer fuds partitions the fud, set(L) ∈ B(F ). The transforms in a
layer fud depend only on transforms in lower layers, ∀(i, G) ∈ L ∀T ∈
G (depends(F, der(T )) ⊆

⋃
set(take(i, L))).
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A linear fud is a non-circular fud such that the underlying variables of the
transforms in each layer fud are the derived variables of the layer fud imme-
diately below, ∀i ∈ {2 . . . |L|} (und(Li) ⊆ der(Li−1)). Each of the layer fuds,
set(L) ⊂ P(F ), can be combined into a single transform. Thus a linear fud
may be represented as a list of transforms, {(i, GT) : (i, G) ∈ L} ∈ L(Tf,U).

The top transform, if it exists, is the transform in a fud that has the same
derived variables as the fud, top ∈ F → Tf,U

top := T

where ∃T ∈ F (der(T ) = der(F )).

A functional definition set is defined as non-overlapping if the underlying
variables of the depends fuds of the derived variables are disjoint. Define
overlap ∈ F → B

overlap(F ) :=

∃v, w ∈ der(F ) (v 6= w ∧ (vars(dep(F, {v})) ∩ vars(dep(F, {w})) 6= ∅))

where dep = depends. The empty fud is non-overlapping, ¬overlap(∅). It
can be determined if a fud is overlapping between any two layers by taking
the subset of the transforms of the fud between the layers. If the fud is
overlapping in a layer, then it must be overlapping in all layers below that
down to the substrate. The function vars in the definition of overlap above
could equally be replaced by und.

A non-overlapping fud F can be viewed as the union of disjoint fuds, or a par-
tition of depends fud components. Let Q = {depends(F, {w}) : w ∈ der(F )}
then F =

⋃
Q and overlap(F ) = (Q /∈ B(F )).

3.7 Partitions and partition variables

A partition is a partition of the cartesian set of states for some set of vari-
ables. The partition consists of component sets of states. The components
are disjoint, but union together to equal the original cartesian set.

DefineR ⊂ P(P(S)\{∅}) as the set of all partitions. Define vars ∈ R → P(V)

vars(P ) :=
⋃
{vars(S) : S ∈

⋃
P}
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The partitions are constrained

∀P ∈ R ∀C ∈ P ∀S ∈ C (vars(S) = vars(P ))

and
∀P ∈ R ∀C,D ∈ P (C 6= D =⇒ C ∩D = ∅)

That is, P ∈ B(
⋃
P ) , where B is the partition function (see appendix). The

empty partition, ∅ ∈ R, has no variables, vars(∅) = ∅. The scalar partition,
which is the unary partition of the singleton set of empty state, {{∅}} ∈ R,
has no variables, vars({{∅}}) = ∅.

A subset of the parents of a partition are those for which the cardinality
of the partition is decremented. That is, partition Q ∈ R and parent P ∈
parents(Q) such that |P | = |Q| − 1. Define decrements ∈ R → P(R) as

decrements(Q) := {P : P ∈ parents(Q), |P | = |Q| − 1}

which can be constructed explicitly

decrements(Q) = {Q \ {C,D} ∪ {C ∪D} : C,D ∈ Q, C 6= D}

Thus ∀Q ∈ R (decrements(Q) ⊆ parents(Q)). The cardinality of the decre-
mented parent partition set is |decrements(Q)| = |Q|(|Q| − 1)/2. The search
tree initialised from the self partition finds all partitions in some variables
V in a system U , elements(searchTreer(R, decrements, {V CS{}})) = B(V CS).
See appendix ‘Search and optimisation’ for a definition of the tree search.

In a particular system U let RU ⊂ R∩P(P(SU) \ {∅}). RU is additionally
constrained

∀P ∈ RU (
⋃

P = cartesian(U)(vars(P )))

The set of all partitions in system U can be constructed explicitly

RU =
⋃
{B(cartesian(U)(W )) : W ∈ P(vars(U))}

The empty partition is not in RU , ∅ /∈ RU . The scalar partition is in RU ,
{∅CS} = {{∅}} ∈ RU .
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A partition can be expanded to a superset of its variables by crossing with
the cartesian states of the disjoint set of variables. Define expand(U) ∈
P(VU)×RU → RU as

expand(U)(V, P ) := {{S ∪R : S ∈ C, R ∈ (V \W )CS} : C ∈ P}

where W = vars(P ). Define shorthand P V := expand(U)(V, P ). The vari-
ables of the expanded partition are the union vars(P V ) = vars(P ) ∪ V . The
cardinality of the partition is unchanged by the expansion, |P V | = |P |. The
expansion of a scalar partition is the unary partition, {∅CS}V = {V CS}.

The converse operation is to contract a partition to the minimum subset of
variables by removing any cartesian variables. Define contract(U) ∈ RU →
RU as

contract(U)(P ) := Q :

{Q} = mind({(R, |K|) : K ⊆ V, R = {{S%K : S ∈ C} : C ∈ P}, RV = P})

where V = vars(P ). Define shorthand P% := contract(U)(P ). The variables
of the contracted partition are a subset vars(P%) ⊆ vars(P ). The cardinality
of the partition is unchanged by the contraction, |P%| = |P |. There is always
exactly one possible contraction, |min({(R, |K|) : K ⊆ V, R = {{S%K :
S ∈ C} : C ∈ P}, RV = P})| = 1. A unary partition, P = unary(V CS) =
{V CS} ∈ RU which is such that |P | = 1, contracts to the scalar partition,
P% = {V CS}% = {∅CS} = {{∅}}.

Partition variables in system U ∈ U are defined such that the partition
variable P ∈ vars(U) is itself a partition, P ∈ RU , and its values, UP , are
the components of this partition, UP = P . That is, (P,UP ) = (P, P ) ∈ U .
If system U ′ contains all of its partition variables, ∀P ∈ RU ′ ((P, P ) ∈ U ′),
then the system, U ′, must be infinite by recursive definition, |U ′| = ∞. Let
function implied ∈ U → U be defined as

implied(U) := U ∪ implied(U ∪ {(P, P ) : P ∈ RU})

The implied infinite system is U ′ = implied(U).

Partitions can be thought of as partitions of the domains of histograms.
Thus one functional transforms can be constructed having a single derived
variable which is the partition variable of the partition of the given underlying
variables in system U . Define transform ∈

⋃
{RU → TU,f,1 : U ∈ U}

transform(P ) := ({(S ∪ {(P,C)}, 1) : C ∈ P, S ∈ C}, {P})
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Define shorthand PT := transform(P ). These one functional transforms are
called partition transforms.

The converse function partition ∈
⋃
{TU,f,1 → RU : U ∈ U} recovers the

partition from a given functional transform

partition(T ) := {states(A) : A ∈ ran(inverse(T ))}

Define shorthand TP := partition(T ). The converse relationship obeys ∀P ∈
RU (PTP = P ) in system U . Thus P and PT are isomorphic, P ∼= PT.

A system partition P ∈ RU , which is non-empty, P 6= ∅, may be ex-
panded using its partition transform, PT, (his(PT) ∗V C, {P})P = P V , where
his = histogram. The application of an expanded partition transform P V T

to a histogram A, where V = vars(A), forms a bijective map to the ap-
plication of the partition transform PT, where K = vars(P ) and K ⊂ V ,
∃Q ∈ A ∗P V T :↔: A ∗PT ∀((S, c), (T, d)) ∈ Q (c = d). This is because there
is a bijective map between the components of P V and P , and so A ∗ P V T

and A ∗ PT are non-literal reframes, reframe(X,A ∗ P V T) = A ∗ PT where
X = {(P V , (P, {({S ∪R : S ∈ C, R ∈ (V \W )CS}, C) : C ∈ P}))}.

Define a function that returns the set of partition transforms for a set of parti-
tions, creating a partition functional definition set, transforms ∈

⋃
{P(RU)→

FU,P : U ∈ U}
transforms(Q) := map(transform, Q)

The partition transforms form a subset of one functional transforms TU,P ⊂
TU,f,1 which is defined

TU,P := {T : T ∈ TU,f,1, TPT = T} = {PT : P ∈ RU}

Partition transforms are such that ∀T ∈ TU,P (der(T ) = {TP}).

Similarly the partition functional definition sets is the subset of one func-
tional definition sets which contain only partition transforms FU,P ⊂ FU,1,
defined as

FU,P = P(TU,P)

The definition constraint on derived variables of fuds is implied by definition
because {(P, (X, {P})) : (X, {P}) ∈ F} ∈ VU → TU,P where F ∈ FU,P, just
as definitions(F ) ∈ (vars(F ) \ und(F ))→ F . Similarly there are no fud cir-
cularities in F ∈ FU,P by definition rather than by constraint. If there exists
a top transform of a partition fud F ∈ FU,P, depends(F, der(top(F ))) = F ,
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then there is only one derived variable, |der(top(F ))| = |der(F )| = 1. All
partition fuds are mono-variate in the derived variables of the transforms,
F = mono(F ).

The multi-partition transforms form a subset of one functional transforms
TU,P∗ ⊂ TU,f,1 which is defined as the set of transforms of single-layer parti-
tion fuds

TU,P∗ := {FT : F ∈ FU,P, layer(F, der(F )) = 1}
= {FT : F ∈ FU,P, (∀T ∈ F (und(T ) ⊆ und(F ))}
= {{PT : P ∈ Q}T : Q ⊂ RU , (∀P1, P2 ∈ Q (P2 /∈ vars(P1))}

The partition transforms is a subset of the multi-partition transforms, TU,P ⊂
TU,P∗ .

The multi-partition functional definition sets is the subset of one functional
definition sets which contain only multi-partition transforms FU,P∗ ⊂ FU,1,
defined as

FU,P∗ = P(TU,P∗)

The partition fuds is a subset of the multi-partition fuds, FU,P ⊂ FU,P∗ .

Multi-partition transforms may be expanded to expanded multi-partition trans-
forms. Define expand(U, V ) ∈ TU,P∗ → TU,P∗ as expand(U, V )(T ) := {P V T :
P ∈ der(T )}T. Define T V := expand(U, V )(T ). A multi-partition fud
F ∈ FU,P∗ is said to be expanded if all of its multi-partition transforms are
expanded, ∀T ∈ F (T = T V ).

Multi-partition transforms may be contracted to contracted multi-partition
transforms. Define contract(U) ∈ TU,P∗ → TU,P∗ as contract(U)(T ) :=
{P%T : P ∈ der(T )}T. Define T% := contract(U)(T ). A multi-partition
fud F ∈ FU,P∗ is said to be contracted if all of its multi-partition transforms
are contracted, ∀T ∈ F (T = T%).

Multi-partition transforms may be exploded to a partition fud. Define explode ∈⋃
{TU,P∗ → FU,P : U ∈ U} as explode(T ) := {PT : P ∈ der(T )}. A

multi-partition fud may be exploded to a partition fud. Define explode ∈⋃
{FU,P∗ → FU,P : U ∈ U} as explode(F ) :=

⋃
{explode(T ) : T ∈ F} =

{PT : T ∈ F, P ∈ der(T )}.
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3.8 Pointed partitions

The set of pointed partitions R∗ ⊂ R×P(S) are pairs of (i) partitions, and
(ii) components of the partition, ∀(P,C∗) ∈ R∗ (C∗ ∈ P ). The set of pointed
partitions is defined

R∗ = {(P,C∗) : P ∈ R, C∗ ∈ P}

Define vars ∈ R∗ → P(V) as vars((P,C∗)) := vars(P ). The partition of
a pointed partition cannot be the empty partition, ∀(P, ·) ∈ R∗ (P 6= ∅).
The scalar pointed partition is ({{∅}}, {∅}) ∈ R∗. For any unary partition
P = {C} ∈ R there is exactly one pointed partition, (P,C) ∈ R∗.

Define transform ∈ R∗ → Tf,U as transform((P,C∗)) := transform(P ).
Define shorthand PT

∗ := transform(P∗). There is no converse function in
Tf → R∗ except in the case where the transform T ∈ Tf maps to a unary
partition, |inverse(T )| = 1. In this case the pointed partition is (P,C∗) where
C∗ = CS, {C} = ran(inverse(T )) and P = {C∗}.

The variables of a pointed partition P∗ ∈ R∗ are also known as the un-
derlying variables because they equal the underlying variables of the pointed
partition transform, vars(P∗) = und(PT

∗ ). The partition P of the pointed
partition, (P, ·) = P∗ is also known as the derived variable, {P} = der(PT

∗ ).

The set of incremented pointed partitions of a pointed partition are those
for which the cardinality of the point component is decremented and either (i)
the cardinality of the partition is incremented, or (ii) the cardinality of one of
the other components is incremented. That is, pointed partition (P,C∗) ∈ R∗
and incremented pointed partition (Q,D∗) ∈ R∗ are such that |D∗| = |C∗|−1
and either (i) |Q| = |P |+ 1, or (ii) ∃C ∈ P ∃D ∈ Q (|D| = |C|+ 1). Define
increments ∈ R∗ → P(R∗) as

increments((P,C∗)) :=

{(P \ {C∗} ∪ {D∗, D}, D∗) : |C∗| > 1, S ∈ C∗,
D∗ = C∗ \ {S}, D = {S}} ∪

{(P \ {C∗, C} ∪ {D∗, D}, D∗) : |C∗| > 1, |P | > 1, S ∈ C∗, C ∈ P, C 6= C∗,

D∗ = C∗ \ {S}, D = C ∪ {S}}

The incremented pointed partitions cardinality is |increments((P,C∗))| =
|C∗||P | if |C∗| > 1 otherwise |increments((P,C∗))| = 0. Let the search tree
initialised from the unary partition of some variables V in a system U be

Z+ = tree(searchTreer(R∗, increments, {({V CS}, V CS)}))
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Z+ finds all partitions in variables V , dom(elements(Z+)) = B(V CS). Com-
pare to the search tree of decremented partitions initialised from the self
partition,

Z− = tree(searchTreer(R, decrements, {V CS{}}))

which is also such that elements(Z−) = B(V CS), but the increments and
decrements are not converses of each other, |nodes(Z−)| < |nodes(Z+)|. The
paths of the decrements tree are subsets of the paths of the increments tree,
∀L− ∈ paths(Z−) ∃L+ ∈ paths(Z+) (set(L−) ⊂ dom(set(L+))).

The subset singleton pointed partitions R∗,s ⊂ R∗ is definedR∗,s = {(P,C∗) :
(P,C∗) ∈ R∗, |C∗| = 1}. A pointed self partition, (X{}, {x}) where x ∈ X,
is necessarily a singleton pointed partition.

The subset pointed binary partitions R∗,b ⊂ R∗ is definedR∗,b = {(P,C∗) :
(P,C∗) ∈ R∗, |P | = 2}. A pointed binary partition has a complement,
P ′∗ = ({A,B}, B) where P∗ = ({A,B}, A). The complement is in the same
variables, vars(P ′∗) = vars(P∗).

There are logical operators on pointed binary partitions which derive a
pointed binary partition from underlying pointed binary partitions. Let pointed
binary partition P∗ = (P,C∗) ∈ R∗,b be the pair of the binary partition vari-
able, P where |P | = 2, and the point component, C∗ ∈ P . So P∗ ∈ V ×W
and {P∗} is a state, {P∗} ∈ S. In a system U which contains the parti-
tion variable, (P, P ) ∈ U , the cartesian states are {P}CS = {{P∗}, {P ′∗}}
where P ′∗ is the complement of P∗. The only binary partition of the cartesian
states equals the self partition, {P}CS{} = {{{P∗}}, {{P ′∗}}} ∈ R. Define
not ∈ R∗,b → R∗,b as

not(P∗) := ({{{P∗}}, {{P ′∗}}}, {{P ′∗}})

The underlying variable of the resultant pointed partition is the given par-
tition variable, vars(not(P∗)) = {P} ⊂ V ∩ R. The derived variable of the
resultant pointed partition is the binary partition of the cartesian states,
{{{P∗}}, {{P ′∗}}} ∈ V ∩ R.

Given two pointed binary partitions P∗, R∗ ∈ R∗,b the cartesian states are
{P,R}CS = {{P∗, R∗}, {P∗, R′∗}, {P ′∗, R∗}, {P ′∗, R′∗}}, where P ′∗ and R′∗ are the
complements of P∗ and R∗. The and binary partition of the cartesian states is
{X, Y } ∈ R, where X = {{P∗, R∗}} and Y = {{P∗, R′∗}, {P ′∗, R∗}, {P ′∗, R′∗}}.
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The and pointed binary partition is ({X, Y }, X) ∈ R∗,b. Define and ∈
R∗,b ×R∗,b → R∗,b as

and(P∗, R∗) := ({X, Y }, X)

The underlying variables are the given partition variables, vars(and(P∗, R∗)) =
{P,R} ⊂ V ∩ R. The derived variable of the resultant pointed partition is
the binary partition of the cartesian states, {X, Y } ∈ V ∩ R.

Similarly, the or binary partition of the cartesian states is {A,B} ∈ R, where
A = {{P∗, R∗}, {P∗, R′∗}, {P ′∗, R∗}} and B = {{P ′∗, R′∗}}. The or pointed bi-
nary partition is ({A,B}, A) ∈ R∗,b. Define or ∈ R∗,b ×R∗,b → R∗,b

or(P∗, R∗) := ({A,B}, A)

The underlying variables are the given partition variables, vars(or(P∗, R∗)) =
{P,R} ⊂ V ∩ R. The derived variable of the resultant pointed partition is
the binary partition of the cartesian states, {A,B} ∈ V ∩ R.

The and and not operators result in singleton pointed binary partitions,
and(P∗, R∗) ∈ R∗,s ∩ R∗,b and not(P∗) ∈ R∗,s ∩ R∗,b, but the or opera-
tion does not.

The and and or binary operations can be extended to sets of pointed bi-
nary partitions. Define and ∈ P(R∗,b)→ R∗,b as

and(V∗) := ({{V∗}, V CS \ {V∗}}, {V∗})

where V = {P : (P, ·) ∈ V∗}. The cartesian states, V CS = cartesian(U)(V ),
requires a system U implied from the given partitions, U = {(P, P ) : P ∈ V }.
Note that V∗ ∈ SU . Define or ∈ P(R∗,b)→ R∗,b

or(V∗) := ({V CS \ {V ′∗}, {V ′∗}}, V CS \ {V ′∗})

where V ′∗ = {P ′∗ : P∗ ∈ V∗}.

Given a tree of pointed binary partitions, trees(R∗,b), a tree of inherited
and operations can be derived. Define and ∈ trees(R∗,b)→ trees(R∗,b) as

and(Z) := {(P∗, and(P∗, X)) : (P∗, X) ∈ Z}

Define and ∈ R∗,b × trees(R∗,b)→ trees(R∗,b) as

and(P∗, Z) := {(M∗, and(M∗, X)) : (R∗, X) ∈ Z, M∗ = and(P∗, R∗)}
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Let F ∈ FU,P be the fud of the given pointed binary partition tree Z ∈
trees(R∗,b) and its derived and tree, and(Z) ∈ trees(R∗,b). That is, F =
{PT
∗ : P∗ ∈ elements(Z) ∪ elements(and(Z))}. The derived variables are the

leaf partitions of the tree, der(F ) = dom(leaves(and(Z))). The underlying
variables of the fud are the variables of the pointed partitions of the given
tree, und(F ) =

⋃
{vars(P∗) : P∗ ∈ elements(Z)}.

The set of pointed partitions in a system U is R∗,U . Pointed partitions
can be expanded, expand(U) ∈ P(VU) × R∗,U → R∗,U , and contracted,
contract(U) ∈ R∗,U → R∗,U , such that P%V

∗ = P∗ where V = vars(P∗).

Given a variable w ∈ VU in system U and a pointed binary partition
P∗ ∈ R∗,b, a nullable pointed partition can be derived which has values for
each of the values of w when the value of P∗ is the point component C∗,
where (P,C∗) = P∗, and has a null value for any value of w when the value
of P∗ is the complement point component C ′∗, where (P,C ′∗) = P ′∗. Define
nullable(U) ∈ VU ×R∗,U,b → R∗,U as

nullable(U)(w,P∗) := (Q ∪ {D∗}, D∗) :

Q = ({{P∗}}U ∗ {w}C)S{}, D∗ = ({{P ′∗}}U ∗ {w}C)S

where (i) P ′∗ is the complement pointed partition of P∗, (ii) the non-null
set of components Q ⊂ P({w,P}CS) is a self partition, and (iii) D∗ is the
null point component D∗ ∈ P({w,P}CS). The underlying variables are
{w,P} ⊂ V . The derived nullable variable is Q ∪ {D∗} ∈ V ∩ R. That
is, der((nullable(U)(w,P∗))

T) = {Q ∪ {D∗}}. The point component, D∗,
is the null value of the nullable variable, D∗ ∈ Q ∪ {D∗}. The resultant
nullable pointed partition (Q ∪ {D∗}, D∗) ∈ R∗,U is only a pointed binary
partition if w is mono-valent, |Uw| = 1 =⇒ (Q ∪ {D∗}, D∗) ∈ R∗,U,b. The
cardinality of the values of the nullable variable is one greater than that
of the given variable, |Q ∪ {D∗}| = |Uw| + 1. If the nullable variable is
in the system, Q ∪ {D∗} ∈ vars(U), then the volume is also incremented,
|{Q ∪ {D∗}}C| = |{w}C|+ 1.

3.9 Overlapping transforms

The derived variables of a transform T ∈ TU,f,1 are non-overlapping if there
exists an equivalent transform of a fud F ∈ FU,1 which is non-overlapping,
∃F ∈ FU,1 ((FT = T ) ∧ ¬overlap(F )). If the transform is non-overlapping,
there exists at least one equivalent fud F that weakly partitions the underly-
ing variables, {und(depends(F, {w})) : w ∈ W} ∈ B′(V ), where W = der(T ),
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V = und(T ) and B′ is the weak partition function, B′(V ) := B(V ) ∪ {Y ∪
{∅} : Y ∈ B(V )} and B′(∅) := {{∅}}. If the transform, T , has pluri-
valent derived variables, ∃w ∈ W (|(X%{w})F| > 1) where (X,W ) = T ,
then there exists an equivalent fud G having pluri-valent derived variables,
der(G) = W ′, where W ′ = {w : w ∈ W, |(X%{w})F| > 1}, such that
GT = ((X%(V ∪ W ′))F,W ′), that strongly partitions the underlying vari-
ables, {und(depends(G, {w})) : w ∈ W ′} ∈ B(V ). Mono-valent derived
variables of the transform map to disjoint transform variables in the cor-
responding weakly partitioning fud, und(R) = ∅, where R ∈ ran(M) and
M ∈ W · F . Define overlap ∈ TU → B as

overlap(T ) := ¬(W ′ 6= ∅ =⇒
∃Q ∈ B(V ) ∃R ∈ W ′ ·Q ∀(w,K) ∈ R (((X%(K ∪ {w}))F, {w}) ∈ Tf))

where V = und(T ), (X,W ) = T and W ′ = {w : w ∈ W, |(X%{w})F| > 1}.
The empty transform is non-overlapping, ¬overlap((∅, ∅)). If the transform
T is non-overlapping, the corresponding non-overlapping fud is

F = {((X%(K ∪ {w}))F, {w}) : (w,K) ∈ R} ∈ F

where R = {(w, und(depends(F, {w}))) : w ∈ der(T )} ∈ W → P(V ).

A one functional transform T ∈ TU,f,1 is right total if and only if the
transform is non-overlapping

¬overlap(T ) ⇐⇒ (X%W )F = WC

where (X,W ) = T . For example, let W ⊂ B(V CS) where V = und(T ) and
W = der(T ).

The possible derived states are the effective derived states of the appli-
cation of the transform to the cartesian, (V C ∗ T )FS ⊆ WCS. The pos-
sible derived states is the domain of the transform inverse, (V C ∗ T )FS =
dom(T−1) = stateDeriveds(T ). The possible derived volume w′ = |(V C ∗T )F|
is the cardinality of the partition, w′ = |TP| = |T−1|, and so is less than
or equal to the derived volume, w′ ≤ w, where w = |WC|. The possi-
ble derived volume equals the derived volume if and only if the transform
is non-overlapped, ¬overlap(T ) ⇐⇒ w′ = w, because it is only in this
case that the transform is right total, dom(T−1) = (X%W )FS = WCS. If
the transform is overlapping there are necessarily impossible derived states,
overlap(T ) =⇒ WCS \ (V C ∗ T )FS 6= ∅. The possible derived volume is less
than or equal to the underlying volume, w′ ≤ v, where v = |V C|.
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Derived variables x, y ∈ W are said to be tautological if their partitions
are equal, partition((X%(V ∪ {x}), {x})) = partition((X%(V ∪ {y}), {y})),
where (X,W ) = T and V = und(T ). A transform is tautologically overlapped
if all of its derived variables are tautological. Define tautology ∈ Tf → B
as tautology(T ) := |{partition((X%(V ∪ {w}), {w})) : w ∈ W}| = 1. A
tautology is always overlapped, ∀T ∈ Tf∩TU (tautology(T ) =⇒ overlap(T )).

A multi-partition transform T ∈ TU,P∗ is overlapping if and only if the
contracted transform is overlapping, overlap(T ) ⇐⇒ overlap(T%). A con-
tracted multi-partition transform is overlapping if and only if its explode fud
is overlapping, overlap(T%) ⇐⇒ overlap(explode(T%)).

A multi-partition transform T ∈ TU,P∗ represents a functional map between
the underlying states and the derived states, V CS → WCS, so the possi-
ble derived volume is at most the product of the cardinalities of the par-
titions, w′ = |TP| ≤

∏
P∈W |P | = |WCS|. If the transform is expanded,

W ⊂ B(V CS), the right total case requires that all of the components in-
tersect, ∀P,Q ∈ W ∀C ∈ P ∀D ∈ Q (C ∩ D 6= ∅). This is true for
non-overlapping transforms because the contracted partitions have disjoint
variables, ∀P1, P2 ∈ W (P1 6= P2 =⇒ vars(P%

1 ) ∩ vars(P%
2 ) = ∅).

A contracted multi-partition fud F ∈ FU,P∗ , where ∀T ∈ F (T = T%), is
recursively non-overlapping if the dependent exploded fud of each of its con-
tracted multi-partition transforms is non-overlapping,

∀T ∈ F (¬overlap(depends(explode(F ), der(T ))))

3.10 Decompositions

The set of decompositions D is a subset of the trees of pairs of (i) states,
S, and (ii) unit functional transforms, Tf ∩ TU

D ⊂ trees(S × Tf,U)

The set of decompositions is constrained such that the set of transforms forms
a functional definition set,

∀D ∈ D (ran(elements(D)) ∈ F)

Define transforms ∈ D → F as transforms(D) := ran(elements(D)). Define
underlying ∈ D → P(V) as underlying(D) := underlying(transforms(D)).
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The transforms form a fud, so the sets of derived variables are disjoint,
∀(A,W ), (B,X) ∈ G ((A,W ) 6= (B,X) =⇒ W ∩ X = ∅), where G =
transforms(D).

There are some additional constraints on decompositions. First, no underly-
ing variable of a transform in the decomposition can be a derived variable in
another transform

∀D ∈ D (
⋃
{und(T ) : T ∈ transforms(D)} = underlying(D))

where und = underlying. That is, the fud is single layer, layer(G, der(G)) = 1
or ∀T ∈ G (und(T ) ⊆ und(G)). So the derived variables of a transform do
not intersect with the variables of any other, ∀T1, T2 ∈ G (T1 6= T2 =⇒
der(T1) ∩ vars(T2) = ∅), where G = transforms(D).

Second, the states of the root pairs are empty states

∀D ∈ D (dom(roots(D)) = {∅})

Third, each of the states in child pairs are states of the derived variables of
the parent transform

∀D ∈ D ∀((·, T ), (S, ·)) ∈ steps(D) (S ∈ std(T ))

where std = stateDeriveds = dom ◦ inverse. The set of states need not
be all of the derived states, but only a subset or empty, ∀((·, T ), E) ∈
nodes(D) (dom(dom(E)) ⊆ std(T )).

The empty decomposition consists of the empty transform, {((∅, (∅, ∅)), ∅)} ∈
D.

The application of a decomposition to a histogram is a tree of contingent
applications of the transforms. Define apply ∈ D × A → trees(S × A)
as apply(D,A) := apply(D, vars(A), A) where apply ∈ D × P(V) × A →
trees(S ×A) is

apply(D, V,A) :=

{((S,B%W ), apply(E, V,B)) : ((S, (X,W )), E) ∈ D,
B = A ∗ {S}U ∗X % (V ∪W )}

Define shorthand A ∗D = apply(D,A).
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The application of a decomposition, D, to a histogram, A, can be contin-
gently constrained by a query histogram Q ∈ A to produce a tree of subsets
of the given histogram, A. Define query ∈ D × A × A → trees(S × A) as
query(D,A,Q) := query(D, vars(A), A,Q) where query ∈ D × P(V) × A ×
A → trees(S ×A) is

query(D, V,A,Q) :=

{((S,B%V ), query(E, V,B,R)) : ((S, (X,W )), E) ∈ D,
R = Q ∗ {S}U ∗X % (V ∪W ), size(R) > 0,

B = A ∗ {S}U ∗X ∗ (R%W ) % (V ∪W )}

In the case where the query variables are a superset of the decomposition’s
underlying variables, vars(Q) ⊇ und(D), and the query has a single effective
state, |QF| = 1, the resultant tree has a single path, |paths(query(D,A,Q))| =
1.

A decomposition D ∈ D is distinct if the elements are a functional map of
states to transforms, elements(D) ∈ S → T . In fact, a less strict definition
is all that is necessary, ∀E ∈ {D} ∪ ran(nodes(D)) (dom(E) ∈ S → T ).
The subset of distinct decompositions, Dd ⊂ D is defined Dd = {D : D ∈
D, dom(D) ∈ S → T , ran(D) ⊂ Dd}. The distinct decompositions allow
the same transform to be in more than one path with different ancestors,
∃D ∈ Dd (flip(elements(D)) /∈ T → S). The function on trees of pairs,
distinct ∈ trees(X × Y) → P(trees(X × Y)), described in appendix ‘Trees’,
returns the set of distinct decomposition trees as distinct ∈ trees(S × T ) →
P(trees(S × T ))

distinct(D) :=

{H : H ⊆ {((S, T ), G) : ((S, T ), E) ∈ D, G ∈ distinct(E)},
dom(H) ∈ dom(dom(D)) :→ ran(dom(D))}

where distinct(∅) := {∅}. Given a decomposition, D ∈ D, the function
returns a set of distinct decompositions, distinct(D) ∈ P(Dd), because (D →
P(Dd)) ⊂ (trees(S × T ) → P(trees(S × T ))). A distinct decomposition
D ∈ Dd has singleton roots, roots(D) = {(∅, ·)}.

The subset of decompositions DU ⊂ D in a system U is a subset of the
trees of pairs of (i) states, SU , and (ii) one functional transforms, TU,f,1

DU = D ∩ trees(SU × TU,f,1)
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If a decomposition is distinct there exists an inversion of the decomposition,
trees(SU × TU,f,1) → trees(TU,f,1 × SU), from pairs of transforms and their
parent transform’s derived states to pairs of transforms and their own derived
states. The inversion is such that the derived states of the transforms are
completed where they correspond to non-empty components of the partition
of the underlying variables of the decomposition. That is, the decomposition
completed states are possible states of the transform. Define application(U) ∈
Dd,U → trees(TU,f,1 × SU) as application(U)(D) := app(U)(D, ∅, ∅, ∅) where
app(U) ∈ trees(SU × TU,f,1)× SU × SU ×FU,1 → trees(TU,f,1 × SU) is

app(U)(D,Q,R, F ) :=

{((T, S), app(U)(E, S,R ∪ S, F ∪ {T})) : ((P, T ), E) ∈ D, P = Q,

S ∈ dom(dom(E)), R ∪ S ∈ std((F ∪ {T})T)}
∪ {((T, S), ∅) : ((P, T ), E) ∈ D, P = Q,

S ∈ der(T )CS \ dom(dom(E)), R ∪ S ∈ std((F ∪ {T})T)}

The computation of the set of derived states, std((F ∪ {T})T) ⊂ S, in an
implementation of this definition may be impracticable if the volume of the
intermediate transform, (F ∪ {T})T, is too large. An equivalent definition
may be given in terms of the application of the fud, constrained to contain
the disjoint transform of the ancestor state, ({R}U, vars(R)), to a unit scalar,
states(apply(F ∪ {T, ({R}U, vars(R))}, scalar(1))) ⊂ std((F ∪ {T})T). That
is,

app(U)(D,Q,R, F ) :=

{((T, S), app(U)(E, S,R ∪ S, F ∪ {T})) : ((P, T ), E) ∈ D, P = Q,

S ∈ dom(dom(E)), W = vars(R) ∪ vars(S),

X = his(F ∪ {T}) ∪ {{R}U, {S}U}, R ∪ S ∈ apply(V,W,X,Z1)S}
∪ {((T, S), ∅) : ((P, T ), E) ∈ D, P = Q,

S ∈ der(T )CS \ dom(dom(E)), W = vars(R) ∪ vars(S),

X = his(F ∪ {T}) ∪ {{R}U, {S}U}, R ∪ S ∈ apply(V,W,X,Z1)S}

where V = und(D) and Z1 = scalar(1).

The application tree D∗ = application(U)(D) is defined only for distinct de-
compositions, D ∈ Dd,U . The application tree is such that only one transform
appears in the roots,

∀E∗ ∈ {D∗} ∪ ran(nodes(D∗)) (|dom(dom(E∗))| = 1)

The elements of the application tree are pairs of the transforms and their pos-
sible derived states, elements(D∗) ⊆

⋃
{{T} × std(T ) : T ∈ transforms(D)},
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where std(T ) = dom(T−1) = (V C ∗ T )FS. Impossible derived states, WCS \
std(T ), whereW = der(T ), that exist if the transform is overlapped, ¬overlap(T ),
are excluded.

The application tree is constructed by concatenating the derived state S
of the transform T to the accumulated derived state R of the ancestors,
R ∪ S. Similarly the transform T is concatenated to the accumulated func-
tional definition set F of the ancestors, G = F ∪ {T}. Application trees
exclude contradictions, R ∪ S /∈ S, because these unions of states are not
in the possible derived states of the accumulated functional definition set,
std(GT) ⊂ S. The exclusion of contradictions occurs if the same derived
variable appears more than once in a path. That is, if the same transform
appears more than once. Multiple transforms in the same path are necessar-
ily redundant because the application children have the same derived state.
If the transform of the accumulated fud is overlapping, overlap(GT), then
it is not right total, X%W 6= WC where (X,W ) = GT, and hence some
of the cartesian derived states are excluded because they are impossible. In
this case the set of possible derived states is a proper subset, std(GT) ⊂ WCS.

The converse function that restores the distinct decomposition given the
application is defined decomp ∈ trees(T × S) → D as decomp(D∗) :=
decomp(∅, D∗) where decomp ∈ S × trees(T × S)→ D is

decomp(R,D∗) :=

{((R, T ),
⋃
{decomp(S,E∗) : ((·, S), E∗) ∈ D∗}) : T ∈ dom(dom(D∗))}

A well behaved decomposition is equal to the converse of the application,
decomp(application(U)(D)) = D. A well behaved decomposition is such that
the set of its transforms equals that of its application, transforms(D) =
dom(elements(D∗)). Let the set of well behaved decompositions in system U
be defined Dw,U = {D : D ∈ Dd,U , decomp(application(U)(D)) = D}. The
empty decomposition is not well behaved, {((∅, (∅, ∅)), ∅)} /∈ Dw,U .

There are a couple of functions on paths in the application tree. Define
transforms ∈ L(Tf × S) → F as transforms(L) := dom(set(L)). Define
state ∈ L(Tf × S) → P(V × W) as state(L) :=

⋃
ran(set(L)). The pair is

sometimes expressed (F, S) = (trn(L), st(L)) where trn = transforms and
st = state.

The simple partition of a decomposition is GTP where G = transforms(D).
G is the union of the transforms of the decomposition. However, the sim-
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ple partition does not correspond to the purpose of decompositions which is
to represent contingent application of child transforms. That is, the trans-
forms of paths in a decomposition application tree are unioned into func-
tional definition sets and applied to histograms separately, A ∗ F where
F = transforms(L) and L ∈ paths(D∗).

The partition of a well behaved distinct decomposition is derived from the
paths of the decomposition application. Define partition(U) ∈ Dw,U → RU

as

partition(U)(D) := {(his(GT) ∗ {S}U % V )S : L ∈ paths(D∗), S = state(L)}

where D∗ = application(U)(D), V = und(D), and G = transforms(D). An
equivalent definition in terms of a more tractable navigated fud application
is

partition(U)(D) :=

{apply(V, V, his(F ) ∪ {V C, {S}U}, Z1)S :

L ∈ paths(D∗), (F, S) = (trn(L), st(L))}

Define shorthand DP = partition(U)(D). The partition variables are the
underlying variables of the decomposition, vars(DP) = und(D). The union of
non-empty components is a partition because each of the unions of the one
functional transforms in the initial sub-paths of the decomposition is a one
functional definition set and therefore a partition, ∀L ∈ subpaths(D) ♦F =
transforms(L) (FTP ∈ RU). If the distinct decomposition consists only
of a root transform, elements(D) = roots(D) = {(∅, T )}, then the parti-
tion is simply that of the transform, DP = TP. The decomposition par-
tition is a parent partition of the simple partition, parent(DP, GTP) where
G = transforms(D). Hence of the cardinality of the simple partition is greater
than or equal to that of the partition, |GTP| ≥ |DP|.

A tree of components can be mapped cumulatively from the application
tree. Define component(U, V ) ∈ L(TU,f,1 × SU) → P(V CS) for some vari-
ables V ⊂ VU as

component(U, V )(L) := (inverse(FT)(S) ∗ V C)S

where F = transforms(L) and S = state(L). An equivalent definition in
terms of fud application is

component(U, V )(L) := apply(V, V, his(F ) ∪ {V C, {S}U}, Z1)S
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Define components(U) ∈ Dd,U → trees(P(V CS)) as

components(U)(D) := mapAccum(component(U, V ), D∗)

where D∗ = application(U)(D) and V = und(D). In this definition, the
inverse component is expanded by multiplication with V C.

The decomposition partition can also be defined in terms of the accumulated
path fuds

partition(U)(D) := {component(U, V )(L) : L ∈ paths(D∗)}

or from the components tree leaves

partition(U)(D) := leaves(components(U)(D))

The child components of the components tree are subsets of their parent
components, ∀(C1, C2) ∈ step(Y ) (C2 ⊆ C1) where Y = components(U)(D).
Each component of the components tree exists at a unique place, {(L|L|, L) :
L ∈ subpaths(Y )} ∈ P(V CS)→ L(P(V CS)).

A well behaved distinct decomposition D ∈ Dw,U in system U contains a
variable symmetry if ∃(L, T ), (M,R) ∈ Q ((L 6= M)∧ (der(T )∩der(R) 6= ∅))
where Q = {(L, T ) : (L,E∗) ∈ places(D∗), T ∈ dom(dom(E∗))} ∈ L(Tf ×
S)→ Tf and D∗ = application(U)(D). The transforms of the decomposition
form a fud which implies that the derived variables are uniquely defined.
Therefore a variable symmetry is also a transform symmetry. That is, more
strictly, ∃(L, T ), (M,R) ∈ Q ((L 6= M) ∧ (T = R)).

In the still stricter case of ∃(L,E∗), (M,G∗) ∈ places(D∗) ((L 6= M)∧ (E∗ =
G∗ 6= ∅)) then D contains an application symmetry. In this case there
is a bijection between the child components of L, {inverse(FT)(S) : N ∈
paths(E∗), P = concat(L,N), (F, S) = (trn(P ), st(P ))} and the child com-
ponents of M .

If the same non-root transform symmetry, T 6= Tr where {(∅, Tr)} = roots(D),
exists in all paths, ∀L ∈ paths(D) (T ∈ dom(set(L))), then the decomposi-
tion has a non-contingent symmetry. If the non-contingent symmetry, T , is
also an application symmetry everywhere, the decomposition could be broken
into two distinct decompositions at the non-contingent symmetry.

If it is the case that each node in a well behaved distinct decomposition D ∈
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Dw,U has a single transform, ∀E ∈ {D}∪ran(nodes(D)) (|ran(dom(E))| = 1)
then D is completely symmetrical and there is a unique path of transforms,
|{{(i, T ) : (i, (·, T )) ∈ L} : L ∈ paths(D)}| = 1. In this case the partition
equals the simple partition, DP = GTP where G = transforms(D).

A decomposition application tree D∗ that has at least two children per node,
∀E∗ ∈ {D∗} ∪ ran(nodes(D∗)) (E∗ 6= ∅ =⇒ |E∗| ≥ 2), has a depth that
is limited by the cardinality of the self-partition of the underlying variables
V which is the underlying volume, |V CS{}| = |V C|. That is, depth(D∗) ≤
ceil(log2(|V C|)).

A contingent tree of pairs of components and transforms can be mapped
cumulatively from a decomposition D ∈ D. Define contingent ∈ L(S×Tf)→
A× Tf as

contingent(L) := (inverse(FT)(S), T ) :

(·, T ) = L|L|, F = ran(set(L{1...|L|−1})), S =
⋃

dom(set(L))

where contingent({(1, (·, T ))}) := (scalar(1), T ). An equivalent definition in
terms of fud application is

contingent(L) := (apply(V, V, his(F ) ∪ {{S}U}, Z1)F, T )

Define contingents ∈ D → trees(A× Tf) as

contingents(D) := mapAccum(contingent, D)

In this definition, the inverse component, inverse(FT)(S), is not expanded.
The places of the application tree, D∗, are related to the contingent tree,

{(inverse(FT)(S), T ) :

(L,E∗) ∈ places(D∗), (F, S) = (trn(L), st(L)), T ∈ dom(dom(E∗))}
⊆ elements(contingents(D))

The application tree of the decomposition D applied to histogram A, is related
to the contingent tree,

{B : (·, B) ∈ elements(A ∗D)} = {A ∗ C ∗ T : (C, T ) ∈ cont(D)}

where cont(D) = elements(contingents(D)).
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The definition of the partition, DP, of a well behaved distinct decomposition
D ∈ Dw,U implies a transform, DPT, which is mono-variate in the derived
variables, |der(DPT)| = 1, like any partition transform. A crown transform
can be derived from a well behaved distinct decomposition’s application. First,
a transform slice tree is constructed which consists of singleton pointed binary
partitions. Define sliceTransforms(U) ∈ Dw,U → trees(R∗,U,s,b) as

sliceTransforms(U)(D) := map(slice(U), D∗)

where D∗ = application(U)(D) and slice(U) ∈ (TU,f,1 × SU) → R∗,U,s,b is
defined as

slice(U)((T, S)) := ({{S}, der(T )CS \ {S}}, {S})

The same transform may appear more than once in the decomposition. Thus
there may be fewer transform slices than the places in the application tree,
|elements(sliceTransforms(U)(D))| ≤ |places(D∗)|.

Second, the contingent slice tree is constructed by inheriting a logical and
operation on the underlying transform slice and the parent contingent slice.
Like the transform slices, the contingent slices are singleton pointed binary
partitions. Define sliceContingents(U) ∈ Dw,U → trees(R∗,U,s,b) as

sliceContingents(U)(D) := and(sliceTransforms(U)(D))

where the and binary operation on pointed binary partition trees is defined
above as and ∈ trees(R∗,b)→ trees(R∗,s,b) as

and(Z) := {(P∗, and(P∗, X)) : (P∗, X) ∈ Z}

Define and ∈ R∗,b × trees(R∗,b)→ trees(R∗,s,b) as

and(P∗, Z) := {(M∗, and(M∗, X)) : (R∗, X) ∈ Z, M∗ = and(P∗, R∗)}

Let the set N of slice partitions be N = elements(sliceTransforms(U)(D)) ∪
elements(sliceContingents(U)(D)). The point component C∗ of the transform
and contingent slices, ({C∗, C ′∗}, C∗) ∈ N , is called the in-slice component.
The complement point component C ′∗ is called the out-slice component.

The slices fud is the set of transforms of the union of (i) the transform
slices and (ii) the contingent slices. Define slices(U) ∈ Dw,U → FU,1 as

slices(U)(D) :=

{PT
∗ : P∗ ∈ elements(sliceTransforms(U)(D)) ∪
elements(sliceContingents(U)(D))}
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The underlying variables of the slices fud, slices(U)(D), equals the derived
variables of the well behaved decomposition transforms, und(H) = der(G)
where G = transforms(D) and H = slices(U)(D).

The transforms in the slices fud have underlying volumes no greater than the
largest derived volume of the decomposition transforms, maxr({(T, |V C|) :
T ∈ slices(U)(D), V = und(T )} = maxr({(R, |WC|) : R ∈ G, W =
der(T )} where G = transforms(D). If the slice transforms were instead
constructed from the accumulated fud F and state S of each path L in the
application tree D∗, {{{S}, der(FT)CS \ {S}}T : L ∈ paths(D∗), (F, S) =
(transforms(L), state(L))}, there would be no need for a tree of contingent
slices but the maximum underlying volume would be as large as the de-
rived volume of the largest accumulated path fud, maxr({(L, |WC|) : L ∈
paths(D∗), F = transforms(L), W = der(F )}.

The crown transform is transform of the union of (i) the transforms fud
and (ii) the slices fud, of a well behaved distinct decomposition. Define
transformCrown(U) ∈ Dw,U → TU,f,1 as

transformCrown(U)(D) := (G ∪H)T

where G = transforms(D) and H = slices(U)(D). The underlying variables
of the crown transform equals the underlying variables of the decomposition,
und(T ) = und(D) where T = transformCrown(U)(D). The crown trans-
form is such that crown(X%W ) is true, where (X,W ) = T . Another way
of stating this is crown(V C ∗ T ), where V = und(D). The partition of the
crown transform equals the decomposition partition, TP = DP. However the
converse does not hold, T 6= DPT because the crown transform is necessarily
pluri-variate in its derived variables, |der(T )| > 1.

The transforms of the slices fud H = slices(U)(D) ∈ F are derived from sin-
gleton pointed binary partitions, R∗,s,b, but lose the knowledge of the in-slice
point component because there is no converse function for transform ∈ R∗ →
Tf,U. However, because both the transform and contingent slices are singleton
pointed partitions, the in-slice derived state S can be identified by the cardi-
nality of its component, |inverse(T )(S)| = 1 where T ∈ H, or S = {(P,C)}
where P = TP, C ∈ P and |C| = 1. Of course, in the case of a decomposition
with a root transform, T ∈ ran(roots(D)), which has only two derived states,
|der(T )CS| = 2, both the in-slice and out-slice state has singleton components.
An alternative is to create slice variables explicitly, for example defined for
each sub-path in the application tree, subpaths(D∗) ⊂ V . Each of these slice
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variables would have well-known values, for example {in, out} ⊂ W . The in-
slice derived states of the transforms containing the explicitly defined slice
variables could then be easily identified without relying on the cardinality.

A set of nullable pointed partitions can be derived from the contingent slice
pointed partition tree, sliceContingents(U)(D) ∈ trees(R∗,U,s,b). First, obtain
the or pointed binary partition of the set of parent contingent slice partitions
for each derived variable of the transforms of the decomposition. Define
varsSliceAlternates(U) ∈ Dw,U → P(VU ×R∗,U,s,b) as

varsSliceAlternates(U)(D) :=

{(w, or(N)) : (w,N) ∈ inverse(slicesVars(U)(D))}

where slicesVars(U) ∈ Dw,U → P(R∗,U,s,b × VU) is defined as

slicesVars(U)(D) :=

{(P∗, w) : (P∗, Q∗) ∈ steps(sliceContingents(U)(D)),

(P, ·) = P∗, {P,X} = vars(Q∗), w ∈ vars(X)}

where the n-ary or operation on a set of pointed binary partitions, or ∈
P(R∗,b) → R∗,b, is defined above. If there are symmetries for variable
w ∈ der(GT), where G = transforms(D), then the cardinality of the slices
corresponding to w is greater than one, |inverse(slicesVars(U)(D))(w)| > 1,
and the alternate slice will have more than one underlying contingent slice,
|vars(varsSliceAlternates(U)(D)(w))| > 1.

Then, obtain the nullable pointed partition of the derived variable and the or
pointed binary partition of the alternate slices of the decomposition. Define
nullables(U) ∈ Dw,U → P(R∗,U) as

nullables(U)(D) :=

{nullable(U)(w,P∗) : (w,P∗) ∈ varsSliceAlternates(U)(D)}

where nullable(U) ∈ VU ×R∗,U,b → R∗,U is defined above.

The nullable fud is the union of (i) full functional self partition transforms
of the variables of the root transform, (ii) the non-leaf transform slice trans-
forms, (iii) the non-leaf contingent slice transforms, (iv) the alternate slice
transforms, and (v) the nullable transforms, of a distinct decomposition. De-
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fine nullable(U) ∈ Dw,U → FU,1 as

nullable(U)(D) :=

{{w}CS{}T : T ∈ ran(roots(D)), w ∈ der(T )} ∪
{PT
∗ : P∗ ∈ nonleaves(sliceTransforms(U)(D)) ∪
nonleaves(sliceContingents(U)(D)) ∪
ran(varsSliceAlternates(U)(D)) ∪
nullables(U)(D)}

where nonleaves(Z) = elements(Z) \ leaves(Z).

The nullable transform of a well behaved distinct decomposition is the trans-
form of the union of (i) the transforms fud and (ii) the nullable fud. Define
transform(U) ∈ Dw,U → TU,f,1 as

transform(U)(D) := DFT

where DF := transforms(D) ∪ nullable(U)(D). Define shorthand DT :=
transform(U)(D) = DFT. The underlying variables of the nullable transform
equals the underlying variables of the decomposition, und(DT) = und(D).
The partition of the nullable transform equals the decomposition partition,
DTP = DP. However the converse does not hold, DT 6= DPT because
the nullable transform is necessarily pluri-variate in its derived variables,
|der(DT)| > 1, unless it trivially consists of nothing but a mono-variate root
transform, |der(T )| = 1 where {(∅, T )} = D.

The function originals(U) ∈ Dw,U → (VU → VU) recovers the map from
the nullable derived variables to the root and transform derived variables

originals(U)(D) :=

{({w}CS{}, w) : T ∈ ran(roots(D)), w ∈ der(T )} ∪
{(P,w) : P ∈ dom(nullables(U)(D)), {w} = vars(P ) ∩ der(G)}

where G = transforms(D). So originals(U)(D) ∈ der(DT)→ der(G). If it is
the case that none of the root transform derived variables of a well behaved
decomposition D ∈ Dw,U are symmetrical, der(T ) ∩ der(G \ {T}) = ∅ where
{T} = ran(roots(D)), then the mapping is a bijection, originals(U)(D) ∈
der(DT)↔ der(G).

The full functional self partition transforms, {{w}CS{}T : w ∈ Wr}, of the
derived variables Wr = der(Tr) of the root transform Tr ∈ ran(roots(D)), are
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transforms, {PT : P ∈ Nr}, of the root frame variables Nr = {{w}CS{} : w ∈
Wr}. The use of root frame variables, Nr, in the nullable fud, nullable(U)(D),
is necessary to ensure that the derived variables of the root transform, Wr, are
indirectly represented in the derived variables of the nullable transform. This
is because the root transform derived variables, Wr, are underlying variables
of the slice transforms,

Wr ⊆ und({PT
∗ : P∗ ∈ elements(sliceTransforms(U)(D))})

and so are hidden in the nullable fud, Wr ∩ der(nullable(U)(D)) = ∅, and
hence cannot be in the derived variables of the nullable transform, Wr ∩
der(DT) = ∅. Instead, the root frame variables are in the derived variables
of the nullable transform, Nr ⊆ der(DT).

If the decomposition consists solely of a root transform Tr where {((∅, Tr), ∅)} =
D then the nullable transform is a value full functional transform of the
root transform. That is, the nullable transform is a reframe transform. In
this case, the partition of the nullable transform equals the partition of Tr,
DTP = TP

r , and the volume of the derived variables of the nullable transform
equals the volume of the derived variables of Tr, |der(DT)C| = |der(Tr)

C|.

If the decomposition contains nullable variables, nullables(U)(D) 6= ∅, then
the volume of the derived variables of the nullable transform is greater
than the volume of the derived variables of the transforms, |der(DT)C| >
|der(G)C|. This is because the nullable variables have an additional null
value with respect to their corresponding originating variable, ∃(w, v) ∈
originals(U)(D) (|Uw| = |Uv|+ 1).

The application of the transform of a well behaved distinct decomposition
D to the cartesian of the underlying decomposition variables und(D) =
V ⊂ VU , followed by the reduction to the root frame variables, form a
completely effective histogram if the root transform is non-overlapping. Let
{Tr} = ran(roots(D)), ¬overlap(Tr) and Nr = {{w}CS{} : w ∈ der(Tr)} where
D ∈ Dw,U and und(D) = V . Then (V C ∗Tr)

F = WC
r where Wr = der(Tr) and

(V C ∗DT % Nr)
F = NC

r

If the decomposition contains nullable variables then the decomposition trans-
form is overlapping,

nullables(U)(D) 6= ∅ =⇒ overlap(DT)
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This is because the nullable variables depend via alternate, contingent and
transform slice variables on ancestor transform derived variables, which them-
selves have dependent variables in the nullable fud derived variables. Let
F = nullable(U)(D), then ∀n ∈ dom(nullables(U)(D)) ∃u ∈ der(F ) ((u 6=
n)∧ (und(depends(F, {u}))∩ und(depends(F, {n})) 6= ∅)). The transform is
necessarily overlapping whatever symmetries exist because of the additional
null value of the nullable variables. The null value exists even if none of the
possible derived states are null. In particular, all nullable variables depend on
the root transform derived variables, ∀n ∈ dom(nullables(U)(D)) (der(Tr) ⊂
und(depends(F, {n}))).

In the case where there are nullable variables, nullables(U)(D) 6= ∅, and the
transforms are also all mono-derived-variate transforms, ∀T ∈ G (|der(T )| =
1), the application to the cartesian is skeletal, skeleton(V C ∗ DT), and any
non-singleton subset of the decomposition derived variables is contingent and
overlapping

∀J ⊆ der(DT) (|J | > 1 =⇒ (V C ∗DT % J)F 6= JC)

The application of an overlapping decomposition transform, overlap(DT), to
the cartesian is incompletely effective, (V C∗DT)F < NC where N = der(DT).
That is, the possible derived volume w′ = |(V C ∗ DT)F| = |DP| = |(DT)−1|
is less the derived volume, w′ < w, where w = |NC|. The possible derived
volume, w′, may be calculated from the contingent possible derived volumes
of the decomposition’s transforms,

w′ = |(V C ∗ Tr)
F|+

∑(
|(C ∗ T )F| − 1 : (C, T ) ∈ cont(D), (C, T ) 6= (V C, Tr)

)
=

∑(
|(C ∗ T )F| : (C, T ) ∈ cont(D)

)
+ 1− |cont(D)|

where cont = elements ◦ contingents. The possible derived volume, w′, is
bounded by the possible derived volumes of the individual transforms,

w′ ≤ |T−1
r |+

∑
T∈G, T 6=Tr

(
|T−1| − 1

)
=

∑
T∈G

(
|T−1|

)
+ 1− |G|

where there are no transform symmetries, |nodes(D)| = |G|. In the case
where all transforms are non-overlapping, ∀T ∈ G (¬overlap(T )), the possible
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derived volume is bounded

w′ ≤ |WC
r |+

∑
T∈G, T 6=Tr

(
|WC

T | − 1
)

=
∑
T∈G

(
|WC

T |
)

+ 1− |G|

This calculation is only an upper bound for the possible derived volume, w′,
because it ignores overlaps between transforms in the same path, whether
the transforms themselves are overlapping or not. Let (C1, T1), (C2, T2) ∈
cont(D) such that T1 6= T2, C1 ⊃ C2, ¬overlap(T1) and ¬overlap(T2). Then
overlap({T1, T2}) =⇒ |({T1, T2})−1| < |T−1

1 ||T−1
2 | = |der({T1, T2})C|, and

overlap({T1, T2}) =⇒ |(C1 ∗ T1)F| + |(C2 ∗ T2)F| ≤ |(C1 ∗ T1)F| + |(C1 ∗
T2)F|. This is more obvious when viewed in terms of the accumulated
states and fuds of subpaths of the decomposition. Let L ∈ paths(D), L2 ∈
subpaths(L), L1 ∈ subpaths(L2), such that (i) (F1, R1) = (trn(L1), st(L1))
and his(F1) ∗ {R1}U % V = C1, and (ii) (F2, R2) = (trn(L2), st(L2)) and
his(F2) ∗ {R2}U % V = C2. Then {T1, T2} ⊆ F2 and overlap(F2).

The reduced application of the nullables of a non-root transform T form a
pivot histogram. Let Y = {P∗ : P∗ ∈ nullables(U)(D), vars(P∗)∩der(T ) 6= ∅}
where T ∈ G \ {Tr} and G = transforms(D)

pivot(V C ∗DT % dom(Y ))

The nullable variables are dom(Y ) = ran(filter(der(T ), flip(originals(U)(D)))).
The pivot state is the out-slice or null state, Y ∈ SU .

A pair of nullable variables taken from different non-root transforms form an
axial histogram when applied to the cartesian V C. Let P1∗, P2∗ ∈ nullables(U)(D)
such that originals(U)(D)(P1) ∈ der(T1), originals(U)(D)(P2) ∈ der(T2),
T1, T2 ∈ G \ {Tr} and T1 6= T2, then

axial(V C ∗DT % {P1, P2})

If the transforms are on different paths, MT1 6= MT2 where M = {(T, first ◦
L) : L ∈ paths(D∗), T ∈ dom(set(L))}, where first((x, ·)) = x, then the pivot
corresponds to the null state, Y = {P1∗, P2∗} ∈ SU , where both nullable vari-
ables are in their out-slices. If the transforms are the only children of the root
transform, MT1(2) = T1, MT2(2) = T2 and |{L{1...2} : L ∈ paths(D∗)}| = 2,
then the pivot state is zero, (V C ∗ DT ∗ {Y }U)F = ∅, because the out-slices
are exclusive. Consider the case where the transforms each appear once on
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the same path L = MT1 = MT2 . Let the ancestor transform be T1 and the
descendant transform be T2, where flip(L)(T1) < flip(L)(T2). The pivot state
corresponds to an in-slice non-null value of the ancestor variable P1 and an
out-slice null value of the descendant variable P2. That is, the pivot state is
one of {{(P1, C), P2∗} : C ∈ P1, (P1, C) 6= P1∗} ⊂ SU .

Thus the reduced transformed cartesian of a selection of the derived vari-
ables K ⊂ N originating bijectively, K ↔ G, forms a skeletal histogram. Let
trans(D) = {(w, T ) : T ∈ G, w ∈ der(T )}, then trans(D)◦originals(U)(D) ∈
N → G and

∀Q ⊆ trans(D) ◦ originals(U)(D)

(Q ∈ N ↔ G =⇒ skeletal(V C ∗DT % dom(Q))

A functional transform T ∈ Tf has a set of reduced transforms with re-
spect to a histogram A ∈ A, where vars(A) = underlying(T ). Section
‘Transform, Action and Function histograms’, above, defines the function
reductions ∈ A×Tf → P(Tf) such that ∀T ′ ∈ reductions(A, T ) ({trim(A∗C) :
(·, C) ∈ inverse(T ′)} = {trim(A ∗ C) : (·, C) ∈ inverse(T )}). The nul-
lable transform of a decomposition has reductions, reductions(A,DT), but
note that only the nullable variables of the nullable transform are reduced.
The underlying transforms, transforms(D), are not reduced. However, a
decomposition can also be contingently reduced to a set of distinct decom-
positions. Define reductions ∈ A × D → P(D) as reductions(A,D) :=
distinct(reductions(A, ∅, ∅, D)) where reductions ∈ A × F × S × D → D
is

reductions(A,F,R,D) :=

{((Q,X), G) : ((S, T ), E) ∈ D, Q = S%der(F ),

X ∈ reductions(A ∗ inverse(FT)(R ∪Q), T ),

G = reductions(A,F ∪ {X}, R ∪Q,E)}

The intersection with the nullable transform reductions contains the nullable
transform, DT ∈ {ET : E ∈ reductions(A,D)} ∩ reductions(A,DT). The
cardinality of the nullable transform reductions is greater than or equal to
the cardinality of the contingent reduction decomposition nullable transforms,
|reductions(A,DT)| ≥ |{ET : E ∈ reductions(A,D)}|.

If it is the case that all of the transforms of a decomposition are contin-
gently diagonalised with respect to the histogram,

∀B ∈ ran(elements(A ∗D)) (diagonal(B))
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or
∀(C, T ) ∈ elements(contingents(D)) (diagonal(A ∗ C ∗ T ))

then there must exist a contingent reduction decomposition nullable transform
that is skeletal,

∃D′ ∈ reductions(A,D) (skeletal(A ∗D′T))

That is, the reduction to any two derived variables of the derived histogram
of the nullable transform of the contingent reduction, D′, is linear or axial

∀P1, P2 ∈ der(D
′T) (line(A ∗D′T % {P1, P2}) ∨ axial(A ∗D′T % {P1, P2}))

Also, there must exist a reduction nullable transform that is skeletal,

∃T ∈ reductions(A,DT) (skeletal(A ∗ T ))

A skeletal contingent reduction decomposition, D′, of a contingently diago-
nalised decomposition, D, implies a tree of derived variables Z = map(vr, D′) ∈
trees(der(D

′T)) where vr((·, T )) := x and {x} = der(T ). The reduction to
any two of these derived variables, B = A∗D′T % {P1, P2} where {P1, P2} ⊆
elements(Z), is linear or axial, line(B) ∨ axial(B). If axial, the pivot state
is X =

⋃
{S ∩ T : S, T ∈ BFS} ∈ {P1, P2}CS. If one of the variables is

a descendant of the other, ∃L ∈ paths(Z) (P1 6= P2 ∧ {P1, P2} ⊆ set(L)),
then the descendant, P2, has the null value in the pivot state, P2∗ ∈ X,
where P2∗ ∈ nullables(U)(D′) and flip(L)(P2) > flip(L)(P1). In this case
a non-root ancestor, P1 /∈ roots(Z), has a non-null value, P1∗ /∈ X, where
P1∗ ∈ nullables(U)(D′). The pivot state, X, is therefore not the ancestor
out-slice state, X 6= Y , where the out-slice or null state is Y = {P1∗, P2∗}.
If the variables are not ancestor-descendant, P1 6= P2 ∧ P1 ∈ set(L) ∧ P2 ∈
set(M) =⇒ L 6= M where L,M ∈ paths(Z), then both are necessarily
null-valued in the pivot state. That is, the pivot state is the out-slice/null
state, X = Y . The count of the pivot state, BX , depends on how closely
related the pair of variables is. If P1 is an immediate parent of P2, then
the pivot state is zero, (P1, P2) ∈ steps(Z) =⇒ BX = 0. Note, how-
ever, that the out-slice count, BY , is not necessarily zero. If P1 and P2 are
the only siblings of the root variable then the pivot state/out-slice is zero,
{(·, {(P1, ·), (P2, ·)})} = Z =⇒ BX = BY = 0. If the pair are, for example,
in different leaves, P1 6= P2 ∧ {P1, P2} ⊆ leaves(Z), then the pivot/out-slice
count, BX = BY , will vary as the depth of the tree, depth(Z). The more
distant the pair, the more the axial resembles a singleton.
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Given a one functional transform T ∈ TU,f,1 and a histogram A ∈ A, where
vars(A) = underlying(T ), a set of well behaved decompositions H ⊂ Dw,U ,
where ∀D ∈ H (und(D) = vars(A)), may be inferred such that the nul-
lable transforms of the decompositions correspond to the given transform.
That is, the application of the nullable transforms of the decompositions to
the given histogram are non-literal reframes of the application of the given
transform, ∀D ∈ H ∃X ∈ der(T ) ↔ (der(DT) × (W ↔ W)) (A ∗ DT =
reframe(X,A ∗ T )). The inferred decompositions contains at least a decom-
position consisting of a reframe transform of the given transform as the root
transform, {((∅, {{w}CS{}T : w ∈ der(T )}T), ∅)} ∈ H.

Let the subset of the given derived variables K ⊂ der(T ) correspond to
the non-root transforms of an inferred decomposition D ∈ H. Let the null
state be R ∈ KCS. Consider the case where a partition of the null state
M ∈ B(R) exists such that the reduction of the application of the given
transform to the variables of a component P ∈ M ⊂ S forms a pivoted his-
togram, ∀P ∈ M (pivot(A ∗ T%vars(P ))), such that the component, P , is
the pivot state, ∀P ∈ M ∀S ∈ (A ∗ T%vars(P ))FS (S 6= P =⇒ S ∩ P =
∅). Then a decomposition D ∈ H exists such that the reframe mapping
X ∈ der(T ) ↔ (der(DT) × (W ↔ W)) is constrained such that the point
components of the nullable pointed partition variables correspond to the null
values in the values map, ∀(v, ((Q,C),W )) ∈ X (v ∈ K =⇒ ((Q,C) ∈
nullables(U)(D)) ∧ ((Mv, C) ∈ W )).

In the case where two components of the null state partition P1, P2 ∈ M ,
where P1 6= P2, are such that the reduction to the union of their vari-
ables is also a pivoted histogram, pivot(A ∗ T%(vars(P1) ∪ vars(P2))), such
that the pivot state is P1 ∪ P2, then the corresponding non-root transforms,
T1, T2 ∈ transforms(D), of an inferred decomposition, D ∈ H, must be on
different paths. That is, there exists no path in which the transforms are
in an ancestor-descendant relation, ∀L ∈ paths(D) (T1 /∈ ran(set(L)) ∨ T2 /∈
ran(set(L))).

A non-empty sub-decomposition E ∈ D of non-empty decomposition D ∈
D is a subtree E ∈ subtrees(D) \ {∅}. The underlying variables of E are a
subset of the underlying variables of D, und(E) ⊆ und(D). If D is in system
U , D ∈ DU , then E is in system U , E ∈ DU .

If D is distinct, D ∈ Dd, then E is distinct, E ∈ Dd. Both decomposi-
tions share the same root transform, roots(E) = roots(D) = {(∅, Tr)}. The
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expanded partition of E is a parent partition of D, parent(EPV , DP) where
V = und(D). The components tree of E is a subtree of the components tree of
D, components(U)(E) ∈ subtrees(components(U)(D)). If there are no sym-
metries between the transforms of E, transforms(E), and the disjoint trans-
forms, transforms(D)\transforms(E), then the nullable fud of E is a subset of
the nullable fud of D, nullable(U)(E) ⊆ nullable(U)(D). In this case, the ap-
plication of the decomposition D to histogram A ∈ A, having variables V , re-
duces to the application of the decomposition E, A∗DT % der(ET) = A∗ET.

Let non-zero sample histogram A ∈ AU have non-empty variables V =
vars(A) 6= ∅. The normalisation is a probability histogram, Â ∈ A ∩ P . Let
non-zero query histogram Q ∈ AU have variables K = vars(Q) that are a
subset of the sample variables, K ⊆ V . The normalisation of the query
histogram is a probability histogram, Q̂ ∈ A∩P . The difference between the
sample variables and the query variables, V \ K, is called the set of label
variables. As discussed above in section ‘Transforms’, given a one functional
transform T = (M,W ) ∈ TU,f,1, having underlying variables J = und(T ),

the model analog of the transformed conditional product, Q̂ ∗ T ′A = Q̂ ∗
(A/(A%K), (V \ K)) ∈ A ∩ P ′, is the renormalisation of the application
of the normalised sample action, (T, (Â ∗ M,V )), to the expanded query
probability histogram, Q̂J = Q̂ ∗ (J \K)C∧ ∈ A ∩ P ,

(Q̂J ∗ T ∗ (Â ∗M,V ))∧ % (V \K) ∈ A ∩ P

or
Q̂J ∗ T ∗ T�A % (V \K) ∈ A ∩ P

if the intersection of derived effective states is not empty, (Q∗T )F∩(A∗T )F 6=
∅.

The modelled transformed conditional product can be computed for a well
behaved decomposition D ∈ Dw,U by constructing the nullable transform,
DT,

(Q̂J ∗DT ∗ (Â ∗ his(DT), V ))∧ % (V \K) ∈ A ∩ P
where his = histogram. However, in some cases the computation of the
nullable transform, DT, may be impracticable. In these cases the query
function, query ∈ D×A×A → trees(S×A), may sometimes be used instead.
If (i) the set of query variables is a superset of the set of decomposition
underlying variables, K ⊇ J , where J = und(D), (ii) the query histogram is
an effective singleton, |QF| = 1, and (iii) the intersection of derived effective
states is not empty, R ∈ (A ∗DT)FS, where {R} = (Q ∗DT)F, then

(Q̂J ∗DT ∗ (Â ∗ his(DT), V ))∧ % (V \K) = N̂ % (V \K)
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where
{N} = leaves(query(D,A,Q))

In this case of effective singleton query, |QF| = 1, the query tree has a
single path, |paths(query(D,A,Q))| = 1, and hence a single leaf element,
|leaves(query(D,A,Q))| = 1. If the intersection of derived effective states
is not empty, R ∈ (A ∗ DT)FS, then the last histogram in the path is not
empty, size(L|L|) > 0, where {L} = paths(query(D,A,Q)), and so the leaf
histogram, N = L|L|, is not empty, size(N) > 0.

If, however, the intersection of derived effective states is empty, R /∈ (A ∗
DT)FS, because of over-fitting, it may be that some ancestor slice is not
empty. That is, sometimes there exists (C1, T1), (C2, T2) ∈ cont(D) such that
C1 ⊃ C2, size(Q∗C2) > 0, size(A∗C2) = 0, but size(A∗C1) > 0. The ancestor
slice is the last of the non-empty filtered path. Let L′ = filter({(P, size(P ) >
0) : P ∈ set(L)}, L), then N = L′|L′|, if |L′| 6= 0.

If the filtered path is empty, |L′| = 0, then the query is an ineffective derived
state of the root transform, R /∈ (A ∗ Tr)

FS, where {R} = (Q ∗ Tr)
FS and

{((∅, Tr), ∅)} = D. In this case the best best guess is simply Â % (V \K).

The set of functional definition set decompositions DF is a subset of the
trees of pairs of (i) states, S, and (ii) functional definition sets, F

DF ⊂ trees(S × F)

The set of fud decompositions is constrained such that the derived variables
of the transforms in the fuds are each uniquely defined

∀D ∈ DF (
⋃
{def(F ) : F ∈ fuds(D)} ∈ V → T )

where def = definitions and fuds ∈ DF → P(F) is defined as fuds(D) :=
ran(elements(D)). In other words, if in fud decomposition D fuds F,G ∈
fuds(D) share a defined variable w ∈ dom(def(F )) ∩ dom(def(G)) then the
definition is the same in each, def(F )(w) = def(G)(w). This also allows the
same fud to appear more than once in a fud decomposition tree. The union
of the fuds is therefore a fud,

∀D ∈ DF (
⋃

ran(elements(D)) ∈ F)

Define fud ∈ DF → F as fud(D) :=
⋃

fuds(D). Define underlying ∈ DF →
P(V) as underlying(D) := underlying(fud(D)).
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There are some additional constraints on fud decompositions. First, no un-
derlying variable of a fud in the decomposition can be a defined variable in
another fud

∀D ∈ DF (
⋃
{und(F ) : F ∈ fuds(D)} = underlying(D))

where und = underlying. So only the underlying variables of a fud can inter-
sect with the underlying variables of any other, ∀F1, F2 ∈ fuds(D) (vars(F1)\
und(F1) ∩ und(F2) = ∅).

Second, the states of the root pairs are empty states

∀D ∈ DF (dom(roots(D)) = {∅})

Third, each of the states in child pairs are states of the derived variables of
the parent fud

∀D ∈ DF ∀((·, F ), (S, ·)) ∈ steps(D) (S ∈ std(FT))

where std = stateDeriveds.

The empty fud decomposition consists of the empty fud, {((∅, ∅), ∅)} ∈ DF.

A fud decomposition D ∈ DF may be converted to a transform decom-
position if the sets of derived variables of the fuds are disjoint, (∀F1, F2 ∈
fuds(D) (F1 6= F2 =⇒ der(F1) ∩ der(F2) = ∅)) =⇒ map(transform, D) ∈
D, where transform ∈ (S × F)→ (S × Tf,U) is defined transform((S, F )) :=
(S, FT). Define shorthand DD := map(transform, D).

There is no constraint on converting a transform decomposition to a fud de-
composition, ∀D ∈ D (map(fud, D) ∈ DF), where fud ∈ (S×Tf,U)→ (S×F)
is defined fud((S, T )) := (S, {T}).

The application of a fud decomposition to a histogram is a tree of con-
tingent applications of the fuds. Define apply ∈ DF × A → trees(S × A)
as apply(D,A) := apply(D, vars(A), A) where apply ∈ DF × P(V) × A →
trees(S ×A) is

apply(D, V,A) :=

{((S,B%W ), apply(E, V,B)) : ((S, F ), E) ∈ D, W = der(F ),

B = apply(V, V ∪W, his(F ) ∪ {{S}U}, A)}
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where his = histograms. Define shorthand A ∗ D = apply(D,A). The
application of a fud decomposition to a histogram equals the application of
the corresponding transform decomposition to a histogram, A ∗D = A ∗DD.

The subset of fud decompositions DF,U ⊂ DF in a system U is a subset of
the trees of pairs of (i) states, SU , and (ii) one functional definition sets, FU,1

DF,U = DF ∩ trees(SU ×FU,1)

The fuds of a system fud decomposition are non-circular, ∀D ∈ DF,U ∀F ∈
fuds(D) (¬circular(F )).

A further subset is the set of system fud decompositions where the fuds are
partition fuds. Define the partition fud decompositions

DF,U,P = DF ∩ trees(SU ′ ×FU,P)

where the finite system U ′ is defined U ′ = {(P, P ) : F ∈ FU,P, P ∈
dom(def(F ))} ∪ U .

A contingent tree of pairs of components and fuds can be mapped cumu-
latively from a fud decomposition D ∈ DF. Define contingent ∈ L(S ×F)→
A×F as

contingent(L) := (inverse(GT)(S), F ) :

(·, F ) = L|L|, G =
⋃

ran(set(L{1...|L|−1})), S =
⋃

dom(set(L))

contingent({(1, (·, F ))}) := (scalar(1), F ). Define contingents ∈ DF → trees(A×
F) as

contingents(D) := mapAccum(contingent, D)

The subset distinct fud decompositions DF,d ⊂ DF is defined DF,d = DF ∩
((S → F)→ DF,d). Define partition(U) ∈ DF,d,U → RU as

partition(U)(D) := partition(U)(DD)

The well behaved distinct fud decompositions is a subset of the distinct fud
decompositions, DF,w,U ⊂ DF,d,U . A fud decomposition is well behaved if its
transform decomposition is well behaved, ∀D ∈ DF,w,U (DD ∈ Dw,U). Define
transform(U) ∈ DF,w,U → TU,f,1 as

transform(U)(D) := DFT

where DF := fud(D) ∪ nullable(U)(DD).
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A well behaved distinct fud decomposition D ∈ DF,w,U in system U contains
a variable symmetry if ∃(L, T ), (M,R) ∈ Q ((L 6= M)∧(der(T )∩der(R) 6= ∅))
where Q = {(L, T ) : (L,E) ∈ places(DD∗), T ∈ dom(dom(E))} ∈ L(Tf ×
S) → Tf and DD∗ = application(U)(DD). If all of the derived variables are
equal the variable symmetry is also a fud symmetry. That is, more strictly,
∃(L, T ), (M,R) ∈ Q ((L 6= M) ∧ (T = R)).

3.11 Substrate structures

Consider the partition functional definition set FU,V ∈ FU,P of all possible
partition transforms of the cartesian set of states of some substrate set of
underlying variables V in system U ,

FU,V = transforms(B(cartesian(U)(V )))

FU,V is called the base functional definition set of V in system U . It may
be more concisely defined FU,V = {PT : P ∈ B(V CS)}. The base fud, FU,V ,
contains all its partition variables in one layer, |der(FU,V )| = |FU,V |. All of
the partition variables are expanded, ∀P ∈ der(FU,V ) (vars(P ) = V ) and
∀T ∈ FU,V (und(T ) = V ). FU,V has cardinality

|FU,V | = |B(cartesian(U)(V ))| = |B({1 . . . y})| = bell(y)

where the volume y = |V C|. The function bell ∈ N>0 → N>0 is Bell’s
number which is factorial, bell ∈ O({(n, nn) : n ∈ R>0}). The cardi-
nality of the base functional definition set is finite, though because it is
of factorial complexity in the volume, it is impracticable in some cases.
For example, if the variables V have the same valency d having a reg-
ular volume y = dn, where dimension n = |V |, then for four bi-valent
variables the Bell’s number is bell(24) = 10480142147. Similarly for two
quad-valent variables, bell(42) = 10480142147. For three tri-valent variables,
bell(33) = 545717047936059989389.

The base functional definition set, FU,∅, of empty substrate, ∅, is a single-
ton containing only the unary scalar partition transform, FU,∅ = {PT : P ∈
B(∅CS)} = {({{(R, {∅})}}U, {R})} where R = unary(∅CS) = {∅CS} = {{∅}}.

The base fud contains the unary partition transform, RT = ({S∪{(R, V CS)} :
S ∈ V CS}U, {R}) ∈ FU,V = {PT : P ∈ B(V CS)}, where R is the unary
partition, R = unary(V CS) = {V CS} ∈ B(V CS). The corresponding con-
tracted unary partition transform is the unary scalar partition transform,
R%T = ({{(R%, {∅})}}U, {R%}) where R% = {∅CS} = {{∅}}.
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The base fud contains the self partition transform, QT = ({S ∪ {(Q, {S})} :
S ∈ V CS}U, {Q}) ∈ FU,V = {PT : P ∈ B(V CS)}, which corresponds to the
self partition Q = self(V CS) = V CS{} = {{S} : S ∈ V CS} ∈ B(V CS).

Given a set of substrate variables V ⊂ VU in system U , let the set TU,V ⊂
TU,P∗ be the set of multi-partition transforms that are the equivalent trans-
forms of fud subsets of the base functional definition set, FU,V , of substrate
V

TU,V = {transform(F ) : F ⊆ transforms(B(cartesian(U)(V )))}

or more succinctly TU,V = {FT : F ⊆ FU,V }. This finite set is called the
substrate transforms set on variables V . Constrain the system U such that
it contains all of the partition variables in the transforms,

⋃
{der(T ) : T ∈

TU,V } ⊂ vars(U). TU,V can also be rewritten in various ways

TU,V = {FT : F ⊆ {PT : P ∈ B(V CS)}}
= {{PT : P ∈ X}T : X ⊆ B(V CS)}
= {{{AS : A ∈M}T : M ∈ Y }T : Y ⊆ B(V C)}

The substrate transforms set can also be defined in terms of expanded parti-
tions, TU,V = {FT : F ⊆ {P V T : K ⊆ V, P ∈ B(KCS)}}.

Let y be the volume of the substrate, y = |V C|. The cardinality of the
substrate transforms set is |TU,V | = 2bell(y). A large practicable volume is
the bi-valent bi-variate case y = 22 where |TU,V | = 215 = 32768. The next
volume is the 5-valent mono-variate case, y = 51, where |TU,V | = 252 =
4503599627370496.

The substrate transforms set contains the empty transform, (∅, ∅) ∈ TU,V .
The empty transform is the equivalent transform of the empty fud, (∅, ∅) =
∅T. It is the only element of the substrate transforms set which has no de-
rived variables, |der((∅, ∅))| = 0. It is the only element which has underlying
variables not equal to V , und((∅, ∅)) = ∅ 6= V .

The substrate transforms set contains the unary partition transform, {V CS}T ∈
TU,V , and the self partition transform, V CS{}T ∈ TU,V .

The substrate transforms set contains the value full functional transform,
{{v}CS{}V T : v ∈ V }T ∈ TU,V . This transform is the only value full func-
tional transform of the substrate variables in the substrate transforms set.
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The derived states, (X%W )S = {{v}CS{}V : v ∈ V }CS, are reframed underly-
ing states, (X%V )S = V CS, where (X,W ) = {{v}CS{}V T : v ∈ V }T. That is,
∃Q ∈ V ·W ∀(v, w) ∈ Q (split({v}, (X%{v, w})S) ∈ {v}CS ↔ {w}CS).

The substrate transforms set contains the base fud transform, FT
U,V ∈ TU,V .

The substrate transforms set is a superset of the base fud, FU,V ⊂ TU,V .
The subset of substrate transforms, having non-empty substrate variables,
V 6= ∅, that are mono-variate in the derived variables equals the base fud,
{T : T ∈ TU,V , |der(T )| = 1} = FU,V . The substrate transforms set con-
tains the unary partition transform, RT ∈ TU,V where R = {V CS}. The
subset of the substrate transforms set which contains the unary partition,
{T : T ∈ TU,V , {V CS} ∈ der(T )}, has a complement of the same cardinality,
{T : T ∈ TU,V , {V CS} ∈ der(T )} ↔ {T : T ∈ TU,V , {V CS} /∈ der(T )}. The
empty transform, (∅, ∅), complements the unary partition transform, RT.

A substrate partition-set N ∈ P(RU) in variables V is constrained to be
such that each of the partitions in the partition-set has variables which are a
subset of V , ∀P ∈ N (vars(P ) ⊆ V ). Define the substrate partition-sets set

NU,V = P({P : K ⊆ V, P ∈ B(KCS)})

The cardinality of the substrate partition-sets set is

|NU,V | = 2c : c =
∑
K⊆V

bell(|KCS|)

This is bounded
2bell(y) ≤ |NU,V | ≤ 22nbell(y)

where y = |V CS|. In the case of regular variables V , having valency {d} =
{|Uw| : w ∈ V } and dimension n = |V |, the cardinality is

|NU,V | = 2c : c =
∑

k∈{0...n}

(
n

k

)
bell(dk)

A substrate partition-set N ∈ NU,V maps to a multi-partition transform,
{PT : P ∈ N}T ∈ TU,P∗ . A substrate partition-set N ∈ NU,V maps to a
substrate transforms set by expanding the partitions to V , {P V T : P ∈ N}T ∈
TU,V . The empty partition-set, ∅ ∈ NU,V , expands to the empty transform,
(∅, ∅) ∈ TU,V . A converse function maps a substrate transform T ∈ TU,V
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to a contracted partition-set, {P% : P ∈ der(T )} ∈ NU,V . The substrate
transforms set can therefore be defined in terms of substrate partition-sets,

TU,V = {{P V T : P ∈ N}T : N ∈ NU,V } = {{PT : P ∈ N}TV : N ∈ NU,V }

Define transform ∈
⋃
{P(RU)→ TU,P∗ : U ∈ U} as

transform(N) := {PT : P ∈ N}T

and shorthand NT := transform(N). Then the substrate transforms set is
defined TU,V = {NTV : N ∈ NU,V }.

Define the converse function that constructs a substrate partition-set given a
one functional transform, partitionset ∈

⋃
{TU,f,1 → P(RU) : U ∈ U}

partitionset(T ) := {(X%(V ∪ {w}), {w})P : w ∈ W}

where W = der(T ), V = und(T ) and X = his(T ).

Similarly a substrate pointed partition-set N ∈ P(R∗,U) in variables V is con-
strained to be such that each of the pointed partitions has variables which are
a subset of V , ∀P∗ ∈ N (vars(P∗) ⊆ V ). A substrate pointed partition-set is
also constrained such that the partitions are unique, |dom(N)| = |N |. Define
the substrate pointed partition-sets set

N∗,U,V = P({(P,C∗) : K ⊆ V, P ∈ B(KCS), C∗ ∈ P}) ∩ (RU → P(SU))

A substrate pointed partition-set N ∈ N∗,U,V maps to a substrate transform
by expanding the partitions to V , {P V T : (P, ·) ∈ N} ∈ TU,V . The point
component is forgotten. This is no converse function to map a substrate
transform T ∈ TU,V to a substrate pointed partition-set except in the case
where the contractions are unary partitions, ∀P ∈ der(T ) (|P%| = 1). In this
case the substrate pointed partition-set is {(P%, C∗) : P ∈ der(T ), {C∗} =
P%} ∈ NU,V .

Consider the set of all the flattened expanded partition transforms gener-
ated from a one functional definition set. Define flatten ∈ F → F

flatten(F ) :=

{(X%(V ∪W ),W )PT : T ∈ F, W = der(T )} : V = und(F ), X =
∏

his(F )

where his = histograms, und = underlying and der = derived. If F ∈ FU,1
then flatten(F ) is a subset of the base fud, flatten(F ) ⊆ FU,V ∈ FU,P. All
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of the partition transforms are expanded, ∀T ∈ flatten(F ) (TP = TPV ),
where V = und(F ). The flatten function uses a similar method to that
used to create the equivalent transform by taking the product, X, of all the
histograms in the fud. The flattened fud can also be defined in terms of
the equivalent transform of the depends functional definition set where the
system U is given. The resultant partitions are expanded to the substrate of
underlying variables of the fud

flatten(F ) = {GTPV T : T ∈ F, G = depends(F, der(T ))}
⊆ {GTPV T : G ⊆ F, und(G) ⊆ V }

where V = und(F ). The flattened fud is not equal to the given fud unless
the fud is a subset of the base fud, F ∩ FU,V 6= F =⇒ flatten(F ) 6= F .

Another special case of a partition functional definition set, F ∈ FU,P, that
consists only of partition transforms is the power functional definition set.
This set is constructed from a substrate V in a system U by partitioning
the cartesian of all subsets of V , and recursing on the union of the set of
newly derived variables and the underlying variables. The power functional
definition set excludes partition circularities because each of its transforms
is constrained such that none is equivalent to an element of the flattened fud
of its underlying transforms in the depends functional definition set. Define
power(U) ∈ P(VU)→ FU,P

power(U)(V ) := power(U)(V, ∅)

Define power(U) ∈ P(VU)×FU,P → FU,P

power(U)(V, F ) :=

if(G = ∅, F, power(U)(V, F ∪G)) :

G = {T : K ⊆ vars(F ) ∪ V, H = depends(F,K),

T ∈ FU,K \ F, (H ∪ {T})TPT /∈ flatten(H)}

The power fud contains as subsets all possible non-circular layered parti-
tion fuds on the given substrate V or subset of the substrate. Let GU,V =
power(U)(V ). The power fud is a superset of the power fuds of subsets of
the substrate, ∀K ⊆ V (power(U)(K) ⊆ GU,V ). The power fud is a superset
of the base fud, FU,V ⊂ GU,V . Also the base fud is equal to flattened fud
of the power fud, FU,V = flatten(GU,V ) = {T : T ∈ GU,V , und(T ) = V } ⊂
GU,V . The power fud of a non-empty set of substrate variables, V 6= ∅, ex-
cludes partition circularities and so has a finite depth or number of layers,
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layer(GU,V , der(GU,V )) = |B(V CS)| + 1 = bell(y) + 1 where substrate volume
y = |V CS|. The depth of the power fud is therefore greater than the cardinal-
ity of its base fud and flattened fud. The base fud is a subset of the first layer
subset, FU,V = {PT : P ∈ B(V CS)} ⊂ {T : T ∈ GU,V , und(T ) ⊆ V } ⊂ GU,V ,
where the first layer subset is {T : T ∈ GU,V , und(T ) ⊆ V } = {M : M ⊂
GU,V , und(M) ⊆ V, layer(M, der(M)) = 1} = {PT : K ⊆ V, P ∈ B(KCS)}.
The cardinality of the first layer subset is the width of the bottom layer,
therefore the cardinality of the power fud of a non-empty set of substrate
variables is greater than twice the cardinality of non-powerset base fud,
|GU,V | > 2 bell(y). Thus the power fud is less practicable than the base
fud. See appendix ‘Cardinality of the power functional definition set’.

Given a set of substrate variables V ⊂ VU in system U , let the set FU,V ⊂
FU,P be the set of all subsets of the power fud having underlying variables
equal to or a subset of V

FU,V = {F : F ⊆ power(U)(V ), und(F ) ⊆ V }

This finite set is called the substrate fuds set on variables V . Constrain the
system U such that it contains all of the partition variables in the trans-
forms of the fuds,

⋃
{der(T ) : F ∈ FU,V , T ∈ F} ⊂ vars(U). The sub-

strate fuds set can also be defined in terms of the variables in the power fud,
FU,V = {depends(GU,V , X) : X ⊆ vars(GU,V )} where GU,V = power(U)(V ).
The substrate fuds set can also be defined in terms of the transforms in the
power fud, FU,V = {

⋃
{depends(GU,V , der(T )) : T ∈ F} : F ⊆ GU,V }. Thus

the cardinality of the substrate fuds set is such that |FU,V | ≤ 2|GU,V |. The
substrate fuds set contains the empty fud, ∅ ∈ FU,V . The substrate fuds set
is a superset of the powerset of the base fud, P(FU,V ) ⊂ FU,V .

The consistent one functional definition sets FU,1,x ⊂ FU,1 is the subset of one
functional definition sets that do not contain circularities or contradictions
or duplicates. All consistent one functional definition sets, F ∈ FU,1,x having
underlying variables V , und(F ) = V , have an equivalence class defined by a
member of the substrate fuds set, E ∈ FU,V . That is, fud F and substrate
fud E form a pair in a surjective functional map Z, (F,E) ∈ Z ∈ FU,1,x,V →
FU,V where FU,1,x,V = {F : F ∈ FU,1,x, und(F ) = V }. Each F implies
G = mono(F ) ∈ FU,1 which is the one functional definition set that is mono-
variate in its derived variables in each transform, ∀T ∈ G (|der(G)| = 1),
such that GT = FT. There exists exactly one non-literal frame variables
mapping X in system U such that ∃X ⊂ {(v, (w,W )) : Q ∈ (vars(F ) \ V ) ·
(vars(E) \ V ), (v, w) ∈ Q, W ∈ Uv · Uw} (X ∈ VU ↔ (VU × (WU ↔ WU)))
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such that reframe(X,G) is defined and reframe(X,G) = E. The existence
of a mapping between the transforms, G↔ E, implies that the cardinalities
are equal, |G| = |E|. The cardinalities of the underlying variables are equal,
∃M ∈ G ↔ E ∀(T, T ′) ∈ M (|und(T )| = |und(T ′)|). The number of layers
are equal layer(F, der(F )) = layer(E, der(E)). Thus the possibly infinite set
FU,1,x is partitioned into sets of fuds, FU,1,x,V , having the same underlying
variables, V ,

⋃
{FU,1,x,V : F ∈ FU,1,x, V = und(F )} = FU,1,x. Then these

possibly infinite sets are partitioned into equivalence classes by finite sub-
strate fuds sets, FU,1,x,V → FU,V .

The substrate transforms set, TU,V , and substrate fuds set, FU,V , in substrate
variables V in system U are closely related. Each substrate transform T ∈
TU,V can be exploded to a substrate fud, explode(T ) = {PT : P ∈ der(T )} =
{(his(T )%(V ∪ {P}), {P}) : P ∈ der(T )} ∈ FU,V . A similar explode exists
for contracted partitions, explode(T%) = {P%T : P ∈ der(T )} ∈ FU,V . The
subset of substrate transforms that are mono-variate in the derived variables
form singleton substrate fuds, {{T} : T ∈ TU,V , |der(T )| = 1} ⊂ FU,V . The
substrate transforms set is equal to the set of expanded equivalent transforms
of the substrate fud set

TU,V = {{GTPV T : w ∈ der(F ), G = depends(F, {w})}T : F ∈ FU,V }

Thus there exists a functional surjection FU,V → TU,V . Each partition P ∈
B(V CS) forms an equivalence class for non-empty substrate transforms. Each
substrate transform T ∈ TU,V forms an equivalence class for a substrate fud
E ∈ FU,V which in turn forms an equivalence class for a consistent one fud
F ∈ FU,1,x where und(F ) = V

FU,1,x,V → FU,V → TU,V → (FU,V ∪ {(∅, ∅)})↔ (B(V CS) ∪ {∅})

The empty consistent fud, ∅ ∈ FU,1,x,V , maps to the empty fud, ∅ ∈ FU,V ,
thence to the empty transform, (∅, ∅) ∈ TU,V , and thence to the empty parti-
tion ∅ ∈ (B(V CS) ∪ {∅}).

The substrate decompositions set DU,V ⊂ trees(S × T ) is the subset of
distinct decompositions, Dd, such that the transforms are in the substrate
transforms set, TU,V , and no transform appears more than once in any path

DU,V = {D : D ∈ Dd, transforms(D) ⊆ TU,V ,
∀L ∈ paths(D) (maxr(count({(T, i) : (i, (·, T )) ∈ L})) = 1)}

The substrate decompositions set, DU,V , is finite because TU,V is finite. The
depth of the tree of a substrate decomposition D ∈ DU,V is less than or equal
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to the cardinality of the substrate transforms set, depth(D) ≤ |TU,V |. Note
that if the constraint on the paths were relaxed to be maxr(count(flip(L))) =
1, the maximum depth would be much greater but the depth of the decom-
position application tree, D∗, would still be limited, depth(D∗) ≤ |TU,V |.

The substrate decompositions set, DU,V , can be created explicitly from the
power decomposition. Define power(U) ∈ P(VU)→ trees(SU × TU) as

power(U)(V ) := {((∅, T ), power(U)(V, T, {T})) : T ∈ TU,V }

where power(U) ∈ P(VU)× TU,f,1 ×FU,1 → trees(SU × TU) is defined as

power(U)(V, T, F ) :=

{((S,R), power(U)(V,R, F ∪ {R})) : S ∈ std(T ), R ∈ TU,V , R /∈ F} ∪
{((S,R), ∅) : S ∈ std(T ), R ∈ TU,V , R /∈ F}

where std = stateDeriveds. Then the substrate decompositions set is the
set of distinct decompositions in the power decompositions such that the
transforms form a fud,

DU,V = {D : D ∈ distinct(power(U)(V )),

∀(A,W ), (B,X) ∈ transforms(D) ((A,W ) 6= (B,X) =⇒ W ∩X = ∅)}

The substrate decompositions set, DU,V , maps to TU,V in several ways. First,
a substrate decomposition D ∈ DU,V has a partition, DP ∈ B(V CS), which is
already expanded to V , DPT ∈ TU,V . Second, if the substrate decomposition is
well behaved, D ∈ Dw,U , the crown transform, transformCrown(U)(D), con-
structed from the transforms fud, transforms(D) and the slices fud, slices(U)(D),
can be expanded, {(X%(V ∪ {w}), {w})PV T : w ∈ W}T ∈ TU,V where
(X,W ) = transformCrown(U)(D). Third, if the substrate decomposition
is well behaved, D ∈ Dw,U , the nullable transform, DT, constructed from
the transforms fud, transforms(D) and the nullable fud, nullable(U)(D),
can also be expanded, {(X%(V ∪ {w}), {w})PV T : w ∈ W}T ∈ TU,V where
(X,W ) = DT.

The substrate functional definition set decompositions DF,U,V ⊂ trees(S ×F)
is a subset of the distinct fud decompositions, DF,d, and can be defined sim-
ilarly to substrate transform decompositions, DU,V ⊂ trees(S × T ). That is,
all of the fuds are substrate fuds and none can appear more than once in a
path

DF,U,V = {D : D ∈ DF,d, fuds(D) ⊆ FU,V ,
∀L ∈ paths(D) (maxr(count({(F, i) : (i, (·, F )) ∈ L})) = 1)}
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The set of substrate fud decompositions, DF,U,V , is also finite. The sub-
strate fuds are a subset of the partition fuds, FU,V ⊂ FU,P, so the sub-
strate fud decompositions are a subset of the partition fud decompositions,
DF,U,V ⊂ DF,U,P. The depth of the tree of a substrate fud decomposition
D ∈ DF,U,V is less than or equal to the cardinality of the substrate fuds set,
depth(D) ≤ |FU,V |. The accumulated fud along any path L ∈ paths(D) is
a subset of the power fud,

⋃
ran(set(L)) ⊆ power(U)(V ) ∈ FU,P. Note that

the map of a substrate fud decomposition D ∈ DF,U,V to a transform de-
composition, DD ∈ DU , is not generally a substrate transform decomposition,
DD /∈ DU,V , unless it so happens that the fuds are singletons of substrate
transforms, fuds(D) ⊂ {{T} : T ∈ TU,V }.

The substrate fud decompositions set, DF,U,V , maps to the substrate trans-
forms set TU,V . First, a substrate fud decomposition D ∈ DF,U,V has a parti-
tion, DDP, which requires expanding to V , DDPV T ∈ TU,V . Second, the nul-
lable transform, DT, constructed from the union of the fuds,

⋃
fuds(D), and

the nullable fud, nullable(U)(DD), can be expanded, {(X%(V ∪{w}), {w})PV T :
w ∈ W}T ∈ TU,V where (X,W ) = DT.

Given substrate variables V , the non-overlapping subset of the substrate
transforms set TU,V,n ⊂ TU,V is defined

TU,V,n = {T : T ∈ TU,V , ¬overlap(T )}

The non-overlapping substrate transforms set, TU,V,n, can also be defined in
terms of substrate partition-sets. Let the non-overlapping substrate partition-
sets set NU,V,n ⊂ NU,V be defined in terms of the strong partition of the
substrate variables

NU,V,n =

{N : N ∈ NU,V , M = {vars(P ) : P ∈ N}, |M | = |N |, M ∈ B(V )}

The non-overlapping substrate partition-sets set is empty if the substrate vari-
ables is empty, NU,∅,n = ∅. The non-overlapping substrate partition-sets set
excludes the empty partition-set, ∅ /∈ NU,V,n.

Let the weak non-overlapping substrate partition-sets set N ′U,V,n ⊂ NU,V
be defined in terms of the weak partition of the substrate variables including
the empty partition-set

N ′U,V,n =

{N : N ∈ NU,V , M = {vars(P ) : P ∈ N}, |M | = |N |, M ∈ B′(V )} ∪ {∅}
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where the weak partition function is B′(V ) := B(V )∪ {Y ∪ {∅} : Y ∈ B(V )}
and B′(∅) := {{∅}}. The weak non-overlapping substrate partition-sets set
includes the empty partition-set, ∅ ∈ N ′U,V,n. If the substrate variables
set is empty, the weak non-overlapping substrate partition-sets set is a set
of the empty partition-set and a singleton of the contracted unary parti-
tion, N ′U,∅,n = {∅, {{∅CS}}}, where the unary partition is {∅CS}V = {V CS}.
The non-overlapping substrate partition-sets set is a subset of the weak non-
overlapping substrate partition-sets set, NU,V,n ⊂ N ′U,V,n,

V 6= ∅ =⇒ N ′U,V,n = NU,V,n ∪ {N ∪ {{∅CS}} : N ∈ NU,V,n} ∪ {∅}

The non-overlapping substrate transforms set is defined in terms of the weak
non-overlapping substrate partition-sets set

TU,V,n = {{P V T : P ∈ N}T : N ∈ N ′U,V,n} = {NTV : N ∈ N ′U,V,n}

where P V := expand(U)(V, P ). The non-overlapping substrate transforms
set is therefore such that

∀T ∈ TU,V,n ∀P1, P2 ∈ der(T%) (P1 6= P2 =⇒ vars(P1) ∩ vars(P2) = ∅)

The non-overlapping substrate partition-sets set can be defined explicitly

NU,V,n = {N : Y ∈ B(V ), N ∈
∏
K∈Y

B(KCS)}

and, similarly, the weak non-overlapping substrate partition-sets set can be
defined explicitly

N ′U,V,n = {N : Y ∈ B′(V ), N ∈
∏
K∈Y

B(KCS)} ∪ {∅}

and so the non-overlapping substrate transforms set can be defined explicitly

TU,V,n = {NTV : Y ∈ B′(V ), N ∈
∏
K∈Y

B(KCS)} ∪ {(∅, ∅)}

The non-overlapping substrate transforms set includes the empty transform,
(∅, ∅) ∈ TU,V,n, the unary partition transform, {V CS}T ∈ TU,V,n, the self par-
tition transform, V CS{}T ∈ TU,V,n, and the value full functional transform,
{{v}CS{}V T : v ∈ V }T ∈ TU,V,n. The base functional definition set is a subset,
FU,V ⊆ TU,V,n.

The strong non-overlapping substrate transforms set is the set of transforms
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of the non-overlapping substrate partition-sets set, {NTV : N ∈ NU,V,n}.
The non-overlapping substrate partition-sets set, NU,V,n, is constructed from
strong partitions of the substrate variables, B(V ). The strong non-overlapping
substrate transforms set is a subset of the non-overlapping substrate trans-
forms set,

{NTV : N ∈ NU,V,n} ⊆ TU,V,n

In the case of non-empty substrate variables, V 6= ∅, the cardinality of the
non-overlapping substrate partition-sets set, NU,V,n, is

|NU,V,n| =
∑

Y ∈B(V )

∏
K∈Y

|B(KCS)|

The cardinality of the strong non-overlapping substrate transforms set is
therefore bounded

|B(V CS)| ≤ |{NTV : N ∈ NU,V,n}| ≤
∑

Y ∈B(V )

∏
K∈Y

|B(KCS)|

If the underlying variables are regular, having dimension n = |V | and com-
mon valency d, {d} = {|Ux| : x ∈ V }, then the cardinality of the non-
overlapping substrate partition-sets set is

|NU,V,n| =
∑

Y ∈B(V )

∏
K∈Y

bell(d|K|) =
∑

(L,c)∈bcd(n)

c ∏
(k,m)∈L

bell(dk)m


where bcd = bellcd and the partition function cardinality function bellcd ∈
N>0 → (L(N)→ N), defined in appendix ‘Partitions’, below, computes the
histogram of the histograms of the component cardinalities.

The cardinality of the strong non-overlapping substrate transforms set is
bounded

bell(dn) ≤ |{NTV : N ∈ NU,V,n}| ≤ bell(n)× bell(dn)

Generalising to irregular,

bell(y) ≤ |{NTV : N ∈ NU,V,n}| ≤ bell(n)× bell(y)

where y = volume(U)(V ).

The cardinality of the weak non-overlapping substrate partition-sets set is
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twice that of the non-overlapping substrate partition-sets set plus one, |N ′U,V,n| =
2× |NU,V,n|+ 1. The cardinality of the non-overlapping substrate transforms
set is therefore bounded

2× |B(V CS)| ≤ |TU,V,n| ≤ 2×
∑

Y ∈B(V )

∏
K∈Y

|B(KCS)|+ 1

If the underlying variables are regular, the cardinality of the non-overlapping
substrate transforms set is bounded 2 × bell(dn) ≤ |TU,V,n| ≤ 2 × bell(n) ×
bell(dn) + 1. Generalising to irregular,

2× bell(y) ≤ |TU,V,n| ≤ 2× bell(n)× bell(y) + 1

where y = volume(U)(V ). Compare the cardinality of the substrate trans-
forms set itself,

|TU,V | = 2bell(y)

The cardinality of the non-overlapping subset, |TU,V,n|, may be compared to
the cardinality of the subset of the substrate transforms set which limits the
cardinality of the derived variables to the dimension, the fixed dimension
substrate transforms set,

|{T : T ∈ TU,V , |der(T )| ≤ n}| =
∑

k∈{0...n}

bell(y)!

k! (bell(y)− k)!
>

1

n!
(bell(y))n

where xn is the falling factorial.

A practicable volume of regular variables V of the non-overlapping substrate
transforms set, TU,V,n, is y = 8, for example, the bi-valent tri-variate case
y = 23.

Consider the binary non-overlapping substrate transforms set TU,V,n,b which
is a subset of the non-overlapping substrate transforms set, TU,V,n,b ⊆ TU,V,n.
The binary non-overlapping substrate partition-sets set NU,V,n,b ⊂ NU,V,n con-
strains the partition of the substrate variables to have a cardinality of two

NU,V,n,b = {N : N ∈ NU,V,n, |N | = 2}

The binary non-overlapping substrate transforms set is defined in terms of
the binary non-overlapping substrate partition-sets set

TU,V,n,b = {NTV : N ∈ NU,V,n,b}

185



The binary non-overlapping substrate transforms set is such that

∀T ∈ TU,V,n,b (T 6= {V CS}T =⇒ |der(T )| = 2)

In the case of empty or singleton substrate variables the binary non-overlapping
substrate transforms set is empty, |V | < 2 =⇒ TU,V,n,b = ∅. In the case
of pluri-variate substrate the binary non-overlapping substrate transforms set
includes the unary partition transform, |V | ≥ 2 =⇒ {V CS}T ∈ TU,V,n,b.

The binary non-overlapping substrate partition-sets set, NU,V,n,b, can be de-
fined explicitly

NU,V,n,b = {{P,Q} : K ⊂ V, K 6= ∅, K 6= V,

P ∈ B(KCS), Q ∈ B((V \K)CS)}

The cardinality is

|NU,V,n,b| = 1/2×
∑

K∈P(V )\{∅,V }

|B(KCS)| × |B((V \K)CS)|

In the case of regular variables of valency d and dimension n, the cardinality
is

|NU,V,n,b| = 1/2×
∑

k∈{1...n−1}

(
n

k

)
bell(dk)× bell(dn−k)

The binary non-overlapping substrate transforms set, TU,V,n,b, can be defined
explicitly

TU,V,n,b = {{P V T, QV T}T : K ⊂ V, K 6= ∅, K 6= V,

P ∈ B(KCS), Q ∈ B((V \K)CS)}

The cardinality of TU,V,n,b is less than 2n−2× bell(y) where volume y = |V C|.

Consider the self non-overlapping substrate transforms set TU,V,n,s which is
a subset of the non-overlapping substrate transforms set, TU,V,n,s ⊆ TU,V,n. The
self non-overlapping substrate partition-sets set NU,V,n,s ⊂ NU,V,n constrains
the partition of the substrate variables to have a cardinality equal to that of
the substrate variables

NU,V,n,s = {N : N ∈ NU,V,n, |N | = |V |}
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The self non-overlapping substrate transforms set is defined in terms of the
self non-overlapping substrate partition-sets set

TU,V,n,s = {NTV : N ∈ NU,V,n,s}

The self non-overlapping substrate transforms set is such that

∀T ∈ TU,V,n,s ∀P ∈ der(T%) (|vars(P )| ≤ 1)

In the case of empty substrate variables the self non-overlapping substrate
transforms set is empty, TU,∅,n,s = ∅. In the case of multi-variate substrate
the self non-overlapping substrate transforms set includes the unary parti-
tion transform, V 6= ∅ =⇒ {V CS}T ∈ TU,V,n,s, and the value full functional
transform, V 6= ∅ =⇒ {{v}CS{}V T : v ∈ V }T ∈ TU,V,n,s.

The self non-overlapping substrate partition-sets set, NU,V,n,s, can be defined
explicitly

NU,V,n,s =
∏
w∈V

B({w}CS)

The cardinality is

|NU,V,n,s| =
∏
w∈V

|B({w}CS)|

If V is regular having dimension n = |V | and valency {d} = {|Uw| : w ∈ V },
the cardinality is

|NU,V,n,s| = bell(d)n

The self non-overlapping substrate transforms set, TU,V,n,s, can be defined
explicitly

TU,V,n,s = {NTV : N ∈
∏
w∈V

B({w}CS)}

If V is regular the cardinality of TU,V,n,s is less than bell(d)n.

In the case of pluri-variate substrate the intersection of the binary non-
overlapping substrate transforms set and the self non-overlapping substrate
transforms set is non-empty, including at least the unary partition transform,
|V | ≥ 2 =⇒ {V CS}T ∈ TU,V,n,b ∩ TU,V,n,s. The binary non-overlapping sub-
strate transforms set equals the self non-overlapping substrate transforms set
if the substrate is bi-variate, |V | = 2 =⇒ TU,V,n,b = TU,V,n,s.
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Having considered the self non-overlapping substrate transforms set, TU,V,n,s,
now consider the less constrained self overlapping substrate transforms set
TU,V,o,s ⊆ TU,V . Here the substrate is still self-partitioned, V {}, but more
than one derived partition variable for each substrate variable is allowed.
The self overlapping substrate partition-sets set NU,V,o,s ⊂ NU,V is explicitly
defined

NU,V,o,s = {
⋃

H : H ∈
∏
w∈V

P(B({w}CS))}

The self overlapping substrate transforms set is defined in terms of the self
overlapping substrate partition-sets set

TU,V,o,s = {NTV : N ∈ NU,V,o,s}

The self overlapping substrate transforms set is such that

∀T ∈ TU,V,o,s ∀P ∈ der(T%) (|vars(P )| ≤ 1)

The self non-overlapping substrate transforms set is a subset of the self over-
lapping substrate transforms set, TU,V,n,s ⊆ TU,V,o,s. In the case of empty
substrate variables the self overlapping substrate transforms set is empty,
TU,∅,o,s = ∅. In the case of multi-variate substrate the self overlapping sub-
strate transforms set includes the empty transform, V 6= ∅ =⇒ (∅, ∅) ∈
TU,V,o,s, the unary partition transform, V 6= ∅ =⇒ {V CS}T ∈ TU,V,o,s, and the
value full functional transform, V 6= ∅ =⇒ {{v}CS{}V T : v ∈ V }T ∈ TU,V,o,s.

The self overlapping substrate partition-sets set, NU,V,o,s, has cardinality

|NU,V,o,s| =
∏

(2m : w ∈ V, m = |B({w}CS)|)

If V is regular, having dimension n = |V | and valency {d} = {|Uw| : w ∈ V },
the cardinality of TU,V,o,s equals 2n×bell(d).

In the case of non-empty substrate variables, V 6= ∅, the subset of the
non-overlapping substrate transforms set, TU,V,n, which are unary partitions
of the substrate, unary(V ) = {V }, is simply the base fud, |V | ≥ 1 =⇒
{T : T ∈ TU,V,n, |der(T )| = 1} = FU,V , which has cardinality bell(y) where
y = |V CS|. In the case of pluri-variate substrate the intersection of the
unary substrate transforms set, the binary non-overlapping substrate trans-
forms set and the self non-overlapping substrate transforms set is non-empty,
including at least the unary partition transform, |V | ≥ 2 =⇒ {V CS}T ∈⋂
{FU,V , TU,V,n,b, TU,V,n,s}.
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In contrast to subsets of the substrate transforms set, TU,V , that partition
the substrate variables in various ways, consider subsets that impose con-
straints on the partitions of the cartesian states of subsets of the substrate.
Consider the substrate self-cartesian transforms set TU,V,c which is a subset
of the substrate transforms set, TU,V,c ⊆ TU,V . Let the substrate self-cartesian
partition-sets set NU,V,c ⊂ NU,V be defined such that the partition sets con-
sist only of self partitions of the cartesian states of subsets of the substrate,
self(KCS)V where K ⊆ V

NU,V,c = {N : N ∈ NU,V , ∀P ∈ N (P = (
⋃

P ){})}

= {N : N ∈ NU,V , ∀P ∈ N (|P | = |
⋃

P |)}

using the shorthand X{} = self(X). The substrate self-cartesian partition-
sets set includes the empty partition-set, ∅ ∈ NU,V,c. If the substrate vari-
ables is empty, the substrate self-cartesian partition-sets set is a set of the
empty partition-set and a singleton of the contracted unary partition, NU,∅,c =
N ′U,∅,n = {∅, {{∅CS}}}.

The substrate self-cartesian transforms set is defined in terms of substrate
self-cartesian partition-sets set

TU,V,c = {NTV : N ∈ NU,V,c}

The substrate self-cartesian transforms set is such that

∀T ∈ TU,V,c ∀P ∈ der(T%) ♦K = vars(P ) (P = KCS{}))

The substrate self-cartesian partition-sets set, NU,V,c, can be defined explicitly

NU,V,c = {{KCS{} : K ∈ X} : X ⊆ P(V )}

The substrate self-cartesian transforms set, TU,V,c, can be defined explicitly

TU,V,c = {{P V T : K ∈ X, P = KCS{}}T : X ⊆ P(V )}

The substrate self-cartesian transforms set includes the empty transform,
(∅, ∅) ∈ TU,V,c, the unary partition transform, {V CS}T ∈ TU,V,c, the self par-
tition transform, V CS{}T ∈ TU,V,c, and the value full functional transform,
{{v}CS{}V T : v ∈ V }T ∈ TU,V,c.

The cardinality of the substrate self-cartesian partition-sets set is |NU,V,c| =
22n where dimension n = |V |. Therefore the cardinality of the substrate self-
cartesian transforms set is bounded |TU,V,c| ≤ 22n .
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The intersection between the substrate self-cartesian partition-sets set, NU,V,c,
and the non-overlapping substrate partition-sets set, NU,V,n, is

NU,V,c ∩NU,V,n = {{KCS{} : K ∈ Y } : Y ∈ B(V )}

In the case of non-empty substrate variables, the cardinality of the intersec-
tion is V 6= ∅ =⇒ |NU,V,c ∩NU,V,n| = bell(n) where dimension n = |V |.

The intersection between the substrate self-cartesian partition-sets set, NU,V,c,
and the weak non-overlapping substrate partition-sets set, N ′U,V,n, is

NU,V,c ∩N ′U,V,n = {{KCS{} : K ∈ Y } : Y ∈ B′(V )} ∪ {∅}

In the case of non-empty substrate variables, the cardinality of the intersec-
tion is V 6= ∅ =⇒ |NU,V,c ∩ N ′U,V,n| = 2 × bell(n) + 1 where dimension
n = |V |. The cardinality of the substrate transforms of the intersection
between the substrate self-cartesian partition-sets set, NU,V,c, and the weak
non-overlapping substrate partition-sets set, N ′U,V,n, is bounded

|{NTV : N ∈ NU,V,c ∩N ′U,V,n}| ≤ 2× bell(n) + 1

The transforms of the intersection are bijective between the underlying states
and derived states, split(V,XS) ∈ V CS ↔ WCS, where T ∈ {NTV : N ∈
NU,V,c ∩ N ′U,V,n} and (X,W ) = T . The substrate transforms of the inter-
section form a subset of the intersection between the substrate self-cartesian
transforms set, TU,V,c, and the non-overlapping substrate transforms set, TU,V,n,

{NTV : N ∈ NU,V,c ∩N ′U,V,n} ⊆ TU,V,c ∩ TU,V,n

The unary transform is a member of the intersection between the substrate
self-cartesian transforms set and the non-overlapping substrate transforms
set, {V CS}T ∈ TU,V,c ∩ TU,V,n, but it is only a member of the substrate trans-
forms of the intersection between the substrate self-cartesian partition-sets
set and the weak non-overlapping substrate partition-sets set if the substrate
consists only of mono-valent variables, ∃v ∈ V (|Uv| > 1)) =⇒ {V CS}T /∈
{NTV : N ∈ NU,V,c ∩N ′U,V,n}.

The intersection between the substrate self-cartesian partition-sets set, NU,V,c,
and the binary non-overlapping substrate partition-sets set, NU,V,n,b, is

NU,V,c ∩NU,V,n,b = {{KCS{}, (V \K)CS{}} : K ⊂ V, K 6= ∅, K 6= V }
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In the case of pluri-variate substrate variables, the cardinality of the inter-
section is |NU,V,c ∩ NU,V,n,b| = 2n−1 − 1 where dimension n = |V |. The car-
dinality of the substrate transforms of the intersection between the substrate
self-cartesian partition-sets set, NU,V,c, and the binary substrate partition-sets
set, N ′U,V,n,b, is bounded

|{NTV : N ∈ NU,V,c ∩NU,V,n,b}| ≤ 2n−1 − 1

The substrate transforms of the intersection form a subset of the intersection
between the substrate self-cartesian transforms set, TU,V,c, and the binary
non-overlapping substrate transforms set, TU,V,n,b,

{NTV : N ∈ NU,V,c ∩NU,V,n,b} ⊆ TU,V,c ∩ TU,V,n,b

The intersection between the substrate self-cartesian transforms set, NU,V,c,
and the self non-overlapping substrate partition-sets set, NU,V,n,s, is a single-
ton

NU,V,c ∩NU,V,n,s = {{{v}CS{} : v ∈ V }}

The corresponding substrate transform is the value full functional transform,
{{v}CS{}V T : v ∈ V }T. The value full functional transform is a member of
the intersection between the substrate self-cartesian transforms set, TU,V,c,
and the self non-overlapping substrate transforms set, TU,V,n,s,

{{v}CS{}V T : v ∈ V }T ∈ TU,V,c ∩ TU,V,n,s

Consider the substrate binary-cartesian partition transforms set TU,V,2 which
is a subset of the substrate transforms set, TU,V,2 ⊆ TU,V . Let the substrate
binary-cartesian partition-sets set NU,V,2 ⊂ NU,V be defined such that the
partition sets consist only of binary partitions of the cartesian states of sub-
sets of the substrate, |P V | = |P | = 2 where P ∈ B(KCS) and K ⊆ V ,

NU,V,2 = {N : N ∈ NU,V , ∀P ∈ N (|P | = 2)}

The substrate binary-cartesian partition-sets set includes the empty partition-
set, ∅ ∈ NU,V,2.

The substrate binary-cartesian transforms set is defined in terms of substrate
binary-cartesian partition-sets set

TU,V,2 = {NTV : N ∈ NU,V,2}
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The substrate binary-cartesian transforms set is such that

∀T ∈ TU,V,2 ∀P ∈ der(T ) (|P | = 2)

The substrate binary-cartesian partition-sets set, NU,V,2, can be defined ex-
plicitly

NU,V,2 = P({P : K ⊆ V, P ∈ B(KCS), |P | = 2})
= P({{C,KCS \ C} : K ⊆ V, C ∈ P(KCS) \ {∅, KCS}})

The cardinality of the substrate binary-cartesian partition partition-sets set
is |NU,V,2| = 2m where

m =
∑
|P(KCS)|/2− 1 : K ⊆ V, |KCS| ≥ 2

=
∑

2x−1 − 1 : K ⊆ V, x = |KCS|, x ≥ 2

In the case where the substrate volume is at least two, y ≥ 2, where y = |V CS|,
the cardinality of the substrate binary-cartesian partition partition-sets set is
bounded, 22y−1−1 ≤ |NU,V,2| ≤ 22n+y−1

, where n = |V |.

In the case of regular variables of valency d ≥ 2 and dimension n, the
cardinality of the substrate binary-cartesian partition partition-sets set is

|NU,V,2| = 2m : m =
∑

k∈{1...n}

(
n

k

)
(2d

k−1 − 1)

The substrate binary-cartesian partition transforms set includes the empty
transform, (∅, ∅) ∈ TU,V,2, but excludes the self partition transform, V CS{}T /∈
TU,V,2, unless the volume is two, y = 2. The substrate binary-cartesian parti-
tion transforms set excludes the unary partition transform, {V CS}T /∈ TU,V,2.

The crown transform, transformCrown(D), of a substrate decomposition D ∈
DU,V maps to a substrate transform in the substrate binary-cartesian parti-
tion transforms set, {(X%(V ∪ {w}), {w})PV T : w ∈ W}T ∈ TU,V,2 where
(X,W ) = transformCrown(D). This is because contingent slice binary par-
titions form the derived variables of the crown transform, ∀P ∈ W (|P | = 2).

The intersection between the substrate binary-cartesian partition partition-
sets set and the non-overlapping substrate partition-sets set is

NU,V,2 ∩NU,V,n
= {N : Y ∈ B(V ), N ∈

∏
K∈Y

{P : P ∈ B(KCS), |P | = 2}}

= {N : Y ∈ B(V ), N ∈
∏
K∈Y

{{C,KCS \ C} : C ∈ P(KCS) \ {∅, KCS}}}
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In the case of non-empty substrate variables, V 6= ∅, the intersection has
cardinality

|NU,V,2 ∩NU,V,n| =
∑(∏

K∈Y

2|K
CS|−1 − 1

)
: Y ∈ B(V ), ∀K ∈ Y (|KCS| ≥ 2)

The cardinality is bounded |NU,V,2∩NU,V,n| ≤ bell(n)×(2y−1), where volume
y = |V CS| and dimension n = |V |.

In the case of regular variables of valency d ≥ 2 and dimension n, the
cardinality of the intersection is

|NU,V,2 ∩NU,V,n| =
∑

(L,c)∈bcd(n)

c ∏
(k,m)∈L

(2d
k−1 − 1)m


The subset of the substrate transforms set, TU,V , which consists of trans-

forms having unary partitions of the cartesian states is simply the empty
transform and the unary partition transform. Let the substrate unary-cartesian
partition-sets set NU,V,1 ⊂ NU,V be defined such that the partition sets con-
sist only of unary partitions of the cartesian states of subsets of the substrate,
|P V | = |P | = 1 where P ∈ B(KCS) and K ⊆ V ,

NU,V,1 = {N : N ∈ NU,V , ∀P ∈ N (|P | = 1)}
= P({{KCS} : K ⊆ V })

The cardinality of the substrate unary-cartesian partition-sets set is |NU,V,1| =
22n . The set of substrate transforms is

{NTV : N ∈ NU,V,1} = {(∅, ∅), {V CS}T} ⊂ TU,V

Consider the substrate decremented transforms set TU,V,− which is a subset
of the substrate transforms set, TU,V,− ⊆ TU,V . Let the substrate decremented
partition-sets set NU,V,− ⊂ NU,V be defined such that the partition sets con-
tain exactly one decremented self partition, decs(self(JCS)) where J ⊆ V and
decs = decrements ∈ RU → P(RU), with the remainder being self partitions
of the cartesian states, self(KCS) where K ⊆ V

NU,V,− = {N : N ∈ NU,V , ∃Q ∈ N ((|Q| = |
⋃

Q| − 1) ∧

(∀P ∈ N (P 6= Q =⇒ |P | = |
⋃

P |)))}
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The substrate decremented partition-sets set excludes the empty partition-
set, ∅ /∈ NU,V,−. Note that this definition does not prevent the partition-set
from containing both the decremented partition, Q ∈ decs(self(JCS)) and the
self-partition, P = self(JCS), on the same subset, J ⊆ V , of the substrate
variables.

The substrate decremented transforms set is defined in terms of substrate
decremented partition-sets set

TU,V,− = {NTV : N ∈ NU,V,−}

The substrate decremented transforms set is such that

∀T ∈ TU,V,− ∃Q ∈ der(T%) ♦J = vars(Q) ((Q ∈ decs(JCS{}))∧
(∀P ∈ der(T%) ♦K = vars(P ) (P 6= Q =⇒ P = KCS{})))

The substrate decremented partition-sets set, NU,V,−, can be defined explicitly

NU,V,− = {{Q} ∪N : J ⊆ V, Q ∈ decs(JCS{}), N ∈ NU,V,c}
= {{Q} ∪ {KCS{} : K ∈ X} : J ⊆ V, Q ∈ decs(JCS{}), X ⊆ P(V )}
= {{JCS{} \ {{S1}, {S2}} ∪ {{S1, S2}}} ∪ {KCS{} : K ∈ X} :

J ⊆ V, S1, S2 ∈ JCS, S1 6= S2, X ⊆ P(V )}

The substrate decremented transforms set excludes the empty transform,
(∅, ∅) /∈ TU,V,−. If the substrate variables is a singleton of a bi-valent variable,
the substrate decremented transforms set includes the self partition trans-
form, (|V | = 1) ∧ (|V CS| = 2) =⇒ V CS{}T ∈ TU,V,−. The substrate decre-
mented transforms set includes the decremented self partition transforms,
{QT : Q ∈ decs(V CS{})} ⊂ TU,V,−. The substrate decremented transforms
set excludes the unary partition transform, {V CS}T /∈ TU,V,−, if none of the
substrate variables are bi-valent, ∀w ∈ V (|Uw| 6= 2).

The cardinality of the substrate decremented partition-sets set is

|NU,V,−| = 22n
∑

J∈P(V )\{∅}

|JCS|(|JCS| − 1)/2

where dimension n = |V |. Thus |NU,V,−| < 22n+n−1y2 where substrate volume
y = |V CS|. If the substrate V is regular having valency d, the cardinality is

|NU,V,−| = 22n
∑

k∈{1...n}

(
n

k

)
dk(dk − 1)/2
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which is bounded |NU,V,−| < 22n+n−1d2n.

The intersection of the substrate decremented partition-sets set and the weak
non-overlapping substrate partition-sets set can be defined explicitly

NU,V,− ∩N ′U,V,n =

{{Q} ∪ {KCS{} : K ∈ Y, K 6= J} : Y ∈ B′(V ), J ∈ Y, Q ∈ decs(JCS{})}

The cardinality of the intersection is

|NU,V,− ∩N ′U,V,n| =
∑

Y ∈B′(V )

∑
J∈Y \{∅}

|JCS|(|JCS| − 1)/2

So |NU,V,− ∩ N ′U,V,n| ≤ bell(n)× ny2, where dimension n = |V | and volume
y = |V CS|.

Similarly, the intersection of the substrate decremented partition-sets set and
the non-overlapping substrate partition-sets set can be defined explicitly

NU,V,− ∩NU,V,n =

{{Q} ∪ {KCS{} : K ∈ Y, K 6= J} : Y ∈ B(V ), J ∈ Y, Q ∈ decs(JCS{})}

The cardinality of the intersection is

|NU,V,− ∩NU,V,n| =
∑

Y ∈B(V )

∑
J∈Y \{∅}

|JCS|(|JCS| − 1)/2

So |NU,V,− ∩NU,V,n| ≤ bell(n)×ny2/2, where dimension n = |V | and volume
y = |V CS|. In the case of regular variables of valency d and dimension n, the
cardinality is

|NU,V,− ∩NU,V,n| =
∑

(L,c)∈bcd(n)

c ∑
(k,m)∈L

mdk(dk − 1)/2


The intersection of the substrate decremented partition-sets set and the self
non-overlapping substrate partition-sets set can be defined explicitly

NU,V,− ∩NU,V,n,s
= {{Q} ∪ {{u}CS{} : u ∈ V \ {w}} : w ∈ V, Q ∈ decs({w}CS{})}
= {{{w}CS{} \ {{S1}, {S2}} ∪ {{S1, S2}}} ∪ {{u}CS{} : u ∈ V \ {w}} :

w ∈ V, s, t ∈ Uw, s 6= t, S1 = {(w, s)}, S2 = {(w, t)}}
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The cardinality of the intersection is

|NU,V,− ∩NU,V,n,s| =
∑
w∈V

|{w}CS|(|{w}CS| − 1)/2

So |NU,V,− ∩ NU,V,n,s| ≤ 1/2 × ny2, where dimension n = |V | and volume
y = |V CS|. If the substrate V is regular having valency d, then

|NU,V,− ∩NU,V,n,s| = nd(d− 1)/2

By contrast, consider the substrate incremented transforms set TU,V,+ which
is a subset of the substrate transforms set, TU,V,+ ⊆ TU,V . The substrate in-
cremented transforms set consists of the transforms of the increments of a
pointed partition, increments ∈ R∗ → P(R∗). The only pointed partition that
can be constructed from a substrate transform, without specifically defining
a point component, is that of the unary partition transform, {V CS}T, which
has only one component. Let the substrate incremented partition-sets set
NU,V,+ ⊂ NU,V be defined such that the partition sets are singletons of the
incremented self partitions which are singleton pointed binary partitions in-
cremented from the unary partition, incs(({JCS}, JCS)) where J ⊆ V and
incs = increments ∈ R∗,U → P(R∗,U),

NU,V,+ = {N : N ∈ NU,V , N = {Q}, |Q| = 2, (∃C ∈ Q (|C| = 1))}

The substrate incremented partition-sets set excludes the empty partition-set,
∅ /∈ NU,V,+.

The substrate incremented transforms set is defined in terms of substrate
incremented partition-sets set

TU,V,+ = {NTV : N ∈ NU,V,+}

The substrate incremented transforms set is such that

∀T ∈ TU,V,+ (|der(T%)| = 1∧
(∀Q ∈ der(T%) ♦J = vars(Q) (Q ∈ incs(({JCS}, JCS)))))

The substrate incremented partition-sets set, NU,V,+, can be defined explicitly

NU,V,+ = {{{{S}, JCS \ {S}}} : J ⊆ V, |JCS| > 1, S ∈ JCS}

The substrate incremented transforms set is a subset of the substrate binary-
cartesian partition transforms set, TU,V,+ ⊂ TU,V,2. The substrate incremented
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transforms set excludes the empty transform, (∅, ∅) /∈ TU,V,+, and the unary
partition transform, {V CS}T /∈ TU,V,+. The substrate incremented transforms
set excludes the self partition transform, V CS{}T /∈ TU,V,+, unless the volume
is two, |V CS| = 2.

The cardinality of the substrate incremented partition-sets set is

|NU,V,+| =
∑

(|JCS|/2 : J ⊆ V, |JCS| = 2) +
∑

(|JCS| : J ⊆ V, |JCS| > 2)

The cardinality of the substrate incremented partition-sets set is bounded
|NU,V,+| ≤ 2ny where dimension n = |V | and y = |V CS| if y > 2.

Now consider subsets of the substrate partition-sets set which are defined
by parameter. The definition of the substrate partition-sets set is

NU,V = P({P : K ⊆ V, P ∈ B(KCS)})

The corresponding substrate transforms set is TU,V = {NTV : N ∈ NU,V }.

The cardinality of the substrate partition-sets set is

|NU,V | = 2c : c =
∑
K⊆V

bell(|KCS|)

This is bounded
2bell(y) ≤ |NU,V | ≤ 22nbell(y)

where y = |V CS|. In the case of regular variables V , having valency {d} =
{|Uw| : w ∈ V } and dimension n = |V |, the cardinality is

|NU,V | = 2c : c =
∑

k∈{0...n}

(
n

k

)
bell(dk)

First consider the limited-underlying-dimension substrate partition-sets set
NU,V,kmax which is parameterised by kmax ∈ N such that the cardinality of
the variables of each of the partitions is limited,

NU,V,kmax = P({P : K ⊆ V, |K| ≤ kmax, P ∈ B(KCS)})

The cardinality of the limited-underlying-dimension substrate partition-sets
set is

|NU,V,kmax| = 2c : c =
∑

(bell(|KCS|) : K ⊆ V, |K| ≤ kmax)
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In the case of regular variables V , having valency d and dimension n, such
that kmax ≤ n, the cardinality is

|NU,V,kmax| = 2c : c =
∑

k∈{0...kmax}

(
n

k

)
bell(dk)

This is bounded

2bell(dkmax) ≤ |NU,V,kmax| ≤ 22nbell(dkmax)

where dkmax ≤ |V CS|.

Similarly, consider the limited-underlying-volume substrate partition-sets
set NU,V,xmax which is parameterised by xmax ∈ N>0 such that the underlying
volume of each of the partitions is limited,

NU,V,xmax = P({P : K ⊆ V, |KCS| ≤ xmax, P ∈ B(KCS)})

The cardinality of the limited-underlying-volume substrate partition-sets set
is

|NU,V,xmax| = 2c : c =
∑

(bell(|KCS|) : K ⊆ V, |KCS| ≤ xmax)

This is bounded
|NU,V,xmax| ≤ 22nbell(xmax)

where xmax ≤ |V CS|.

In the case of pluri-valent regular variables V , having valency d > 1 and
dimension n, the cardinality is defined in terms of the implied underlying-
dimension limit kmax = ln xmax / ln d, where ln xmax / ln d ∈ N,

|NU,V,xmax| = 2c : c =
∑

k∈{0...kmax}

(
n

k

)
bell(dk)

The limited-valency substrate partition-sets set NU,V,umax is parameterised
by umax ∈ N>0 such that the valency of the partition variables is limited,

NU,V,umax = P({P : K ⊆ V, P ∈ B(KCS), |P | ≤ umax})

The cardinality of the limited-valency substrate partition-sets set is

|NU,V,umax| = 2c :

c =
∑

(stir(|KCS|, u) : K ⊆ V, u ∈ {1 . . . umax}, u ≤ |KCS|)
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where stir ∈ N>0 ×N→ N>0 is the Stirling number of the second kind.

In the case of regular variables V , having valency d and dimension n, the
cardinality is

|NU,V,umax| = 2c :

c =
∑

(

(
n

k

)
stir(dk, u) : k ∈ {0 . . . n}, u ∈ {1 . . . umax}, u ≤ dk)

Similarly, the lower-limited-valency substrate partition-sets set NU,V,umin is
parameterised by umin ∈ N>0 such that the valency of the partition variables
is lower-limited,

NU,V,umin = P({P : K ⊆ V, P ∈ B(KCS), |P | ≥ umin})

The cardinality of the lower-limited-valency substrate partition-sets set is

|NU,V,umin| = 2c : c =
∑

(stir(|KCS|, u) : K ⊆ V, u ∈ {umin . . . |KCS|})

In the case of regular variables V , having valency d and dimension n, the
cardinality is

|NU,V,umin| = 2c : c =
∑

(

(
n

k

)
stir(dk, u) : k ∈ {0 . . . n}, u ∈ {umin . . . dk})

In the special case where umin = 2 the cardinality is

|NU,V,umin| = 2c : c =
∑

(

(
n

k

)
(bell(dk)− 1) : k ∈ {0 . . . n})

The limited-component substrate partition-sets set NU,V,cmin is parame-
terised by cmin ∈ N>0 such that the cardinality of the components of the
partition variables is limited,

NU,V,cmin = P({P : K ⊆ V, P ∈ B(KCS), ∀C ∈ P (|C| ≥ cmin)})

In the case of regular variables V , having valency d and dimension n, the
cardinality is

|NU,V,cmin| = 2c :

c =
∑

(

(
n

k

)
b : k ∈ {0 . . . n}, (L, b) ∈ bcd(dk),

∀(j,m) ∈ L (m 6= 0 =⇒ j ≥ cmin))
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The intersecting substrate partition-sets set NU,V,X is parameterised by a
set of variables X ⊆ vars(U) such that the variables of the partitions intersect
with the given set,

NU,V,X = P({P : K ⊆ V, K ∩X 6= ∅, P ∈ B(KCS)})

The cardinality of the intersecting substrate partition-sets set is

|NU,V,X | = 2c : c =
∑

(bell(|KCS|) : K ⊆ V, K ∩X 6= ∅)

In the case where the intersection with the substrate variables is not empty,
V ∩X 6= ∅, the cardinality is bounded

2bell(y) ≤ |NU,V,X | ≤ 2x2n−1bell(y)

where x = |V ∩X| and y = |V CS|. In the case of regular variables V , having
valency d and dimension n, the cardinality is

|NU,V,X | = 2c : c =

 ∑
k∈{1...n−x}

((
n

k

)
−
(
n− x
k

))
bell(dk)

+

 ∑
k∈{n−x+1...n}

(
n

k

)
bell(dk)


This may be written more succinctly if the binomial coefficient is defined
∀a, b ∈ N (b > a =⇒

(
a
b

)
= 0),

|NU,V,X | = 2c : c =
∑

k∈{1...n}

((
n

k

)
−
(
n− x
k

))
bell(dk)

The limited-breadth substrate partition-sets set NU,V,bmax is parameterised
by bmax ∈ N such that the cardinalities of the partition-sets are limited,

NU,V,bmax = {N : N ∈ NU,V , |N | ≤ bmax}

The cardinality of the limited-breadth substrate partition-sets set is

|NU,V,bmax| =
( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
K⊆V

bell(|KCS|)

This is bounded

|NU,V,bmax| ≤
∑

b∈{0...bmax}

(
2nbell(y)

b

)
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where y = |V CS|. In the case of regular variables V , having valency d and
dimension n, the cardinality is

|NU,V,bmax| =
( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
k∈{0...n}

(
n

k

)
bell(dk)

The intersection of the limited-underlying-dimension substrate partition-sets
set, NU,V,kmax, and the limited-breadth substrate partition-sets set, NU,V,bmax,
is

NU,V,kmax ∩NU,V,bmax =

{N : N ⊆ {P : K ⊆ V, |K| ≤ kmax, P ∈ B(KCS)}, |N | ≤ bmax}

The cardinality of the intersection is

|NU,V,kmax ∩NU,V,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
(bell(|KCS|) : K ⊆ V, |K| ≤ kmax)

In the case of regular variables V , having valency d and dimension n, the
cardinality of the intersection is

|NU,V,kmax ∩NU,V,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
k∈{0...kmax}

(
n

k

)
bell(dk)

The intersection of the intersecting substrate partition-sets set NU,V,X , the
limited-underlying-dimension substrate partition-sets set, NU,V,kmax, and the
limited-breadth substrate partition-sets set, NU,V,bmax, is

NU,V,X ∩NU,V,kmax ∩NU,V,bmax =

{N : N ⊆ {P : K ⊆ V, K ∩X 6= ∅, |K| ≤ kmax, P ∈ B(KCS)},
|N | ≤ bmax}

The cardinality of the intersection is

|NU,V,X ∩NU,V,kmax ∩NU,V,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
:

c =
∑

(bell(|KCS|) : K ⊆ V, K ∩X 6= ∅, |K| ≤ kmax)
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In the case of regular variables V , having valency d, dimension n and inter-
secting dimension x = |X|, the cardinality of the intersection is

|NU,V,X ∩NU,V,kmax ∩NU,V,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
k∈{0...kmax}

((
n

k

)
−
(
n− x
k

))
bell(dk)

The range-limited-breadth substrate partition-sets set NU,V,bran is parame-
terised by bran = (bmin, bmax) ∈ N2 such that the cardinalities of the
partition-sets are limited,

NU,V,bran = {N : N ∈ NU,V , bmin ≤ |N | ≤ bmax}

The cardinality of the range-limited-breadth substrate partition-sets set is

|NU,V,bran| =
( ∑
b∈{bmin...bmax}

(
c

b

))
: c =

∑
K⊆V

bell(|KCS|)

In the case of regular variables V , having valency d and dimension n, the
cardinality is

|NU,V,bran| =
( ∑
b∈{bmin...bmax}

(
c

b

))
: c =

∑
k∈{0...n}

(
n

k

)
bell(dk)

The intersection of the non-overlapping substrate partition-sets set, NU,V,n,
and the range-limited-breadth substrate partition-sets set, NU,V,bran, is

NU,V,n,bran

= {N : Y ∈ B(V ), N ∈
∏
K∈Y

B(KCS), bmin ≤ |N | ≤ bmax}

= {N : Y ∈ B(V ), bmin ≤ |Y | ≤ bmax, N ∈
∏
K∈Y

B(KCS)}

In the case where bmax ≤ n,

NU,V,n,bran = {N : b ∈ {bmin . . . bmax}, Y ∈ S(V, b), N ∈
∏
K∈Y

B(KCS)}

where the fixed cardinality partition function is S ∈ P(X )×N>0 → P(P(P(X )\
{∅})).
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In the case of regular variables V , having valency d and dimension n, the car-
dinality of the range-limited-breadth non-overlapping substrate partition-sets
set is

|NU,V,n,bran|

=
∑( ∏

K∈Y

bell(d|K|)
)

: b ∈ {bmin . . . bmax}, Y ∈ S(V, b)

=
∑(

c
∏

(k,m)∈L

bell(dk)m
)

: b ∈ {bmin . . . bmax}, (L, c) ∈ sscd(n, b)

where sscd = stircd and the fixed cardinality partition function cardinality
function is stircd ∈ N>0 ×N>0 → (L(N)→ N), defined in appendix ‘Parti-
tions’, below.

The special case of the fixed-breadth non-overlapping substrate partition-sets
set given cardinality b ∈ N>0 is defined

NU,V,n,b = {N : Y ∈ B(V ), N ∈
∏
K∈Y

B(KCS), |N | = b}

In the case of regular variables V , having valency d and dimension n, the
cardinality is

|NU,V,n,b| =
∑

(L,c)∈sscd(n,b)

(
c
∏

(k,m)∈L

bell(dk)m
)

In the case where the fixed-breadth is two, b = 2, the fixed-breadth non-
overlapping substrate partition-sets set equals the binary non-overlapping
substrate partition-sets set, NU,V,n,2 = NU,V,n,b. In the case where the fixed-
breadth equals the dimension, b = n, the fixed-breadth non-overlapping sub-
strate partition-sets set equals the self non-overlapping substrate partition-
sets set, NU,V,n,n = NU,V,n,s.

The intersection of the substrate self-cartesian partition-sets set and the
limited-breadth non-overlapping substrate partition-sets set,NU,V,c∩NU,V,n,bmax,
is

NU,V,c ∩NU,V,n,bmax = {{KCS{} : K ∈ Y } : Y ∈ B(V ), |Y | ≤ bmax}

In the case where bmax ≤ n, the cardinality of the intersection is

|NU,V,c ∩NU,V,n,bmax| =
∑

b∈{1...bmax}

stir(n, b)

where stir ∈ N>0 ×N→ N>0 is the Stirling number of the second kind.
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Similarly to the limited-breadth substrate partition-sets set, NU,V,bmax, the
limited-derived-volume substrate partition-sets set NU,V,wmax is parameterised
by wmax ∈ N>0 such that the volumes of the partition-sets are limited,

NU,V,wmax = {N : N ∈ NU,V , |NC| ≤ wmax}

Having considered the analysis of the substrate transforms set, TU,V , into
various subsets, now consider its synthesis and the synthesis of its subsets.
That is, consider possible sequences of construction from smaller subsets.

Substrate structures may be constructed by means of linear fuds. A lin-
ear fud F ∈ FU,1 is a non-circular fud such that the underlying variables of
the transforms in each layer fud are the derived variables of the layer fud im-
mediately below, ∀i ∈ {2 . . . |L|} (und(Li) ⊆ der(Li−1)) where L ∈ L(P(F ))
and set(L) ∈ B(F ). Thus a linear fud may be represented as a list of trans-
forms, {(i, GT) : (i, G) ∈ L} ∈ L(Tf,U).

Let system U contain all of the partition variables of the substrate fuds set,
FU,V , on variables V ,

⋃
{vars(T ) : T ∈ FU,V } ⊆ vars(U). The substrate

transforms set, TU,V , can be constructed from partition-sets of linear fuds
of pairs of multi-partition transforms, T1, T2 ∈ TU,P∗ . The first transform is
a substrate self-cartesian transform, T1 ∈ TU,V,c. The second transform is a
non-empty self overlapping substrate transform, T2 ∈ TU,W,o,s, T2 6= (∅, ∅), in
the derived variables of the first, W = der(T1),

TU,V =

{{T1, T2}TPT : T1 ∈ TU,V,c, W = der(T1), T2 ∈ TU,W,o,s \ {(∅, ∅)}} ∪ {(∅, ∅)}

where shorthand TN := partitionset(T ). Note that the second transform, T2,
is non-empty so that the fud is one functional, {T1, T2} ∈ FU,1.

The substrate self-cartesian transform set, TU,V,c, is constructed explicitly
as

TU,V,c = {{KCS{}V T : K ∈ X}T : X ⊆ P(V )}

The self overlapping substrate transforms set, TU,W,n,s, is constructed explic-
itly as

TU,W,o,s = {(
⋃

H)TW : H ∈
∏
w∈W

P(B({w}CS))}
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So the substrate transforms set, TU,V , can be constructed explicitly as

TU,V = {(W ∪
⋃

H)TPTV : X ⊆ P(V ),

W = {KCS{} : K ∈ X}, H ∈
∏
w∈W

P(B({w}CS))} ∪ {(∅, ∅)}

which has cardinality of construction

|{(X,H) : X ⊆ P(V ), H ∈
∏
K∈X

P(B({KCS{}}CS))}| =
∑

X⊆P(V )

∏
K∈X

2|B(KCS)|

≤ 22n(1+bell(y))

where volume y = |V CS|, and dimension n = |V |. This may be compared
to the explicit constructions from (i) subsets of the base substrate partitions,
B(V CS),

TU,V = {NT : N ⊆ B(V CS)}

which has cardinality of construction

|P(B(V CS))| = 2bell(y)

and (ii) the substrate partition-sets set, NU,V ,

TU,V = {NTV : N ⊆ {P : K ⊆ V, P ∈ B(KCS)}}

which has cardinality of construction

|NU,V | = |P({P : K ⊆ V, P ∈ B(KCS)})| =
∏
K⊆V

2|B(KCS)|

and which is bounded 2bell(y) ≤ |NU,V | ≤ 22n×bell(y).

The non-overlapping substrate transforms set, TU,V,n ⊂ TU,V , can also be
constructed from partition-sets of linear fuds of pairs of multi-partition trans-
forms, T1, T2 ∈ TU,P∗ . In this case the first transform is in the non-overlapping
subset of the substrate self-cartesian transform set, T1 ∈ TU,V,c ∩ TU,V,n. The
second transform is a self non-overlapping substrate transform, T2 ∈ TU,W,n,s,
in the derived variables of the first, W = der(T1),

TU,V,n =

{{T1, T2}TPT : T1 ∈ TU,V,c ∩ TU,V,n, W = der(T1), T2 ∈ TU,W,n,s} ∪ {(∅, ∅)}
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The strong non-overlapping substrate transforms set, {NTV : N ∈ NU,V,n} ⊆
TU,V,n can be constructed from the transforms of the non-overlapping subset
of the substrate self-cartesian partition-sets set, T1 ∈ {MT : M ∈ NU,V,c ∩
NU,V,n}, followed by the transforms of the self non-overlapping substrate
partition-sets set, T2 ∈ {NT : N ∈ NU,W,n,s}, where W = der(T1),

{NTV : N ∈ NU,V,n} = {(M ∪N)TPT : M ∈ NU,V,c ∩NU,V,n, N ∈ NU,M,n,s}

The intersection between the substrate self-cartesian partition-sets set, NU,V,c,
and the non-overlapping substrate partition-sets set, NU,V,n, is constructed
explicitly as

NU,V,c ∩NU,V,n = {{KCS{} : K ∈ Y } : Y ∈ B(V )}

The self non-overlapping substrate partition-sets set, NU,V,n,s, is constructed
explicitly as

NU,M,n,s =
∏
w∈M

B({w}CS)

So the strong non-overlapping substrate transforms set, {NTV : N ∈ NU,V,n},
can be constructed explicitly as

{NTV : N ∈ NU,V,n} = {(M ∪N)TPT : Y ∈ B(V ),

M = {KCS{} : K ∈ Y }, N ∈
∏
w∈M

B({w}CS)}

which has cardinality of construction equal to the cardinality of construction
of the non-overlapping substrate partition-sets set, NU,V,n,

|{(Y,N) : Y ∈ B(V ), N ∈
∏
K∈Y

B({KCS{}}CS)}| =
∑

Y ∈B(V )

∏
K∈Y

|B(KCS)|

≤ bell(n)× bell(y)

where volume y = |V CS|, and dimension n = |V |.

The self non-overlapping substrate transforms set, TU,V,n,s, can be con-
structed from linear fuds of multi-partition transforms, L ∈ L(TU,P∗). The
starting transform in the sequence is the singleton strong self non-overlapping
substrate self-cartesian transforms set, L1 ∈ {NT : N ∈ NU,V,c ∩ NU,V,n,s}.
That is, the first transform is the value full functional transform, L1 =
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{{v}CS{}V T : v ∈ V }T. The subsequent transforms are strong self non-
overlapping substrate decremented transforms, L2 ∈ {NT : N ∈ NU,W1,− ∩
NU,W1,n,s}, L3 ∈ {NT : N ∈ NU,W2,− ∩NU,W2,n,s}, and so on,

TU,V,n,s =

{set(L)TPT : L ∈ L(TU,f,1), {L1} = {NT : N ∈ NU,V,c ∩NU,V,n,s},
(∀i ∈ {2 . . . |L|} ♦W = der(Li−1) (Li ∈ {NT : N ∈ NU,W,− ∩NU,W,n,s}))}

The intersection of the substrate decremented partition-sets set and the self
non-overlapping substrate partition-sets set is constructed explicitly

NU,W,− ∩NU,W,n,s =

{{Q} ∪ {{u}CS{} : u ∈ W \ {w}} : w ∈ W, Q ∈ decs({w}CS{})}

where decs = decrements ∈ RU → P(RU).

So the self non-overlapping substrate transforms set, TU,V,n,s, can be con-
structed explicitly as

TU,V,n,s =

{(
⋃

set(L))TPT : M ∈ NU,V,c ∩NU,V,n,s,
L ∈ subpaths({(M, tdec(U)(M))})}

and, in the case of non-empty substrate, V 6= ∅,

V 6= ∅ =⇒ TU,V,n,s =

{(
⋃

set(L))TPT : M = {{v}CS{} : v ∈ V },
L ∈ subpaths({(M, tdec(U)(M))})}

where the tree of self non-overlapping substrate decremented partition-sets is
defined tdec(U) ∈ P(VU)→ trees(P(RU)) as

tdec(U)(M) := {(N, tdec(U)(N)) : N ∈ NU,M,− ∩NU,M,n,s}

and tdec(U)(∅) := ∅. Explicitly this is

tdec(U)(M) := {(N, tdec(U)(N)) :

w ∈M, Q ∈ decs({w}CS{}), N = {Q} ∪ {{u}CS{} : u ∈M, u 6= w}}

The cardinality of the self non-overlapping substrate decremented partition-
sets tree may be computed by defining tdeccd(U) ∈ P(VU) → trees(N ×
L(N)) as

tdeccd(U)(V ) := {((1, L), tdeccd(1, L)) : L = {(i, |Uv|) : (v, i) ∈ order(DV, V )}}
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where order DV is such that order(DV, V ) ∈ enums(V ), and tdeccd ∈ N ×
L(N)→ trees(N× L(N)) as

tdeccd(k, L) := {((m,M), tdeccd(m,M)) :

i ∈ {1 . . . |L|}, Li > 1, m = kLi(Li − 1)/2, M = L \ {(i, Li)} ∪ {(i, Li − 1)}}

In the case of regular substrate variables of valency d and dimension n, the self
non-overlapping substrate decremented partition-sets tree is defined tdeccd ∈
N×N→ trees(N× L(N)) as

tdeccd(d, n) := {((1, L), tdeccd(1, L)) : L = {1 . . . n} × {d}}

In the case of non-empty substrate variables, V 6= ∅, the depth is

depth(tdec(U)(V )) = depth(tdeccd(U)(V ))− 1 =
∑
v∈V

(|Uv| − 1)

and the cardinalities are

|paths(tdec(U)(V ))| =
∑

(m : L ∈ paths(tdeccd(U)(V )), (m, ·) = L|L|)

and

|nodes(tdec(U)(V ))| =
∑

(m : L ∈ subpaths(tdeccd(U)(V )), (m, ·) = L|L|)−1

If the substrate, V , is non-empty, n > 0, and regular having valency d > 1,
then the depth is

depth(tdec(U)(V )) = n(d− 1)

the initial cardinality of the decrements is

|NU,V,− ∩NU,V,n,s| = nd(d− 1)/2

and the cardinalities are bounded

|paths(tdec(U)(V ))| ≤ (nd(d− 1)/2)n(d−1)

and

|nodes(tdec(U)(V ))| ≤ n(d− 1)(nd(d− 1)/2)n(d−1) ≤ (nd2)nd

This may be compared to the explicit construction of the self non-overlapping
substrate partition-sets set, NU,V,n,s,

NU,V,n,s =
∏
w∈V

B({w}CS)
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which has cardinality of construction

|NU,V,n,s| =
∏
w∈V

|B({w}CS)|

that is bounded |NU,V,n,s| ≤ bell(d)n ≤ dnd.

In the special case of mono-variate substrate, n = 1, the cardinality of con-
struction is

|paths(tdec(U)(V ))| = d!(d− 1)!

2d−1
≤ d2d

and

|nodes(tdec(U)(V ))| = d!(d− 1)!

2d−1

∑
j∈{1...d−1}

2j

j!(j − 1)!
≤ d2d+1

Similarly the strong non-overlapping substrate transforms set, {NTV : N ∈
NU,V,n} ⊆ TU,V,n, can be constructed explicitly in terms of strong self substrate
decremented transforms as

{NTV : N ∈ NU,V,n}
= {(

⋃
set(L))TPT : M ∈ NU,V,c ∩NU,V,n,

L ∈ subpaths({(M, tdec(U)(M))})}
= {(

⋃
set(L))TPT : Y ∈ B(V ), M = {KCS{} : K ∈ Y },

L ∈ subpaths({(M, tdec(U)(M))})}

which has cardinality of construction

|{(Y, L) : Y ∈ B(V ), L ∈ subpaths(tdec(U)({KCS{} : K ∈ Y })) ∪ {∅}}|
=

∑
Y ∈B(V )

(|nodes(tdec(U)({KCS{} : K ∈ Y }))|+ 1)

=
∑

Y ∈B(V )

∑
(m : L ∈ subpaths(tdeccd(U)({KCS{} : K ∈ Y })), (m, ·) = L|L|)

≤ bell(n)× y2y

where volume y = |V CS|, and dimension n = |V |. This may be compared
to the cardinality of construction by transform pair linear fud which equals
the cardinality of construction of the non-overlapping substrate partition-sets
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set, NU,V,n,

|{(Y,N) : Y ∈ B(V ), N ∈
∏
K∈Y

B({KCS{}}CS)}|

= |{N : Y ∈ B(V ), N ∈
∏
K∈Y

B(KCS)}|

=
∑

Y ∈B(V )

∏
K∈Y

|B(KCS)|

≤ bell(n)× bell(y)

where volume y = |V CS|, and dimension n = |V |.

The self non-overlapping substrate transforms set, TU,V,n,s, can also be con-
structed more directly by means of a tree of decremented partitions as

TU,V,n,s =

{NTPT : M ∈ NU,V,c ∩NU,V,n,s, N ∈ elements({(M, tpdec(M))})}

and, in the case of non-empty substrate, V 6= ∅,

V 6= ∅ =⇒ TU,V,n,s =

{NTPT : M = {{v}CS{} : v ∈ V }, N ∈ elements({(M, tpdec(M))})}

where the partition tree of self non-overlapping substrate decremented partition-
sets is defined tpdec ∈ P(R)→ trees(P(R)) as

tpdec(M) := {(N, tpdec(N)) : P ∈M, Q ∈ decs(P ), N = M \ {P} ∪ {Q}}

Here the subpaths of the tree of decremented partitions do not form multi-
layer linear fuds. Instead the node partition-sets form the second trans-
form of a transform pair linear fud. The self non-overlapping substrate
decremented partition-sets partition tree maps bijectively to the self non-
overlapping substrate decremented partition-sets tree, places(tpdec(M)) :↔:
places(tdec(U)(M)) where the value full functional partition-set is M =
{{v}CS{} : v ∈ V }, so the cardinalities of construction are equal.

The strong non-overlapping substrate transforms set, {NTV : N ∈ NU,V,n} ⊆
TU,V,n, can be constructed using the self non-overlapping substrate decre-
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mented partition-sets partition tree

{NTV : N ∈ NU,V,n}
= {NTPT : M ∈ NU,V,c ∩NU,V,n,

N ∈ elements({(M, tpdec(M))})}
= {NTPT : Y ∈ B(V ), M = {KCS{} : K ∈ Y },

N ∈ elements({(M, tpdec(M))})}

which has cardinality of construction

|{(Y, L) : Y ∈ B(V ), L ∈ subpaths(tpdec({KCS{} : K ∈ Y })) ∪ {∅}}|
=

∑
Y ∈B(V )

∑
(m : L ∈ subpaths(tdeccd(U)({KCS{} : K ∈ Y })), (m, ·) = L|L|)

≤ bell(n)× y2y

where volume y = |V CS|, and dimension n = |V |.

The self non-overlapping substrate transforms set, TU,V,n,s, can be con-
structed by means of a tree of incremented pointed partitions as

TU,V,n,s =

{NTPT
∗ : M ∈ NU,V,1 ∩NU,V,n,s, M∗ = {({C∗}, C∗) : {C∗} ∈M},

N∗ ∈ elements({(M∗, tinc(M∗))})}

and, in the case of non-empty substrate, V 6= ∅,

V 6= ∅ =⇒ TU,V,n,s =

{NTPT
∗ : M∗ = {({{v}CS}, {v}CS) : v ∈ V },

N∗ ∈ elements({(M∗, tinc(M∗))})}

where the tree of self non-overlapping substrate incremented pointed partition-
sets is defined tinc ∈ P(R∗)→ trees(P(R∗)) as

tinc(M∗) := {(N∗, tinc(N∗)) : P∗ ∈M∗, Q∗ ∈ incs(P∗), N∗ = M∗ \ {P∗} ∪ {Q∗}}

where incs = increments ∈ R∗ → P(R∗). Again, the subpaths of the tree of
incremented pointed partitions do not form multi-layer linear fuds because
the transforms would forget the point component. Instead the node pointed
partition-sets form the second transform of a transform pair linear fud.

The cardinality of the self non-overlapping substrate incremented pointed
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partition-sets tree may be computed by defining tinccd(U) ∈ P(VU) →
trees(N× L(N2)) as

tinccd(U)(V ) :=

{((1, L), tinccd(1, L)) : L = {(i, (|Uv|, 0)) : (v, i) ∈ order(DV, V )}}
where order DV is such that order(DV, V ) ∈ enums(V ), and tinccd ∈ N ×
L(N2)→ trees(N× L(N2)) is

tinccd(k, L) :=

{((m,M), tinccd(m,M)) : i ∈ {1 . . . |L|}, (d, c) = Li, d > 1, m = kd,

M = L \ {(i, (d, c))} ∪ {(i, (d− 1, c+ 1))}} ∪
{((m,M), tinccd(m,M)) : i ∈ {1 . . . |L|}, (d, c) = Li, d > 1, m = kdc,

M = L \ {(i, (d, c))} ∪ {(i, (d− 1, c))}}
Then in the case of non-empty substrate variables, V 6= ∅, the depth is

depth(tinc(M∗)) = depth(tinccd(U)(V ))− 1 =
∑
v∈V

(|Uv| − 1)

where M∗ = {({{v}CS}, {v}CS) : v ∈ V }. The cardinalities are

|paths(tinc(M∗))| =
∑

(m : L ∈ paths(tinccd(U)(V )), (m, ·) = L|L|)

and

|places(tinc(M∗))| =
∑

(m : L ∈ subpaths(tinccd(U)(V )), (m, ·) = L|L|)−1

If the substrate, V , is non-empty, n > 0, and regular having valency d > 1,
then the depth is

depth(tinc(M∗)) = n(d− 1)

the initial cardinality of the increments is nd. The cardinalities are bounded

|paths(tinc(U)(V ))| ≤ (2nd2)n(d−1)

and
|nodes(tinc(U)(V ))| ≤ n(d− 1)(2nd2)n(d−1) ≤ (2nd2)nd

The strong non-overlapping substrate transforms set, {NTV : N ∈ NU,V,n} ⊆
TU,V,n, can be constructed using the self non-overlapping substrate incre-
mented pointed partition-sets tree

{NTV : N ∈ NU,V,n}
= {NTPT

∗ : M ∈ NU,V,1 ∩NU,V,n, M∗ = {({C∗}, C∗) : {C∗} ∈M},
N∗ ∈ elements({(M∗, tinc(M∗))})}

= {NTPT
∗ : Y ∈ B(V ), M∗ = {({KCS}, KCS) : K ∈ Y },

N∗ ∈ elements({(M∗, tinc(M∗))})}

212



which has cardinality of construction

|{(Y, L) : Y ∈ B(V ), L ∈ subpaths(tinc(U)({({KCS}, KCS) : K ∈ Y })) ∪ {∅}}|
=

∑
Y ∈B(V )

∑
(m : L ∈ subpaths(tinccd(U)({KCS{} : K ∈ Y })), (m, ·) = L|L|)

≤ bell(n)× (2y)2y

where volume y = |V CS|, and dimension n = |V |.

The substrate models set MU,V of system U and variables V is the set of
substrate structures that correspond to a transform in the substrate trans-
forms set, TU,V . Define transform(U, V ) ∈MU,V → TU,V . Thus

FU,V , TU,V ,NU,V ,N∗,U,V ,FU,V ,DU,V ,DF,U,V ⊂MU,V

Define transform(U, V )(F ) := FTV where F ∈ FU,V . Define transform(U, V )(D) :=
DTV where D ∈ DU,V .

3.12 Independent histograms

A histogram A of variables V = vars(A) is said to be partially independent
in a subset K of its variables K ⊆ V if

A =
1

ZA
∗ (A % K) ∗ (A % (V \K))

where ZA = scalar(size(A)). The scaling factor ensures that the histogram
expression has the same size as A, because the size of the product of two
histograms of disjoint variables is the product of their sizes. In the trivial
cases of K = ∅ and K = V the histogram expression always evaluates to A.

Having considered the partitioning of states in the discussion of derived
variables, consider the special case of the partitioning of variables which
is the partially independent set. Given an argument histogram A of variables
V = vars(A), construct a set of histogram expressions in a single free vari-
able, each element of which evaluates to a partially independent histogram.
The partially independent set RA is

RA = {ZA ∗
∏
{ A
ZA

% C : C ∈ P} : P ∈ B(V )}

where B is the partition function.

213



A histogram A of variables V that is partially independent in a subset K
is the special case of a partially independent histogram where the partition is
binary, P = {K, V \K},

1

ZA
∗ (A % K) ∗ (A % (V \K)) ∈ RA

The special case of a partially independent histogram where the cardinality
of each of the partition components is one, i.e. the self partition, P = V {},
is the independent histogram. Define function independent ∈ A → A

independent(A) := ZA ∗
∏
{ A
ZA

% {w} : w ∈ V }

where V = vars(A) and ZA = scalar(size(A)). Define independent(∅) := ∅.
If A is a zero histogram, size(A) = 0, define independent(A) :=

∏
{A % {w} :

w ∈ V }. Define notation AX = independent(A).

The independent function can also be equivalently defined

independent(A) := scalar(z−(n−1)) ∗
∏
w∈V

A % {w}

where V = vars(A), n = |V | and z = size(A) > 0.

The independent histogram is in the partially independent set, AX ∈ RA.
The independent histogram has the greatest degree of independence of any
of the partially independent set. See later for the definition of degree of de-
pendence with respect to the partially independent set in the discussion of
‘Minimum alignment’. The independent histogram is contained recursively
in all the partially independent sets of elements of partially independent sets,
∀B ∈ RA (AX ∈ RB).

Independent histograms are such that states(AX) ⊇ states(A), size(AX) =
size(A), vars(AX) = vars(A) and soA andAX are congruent, congruent(A,AX).
Also volume(U)(AX) = volume(U)(A) where A is in system U . Note, how-
ever, that independent(A) can be calculated without reference to a system.

A histogram is said to be independent if it is equivalent to its own indepen-
dent, A ≡ AX. An independent histogram is its own independent histogram,
independent(AX) = AX. Empty histograms and scalars, V = ∅, are defined as
independent. If the histogram is mono-variate |V | = 1 then it is independent
A = A%{w} = AX where {w} = V . Uniform-cartesian histograms, which are
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scalar multiples of the cartesian, A = scalar(z/v)∗AC where z = size(A) and
v = |AC|, including zero histograms, are independent. Singleton histograms
|AF| = 1 are independent. The effective states of an independent histogram
form a cartesian sub-volume, that is, AXF =

∏
{(A%{w})F : w ∈ V }. Putting

it the other way around, a histogram A is a cartesian sub-volume if AF = AXF.

The perimeter of a histogram is the set of its reductions indexed by variable.
Histogram A in variables V has perimeter QA = {(w,A%{w}) : w ∈ V }. The
histograms of the perimeter have the same size as the given histogram, ∀B ∈
ran(QA) (size(B) = size(A)). The histograms of the perimeter are integral if
the given histogram is integral, A ∈ Ai =⇒ ∀B ∈ ran(QA) (B ∈ Ai). The
independent is constructed from the perimeter AX = ZA ∗

∏
w∈V (QA(w)/ZA)

where ZA = scalar(size(A)).

A completely effective pluri-variate independent histogram, AXF = AC, for
which all of the variables are pluri-valent, ∀w ∈ V (|AXF%{w}| > 1), must
be non-causal, ¬causal(AX). Thus it cannot be the histogram of a functional
transform, ∀T ∈ Tf (A 6= his(T )).

Given a partially independent histogram A ∈ RA of variables V having
a partition of the variables P , where A = ZA ∗

∏
K∈P (A/ZA)%K, subsets

of the variables can be chosen such that the reduction is independent. Let
M ∈ P ↔ V be such that ∀(K,w) ∈ M (w ∈ K), then A%J = (A%J)X

where J = ran(M).

Consider the regular integral histogram A ∈ Ai of variables V = vars(A),
dimension n = |V |, valency {d} = {|Uw| : w ∈ V }, size z = size(A), and
such that the independent is completely effective, AXF = V C. The fraction of
integral histograms congruent to A that are independent may be estimated.
In the case where the histogram is binary, {w1, w2} = V , consider perime-
ter states {(·, x)} ∈ A%{w1} and {(·, y)} ∈ A%{w2}, which are such that
x, y ∈ {1 . . . z}. If the histogram is independent, A = AX, then xy = kz,
where k ∈ N>0. If z is prime, the fraction of the z2 pairs (x, y) ∈ {1 . . . z}2

for which xy = kz is 2z/z2 = 2/z. If z is the product of two primes, then
the fraction is (2z+ 2p2)/z2, where p1p2 = z and p1 ≤ p2. For arbitrary size,
z, numerical analysis suggests that the fraction is of the order of (ln z)/z.
Generalising to arbitrary dimension, n, gives (ln z)n−1/z. The fraction of
congruent integral histograms that are independent for a given set of perime-
ters is therefore estimated as ((ln z)n−1/z)d

n
. The cardinality of perimeters is

((z+d−1)!/(z!(d−1)!))n, so the cardinality of congruent integral independent
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histograms is estimated as(
(z + d− 1)!

z!(d− 1)!

)n
×
(

(ln z)n−1

z

)dn
The logarithm of this cardinality approximates to

nd ln
z

d
− dn ln

z

(ln z)n−1

So, in the case where the logarithm of the size is of the order of the valency,
ln z ≈ d, the logarithm of the cardinality of congruent integral independent
histograms varies against the volume v = dn,

ln |{A : A ∈ Ai, A
XF = V C, size(A) = z, A = AX}| ∼ −v

That is, for a given size, the smaller the volume, the more probable an integral
histogram is independent.

3.12.1 Transforms and Independent

The application A ∗ T of a functional transform T ∈ Tf to a histogram
A ∈ A, such that the underlying variables are a subset of the histogram vari-
ables, und(T ) ⊆ vars(A), is called the derived histogram, A ∗ T ∈ A. In this
context, A is called the underlying histogram.

A functional transform T is said to be abstract with respect to a histogram
A if the derived histogram, A ∗ T , is independent, A ∗ T ≡ (A ∗ T )X. Define
abstract ∈ A× Tf → B

abstract(A, T ) := A ∗ T ≡ (A ∗ T )X

where size(A) > 0 and und(T ) ⊆ vars(A). The independent of the derived
histogram, (A ∗ T )X ∈ A, is called the abstract histogram.

A functional transform T is said to be formal with respect to a histogram A
if the derived histogram, A ∗T , is equivalent to the transformed independent,
AX ∗ T . Define formal ∈ A× Tf → B

formal(A, T ) := A ∗ T ≡ AX ∗ T

where size(A) > 0 and vars(A) ⊆ und(T ). The derived of the independent
histogram, AX ∗ T ∈ A, is called the formal histogram. The formal indepen-
dent histogram, (AX ∗ T )X ∈ A, is sometimes called the independent abstract
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histogram.

If the derived histogram is equivalent to the formal independent histogram
then the transform is abstract. That is, the derived histogram is equivalent
to the abstract histogram, because the derived histogram is independent

A ∗ T ≡ (AX ∗ T )X =⇒ A ∗ T ≡ (A ∗ T )X

If the formal histogram is equivalent to the abstract histogram then the formal
histogram is independent

AX ∗ T ≡ (A ∗ T )X =⇒ AX ∗ T ≡ (AX ∗ T )X

and the abstract histogram is equivalent to the formal independent histogram

AX ∗ T ≡ (A ∗ T )X =⇒ (A ∗ T )X ≡ (AX ∗ T )X

Therefore the formal histogram is equivalent to the abstract histogram only
if the abstract histogram is equivalent to the formal independent histogram
and the formal histogram is independent

((A ∗ T )X ≡ (AX ∗ T )X) ∧ (AX ∗ T ≡ (AX ∗ T )X) ⇐⇒ AX ∗ T ≡ (A ∗ T )X

The formal histogram is equivalent to the abstract histogram in another
stricter case if the formal histogram is equivalent to the derived histogram
and the derived histogram is independent.

(AX ∗ T ≡ A ∗ T ) ∧ (A ∗ T ≡ (A ∗ T )X) =⇒ AX ∗ T ≡ (A ∗ T )X

In this case the transform is formal, formal(A, T ), and abstract, abstract(A, T ).

At first sight, it would appear that the derived histogram of a functional
transform T ∈ Tf , which has more than one derived variable |der(T )| ≥ 2,
cannot be non-trivially independent if A is not independent, A 6= AX∧ (∀w ∈
der(T ) (|(A ∗ T % {w})F| > 1)) =⇒ A ∗ T 6= (A ∗ T )X. This is because the
transform can only do one reduction to derived variables that are functionally
synchronised, whereas the independent operator requires a reduction for each
of the derived variables. However, there are cases where a single reduction is
sufficient to reduce all of the derived variables so that the derived histogram
is independent. A one functional transform T ∈ TU,f,1 in system U that is
non-overlapping, ¬overlap(T ), and such that the derived variables partition
the underlying variables of a partially independent underlying histogram, A,
must be abstract, A ∗ T = (A ∗ T )X. Let Q ∈ B(und(T )) be the partition of
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the underlying variables such that resize(z,
∏
{A%K : K ∈ Q}) ≡ A. Let

F ∈ FU,1 be the non-overlapping fud having equivalent transform, FT = T ,
such that {und(R) : R ∈ F} = Q. Then

A ∗ T = A ∗ FT

= Zn ∗
∏
K∈Q

A%K ∗
∏
R∈F

his(R) %
⋃
R∈F

der(R)

= Zn ∗
∏
{A%K ∗ his(R) % der(R) : K ∈ Q, R ∈ F, und(R) = K}

= (A ∗ FT)X

= (A ∗ T )X

where Zn = scalar(z/zn) and n = |und(T )|.

The independent underlying histogram AX is a partially independent his-
togram by definition and so it follows that for non-overlapping transforms
the formal histogram, AX ∗ T , is independent, ¬overlap(T ) =⇒ AX ∗ T ≡
(AX ∗ T )X.

However, note that it not always the case that the converse, AX ∗ T ≡
(AX ∗ T )X =⇒ ¬overlap(T ), is true. That is, the formal histogram is inde-
pendent for some overlapping transforms, ∃A ∈ AU ∃T ∈ TU,f,1 (overlap(T )∧
(AX ∗ T = (AX ∗ T )X)). For example, a tautology having singleton derived,
tautology(T ) ∧ |WC| = 1. Or for example, let {P1, P2} = W ⊂ B(V CS)
where V = und(T ) and W = der(T ). Then the formal is independent,
AX ∗ T = (AX ∗ T )X, if

∀C1 ∈ P1 ∀C2 ∈ P2 (size(AX ∗CU
1 ∗CU

2 ) =
1

z
∗ size(AX ∗CU

1 ) ∗ size(AX ∗CU
2 ))

where z = size(A). This condition may be satisfied by some overlapping
transforms. In these cases the components intersect, ∀C1 ∈ P1 ∀C2 ∈
P2 (C1 ∩ C2 6= ∅), and the transform is right total, (X%W )F = WC where
X = his(T ).

The formal histogram is equivalent to the abstract histogram if the trans-
form is non-overlapping, ¬overlap(T ) =⇒ AX ∗ T ≡ (AX ∗ T )X, and the
abstract histogram is equivalent to the formal independent histogram

¬overlap(T ) ∧ ((A ∗ T )X ≡ (AX ∗ T )X) =⇒ AX ∗ T ≡ (A ∗ T )X
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Given congruent histograms A,B ∈ A, in variables V = vars(A) = vars(B),
and substrate transform T ∈ TU,V , having derived variables W = der(T ), the
abstracts are equal if all of the derived reductions to partition variable are
equal,

(B ∗ T )X = (A ∗ T )X ⇐⇒ ∀P ∈ W (B ∗ T % {P} = A ∗ T % {P})

or
(B ∗ T )X = (A ∗ T )X ⇐⇒ ∀P ∈ W (B ∗ PT = A ∗ PT)

In the special case where B = AX, the formal independent, or independent
abstract, equals the abstract if and only if each partition derived equals its
partition independent derived,

(AX ∗ T )X = (A ∗ T )X ⇐⇒
∀P ∈ W (A ∗ PT = AX ∗ PT)

= ∀P ∈ W ∀(R, ·) ∈ (PT)−1 ((A ∗ PT)R = (AX ∗ PT)R)

= ∀P ∈ W ∀C ∈ P (size(A ∗ CU) = size(AX ∗ CU))

In the case where the formal is independent, AX ∗T = (AX ∗T )X, the formals
are equal if and only if all of the independent derived reductions to partition
variable are equal,

AX ∗ T = (AX ∗ T )X =⇒
BX ∗ T = AX ∗ T ⇐⇒ ∀P ∈ W (BX ∗ PT = AX ∗ PT)

This is the case where the transform is non-overlapping, ¬overlap(T ) =⇒
AX∗T = (AX∗T )X. In this case the equality can be reduced to the underlying
variables of the partition,

¬overlap(T ) =⇒
BX ∗ T = AX ∗ T ⇐⇒ ∀P ∈ W (BX%VP ∗ P%T = AX%VP ∗ P%T)

where VP = vars(P%) ⊆ V .

If the transform is both non-overlapping and the formal independent equals
the abstract, then the constraint on the partition transforms can be expressed
in terms of the contraction of the partition variable,

¬overlap(T ) ∧ (AX ∗ T )X = (A ∗ T )X ⇐⇒
∀P ∈ W (A%VP ∗ P%T = AX%VP ∗ P%T)
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The application of an action, action(C,A) where C ∈ actions ⊂ T × T
and A ∈ A, may be independent even if A is not. This is because the second
transform R of the pair (L,R) = C need not be functional. A trivial example
is where L is a null transform and thus A is reduced to a scalar.

3.12.2 Independent converse

The simple converse converseSimple ∈ T → T and natural converse
converseNatural ∈ T → T for a transform T ∈ T have already been defined.
The independent converse is defined converseIndependent ∈ A× Tf → T

converseIndependent(B, T ) :=

(
∑ (B ∗ C)X

(B ∗ C)%∅
∗ {R}U : (R,C) ∈ inverse(T ), V )

where size(B) > 0 and vars(B) = V = underlying(T ). Define notation

T †B = converseIndependent(B, T )

Unlike the other converses, the argument transform must be functional T ∈
Tf . This is the case if T is the transform of a partition P ∈ RU , T =
transform(U)(P ), because then T ∈ TU,f,1.

Also the independent converse requires an extra argument B ∈ A to provide
the independent histogram for each component of the functional transform.
The histogram B must be non-zero, size(B) > 0, and have the same variables
as the underlying variables of the transform, vars(B) = underlying(T ).

The action of a one functional transform T ∈ TU,f,1 and its independent
converse, (T, T †B), is size conserving if all of the components of T are non-
zero when applied to B. Thus

size(A ∗ T ∗ T †B) = size(A)

if ∀C ∈ ran(inverse(T )) (size(B ∗ C) > 0) or (A ∗ T )F ≤ (B ∗ T )F. Thus
size((A ∗ BF) ∗ T ∗ T †B) = size(A ∗ BF). When B = A, then the action
(T, T †A) is always size conserving size(A ∗ T ∗ T †A) = size(A) irrespective of
whether zero components exist.

If any of the components of the one functional transform T ∈ TU,f,1 are
not cartesian sub-volumes ∃C ∈ ran(inverse(T )) ((B ∗ C)F < (B ∗ C)XF)
then the independent converse may be more effective

(A ∗ T ∗ T †B)F ≥ AF
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If the given histogram is unit cartesian B = V C and all of the com-
ponents of one funtional transform T ∈ TU,f,1 are cartesian sub-volumes
∀C ∈ ran(inverse(T )) (CF = CXF) then

converseIndependent(V C, T ) = converseNatural(T )

or T †V
C

= T †. Let (X,W ) = T

XF

X%W
=

∑
{ C

F

C%∅
∗ {R}U : (R,C) ∈ inverse(T )}

=
∑
{ (V C ∗ C)F

(V C ∗ C)%∅
∗ {R}U : (R,C) ∈ inverse(T )}

=
∑
{ (V C ∗ C)X

(V C ∗ C)%∅
∗ {R}U : (R,C) ∈ inverse(T )}

where the last step holds only if all components of T , the partition of V C,
are cartesian sub-volumes.

The application to A of the independent converse action (T, T †A) of a unit
functional transform T ∈ Tf,U with respect to A is called the idealisation,
A ∗ T ∗ T †A. If the idealisation of A is equivalent to A then the transform is
ideal. Define ideal ∈ A× Tf,U → B

ideal(A, T ) := A ∗ T ∗ T †A ≡ A

where size(A) > 0 and vars(A) = und(T ). An idealisation is size-conserving,
size(A ∗ T ∗ T †A) = size(A). An idealisation is effective if the transform is
effective with respect to the histogram, (X%V )F ≥ AF where X = his(T )
and V = und(T ). An ideal transform must be effective. A one functional
transform, T ∈ TU,f,1, is always effective.

An idealisation can be defined as the summation of its independent com-
ponents

A ∗ T ∗ T †A ≡
∑
C∈TP

(A ∗ CU)X

or,

A ∗ T ∗ T †A ≡
∑

(R,C)∈T−1

(A ∗ C)X

In some cases, but not all, the components of an effective ideal transform T
with respect to histogram A, ideal(A, T ), are cartesian sub-volumes, ∃A ∈
A ∃T ∈ Tf,U (ideal(A, T ) ∧ ∀C ∈ TP ((A ∗ CU)F = (A ∗ CU)XF)).
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The independent of an effective idealisation equals the independent of the
given histogram

(A ∗ T ∗ T †A)X ≡ AX

This is true because the sum of the perimeters of the components are equal,
∀w ∈ V

A ∗ T ∗ T †A % {w} ≡
∑
C∈TP

A ∗ T ∗ T †A ∗ CU % {w}

≡
∑
C∈TP

(A ∗ CU)X % {w}

≡
∑
C∈TP

A ∗ CU % {w}

≡ A%{w}
≡ AX%{w}

where V = und(T ) = vars(A). Thus

(A ∗ T ∗ T †A)X ≡

(∑
C∈TP

(A ∗ CU)X

)X

≡ AX

A special case of an ideal transform is where the transform is a self-partition.
In this case, the transform is ideal with respect to any histogram A in its
underlying variables vars(A) = V = und(T ), so long as the transform T is
as effective as A

((X%V )F ≥ AF) ∧ (∀C ∈ ran(inverse(T )) (|C| = 1)) =⇒ ideal(A, T )

where X = histogram(T ). In this case, each component is a singleton and
hence is independent. An example is the self partition transform V CS{}T ∈
TU,V ⊂ TU,f,1 which is always ideal, ideal(A, V CS{}T). Another example is the
value full functional transform {{w}CS{}T : w ∈ V }T ∈ TU,V ⊂ TU,f,1 which is
always ideal, ideal(A, {{w}CS{}T : w ∈ V }T).

If a transform T is a unary-partition, |X%W | = 1 where (X,W ) = T ,
then T is an ideal transform of AX if T is as effective as AX, (X%V )F ≥ AXF

where vars(A) = V = und(T ) and AX is non-zero, size(AX) > 0,

((X%V )F ≥ AXF) ∧ (|inverse(T )| = 1) =⇒ ideal(AX, T )

It is also the case that the idealisation, A ∗ T ∗ T †A, equals the indepen-
dent, AX, A ∗ T ∗ T †A = AX. An example is the unary partition transform
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{V CS}T ∈ TU,V ⊂ TU,f,1 which is always an ideal transform of the independent
histogram AX, ideal(AX, {V CS}T) or A ∗ {V CS}T ∗ {V CS}T†A = AX.

A one functional transform T ∈ TU,f,1 must be ideal with respect to his-
togram A if each of the effective states of A is in a separate component,
AF ↔ TP, because each component is a singleton and therefore indepen-
dent, ∀C ∈ TP (|(A ∗ CU)F| ≤ 1). Thus, in the case where the cardinal-
ity of effective states is less than the volume, b < v, there must exist at
least stir(v − b, b) ideal partition transforms, where v = |V C|, b = |AF| and
stir ∈ N>0 × N → N>0 is the Stirling number of the second kind. This
is the case if the size is less than the volume, z < v, where z = size(A).
Thus the cardinality of the set of ideal substrate transforms is bounded
|{T : T ∈ TU,V , A ∗ T ∗ T †A ≡ A}| ≥ stir(v − b, b). This lower bound
may be compared to the cardinality of the substrate partition transforms
|FU,V | = |{PT : P ∈ B(V CS)}| = |B(V CS)| = bell(v) =

∑
k∈0...v stir(v, k).

Note that the Stirling number of the second kind, stir(n, k) is maximised
where k ≈ n/ lnn for large n. So conjecture that the maximisation of the
fraction of the cardinality of the idealisations per cardinality of the substrate
transforms, |{T : T ∈ TU,V , A ∗ T ∗ T †A ≡ A}|/|TU,V |, occurs approximately
where b ≈ v/ ln v.

The nullable transform DT of a well behaved distinct decomposition D ∈ Dw,U

is ideal with respect to histogram A if each of the effective states of A is in a
separate component or slice, AF ↔ DTP. That is, ∀C ∈ DTP (|(A ∗ CU)F| ≤
1) =⇒ ideal(A,DT). This is also true of the partition transform, DPT,
because both have the same partition, DTP = DPTP = DP. The decompo-
sition is said to be effectively sliced with respect to the histogram, A. Note
that a decomposition may be ideal even when not effectively sliced. If a
sub-decomposition E ∈ subtrees(D) is effectively sliced with respect to A,
∀C ∈ EP (|(A ∗ CU)F| ≤ 1), then D must also be effectively sliced, because
the expanded partition of E is a parent partition, parent(EPV , DP).

A special case of an ideal transform is a naturally ideal transform

A ∗ T ∗ T † = A

If it is the case that all of the components of T ∈ TU,f,1 are cartesian sub-

volumes, ∀C ∈ ran(inverse(T )) (CF = CXF), then T †V
C

= T † and so T is
a naturally ideal transform with respect to V C, V C ∗ T ∗ T † = V C, where
V = und(T ).
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If T is a naturally ideal transform of histogram A then each of the com-
ponents must be uniform

∀C ∈ ran(inverse(T )) (|ran(A ∗ C)| = 1)

Given the naturally ideal transform T and the sizes of each of the components
Q = {(R, size(A ∗ C)) : (R,C) ∈ inverse(T )}, then A can be reconstructed

A =
∑
{scalar(QR) ∗ C

C%∅
: (R,C) ∈ inverse(T )}

Similarly, a histogram A can be reconstructed from an ideal transform T ,
where the components of the effective transform are cartesian sub-volumes,
given the perimeters of each of these components

Q = {(R, {B%∅}∪{B%{w}
B%∅

: w ∈ V }) : (R,C) ∈ inv(eff(A, T )), B = A∗C}

where inv = inverse and eff = effective. So

A =
∑
{
∏

QR : R ∈ dom(Q)}

Let non-zero sample histogram A ∈ AU have non-empty variables V =
vars(A) 6= ∅. The normalisation is a probability histogram, Â ∈ A ∩ P . Let
non-zero query histogram Q ∈ AU have variables K = vars(Q) that are a
subset of the sample variables, K ⊆ V . The normalisation of the query
histogram is a probability histogram, Q̂ ∈ A∩P . The difference between the
sample variables and the query variables, V \ K, is called the set of label
variables. As discussed above in section ‘Transforms’, given a one functional
transform T = (M,W ) ∈ TU,f,1, having underlying variables J = und(T ),

the model analog of the transformed conditional product, Q̂ ∗ T ′A = Q̂ ∗
(A/(A%K), (V \ K)) ∈ A ∩ P ′, is the renormalisation of the application
of the normalised sample action, (T, (Â ∗ M,V )), to the expanded query
probability histogram, Q̂J = Q̂ ∗ (J \K)C∧ ∈ A ∩ P ,

(Q̂J ∗ T ∗ (Â ∗M,V ))∧ % (V \K) ∈ A ∩ P

if the intersection of derived effective states is not empty, (Q∗T )F∩(A∗T )F 6=
∅. The modelled transformed conditional product may be expressed in terms
of the actual converse transform,

Q̂J ∗ T ∗ T�A % (V \K) ∈ A ∩ P
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In the case where the transform is ideal with respect to the sample histogram,
ideal(A, T ), the actual converse equals the ideal converse, T�A = T †A, and
so

Q̂J ∗ T ∗ T�A % (V \K)

= Q̂J ∗ T ∗ T †A % (V \K)

= Q̂J ∗ T ∗
∑

(R,C)∈T−1

{R}U ∗ (A ∗ C)X∧ % (V \K)

3.12.3 Actual converse and Independent

The actual converse is very similar to the independent converse except that
the literal application of the component to the argument histogram is used,
rather than the independent of the applied component. The actual converse
is defined above as converseActual ∈ A× Tf → T

converseActual(B, T ) :=

(
∑ B ∗ C

(B ∗ C)%∅
∗ {R}U : (R,C) ∈ inverse(T ), V )

where size(B) > 0 and vars(B) = V = underlying(T ). Define notation

T�B = converseActual(B, T )

Like the independent converse, the argument transform must be functional
T ∈ Tf . The actual converse may be expressed more concisely,

T�B := (
∑

(R,C)∈T−1

{R}U ∗ (B ∗ C)∧, V ) (4)

where the normalisation is defined Â = A/(A%∅) so that normalised zero
histograms are empty, (V CZ)∧ = ∅.

The actual converse of unit functional transform T ∈ Tf,U of a histogram
A applied to the abstract histogram (A ∗ T )X is called the surrealisation,
(A ∗ T )X ∗ T�A. The surrealisation is equivalent to the histogram only if the
transform is abstract, abstract(A, T ),

A ∗ T ≡ (A ∗ T )X ⇐⇒ (A ∗ T )X ∗ T�A ≡ A

An example of an abstract transform is the unary partition transform {V CS}T ∈
TU,f,1 which is always abstract, abstract(A, {V CS}T). Another example is the
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self partition transform V CS{}T ∈ TU,f,1. In this case there is only one derived
variable and so the derived histogram is independent, abstract(A, V CS{}T). A
value full functional transform is abstract if the histogram is independent,
abstract(AX, {{w}CS{}T : w ∈ V }T).

A surrealisation is size-conserving if the derived histogram is as effective
as the abstract histogram, (A ∗ T )F = (A ∗ T )XF =⇒ size((A ∗ T )X ∗ T�A) =
size(A). Otherwise the size of the surrealisation is less than the size of the
histogram, (A ∗ T )F < (A ∗ T )XF =⇒ size((A ∗ T )X ∗ T�A) < size(A). An
abstract transform is necessarily size-conserving.

The independent of an effective surrealisation equals the independent of the
given histogram if the transform is abstract, abstract(A, T )

A ∗ T ≡ (A ∗ T )X =⇒ ((A ∗ T )X ∗ T�A)X ≡ AX

because the surrealisation is equivalent to the histogam, (A∗T )X ∗T�A ≡ A.

In the case where the formal histogram is independent, AX ∗ T ≡ (AX ∗ T )X,
then the surrealisation of the independent, (AX ∗ T )X ∗ T�AX

, equals the
independent, AX

AX ∗ T ≡ (AX ∗ T )X =⇒ (AX ∗ T )X ∗ T�AX ≡ AX

This is the case where the transform is non-overlapping because the formal
histogram is independent, ¬overlap(T ) =⇒ AX ∗ T ≡ (AX ∗ T )X.

A histogram A can be reconstructed from an abstract transform T if the com-
ponents of the transform are diagonalised, ∀C ∈ TP (diagonal((A ∗ CU)F)),
given the choice of diagonal and the counts along it. In the case where the
applied component is a fully diagonalised regular cartesian volume the cardi-
nality of diagonals is (d!)n−1 where n = |vars(A)| and d = |(B ∗ C)F|. Then
the choice of diagonal is in {1 . . . (d!)n−1}.

In the case where the transform is a substrate transform T ∈ TU,V , hav-
ing derived variables W = der(T ), the derived of the partition transform is
independent, ∀P ∈ W (A ∗ PT = (A ∗ PT)X), because the partition trans-
forms are mono-derived-variate, |der(PT)| = 1. So the surrealisations of the
partition transforms equal the histogram,

∀P ∈ W ((A ∗ PT)X ∗ PT�A = A)
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The actual converse of unit functional transform T ∈ Tf,U of a histogram
A applied to the formal histogram AX ∗ T is called the contentisation, AX ∗
T ∗ T�A. A transform T formal with respect to a histogram A if the derived
histogram, A ∗T , equals the formal histogram, AX ∗T . This is the case if the
contentisation of A is equivalent to A. The contentisation is equivalent to
the histogram only if the transform is formal, formal(A, T )

A ∗ T ≡ AX ∗ T ⇐⇒ AX ∗ T ∗ T�A ≡ A

An example of a formal transform is the unary partition transform {V CS}T ∈
TU,f,1 which is always formal, formal(A, {V CS}T). All effective unit functional
transforms are formal if the histogram is independent, A = AX =⇒ A∗T =
AX ∗ T . A value full functional transform is formal only if the histogram is
independent, formal(AX, {{w}CS{}T : w ∈ V }T).

A contentisation is size-conserving if the derived histogram is as effective as
the formal histogram, (A∗T )F ≥ (AX∗T )F =⇒ size(AX∗T ∗T�A) = size(A).
Otherwise the size of the contentisation is less than the size of the histogram,
(A∗T )F < (AX ∗T )F =⇒ size(AX ∗T ∗T�A) < size(A). A formal transform
is necessarily size-conserving.

The effective contentisation of an independent equals the independent

AX ∗ T ∗ T�AX ≡ AX

The contentisation equals the histogram if the transform is formal, formal(A, T ),
by definition

A ∗ T ≡ AX ∗ T =⇒ AX ∗ T ∗ T�A ≡ A

The independent of a contentisation equals the independent of the given
histogram if the transform is formal, formal(A, T )

A ∗ T ≡ AX ∗ T =⇒ (AX ∗ T ∗ T�A)X ≡ AX

because the contentisation is equivalent to the histogam, AX ∗T ∗T�AX ≡ A.

The contentisation equals the surrealisation if the formal histogram is equiv-
alent to the abstract histogram, AX ∗ T ≡ (A ∗ T )X

AX ∗ T ≡ (A ∗ T )X =⇒ AX ∗ T ∗ T�A ≡ (A ∗ T )X ∗ T�A

In the case where the formal histogram is independent, AX ∗ T ≡ (AX ∗ T )X,
then the surrealisation of the independent, (AX ∗ T )X ∗ T�AX

, equals con-
tentisation of the independent, AX ∗T ∗T�AX

, which equals the independent,
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AX

AX ∗ T ≡ (AX ∗ T )X =⇒ (AX ∗ T )X ∗ T�AX ≡ AX ∗ T ∗ T�AX ≡ AX

This is the case where the transform is non-overlapping, ¬overlap(T ) =⇒
AX ∗ T ≡ (AX ∗ T )X.

The actual converse of unit functional transform T ∈ Tf,U of the indepen-
dent histogram AX applied to the derived histogram A∗T is called the neutral-
isation, A∗T ∗T�AX

. A neutralisation is size-conserving, size(A∗T ∗T�AX
) =

size(A). If the transform is a unary partition transform {V CS}T ∈ TU,f,1 then

the neutralisation equals the independent, A ∗ {V CS}T ∗ {V CS}T�AX
= AX.

If the transform is a full functional transform, for example a value full
functional transform {{w}CS{}T : w ∈ V }T, then the neutralisation equals
the histogram only if the histogram is independent, AX ∗ {{w}CS{}T : w ∈
V }T ∗ {{w}CS{}T : w ∈ V }T�AX

= AX.

The effective neutralisation of an independent equals the independent

AX ∗ T ∗ T�AX ≡ AX

The effective neutralisation equals the independent if the transform is formal,
formal(A, T ),

A ∗ T ≡ AX ∗ T =⇒ A ∗ T ∗ T�AX ≡ AX

So the independent of a neutralisation equals the independent if the transform
is formal

A ∗ T ≡ AX ∗ T =⇒ (A ∗ T ∗ T�AX

)X ≡ AX

If a transform T is formal, formal(A, T ), then the contentisation equals the
histogram, AX ∗T ∗T�A ≡ A, and the neutralisation equals the independent,
A ∗ T ∗ T�AX ≡ AX

AX ∗ T ∗ T�A ≡ A ⇐⇒ A ∗ T ∗ T�AX ≡ AX

The neutralisation equals the idealisation when each of the components of
the independent equals the independent component of the histogram

∀C ∈ TP (AX ∗ CU = (A ∗ CU)X) ⇐⇒ A ∗ T ∗ T�AX

= A ∗ T ∗ T †A

In the case where the transform is a substrate transform T ∈ TU,V and the
formal independent equals the abstract, (AX ∗ T )X = (A ∗ T )X, then the
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neutralisations of the partition transforms equal the independent,

(AX ∗ T )X = (A ∗ T )X ⇐⇒
∀P ∈ W (A ∗ PT = AX ∗ PT)

= ∀P ∈ W (A ∗ PT ∗ PT�AX

= AX)

and the contentisations of the partition transforms equal the histogram,

(AX ∗ T )X = (A ∗ T )X ⇐⇒
∀P ∈ W (A ∗ PT = AX ∗ PT)

= ∀P ∈ W (A = AX ∗ PT ∗ PT�A)

Of the idealisation and actualisations, the idealisation, A ∗ T ∗ T †A, and
the surrealisation, (A ∗ T )X ∗ T�A, may be grouped together as abstract
converse actions which depend on the derived histogram, A ∗ T , and the
independent of the derived histogram, or abstract histogram, (A ∗ T )X. The
neutralisation, A ∗ T ∗ T�AX

, and the contentisation, AX ∗ T ∗ T�A, may be
grouped together as formal converse actions which depend on the histogram,
A, and the independent of the histogram, AX.

3.12.4 Converse action entropy

Consider the histogram-transform pair (A, T ) ∈ A × TU,f,1 in variables
V = vars(A) where (i) the independent histogram is completely effective,
AXF = V C, (ii) the one functional transform has underlying variables equal
to the histogram variables, und(T ) = V , and (iii) the derived histogram is as
effective as the formal histogram, (A ∗T )F ≥ (AX ∗T )F, so that the contenti-
sation is size-conserving, size(AX ∗ T ∗ T�A) = size(A).

The formal converse actions, which depend on the histogram, A, and the
independent of the histogram, AX, are related. Conjecture that the sum of
the contentisation and the neutralisation is approximately equal to the sum
of the histogram and the independent

AX ∗ T ∗ T�A + A ∗ T ∗ T�AX ∼= A+ AX

The sizes sum exactly, size(AX ∗ T ∗ T�A) + size(A ∗ T ∗ T�AX
) = size(A) +

size(AX). In the case when the transform is formal with respect to the
histogram, formal(A, T ) := A ∗ T ≡ AX ∗ T , then (i) the contentisation is
equivalent to the histogram, AX ∗ T ∗ T�A ≡ A, and (ii) the neutralisation
is equivalent to the independent, A ∗ T ∗ T�AX ≡ AX, and so the sum of
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the contentisation and the neutralisation is exactly equal to the sum of the
histogram and the independent, A ∗ T ∗ T�A + AX ∗ T ∗ T�AX ≡ A+ AX.

If the transform is a unary partition transform Tu = {V CS}T ∈ TU,f,1 then (i)

the neutralisation equals the independent, A ∗ Tu ∗ T�A
X

u ≡ AX, and (ii) the
contentisation equals the histogram, AX ∗ Tu ∗ T�Au ≡ A, and so in this case
the sums are exactly equal, AX ∗ Tu ∗ T�Au + A ∗ Tu ∗ T�A

X

u ≡ A+ AX.

If the transform is a full functional transform, for example a value full func-
tional transform Ts = {{w}CS{}T : w ∈ V }T, then (i) the neutralisation
equals the histogram, A ∗ Ts ∗ T�A

X

s ≡ A, and (ii) the contentisation equals
the independent because the histogram is as effective as the independent,
(A ∗ Ts)

F ≥ (AX ∗ Ts)
F =⇒ AF = AXF =⇒ AX ∗ Ts ∗ T�As ≡ AX, and so

in this case the sums are exactly equal, AX∗Ts∗T�As +A∗Ts∗T�A
X

s ≡ AX+A.

In the special case where the independent equals the scaled cartesian, AX =
V C
z , where z = size(A), v = |V C| and V C

z = scalar(z/v) ∗ V C, then the sum
of the unnaturalisation and the naturalisation is approximately equal to the
sum of the histogram and the scaled cartesian

V C
z ∗ T ∗ T�A + A ∗ T ∗ T † ∼= A+ V C

z

Conjecture that the sum of the entropies of the contentisation and the neu-
tralisation varies as the sum of the entropies of the histogram and the inde-
pendent

entropy(AX ∗T ∗T�A) + entropy(A ∗T ∗T�AX

) ∼ entropy(A) + entropy(AX)

In the special case where the independent equals the scaled cartesian, AX =
V C
z , then the entropies are such that

entropy(V C
z ∗ T ∗ T�A) + entropy(A ∗ T ∗ T †) ∼ entropy(A) + entropy(V C

z )

The relationship between the entropies of the formal converse actions can
be lifted to the abstract converse actions. In the case where the formal
histogram is equivalent to the abstract histogram, AX ∗ T ≡ (A ∗ T )X, then
insofar as the idealisation approximates to the neutralisation, A ∗ T ∗ T †A ∼=
A ∗ T ∗ T�AX

, conjecture that the sum of the entropies of the surrealisation
and the idealisation varies as the sum of the entropies of the histogram and
the independent

entropy((A ∗T )X ∗T�A) + entropy(A ∗T ∗T †A) ∼ entropy(A) + entropy(AX)
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In the case where the formal equals the abstract, AX ∗ T ≡ (A ∗ T )X,
conjecture that the entropies of the converse action histograms are subject
to the following inequalities. First via the actual converse of the independent,

entropy(V C
z ∗ T ∗ T †) = entropy(V C

z )

≥ entropy(V C
z ∗ T ∗ T�A

X

)

≥ entropy(AX ∗ T ∗ T�AX

) = entropy(AX)

≥ entropy(AX ∗ T ∗ T�A) = entropy((A ∗ T )X ∗ T�A)

≥ entropy(A)

≥ entropy(ZA) = 0

and

entropy(V C
z ∗ T ∗ T †) = entropy(V C

z )

≥ entropy(V C
z ∗ T ∗ T�A

X

)

≥ entropy(AX ∗ T ∗ T�AX

) = entropy(AX)

≥ entropy(A ∗ T ∗ T�AX

)

≥ entropy(A ∗ T ∗ T †A)

≥ entropy(A)

≥ entropy(ZA) = 0

where ZA = A%∅ = scalar(size(A)).

Now via the natural converse,

entropy(V C
z ∗ T ∗ T †) = entropy(V C

z )

≥ entropy(AX ∗ T ∗ T †) = entropy((A ∗ T )X ∗ T †)
≥ entropy(A ∗ T ∗ T †)
≥ entropy(A ∗ T ∗ T�AX

)

≥ entropy(A ∗ T ∗ T †A)

≥ entropy(A)

≥ entropy(ZA) = 0

231



Now via the actual converse,

entropy(V C
z ∗ T ∗ T †) = entropy(V C

z )

≥ entropy((V C
z ∗ T )X ∗ T †)

≥ entropy((V C
z ∗ T )X ∗ T�A)

≥ entropy((AX ∗ T )X ∗ T�A)

≥ entropy(AX ∗ T ∗ T�A) = entropy((A ∗ T )X ∗ T�A)

≥ entropy(A)

≥ entropy(ZA) = 0

In section ‘Minimum alignment’, below, it is shown that the relative en-
tropy of the independent with respect to the histogram equals the difference
between the independent entropy and the histogram entropy,

entropyRelative(A,AX) = entropy(AX)− entropy(A)

and so the independent entropy is greater than or equal to the histogram
entropy, entropy(AX) ≥ entropy(A). Therefore the surrealisation derived
entropy is greater than or equal to the idealisation derived entropy,

entropy((A ∗ T )X ∗ T�A ∗ T ) = entropy((A ∗ T )X)

≥ entropy(A ∗ T ∗ T † ∗ T ) = entropy(A ∗ T )

The idealisation independent equals the histogram independent, so the ideali-
sation entropy is less than or equal to the independent entropy, entropy(AX) =
entropy((A ∗ T ∗ T †A)X) ≥ entropy(A ∗ T ∗ T †A). The idealisation entropy
is greater than or equal to the histogram entropy, entropy(A ∗ T ∗ T †A) ≥
entropy(A). Therefore the idealisation entropy is between the independent
entropy and the histogram entropy,

entropy(AX) ≥ entropy(A ∗ T ∗ T †A) ≥ entropy(A)

3.12.5 Iso-sets

A histogram A and its independent AX are congruent. Let the set of
complete congruent histograms in system U , of variables V and size z be

AU,V,z = {A : A ∈ AU , AU = V C, size(A) = z}

The set of complete congruent histograms is also known as the set of substrate
histograms. The set of complete congruent histograms, AU,V,z, is infinite if
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the volume is greater than one, |V C| > 1. Let histogram A be a complete
congruent histogram, A ∈ AU,V,z. Then the independent histogram, AX, is
a complete congruent histogram, AX ∈ AU,V,z. The independent function
partitions AU,V,z into equivalence classes of iso-independents. Let YU,V,z ∈
AU,V,z → AU,V,z be the subset of the independent function,

YU,V,z = {(A,AX) : A ∈ AU,V,z} ⊂ independent

Then inverse(YU,V,z) ∈ AU,V,z → P(AU,V,z) and ran(inverse(YU,V,z)) ∈ B(AU,V,z).
Thus the set of iso-independents of histogram A ∈ AU,V,z is

inverse(YU,V,z)(A
X) = {B : B ∈ AU,V,z, BX = AX}

The set of iso-independents is infinite if more than one of its perimeter his-
tograms is not an effective singleton, |{w : w ∈ V, |(AX%{w})F| > 1}| >
1 ⇐⇒ |Y −1

U,V,z(A
X)| =∞. Otherwise the set of iso-independents is a single-

ton, |{w : w ∈ V, |(AX%{w})F| > 1}| ≤ 1 ⇐⇒ Y −1
U,V,z(A

X) = {AX}.

Both the histogram, A, and the independent histogram, AX, are iso-independents,
A,AX ∈ inverse(YU,V,z)(A

X).

The idealisation of a histogram given an effective transform, A∗T ∗T †A, is also
in the iso-independents, A ∗ T ∗ T †A ∈ Y −1

U,V,z(A
X), because the independent

of the idealisation equals the independent histogram, (A ∗ T ∗ T †A)X = AX.

Let the set of complete congruent integral histograms, also called the inte-
gral congruent support, in system U , of variables V and size z be

AU,i,V,z = {A : A ∈ AU,i, AU = V C, size(A) = z}

The set of complete congruent integral histograms is also known as the set of
integral substrate histograms. The integral congruent support is a finite subset
of the complete congruent histograms, AU,i,V,z ⊂ AU,V,z. Its cardinality is the
cardinality of weak compositions |C′(V C, z)|

|AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!

where v = |V C|. The independent function also partitions the integral congru-
ent support, AU,i,V,z, into equivalence classes of integral iso-independents. Let
YU,i,V,z ∈ AU,i,V,z → AU,V,z be such that YU,i,V,z = {(A,AX) : A ∈ AU,i,V,z} ⊂
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YU,V,z ⊂ independent. Thus the finite set of integral iso-independents of
histogram A ∈ AU,i,V,z is

inverse(YU,i,V,z)(A
X) = {B : B ∈ AU,i,V,z, BX = AX}

The integral histogram A ∈ AU,i,V,z is an integral iso-independent, A ∈
inverse(YU,i,V,z)(A

X). The independent histogram, AX, is not necessarily in-
tegral. If it is integral then it is a member of the integral iso-independents,
AX ∈ Ai ⇐⇒ AX ∈ inverse(YU,i,V,z)(A

X).

The range of the integral congruent independent function, ran(YU,i,V,z), con-
sists of the set of all of the independent histograms in the complete con-
gruent histograms which have integral perimeter, ran(YU,i,V,z) = {AX : A ∈
AU,V,z, ∀w ∈ V (AX%{w} ∈ AU,i,{w},z)}, because (i) each of the histograms
of the domain, dom(YU,i,V,z), has integral perimeter, ∀A ∈ AU,i,V,z ∀w ∈
V (A%{w} ∈ AU,i,{w},z), (ii) the perimeter of an independent histogram
equals the perimeter of its histogram, ∀A ∈ AU,i,V,z ∀w ∈ V (AX%{w} =
A%{w}), and (iii) all integral perimeters imply the existence of at least
one integral histogram having that perimeter, ∀Q ∈ V → AU ((|Q| =
|V | ∧ (∀(w,B) ∈ Q (B ∈ AU,i,{w},z))) =⇒ (∃A ∈ AU,i,V,z ({(w,A%{w}) :
w ∈ V } = Q))). This can be shown by constructing the set of integral
iso-independents explicitly given an integral perimeter. Define iiso ∈ (V →
Ai)→ P(Ai) as iiso(Q) := iiso(Q, ∅), and iiso ∈ (V → Ai)×Ai → P(Ai) as

iiso(Q,A) :=⋃
{iiso(Q′, A′) : X ∈

∏
ran(Q), minr(X) > 0, S =

⋃
dom(X),

A′ = A+ {S}U, Q′ = {(w,B − {S%{w}}U) : (w,B) ∈ Q}}
∪ {A : maxr(ran(Q)) = 0}

where (
∏

) is the monoidal product of a set of sets. The function, iiso, is
such that iiso(Q) ⊂ AU,i,V,z where ∀(w,B) ∈ Q (B ∈ AU,i,{w},z). It is also
the case that |iiso(Q)| > 0. Thus there always exists at least one integral
iso-independent histogram having the given integral perimeter. Therefore
the range of the integral congruent independent function is bijective with the
integral congruent perimeters and the cardinality is

|ran(YU,i,V,z)| =
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!

Thus, iiso({(w,AX%{w}) : w ∈ V }) = Y −1
U,i,V,z(A

X).
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The cardinality of the integral congruent perimeters must be less than or
equal to the cardinality of the integral congruent support

|ran(YU,i,V,z)| ≤ |dom(YU,i,V,z)| = |AU,i,V,z|

and so ∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!
≤ (z + v − 1)!

z! (v − 1)!

In the case of regular variables V having dimension n = |V | and valency
{d} = {|Uw| : w ∈ V } the cardinality is

|ran(YU,i,V,z)| =
(

(z + d− 1)!

z! (d− 1)!

)n
The average cardinality of the integral iso-independents is

|AU,i,V,z|
|ran(YU,i,V,z)|

=
(z + v − 1)!

z! (v − 1)!
/
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!

The average cardinality of the integral iso-independents varies with both
size, z, and volume, v. For a given volume, v, the average cardinality
of the integral iso-independents varies with the entropy of the valencies,
entropy({(w, |Uw|) : w ∈ V }). Thus the average cardinality of the inte-
gral iso-independents tends to increase with dimension, n = |V |. Regular
histograms tend to have higher average cardinality than irregular.

Integral iso-independents sets cannot be singletons of a non-independent
histogram, A 6= AX =⇒ Y −1

U,i,V,z(A
X) 6= {A}. Thus A 6= AX =⇒

|Y −1
U,i,V,z(A

X)| > 1. Integral iso-independents sets are singletons only if no
more than one of its perimeter histograms is not an effective singleton, |{w :
w ∈ V, |(AX%{w})F| > 1}| ≤ 1 ⇐⇒ Y −1

U,i,V,z(A
X) = {AX}.

Given any integral subset of the substrate histograms I ⊆ AU,i,V,z that con-
tains the histogram A ∈ I, the degree to which the subset is said to be
aligned-like is called the iso-independence. The iso-independence is defined
as the ratio of (i) the cardinality of the intersection between the integral sub-
strate histograms subset and the set of integral iso-independents, and (ii) the
cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ Y −1

U,i,V,z(A
X)|

|I ∪ Y −1
U,i,V,z(A

X)|
≤ 1
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If the iso-independence is low, for example in the case of the integral substrate
histograms, I = AU,i,V,z, the subset is said to be classical-like. If the iso-
independence is high, for example in the case of the integral iso-independents,
I = Y −1

U,i,V,z(A
X), the subset is said to be aligned-like.

Let histogram A ∈ AU,V,z be in system U and have variables V and size z.
Consider the iso-independents given some one functional transform T ∈ TU,f,1
where und(T ) = V . Let W = der(T ). Let the formal -valued function of the
substrate histograms YU,T,V,z ∈ AU,V,z → AU,W,z be defined

YU,T,V,z = {(A,AX ∗ T ) : A ∈ AU,V,z}

Note that YU,T,V,z is not a subset of the independent function, YU,T,V,z ∩
independent = ∅. The infinite set of iso-formals of AX ∗ T is

inverse(YU,T,V,z)(A
X ∗ T ) = {B : B ∈ AU,V,z, BX ∗ T = AX ∗ T}

Iso-formals have the same formal histogram, ∀B ∈ Y −1
U,T,V,z(A

X∗T ) (BX∗T =

AX ∗ T ). The equivalence classes implied by YU,T,V,z partition the complete
congruent histograms, ran(Y −1

U,T,V,z) ∈ B(AU,V,z). The equivalence classes im-
plied by YU,T,V,z form a parent partition of equivalence classes implied by the
subset of the independent function YU,V,z, parent(ran(Y −1

U,T,V,z), ran(Y −1
U,V,z)),

so that Y −1
U,V,z(A

X) ⊆ Y −1
U,T,V,z(A

X ∗ T ). Thus both the histogram and its in-

dependent are iso-formals, A,AX ∈ Y −1
U,T,V,z(A

X ∗ T ). The iso-formals is a

superset of the iso-independents, Y −1
U,T,V,z(A

X ∗ T ) ⊇ Y −1
U,V,z(A

X), so the iso-
independence, or degree of aligned-likeness, is

|Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,V,z(A

X ∗ T )|

In the case where the transform is a substrate transform, T ∈ TU,V , and the
formal is independent, AX ∗ T = (AX ∗ T )X, the iso-formals can be written
in terms of the partition variables,

AX ∗ T = (AX ∗ T )X =⇒
Y −1
U,T,V,z(A

X ∗ T ) = {B : B ∈ AU,V,z, ∀P ∈ W (BX ∗ PT = AX ∗ PT)}

This is the case if the transform is non-overlapping, ¬overlap(T ) =⇒ AX ∗
T = (AX ∗ T )X.
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Let the formal independent-valued function of the substrate histograms
YU,T,V,x,z ∈ AU,V,z → AU,W,z be defined

YU,T,V,x,z = {(A, (AX ∗ T )X) : A ∈ AU,V,z}

The infinite set of iso-formal-independents of (AX ∗ T )X is

inverse(YU,T,V,x,z)((A
X ∗ T )X) = {B : B ∈ AU,V,z, (BX ∗ T )X = (AX ∗ T )X}

Iso-formal-independents have the same formal independent, ∀B ∈ Y −1
U,T,V,x,z((A

X∗
T )X) ((BX ∗ T )X = (AX ∗ T )X). The equivalence classes implied by YU,T,V,x,z
partition the complete congruent histograms, ran(Y −1

U,T,V,x,z) ∈ B(AU,V,z). The
equivalence classes implied by YU,T,V,x,z form a parent partition of equivalence
classes implied by the subset of the formal function YU,T,V,z,

parent(ran(Y −1
U,T,V,x,z), ran(Y −1

U,T,V,z))

so that Y −1
U,V,z(A

X) ⊆ Y −1
U,T,V,z(A

X ∗ T ) ⊆ Y −1
U,T,V,x,z((A

X ∗ T )X). Thus both

the histogram and its independent are iso-formal-independents, A,AX ∈
Y −1
U,T,V,x,z((A

X∗T )X). The iso-independence of the integral iso-formal indepen-
dents is less than or equal to the iso-independence of the integral iso-formals,
|Y −1
U,i,V,z(A

X)|/|Y −1
U,i,T,V,x,z((A

X ∗ T )X)| ≤ |Y −1
U,i,V,z(A

X)|/|Y −1
U,i,T,V,z(A

X ∗ T )|.

In the case where the transform is a substrate transform, T ∈ TU,V , the
iso-formal-independents equals the subset of the substrate histograms having
the same set of partition formals,

Y −1
U,T,V,x,z((A

X ∗ T )X) = {B : B ∈ AU,V,z, ∀P ∈ W (BX ∗ PT = AX ∗ PT)}

In fact the iso-partition-formal sets are bijective to the iso-formal-independents
sets,

{{AX ∗ PT : P ∈ W} : A ∈ AU,V,z} :↔: ran(YU,T,V,x,z)

Similarly to the definition of the iso-formals, let the abstract-valued func-
tion of the substrate histograms YU,T,W,z ∈ AU,V,z → AU,W,z be defined

YU,T,W,z = {(A, (A ∗ T )X) : A ∈ AU,V,z}

The infinite set of iso-abstracts of (A ∗ T )X is

inverse(YU,T,W,z)((A ∗ T )X) = {B : B ∈ AU,V,z, (B ∗ T )X = (A ∗ T )X}

237



Iso-abstracts have the same abstract histogram, ∀B ∈ Y −1
U,T,W,z((A∗T )X) ((B∗

T )X = (A ∗ T )X). The equivalence classes implied by YU,T,W,z partition the
complete congruent histograms, ran(Y −1

U,T,W,z) ∈ B(AU,V,z). The lifted iso-
abstracts is a subset of the iso-independents of the derived,

{B ∗ T : B ∈ Y −1
U,T,W,z((A ∗ T )X)} ⊆ Y −1

U,W,z((A ∗ T )X)

If the transform is non-overlapping then the lifted iso-abstracts equals the
derived iso-independents

¬overlap(T ) =⇒ {B ∗ T : B ∈ Y −1
U,T,W,z((A ∗ T )X)} = Y −1

U,W,z((A ∗ T )X)

because the transform is right total when non-overlapping, (X%W )F = WC

where (X,W ) = T .

The derived iso-independence of the integral lifted iso-abstracts is

|{B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}|

|Y −1
U,i,W,z((A ∗ T )X)|

The histogram is an iso-abstract, A ∈ Y −1
U,T,W,z((A ∗ T )X). If the formal

independent histogram equals the abstract histogram, (AX ∗ T )X = (A ∗ T )X,
then the independent is an iso-abstract,

(AX ∗ T )X = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,W,z((A ∗ T )X)

This is also the case if the formal histogram equals the abstract histogram

(AX ∗ T ) = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,W,z((A ∗ T )X)

In the case where the independent is integral, AX ∈ Ai, and an integral iso-
abstract, AX ∈ Y −1

U,i,T,W,z((A ∗ T )X), the iso-independence of the iso-abstracts,

|Y −1
U,i,T,W,z((A ∗ T )X) ∩ Y −1

U,i,V,z(A
X)|

|Y −1
U,i,T,W,z((A ∗ T )X) ∪ Y −1

U,i,V,z(A
X)|

is greater than would otherwise be the case because the independent is in the
intersection, AX ∈ Y −1

U,i,T,W,z((A ∗ T )X) ∩ Y −1
U,i,V,z(A

X).

In the case where the transform is a substrate transform, T ∈ TU,V , the
set of iso-abstracts can be written in terms of the partition variables,

Y −1
U,T,W,z((A ∗ T )X) = {B : B ∈ AU,V,z, ∀P ∈ W (B ∗ PT = A ∗ PT)}

=
⋂
P∈W

D−1
U,PT,z

(A ∗ PT)
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where D−1
U,T,z(A ∗ T ) is the set of iso-deriveds, defined below.

In fact the iso-partition-derived sets are bijective to the iso-abstract sets,

{{A ∗ PT : P ∈ W} : A ∈ AU,V,z} :↔: ran(YU,T,W,z)

For this reason, all subsets of the iso-abstracts that include the histogram,

{I : I ⊆ Y −1
U,T,W,z((A ∗ T )X), A ∈ I}

are called entity-like iso-sets of the histogram, A.

The lifted iso-sets of all entity-like integral iso-sets are subsets of the in-
tegral iso-independents of the derived,

{B ∗ T : B ∈ I} ⊆ Y −1
U,i,W,z((A ∗ T )X)

where I ⊆ Y −1
U,i,T,W,z((A ∗T )X) and A ∈ I. So the derived iso-independence is

|{B ∗ T : B ∈ I}|
|Y −1
U,i,W,z((A ∗ T )X)|

In some cases the derived iso-independence of entity-like integral iso-sets may
be greater than the iso-independence,

|{B ∗ T : B ∈ I}|
|Y −1
U,i,W,z((A ∗ T )X)|

≥
|I ∩ Y −1

U,i,V,z(A
X)|

|I ∪ Y −1
U,i,V,z(A

X)|

because the lifted iso-sets of entity-like integral iso-sets are subsets of the
derived iso-independents, {B ∗ T : B ∈ I} ⊆ Y −1

U,i,W,z((A ∗ T )X), and not just
intersections.

The degree to which an integral iso-set I ⊆ AU,i,V,z that contains the his-
togram, A ∈ I, is said to be entity-like is called the iso-abstractence. The
iso-abstractence is defined as the ratio of (i) the cardinality of the intersec-
tion between the integral iso-set and the set of integral iso-abstracts, and (ii)
the cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ Y −1

U,i,T,W,z((A ∗ T )X)|
|I ∪ Y −1

U,i,T,W,z((A ∗ T )X)|
≤ 1
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Consider the iso-deriveds subset of the iso-abstracts. Let the derived -
valued function of the substrate histograms DU,T,z ∈ AU,V,z → AU,W,z be
defined

DU,T,z = {(A,A ∗ T ) : A ∈ AU,V,z}

The infinite set of iso-deriveds of A ∗ T is

inverse(DU,T,z)(A ∗ T ) = {B : B ∈ AU,V,z, B ∗ T = A ∗ T}

The set of equivalence classes implied by DU,T,z is a child partition of the set
of equivalence classes implied by YU,T,W,z, parent(ran(Y −1

U,T,W,z), ran(D−1
U,T,z)).

The lifted iso-deriveds is a singleton, {B ∗T : B ∈ D−1
U,T,z(A ∗T )} = {A ∗T}.

The naturalisation is in the iso-deriveds, A ∗ T ∗ T † ∈ D−1
U,T,z(A ∗ T ), because

the derived of the naturalisation equals the derived, (A ∗T ∗T †) ∗T = A ∗T .
The iso-deriveds might equally well be called the iso-naturalisations, since
all have the same naturalisation, ∀B ∈ D−1

U,T,z(A∗T ) (B ∗T ∗T † = A∗T ∗T †).

The iso-abstractence or degree of entity-likeness is

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

≤ 1

All subsets of the iso-derived that include the histogram,

{I : I ⊆ D−1
U,T,z(A ∗ T ), A ∈ I}

are called law-like iso-sets of the histogram, A. All law-like iso-sets are entity-
like iso-sets, D−1

U,T,z(A ∗ T ) ⊆ Y −1
U,T,W,z((A ∗ T )X).

The iso-independence of the integral iso-derived is

|D−1
U,i,T,z(A ∗ T ) ∩ Y −1

U,i,V,z(A
X)|

|D−1
U,i,T,z(A ∗ T ) ∪ Y −1

U,i,V,z(A
X)|

The lifted iso-set of any law-like iso-set is a singleton of the derived, {A∗T},
so the derived iso-independence of the integral lifted iso-derived is

1

|Y −1
U,i,W,z((A ∗ T )X)|

The degree to which an integral iso-set I ⊆ AU,i,V,z that contains the his-
togram, A ∈ I, is said to be law-like is called the iso-derivedence. The
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iso-derivedence is defined as the ratio of (i) the cardinality of the intersec-
tion between the integral iso-set and the set of integral iso-deriveds, and (ii)
the cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ D−1

U,i,T,z(A ∗ T )|
|I ∪ D−1

U,i,T,z(A ∗ T )|
≤ 1

The iso-derivedence of the iso-abstracts equals the iso-abstractence of the
iso-deriveds,

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

That is, the iso-deriveds is as entity-like as the iso-abstracts is law-like.

In the case where (i) the transform is a substrate transform, T ∈ TU,V , and
(ii) the derived is independent, and so equals the abstract, A ∗ T = (A ∗ T )X,
the set of iso-deriveds equals the set of iso-partition-deriveds and so equals
the set of iso-abstracts,

D−1
U,T,z(A ∗ T ) = D−1

U,T,z((A ∗ T )X)

=
⋂
P∈W

D−1
U,PT,z

(A ∗ PT)

= Y −1
U,T,W,z((A ∗ T )X)

So in this case the iso-abstractence, or degree of entity-likeness, of the integral
iso-deriveds is maximal.

In fact the iso-deriveds equals the iso-abstracts if and only if the derived
is independent,

A ∗ T = (A ∗ T )X ⇐⇒ D−1
U,T,z(A ∗ T ) = Y −1

U,T,W,z((A ∗ T )X)

So if the derived is not independent, the iso-deriveds is a proper subset of
the iso-abstracts,

A ∗ T 6= (A ∗ T )X =⇒ D−1
U,T,z(A ∗ T ) ⊂ Y −1

U,T,W,z((A ∗ T )X)

and the iso-abstractence of the integral iso-deriveds is sub-maximal,

A ∗ T 6= (A ∗ T )X =⇒
|D−1

U,i,T,z(A ∗ T )|
|Y −1
U,i,T,W,z((A ∗ T )X)|

< 1
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The cardinality of the set of integral iso-deriveds is the product of the weak
compositions of the components,

|D−1
U,i,T,z(A ∗ T )| =

∏
(R,C)∈T−1

((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

The cardinality of the set of integral iso-abstracts is constrained,

∀P ∈ W

|Y −1
U,i,T,W,z((A ∗ T )X)| ≤

∏
(R,C)∈(PT)−1

((A ∗ PT)R + |C| − 1)!

(A ∗ PT)R! (|C| − 1)!


In the case where the derived is independent, A∗T = (A∗T )X, the cardinality
of the set of integral iso-abstracts can also be stated explicitly,

|Y −1
U,i,T,W,z((A ∗ T )X)| =

∏
(R,C)∈T−1

((A ∗ T )X
R + |C| − 1)!

(A ∗ T )X
R! (|C| − 1)!

Corresponding to the derived valued function of the substrate histograms,
DU,T,z, the normalised components valued function of the substrate histograms
is CU,T,z ∈ AU,V,z → P(AU,V,z), defined

CU,T,z = {(A, {(A ∗ CU)∧ : C ∈ TP}) : A ∈ AU,V,z}

where ()∧ ∈ A → A is defined Â := normalise(A) if size(A) > 0 otherwise
Â := A, and T−1 := inverse(T ). The infinite set of iso-components of {(A ∗
CU)∧ : C ∈ TP} is

inverse(CU,T,z)({(A ∗ CU)∧ : C ∈ TP}) =

{B : B ∈ AU,V,z, ∀C ∈ TP ((B ∗ CU)∧ = (A ∗ CU)∧)}

The unnaturalisation is in the iso-components, V C
z ∗ T ∗ T�A ∈ C−1

U,T,z({(A ∗
CU)∧ : C ∈ TP}). The iso-components might equally well be called the iso-
unnaturalisations, since all have the same unnaturalisation, ∀B ∈ C−1

U,T,z({(A∗
CU)∧ : C ∈ TP}) (V C

z ∗ T ∗ T�B = V C
z ∗ T ∗ T�A).

The normalised components of the independent valued function of the sub-
strate histograms is CU,x,T,z ∈ AU,V,z → P(AU,V,z), defined

CU,x,T,z = {(A, {(AX ∗ CU)∧ : C ∈ TP}) : A ∈ AU,V,z}
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The infinite set of iso-independent-components of {(AX ∗ CU)∧ : C ∈ TP}
is

inverse(CU,x,T,z)({(AX ∗ CU)∧ : C ∈ TP}) =

{B : B ∈ AU,V,z, ∀C ∈ TP ((BX ∗ CU)∧ = (AX ∗ CU)∧)}

The normalised independent components valued function of the substrate his-
tograms is CU,T,x,z ∈ AU,V,z → P(AU,V,z), defined

CU,T,x,z = {(A, {(A ∗ CU)X∧ : C ∈ TP}) : A ∈ AU,V,z}

The infinite set of iso-component-independents of {(A ∗ CU)X∧ : C ∈ TP}
is

inverse(CU,T,x,z)({(A ∗ CU)X∧ : C ∈ TP}) =

{B : B ∈ AU,V,z, ∀C ∈ TP ((B ∗ CU)X∧ = (A ∗ CU)X∧)}

Now consider the iso-formals and the iso-abstracts together. Let the
formal-abstract pair valued function of the substrate histograms YU,T,z ∈
AU,V,z → (AU,W,z ×AU,W,z) be defined

YU,T,z = {(A, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,V,z}

The infinite set of iso-transform-independents of ((AX ∗ T ), (A ∗ T )X) is

inverse(YU,T,z)(((A
X ∗ T ), (A ∗ T )X)) =

{B : B ∈ AU,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

Iso-transform-independents have (i) the same formal histogram and (ii) the
same abstract histogram, ∀B ∈ Y −1

U,T,z(((A
X ∗ T ), (A ∗ T )X)) ((BX ∗ T = AX ∗

T )∧ ((B ∗T )X = (A∗T )X)). The formal histogram, AX ∗T , is not necessarily
equal to the abstract histogram, (A∗T )X. The equivalence classes implied by
YU,T,z partition the complete congruent histograms, ran(Y −1

U,T,z) ∈ B(AU,V,z).
The equivalence classes implied by both YU,T,V,z and YU,T,W,z form parent par-
titions of the partition implied by YU,T,z, parent(ran(Y −1

U,T,V,z), ran(Y −1
U,T,z)) and

parent(ran(Y −1
U,T,W,z), ran(Y −1

U,T,z)). So the set of iso-transform-independents is
the intersection of the iso-formals and iso-abstracts

Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) = Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X)

The histogram is an iso-transform-independent, A ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗
T )X)).
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The idealisation of the histogram with the given transform, A∗T ∗T †A, is also
in the iso-transform-independents, A ∗T ∗T †A ∈ Y −1

U,T,z(((A
X ∗T ), (A ∗T )X)).

This is because (i) the idealisation is in the iso-abstracts, A ∗ T ∗ T †A ∗ T =
A ∗ T =⇒ (A ∗ T ∗ T †A ∗ T )X = (A ∗ T )X, and (ii) idealisation is in the
iso-formals, (A ∗ T ∗ T †A)X = AX =⇒ (A ∗ T ∗ T †A)X ∗ T = AX ∗ T .

The set of iso-transform-independents is a subset of the iso-abstracts, so
it is an entity-like iso-set of the histogram, A,

Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) ⊆ Y −1
U,T,W,z((A ∗ T )X)

The iso-abstractence or degree of entity-likeness is

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))|
|Y −1
U,i,T,W,z((A ∗ T )X)|

≤ 1

The set of iso-transform-independents is not necessarily more entity-like than
the iso-deriveds, which has an iso-abstractence of

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

because the iso-transform-independents is not necessarily a superset of the
iso-deriveds, |D−1

U,i,T,z(A ∗ T ) \ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))| ≥ 0.

The iso-derivedence or degree of law-likeness is

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ D−1
U,i,T,z(A ∗ T )|

=

|Y −1
U,i,T,V,z(A

X ∗ T ) ∩ D−1
U,i,T,z(A ∗ T )|

|(Y −1
U,i,T,V,z(A

X ∗ T ) ∪ D−1
U,i,T,z(A ∗ T )) ∩ Y −1

U,i,T,W,z((A ∗ T )X)|

So the set of iso-transform-independents is not necessarily more law-like than
the iso-abstracts, which has an iso-derivedence of

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

The set of iso-transform-independents is entity-like so the lifted iso-transform-
independents is a subset of the iso-independents of the derived,

{B ∗ T : B ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))}
⊆ {B ∗ T : B ∈ Y −1

U,T,W,z((A ∗ T )X)}
⊆ Y −1

U,W,z((A ∗ T )X)
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So the derived iso-independence of the integral lifted iso-transform-independents
is

|{B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}|
|Y −1
U,i,W,z((A ∗ T )X)|

The derived iso-independence of the integral lifted iso-transform-independents
is less than or equal to the derived iso-independence of the integral lifted iso-
abstracts,

|{B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}|
|Y −1
U,i,W,z((A ∗ T )X)|

≤

|{B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}|

|Y −1
U,i,W,z((A ∗ T )X)|

The iso-independence of the iso-transform-independents is

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|
=

|Y −1
U,i,T,W,z((A ∗ T )X) ∩ Y −1

U,i,V,z(A
X)|

|(Y −1
U,i,T,W,z((A ∗ T )X) ∪ Y −1

U,i,V,z(A
X)) ∩ Y −1

U,i,T,V,z(A
X ∗ T )|

So the set of iso-transform-independents is not necessarily more aligned-like
than the iso-formals, which has an iso-independence of

|Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,V,z(A

X ∗ T )|

depending on the relative intersection cardinality.

If the formal independent histogram equals the abstract histogram then the
independent is an iso-abstract, (AX∗T )X = (A∗T )X =⇒ AX ∈ Y −1

U,T,W,z((A∗
T )X), and hence is an iso-transform-independent,

(AX ∗ T )X = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))

This is also the case where the formal histogram equals the abstract histogram,

AX ∗ T = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))

In the case where the independent is integral, AX ∈ Ai, and an integral iso-
transform-independent, AX ∈ Y −1

U,i,T,z(((A
X∗T ), (A∗T )X)), the iso-independence

of the iso-transform-independents,

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|
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is greater than would otherwise be the case because the independent is in the
intersection, AX ∈ Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X)) ∩ Y −1

U,i,V,z(A
X).

If the formal histogram equals the abstract histogram then the lifted iso-
transform-independents contains the abstract histogram

(A ∗ T )X = AX ∗ T ∈ {B ∗ T : B ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))}

In this case, if the abstract is also integral, (A ∗ T )X ∈ Ai, the derived iso-
independence of the iso-transform-independents,

|{B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}|
|Y −1
U,i,W,z((A ∗ T )X)|

is greater than would otherwise be the case because the abstract is in the in-
tersection, (A∗T )X ∈ {B∗T : B ∈ Y −1

U,i,T,z(((A
X∗T ), (A∗T )X))}∩Y −1

U,i,W,z((A∗
T )X).

Note that it is only in the subset where the formal histogram equals the ab-
stract histogram, AX∗T = (A∗T )X, that the lifted iso-transform-independent
relation is functional

{(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,W,z → (AU,W,z ×AU,W,z)

That is, the lifted iso-transform-independent sets do not partition the com-
plete congruent histograms in the derived variables

ran({(A∗T, ((AX∗T ), (A∗T )X)) : (A, ((AX∗T ), (A∗T )X)) ∈ YU,T,z}−1) /∈ B(AU,W,z)

except where the formal histogram equals the abstract histogram

ran({(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) :

(A, ((AX ∗ T ), (A ∗ T )X)) ∈ YU,T,z, AX ∗ T = (A ∗ T )X}−1)

∈ B({B ∗ T : B ∈ AU,V,z, BX ∗ T = (B ∗ T )X})

Similarly it is only in the subset where the formal histogram equals the
abstract histogram, AX ∗ T = (A ∗ T )X, that the formal domained relation of
the iso-transform-independents is functional

{(AX ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,W,z → (AU,W,z ×AU,W,z)
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If the transform is a self partition transform, T = V CS{}T, or it is value
full functional, T = {{w}CS{}T : w ∈ V }T, then the set of iso-transform-
independents equals the set of iso-independents in the underlying variables,
Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) = Y −1
U,V,z(A

X). In this case the iso-independence
is maximised and the iso-transform-independents is aligned-like.

If the transform is a unary partition, TP = {V CS}, then the set of iso-
transform-independents equals the set of complete congruent histograms in
the underlying variables, Y −1

U,T,z(((A
X ∗ T ), (A ∗ T )X)) = AU,V,z. In this

case the iso-independence is minimised and the iso-transform-independents
is classical-like.

In the case where the transform is a substrate transform, T ∈ TU,V , and the
formal is independent, AX ∗ T = (AX ∗ T )X, the iso-transform-independents
can be written in terms of the partition variables,

AX ∗ T = (AX ∗ T )X =⇒
Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) = {B : B ∈ AU,V,z,
∀P ∈ W (BX ∗ PT = AX ∗ PT ∧ B ∗ PT = A ∗ PT)}

In the stricter case where the formal equals the abstract, AX ∗ T = (A ∗ T )X,
this is,

AX ∗ T = (A ∗ T )X =⇒
Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) = {B : B ∈ AU,V,z,
∀P ∈ W (BX ∗ PT = AX ∗ PT = B ∗ PT = A ∗ PT)}

because ∀P ∈ W (A ∗ PT = AX ∗ PT).

The set of iso-partition-independents is the intersection of the iso-formal-
independents and iso-abstracts

Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

In the case where the transform is a substrate transform, T ∈ TU,V , each
iso-partition-independent has the same set of partition formals and partition
deriveds,

∀B ∈ Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

∀P ∈ W (BX ∗ PT = AX ∗ PT ∧ B ∗ PT = A ∗ PT)
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In the case where the formal independent equals the abstract each of the
partition transforms is formal, (AX∗T )X = (A∗T )X =⇒ ∀P ∈ W (A∗PT =
AX ∗ PT), so

(AX ∗ T )X = (A ∗ T )X =⇒
∀B ∈ Y −1

U,T,V,x,z((A
X ∗ T )X) ∩ Y −1

U,T,W,z((A ∗ T )X)

∀P ∈ W (BX ∗ PT = AX ∗ PT = B ∗ PT = A ∗ PT)

In this case the independent is an iso-partition-independent too,

(AX ∗ T )X = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

The set of iso-partition-independents is a subset of the iso-abstracts, so it is
an entity-like iso-set of the histogram, A,

Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X) ⊆ Y −1

U,T,W,z((A ∗ T )X)

The iso-transform-independents is a subset of the iso-partition-independents,

Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X) ⊆

Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

The iso-abstractence of the set of iso-partition-independents is greater than
or equal to the iso-abstractence of the set of iso-transform-independents

|Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,i,T,W,z((A ∗ T )X)|

|Y −1
U,i,T,W,z((A ∗ T )X)|

≥

|Y −1
U,i,T,V,z(A

X ∗ T ) ∩ Y −1
U,i,T,W,z((A ∗ T )X)|

|Y −1
U,i,T,W,z((A ∗ T )X)|

So the iso-partition-independents is more entity-like than the iso-transform-
independents.

The set of iso-neutralisations is the intersection of the iso-independent-
components and iso-deriveds

C−1
U,x,T,z({(A

X ∗ CU)∧ : C ∈ TP}) ∩ D−1
U,T,z(A ∗ T )

Each iso-neutralisation has the same neutralisation,

∀B ∈ C−1
U,x,T,z({(A

X∗CU)∧ : C ∈ TP})∩D−1
U,T,z(A∗T ) (B∗T∗T�BX

= A∗T∗T�AX

)
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The neutralisation is necessarily in the iso-deriveds, A∗T ∗T�AX ∗T = A∗T ,
but not necessarily in the iso-neutralisations. In the case where the trans-
form is formal, formal(A, T ), the neutralisation is in the iso-neutralisations
because it is in the iso-independent-components

A∗T = AX∗T =⇒ {((A∗T∗T�AX

)X∗CU)∧ : C ∈ TP} = {(AX∗CU)∧ : C ∈ TP}

The set of iso-neutralisations is a subset of the iso-deriveds, so it is a law-like
iso-set of the histogram, A,

C−1
U,x,T,z({(A

X ∗ CU)∧ : C ∈ TP}) ∩ D−1
U,T,z(A ∗ T ) ⊆ D−1

U,T,z(A ∗ T )

The set of iso-contentisations is the intersection of the iso-components and
iso-formals

C−1
U,T,z({(A ∗ C

U)∧ : C ∈ TP}) ∩ Y −1
U,T,V,z(A

X ∗ T )

Each iso-contentisation has the same contentisation,

∀B ∈ C−1
U,T,z({(A∗C

U)∧ : C ∈ TP})∩Y −1
U,T,V,z(A

X∗T ) (BX∗T∗T�B = AX∗T∗T�A)

The contentisation is necessarily in the iso-components, (AX ∗ T ∗ T�A ∗
CU)∧ = (A ∗ CU)∧, but not necessarily in the iso-contentisations. In the
case where the transform is formal, formal(A, T ), the contentisation is in the
iso-contentisations because it is in the iso-formals,

AX ∗ T = A ∗ T =⇒ (AX ∗ T ∗ T�A)X ∗ T = AX ∗ T

The set of iso-liftisations is the intersection of the iso-formals and iso-
deriveds

Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )

The iso-liftisations is a subset of the iso-transform-independents which is the
intersection of the iso-formals and iso-abstracts

Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T ) ⊆ Y −1

U,T,z(((A
X ∗ T ), (A ∗ T )X))

= Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X)

In the case of formal histogram, formal(A, T ), the naturalisation is in the
iso-liftisations,

A ∗ T = AX ∗ T =⇒ A ∗ T ∗ T † ∈ Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )
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The set of iso-liftisations is a subset of the iso-deriveds, so it is a law-like
iso-set of the histogram, A,

Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T ) ⊆ D−1

U,T,z(A ∗ T )

The iso-derivedence of the set of iso-liftisations is greater than or equal to
the iso-derivedence of the set of iso-transform-independents

|Y −1
U,i,T,V,z(A

X ∗ T ) ∩ D−1
U,i,T,z(A ∗ T )|

|D−1
U,i,T,z(A ∗ T )|

≥

|Y −1
U,i,T,V,z(A

X ∗ T ) ∩ D−1
U,i,T,z(A ∗ T )|

|(Y −1
U,i,T,V,z(A

X ∗ T ) ∩ Y −1
U,i,T,W,z((A ∗ T )X)) ∪ D−1

U,i,T,z(A ∗ T )|

So the iso-liftisations is more law-like than the iso-transform-independents.

Let the iso-idealisation function YU,T,†,z ∈ AU,V,z → P(AU,V,z) be defined
YU,T,†,z = {(A,A ∗ T ∗ T †A) : A ∈ AU,V,z}. The infinite set of iso-idealisations
of A ∗ T ∗ T †A is

inverse(YU,T,†,z)(A ∗ T ∗ T †A) =

{B : B ∈ AU,V,z, B ∗ T ∗ T †B = A ∗ T ∗ T †A}

Each iso-idealisation has the same set of component independents as the
given histogram A,

∀B ∈ Y −1
U,T,†,z(A ∗ T ∗ T

†A) ∀C ∈ TP ((B ∗ CU)X = (A ∗ CU)X)

The iso-idealisations equals the intersection of the iso-component-independents
and the iso-derived,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) = C−1
U,T,x,z({(A ∗ C

U)X∧ : C ∈ TP}) ∩ D−1
U,T,z(A ∗ T )

The set of iso-idealisations is a subset of the iso-deriveds, so it is a law-like
iso-set of the histogram, A,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) ⊆ D−1
U,T,z(A ∗ T )

The iso-derivedence or degree of law-likeness is

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|D−1

U,i,T,z(A ∗ T )|
≤ 1
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The set of iso-idealisations is a subset of the iso-abstracts, so it is an entity-
like iso-set of the histogram, A,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) ⊆ Y −1
U,T,W,z((A ∗ T )X)

The iso-abstractence or degree of entity-likeness is less than or equal to the
iso-derivedence

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,T,W,z((A ∗ T )X)|

≤
|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|D−1

U,i,T,z(A ∗ T )|

so the set of iso-idealisations is more law-like than entity-like.

The equivalence classes implied by YU,T,†,z partition the complete congruent
histograms, ran(Y −1

U,T,†,z) ∈ B(AU,V,z). The set of iso-idealisations is (i) the in-
tersection of the iso-component-independents and the iso-derived which is (ii)
a subset of the intersection of the iso-independents and iso-deriveds which is
(iii) a subset of the iso-liftisations which is (iv) a subset of the iso-transform-
independents which is (v) a subset of the iso-partition-independents which is
(vi) a subset of the iso-abstracts,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) = C−1
U,T,x,z({(A ∗ C

U)X∧ : C ∈ TP}) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,V,z(A

X) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X)

⊆ Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

⊆ Y −1
U,T,W,z((A ∗ T )X)

The lifted iso-idealisations is a singleton, {B∗T : B ∈ Y −1
U,T,†,z(A∗T ∗T †A)} =

{A ∗ T}.

The histogram is an iso-idealisation, A ∈ Y −1
U,T,†,z(A ∗ T ∗ T †A). The his-

togram idealisation is an iso-idealisation, A ∗ T ∗ T †A ∈ Y −1
U,T,†,z(A ∗ T ∗ T †A).

There is a bijection between the sets of component independents and the ideal-
isations of the histograms of the complete congruent histograms, {{(A∗CU)X :
C ∈ TP} : A ∈ AU,V,z} :↔: ran(Y −1

U,T,†,z).

The set of iso-idealisations is a subset of the iso-independents, Y −1
U,T,†,z(A∗T ∗

T †A) ⊆ Y −1
U,V,z(A

X), so the degree to which the iso-idealisations is aligned-like,
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or the iso-independence, is |Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|/|Y −1

U,i,V,z(A
X)|.

The iso-independence of the intersection of the iso-derived and the iso-
independents is greater than or equal to the iso-independence of the iso-
derived,

|D−1
U,i,T,z(A ∗ T ) ∩ Y −1

U,i,V,z(A
X)|

|Y −1
U,i,V,z(A

X)|
≥
|D−1

U,i,T,z(A ∗ T ) ∩ Y −1
U,i,V,z(A

X)|
|D−1

U,i,T,z(A ∗ T ) ∪ Y −1
U,i,V,z(A

X)|

The set of iso-idealisations is a subset of the intersection of the iso-derived
and the iso-independents, Y −1

U,T,†,z(A ∗T ∗T †A) ⊆ D−1
U,T,z(A ∗T ) ∩ Y −1

U,V,z(A
X),

so in some cases the iso-independence of the iso-idealisations is greater than
or equal to the iso-independence of the iso-derived,

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,V,z(A

X)|
≥
|D−1

U,i,T,z(A ∗ T ) ∩ Y −1
U,i,V,z(A

X)|
|D−1

U,i,T,z(A ∗ T ) ∪ Y −1
U,i,V,z(A

X)|

The set of iso-idealisations is also a subset of the intersection of the iso-
abstracts and the iso-independents, Y −1

U,T,†,z(A ∗ T ∗ T †A) ⊆ Y −1
U,T,W,z((A ∗

T )X) ∩ Y −1
U,V,z(A

X), so in some cases the iso-independence of the iso-idealisations
is greater than or equal to the iso-independence of the iso-abstract,

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,V,z(A

X)|
≥
|Y −1
U,i,T,W,z((A ∗ T )X) ∩ Y −1

U,i,V,z(A
X)|

|Y −1
U,i,T,W,z((A ∗ T )X) ∪ Y −1

U,i,V,z(A
X)|

If the transform is a self partition transform, T = V CS{}T, or it is value full
functional, T = {{w}CS{}T : w ∈ V }T, then the set of iso-idealisations equals
a singleton of the histogram, Y −1

U,T,†,z(A ∗ T ∗ T †A) = {A}. In this case the
iso-idealisations is neither aligned-like nor classical-like.

If the transform is a unary partition, TP = {V CS}, then the set of iso-
idealisations equals the set of iso-independents in the underlying variables,
Y −1
U,T,†,z(A ∗ T ∗ T †A) = Y −1

U,V,z(A
X). In this case the iso-independence is max-

imised and the iso-idealisations is aligned-like.

The set of iso-surrealisations is the intersection of the iso-abstracts and
iso-components

Y −1
U,T,W,z((A ∗ T )X) ∩ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP})

Each iso-surrealisation has the same surrealisation,

∀B ∈ Y −1
U,T,W,z((A ∗ T )X) ∩ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP})

((B ∗ T )X ∗ T�B = (A ∗ T )X ∗ T�A)
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The set of iso-surrealisations is a subset of the iso-abstracts, so it is an entity-
like iso-set of the histogram, A,

Y −1
U,T,W,z((A ∗ T )X) ∩ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP}) ⊆ Y −1

U,T,W,z((A ∗ T )X)

The iso-abstractence or degree of entity-likeness is

|C−1
U,i,T,z({(A ∗ CU)∧ : C ∈ TP}) ∩ Y −1

U,i,T,W,z((A ∗ T )X)|
|Y −1
U,i,T,W,z((A ∗ T )X)|

≤ 1

Define the iso-extremes as the union of the iso-liftisations and the iso-
surrealisations,

(Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )) ∪

(Y −1
U,T,W,z((A ∗ T )X) ∩ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP}))

The iso-extremes are required to be members of the iso-liftisations or the iso-
surrealisations, but not necessarily both. So the set of iso-extremes is not,
strictly speaking, an iso-set, because there is no function of the substrate
histograms that implies a partition for which the set of iso-extremes is a
component. The iso-extremes can be re-arranged as the intersection of (i)
the union of the iso-formals and the iso-abstracts, and (ii) the union of the
iso-deriveds and the iso-components,

(Y −1
U,T,V,z(A

X ∗ T ) ∪ Y −1
U,T,W,z((A ∗ T )X)) ∩

(D−1
U,T,z(A ∗ T ) ∪ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP}))

So, although the iso-transform-independents is the intersection of the iso-
formals and the iso-abstracts, the iso-extreme set is not a superset of the set
of iso-transform-independents. That is, the iso-transform-independents that
are neither iso-deriveds nor iso-components are not iso-extreme,

(Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X)) \

(D−1
U,T,z(A ∗ T ) ∪ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP}))

The iso-idealisations, which is a subset of the iso-liftisations, is a subset of
the iso-extremes.

The set of iso-extremes is a subset of the iso-abstracts, so it is an entity-
like iso-set of the histogram, A,

(Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )) ∪

(Y −1
U,T,W,z((A ∗ T )X) ∩ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP}))

⊆ Y −1
U,T,W,z((A ∗ T )X)
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The integral subset of the iso-transform-independents is formally defined
as follows. Let YU,i,T,z ∈ AU,i,V,z → (AU,W,z × AU,W,z) be defined, YU,i,T,z =
{(A, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,i,V,z}. The finite set of integral iso-
transform-independents of ((AX ∗ T ), (A ∗ T )X) is

inverse(YU,i,T,z)(((A
X ∗ T ), (A ∗ T )X)) =

{B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

The equivalence classes implied by YU,i,T,z partition the integral congruent
support, ran(Y −1

U,i,T,z) ∈ B(AU,i,V,z). The histogram is an integral iso-transform-

independent, A ∈ Y −1
U,i,T,z(((A

X ∗T ), (A∗T )X)). If the independent is integral,

AX ∈ Ai, and the formal independent histogram equals the abstract his-
togram, (AX∗T )X = (A∗T )X, then the independent is an integral iso-abstract
and hence an integral iso-transform-independent,

(AX ∈ Ai)∧ ((AX ∗ T )X = (A ∗ T )X) =⇒ AX ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

The cardinality of the set of integral iso-formal sets is such that

|ran(YU,i,T,V,z)| ≤
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!

The cardinality of the set of integral iso-abstract sets is

|ran(YU,i,T,W,z)| ≤
∏
w∈W

(z + |Uw| − 1)!

z! (|Uw| − 1)!

Therefore the cardinality of the set of integral iso-transform-independent sets
is such that

|ran(YU,i,T,z)| ≤
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!
×
∏
w∈W

(z + |Uw| − 1)!

z! (|Uw| − 1)!

The cardinality of the set of integral iso-transform-independent sets is also
such that

|ran(YU,i,T,z)| ≤ |dom(YU,i,T,z)| =
(z + v − 1)!

z! (v − 1)!

In the derived -valued function of the substrate histograms, DU,T,z, the model
is a transform. Now consider extending the model to (i) fuds, (ii) decompo-
sitions, and (iii) fud decompositions.

Let substrate histogram A ∈ AU,V,z be in system U and have variables V
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and size z. Given the one functional definition set F ∈ FU,1, such that
und(F ) ⊆ V , let the derived set valued function of the substrate histograms
DU,F,z ∈ AU,V,z → P(AU) be defined

DU,F,z = {(A, {A ∗ TF : T ∈ F}) : A ∈ AU,V,z}

where TF := depends(F, der(T ))T.

The set of iso-fuds is the intersection of the iso-deriveds of each transform

D−1
U,F,z({A ∗ TF : T ∈ F}) =

⋂
T∈F

D−1
U,TF ,z

(A ∗ TF )

If the top transform exists the set of iso-fuds is a subset of the iso-deriveds,

∃T ∈ F (der(T ) = der(F )) =⇒ D−1
U,F,z({A ∗ TF : T ∈ F}) ⊆ D−1

U,FT,z
(A ∗ FT)

In this case the set of iso-fuds is law-like with an iso-derivedence of

|D−1
U,i,F,z({A ∗ TF : T ∈ F})|
|D−1

U,i,FT,z
(A ∗ FT)|

In the case where the fud is a singleton, F = {T}, the iso-fuds equals the
iso-deriveds,

D−1
U,{T},z({A ∗ T}) = D−1

U,T,z(A ∗ T )

and the iso-fuds is maximally law-like.

The set of iso-fuds is a subset of the iso-abstracts,

D−1
U,F,z({A ∗ TF : T ∈ F}) ⊆ Y −1

U,FT,W,z
((A ∗ FT)X)

so the set of iso-fuds is entity-like with an iso-abstractence of

|D−1
U,i,F,z({A ∗ TF : T ∈ F})|
|Y −1
U,i,FT,W,z

((A ∗ FT)X)|

In the case where the fud consists of a single layer of partition transforms,
F ∈ FU,P such that |der(F )| = |F |, the iso-fuds equals the iso-abstracts,
which is the intersection of the iso-deriveds of the partition transforms,

D−1
U,F,z(DU,F,z(A)) = Y −1

U,FT,W,z
((A ∗ FT)X)

=
⋂
T∈F

D−1
U,T,z(A ∗ T )
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In this case the iso-fuds is maximally entity-like.

Given the decomposition of one functional transforms D ∈ DU = D ∩
trees(SU×TU,f,1), such that und(D) ⊆ V , let the component-derived function
valued function of the substrate histograms DU,D,z ∈ AU,V,z → (AU → AU)
be defined

DU,D,z = {(A, {(C,A ∗ C ∗ T ) : (C, T ) ∈ cont(D)}) : A ∈ AU,V,z}

where cont(D) = elements(contingents(D)).

The set of iso-decompositions can be related to the set iso-deriveds for each
slice,

∀B ∈ D−1
U,D,z(DU,D,z(A)) ∀(C, T ) ∈ cont(D) (B ∗ C ∈ D−1

U,T,zC
(A ∗ C ∗ T ))

where zC = size(A ∗ C). So each set of slice iso-decompositions is law-like,

∀(C, T ) ∈ cont(D) (D−1
U,D,zC

(DU,D,zC (A ∗ C)) ⊆ D−1
U,T,zC

(A ∗ C ∗ T ))

The set of iso-decompositions is a subset of the iso-deriveds of the transform
of the decomposition,

D−1
U,D,z(DU,D,z(A)) ⊆ D−1

U,DT,z
(A ∗DT)

so the set of iso-decompositions is law-like with an iso-derivedence of

|D−1
U,i,D,z(DU,D,z(A))|
|D−1

U,i,DT,z
(A ∗DT)|

In the case where the decomposition consists of a root node only, D =
{((∅, T ), ∅)}, the iso-decompositions equals the iso-deriveds,

D−1
U,D,z(DU,D,z(A)) = D−1

U,T,z(A ∗ T )

In this case the set of iso-decompositions is maximally law-like.

Given the fud decomposition of one functional definition sets D ∈ DF,U =
DF ∩ trees(SU × FU,1), such that und(D) ⊆ V , let the component-derived-
set function valued function of the substrate histograms DU,D,F,z ∈ AU,V,z →
(AU → P(AU)) be defined

DU,D,F,z = {(A, {(C, {A∗C ∗TF : T ∈ F}) : (C,F ) ∈ cont(D)}) : A ∈ AU,V,z}
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The set of iso-fud-decompositions can be related to the set of intersections of
iso-deriveds for each slice

∀B ∈ D−1
U,D,F,z(DU,D,F,z(A)) ∀(C,F ) ∈ cont(D)

(B ∗ C ∈
⋂
T∈F

D−1
U,TF ,zC

(A ∗ C ∗ TF ))

or

∀(C,F ) ∈ cont(D) (D−1
U,D,F,zC

(DU,D,F,zC (A ∗ C)) ⊆
⋂
T∈F

D−1
U,TF ,zC

(A ∗ C ∗ TF ))

If the top transform exists the set of slice iso-fud-decompositions is a subset
of the slice iso-deriveds,

∀(C,F ) ∈ cont(D) (∃T ∈ F (der(T ) = der(F )) =⇒
D−1
U,D,F,zC

(DU,D,F,zC (A ∗ C)) ⊆ D−1
U,FT,zC

(A ∗ C ∗ FT))

so in some cases the set of slice iso-fud-decompositions is law-like with an
iso-derivedence of

|D−1
U,i,D,F,zC

(DU,D,F,zC (A ∗ C))|
|D−1

U,i,FT,zC
(A ∗ C ∗ FT)|

If the top transform exists for all of the fuds, then the set of iso-fud decom-
positions is a subset of the iso-deriveds,

∀F ∈ fuds(D) ∃T ∈ F (der(T ) = der(F )) =⇒
D−1
U,D,F,z(DU,D,F,z(A)) ⊆ D−1

U,DT,z
(A ∗DT)

In this case the set of iso-fud-decompositions is law-like with an iso-derivedence
of

|D−1
U,i,D,F,z(DU,D,F,z(A))|
|D−1

U,i,DT,z
(A ∗DT)|

The set of slice iso-fud-decompositions is a subset of the slice iso-abstracts

∀(C,F ) ∈ cont(D) (D−1
U,D,F,zC

(DU,D,F,zC (A ∗ C)) ⊆ Y −1
U,FT,W,zC

((A ∗ C ∗ FT)X))

so the set of slice iso-fud-decompositions is entity-like with an iso-abstractence
of

|D−1
U,i,D,F,zC

(DU,D,F,zC (A ∗ C))|
|Y −1
U,i,FT,W,zC

((A ∗ C ∗ FT)X)|
Thus when the model is extended to fuds or fud decompositions, the iso-set
or slice iso-set corresponding to the iso-deriveds is only sometimes law-like,
although it is always at least entity-like.
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Similarly, in the formal-abstract-pair-valued function of the substrate his-
tograms, YU,T,z, the model is a transform. Again consider extending the model
to (i) fuds, (ii) decompositions, and (iii) fud decompositions.

Let substrate histogram A ∈ AU,V,z be in system U and have variables V
and size z. Given the one functional definition set F ∈ FU,1, such that
und(F ) ⊆ V , let the abstract set valued function of the substrate histograms
YU,F,W,z ∈ AU,V,z → P(AU) be defined

YU,F,W,z = {(A, {(A ∗ TF )X : T ∈ F}) : A ∈ AU,V,z}

where TF := depends(F, der(T ))T.

The set of iso-fud-abstracts is the intersection of the iso-abstracts of each
transform

Y −1
U,F,W,z({(A ∗ TF )X : T ∈ F}) =

⋂
T∈F

Y −1
U,TF ,W,z((A ∗ TF )X)

The set of iso-fud-abstracts is a subset of the iso-abstracts,

Y −1
U,F,W,z({(A ∗ TF )X : T ∈ F}) ⊆ Y −1

U,FT,W,z
((A ∗ FT)X)

So the set of iso-fud-abstracts is entity-like with an iso-abstractence of

|Y −1
U,F,W,z({(A ∗ TF )X : T ∈ F})|
|Y −1
U,i,FT,W,z

((A ∗ FT)X)|

In the case where the fud is a singleton, F = {T}, the iso-fud-abstracts equals
the iso-abstracts,

Y −1
U,{T},W,z({(A ∗ T )X}) = Y −1

U,T,W,z((A ∗ T )X)

and the iso-fud-abstracts is maximally entity-like.

In the case where the fud consists of a single layer of partition transforms,
F ∈ FU,P such that |der(F )| = |F |, the iso-fud-abstracts equals the iso-
abstracts, which is the intersection of the iso-deriveds of the partition trans-
forms,

Y −1
U,F,W,z({(A ∗ TF )X : T ∈ F}) = Y −1

U,FT,W,z
((A ∗ FT)X)

=
⋂
T∈F

D−1
U,T,z(A ∗ T )
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In this case the iso-fud-abstracts is maximally entity-like.

Let the formal set valued function of the substrate histograms YU,F,V,z ∈
AU,V,z → P(AU) be defined

YU,F,V,z = {(A, {AX ∗ TF : T ∈ F}) : A ∈ AU,V,z}

where TF := depends(F, der(T ))T.

The set of iso-fud-formals is the intersection of the iso-formals of each trans-
form

Y −1
U,F,V,z({A

X ∗ TF : T ∈ F}) =
⋂
T∈F

Y −1
U,TF ,V,z

(AX ∗ TF )

If the top transform exists the set of iso-fud-formals is a subset of the iso-
formals,

∃T ∈ F (der(T ) = der(F )) =⇒
Y −1
U,F,V,z({A

X ∗ TF : T ∈ F}) ⊆ Y −1
U,FT,V,z

(AX ∗ FT)

Let the formal-abstract-pair set valued function of the substrate histograms
YU,F,z ∈ AU,V,z → P(AU ×AU) be defined

YU,F,z = {(A, {(AX ∗ TF , (A ∗ TF )X) : T ∈ F}) : A ∈ AU,V,z}

where TF := depends(F, der(T ))T.

The set of iso-fud-independents is the intersection of the iso-transform inde-
pendents of each transform

Y −1
U,F,z({(A

X ∗ TF , (A ∗ TF )X) : T ∈ F}) =
⋂
T∈F

Y −1
U,TF ,z

((AX ∗ TF , (A ∗ TF )X))

The set of iso-fud-independents is the intersection of the iso-fud-formals and
the iso-fud-abstracts

Y −1
U,F,z({(A

X ∗ TF , (A ∗ TF )X) : T ∈ F}) =

Y −1
U,F,V,z({A

X ∗ TF : T ∈ F}) ∩ Y −1
U,F,W,z({(A ∗ TF )X : T ∈ F})

If the top transform exists the set of iso-fud-independents is a subset of the
iso-transform independents,

∃T ∈ F (der(T ) = der(F )) =⇒
Y −1
U,F,z({(A

X ∗ TF , (A ∗ TF )X) : T ∈ F}) ⊆ Y −1
U,FT,z

((AX ∗ FT, (A ∗ FT)X))
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The set of iso-fud-independents is a subset of the iso-abstracts,

Y −1
U,F,z({(A

X ∗ TF , (A ∗ TF )X) : T ∈ F}) ⊆ Y −1
U,FT,W,z

((A ∗ FT)X)

So the set of iso-fud-independents is entity-like with an iso-abstractence of

|Y −1
U,F,z({(AX ∗ TF , (A ∗ TF )X) : T ∈ F})|

|Y −1
U,i,FT,W,z

((A ∗ FT)X)|

In the case where the fud is a singleton, F = {T}, the iso-fud-independents
equals the iso-transform-independents,

Y −1
U,{T},z({(A

X ∗ T, (A ∗ T )X)}) = Y −1
U,T,z((A

X ∗ T, (A ∗ T )X))

Given the decomposition of one functional transforms D ∈ DU = D ∩
trees(SU ×TU,f,1), such that und(D) ⊆ V , let the component-formal-abstract-
pair function valued function of the substrate histograms YU,D,z ∈ AU,V,z →
(AU → (AU ×AU)) be defined

YU,D,z = {(A, {(C, ((A∗C)X∗T, (A∗C∗T )X)) : (C, T ) ∈ cont(D)}) : A ∈ AU,V,z}

where cont(D) = elements(contingents(D)).

The set of iso-decomposition-independents can be related to the set iso-
transform-independents for each slice,

∀B ∈ Y −1
U,D,z(YU,D,z(A)) ∀(C, T ) ∈ cont(D)

(B ∗ C ∈ Y −1
U,T,zC

(((A ∗ C)X ∗ T, (A ∗ C ∗ T )X)))

where zC = size(A ∗ C).

In the case where the decomposition consists of a root node only, D =
{((∅, T ), ∅)}, the iso-decomposition-independents equals the iso-transform-
independents,

Y −1
U,D,z(YU,D,z(A)) = Y −1

U,T,z((A
X ∗ T, (A ∗ T )X))

Given the fud decomposition of one functional definition sets D ∈ DF,U =
DF ∩ trees(SU × FU,1), such that und(D) ⊆ V , let the component-formal-
abstract-pair set function valued function of the substrate histograms YU,D,F,z ∈
AU,V,z → (AU → P(AU ×AU)) be defined

YU,D,F,z =

{(A, {(C, {((A ∗ C)X ∗ TF , (A ∗ C ∗ TF )X) : T ∈ F}) :

(C,F ) ∈ cont(D)}) : A ∈ AU,V,z}
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The set of iso-fud-decomposition-independents can be related to the set of
intersections of iso-transform-independents for each slice

∀B ∈ Y −1
U,D,F,z(YU,D,F,z(A)) ∀(C,F ) ∈ cont(D)

(B ∗ C ∈
⋂
T∈F

Y −1
U,TF ,zC

(((A ∗ C)X ∗ TF , (A ∗ C ∗ TF )X)))

or

∀(C,F ) ∈ cont(D)

(Y −1
U,D,F,zC

(YU,D,F,zC (A ∗ C)) ⊆
⋂
T∈F

Y −1
U,TF ,zC

(((A ∗ C)X ∗ TF , (A ∗ C ∗ TF )X)))

The set of slice iso-fud-decomposition-independents is a subset of the slice
iso-abstracts

∀(C,F ) ∈ cont(D) (Y −1
U,D,F,zC

(YU,D,F,zC (A ∗ C)) ⊆ Y −1
U,FT,W,zC

((A ∗ C ∗ FT)X))

so the set of slice iso-fud-decomposition-independents is entity-like with an
iso-abstractence of

|Y −1
U,i,D,F,zC

(YU,D,F,zC (A ∗ C))|
|Y −1
U,i,FT,W,zC

((A ∗ C ∗ FT)X)|

3.12.6 Integral iso-sets and entropy

The set of integral substrate histograms in system U , of variables V and
size z is defined in section ‘Iso-sets’, above, as

AU,i,V,z = {A : A ∈ AU,i, AU = V C, size(A) = z}

Its cardinality is the cardinality of weak compositions |C′(V C, z)|

|AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!

where v = |V C|.

In the case where the size is less than or equal to the volume, z ≤ v, the
logarithm of the cardinality of weak compositions may be approximated

ln
(z + v − 1)!

z! (v − 1)!
= z ln v − z ln z

≈ z ln
v

z
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by abuse of notation. If the size, z, is fixed, log-cardinality varies with the
logarithm of the volume, ln v.

In the case where the size is greater than the volume, z > v, the log-
cardinality approximates

ln
(z + v − 1)!

z! (v − 1)!
≈ v ln z − v ln v

≈ v ln
z

v

If the volume, v, is fixed, the log-cardinality varies with the logarithm of the
size, ln z.

The logarithm of the cardinality of weak compositions may also be anal-
ysed by means of Stirling’s approximation in the case where z � ln z and
v � ln v,

ln
(z + v − 1)!

z! (v − 1)!
≈ (z + v) ln(z + v) − z ln z − v ln v

= z ln
z + v

z
+ v ln

z + v

v

≈ (z ln
v

z
: z < v) +

(2z ln 2 : z = v) +

(v ln
z

v
: z > v)

The cardinality of the set of integral iso-deriveds is the product of the weak
compositions of the components,

|D−1
U,i,T,z(A ∗ T )| =

∏
(R,C)∈T−1

((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

The integral iso-deriveds is a subset of the integral substrate histograms,
D−1
U,i,T,z(A ∗ T ) ⊆ AU,i,V,z, so the cardinality of the set of integral iso-deriveds

is bounded

1 ≤ |D−1
U,i,T,z(A ∗ T )| ≤ (z + v − 1)!

z! (v − 1)!

262



The logarithm of the cardinality of the set of integral iso-deriveds is

ln |D−1
U,i,T,z(A ∗ T )| =

∑
(R,C)∈T−1

ln
((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

=
∑

(R,·)∈T−1

ln
((A ∗ T )R + (V C ∗ T )R − 1)!

(A ∗ T )R! ((V C ∗ T )R − 1)!

=
∑

(·,C)∈T−1

ln
(size(A ∗ C) + |C| − 1)!

size(A ∗ C)! (|C| − 1)!

The integral iso-deriveds log-cardinality is approximately bounded

0 ≤ ln |D−1
U,i,T,z(A ∗ T )| ≤ (z + v) ln(z + v) − z ln z − v ln v

In the case where the volume is much greater than one, v � 1, the inte-
gral iso-deriveds log-cardinality is approximately proportional to the negative
size-volume scaled component size cardinality sum relative entropy,

ln |D−1
U,i,T,z(A ∗ T )|

≈
∑

(R,·)∈T−1

(A ∗ T + V C ∗ T )R ln(A ∗ T + V C ∗ T )R

−
∑

(R,·)∈T−1

(A ∗ T )R ln(A ∗ T )R −
∑

(R,·)∈T−1

(V C ∗ T )R ln(V C ∗ T )R

= (z + v) ln(z + v) − z ln z − v ln v

−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

In the domain where the size is less than or equal to the volume, z ≤ v, where
the derived counts or component sizes are generally less than their component
cardinalities, A ∗ T < V C ∗ T or ∀(·, C) ∈ T−1 (size(A ∗ C) < |C|), then the
integral iso-deriveds log-cardinality varies against the size scaled component
size cardinality relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼

∑
(R,·)∈T−1

(A ∗ T )R ln
(V C ∗ T )R
(A ∗ T )R

∼ −z × entropyRelative(A ∗ T, V C ∗ T )

Similarly, in the domain where the size is greater than the volume, z > v,
where the derived counts or component sizes are generally greater than their
component cardinalities, A∗T > V C ∗T or ∀(·, C) ∈ T−1 (size(A∗C) > |C|),
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then the integral iso-deriveds log-cardinality varies against the volume scaled
component cardinality size relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼

∑
(R,·)∈T−1

(V C ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R

∼ −v × entropyRelative(V C ∗ T,A ∗ T )

In both domains the integral iso-deriveds log-cardinality varies against the
relative entropy. That is, integral iso-deriveds log-cardinality is minimised
when (a) the cross entropy is maximised and (b) the component entropy
is minimised. The cross entropy is maximised when high size components
are low cardinality components and low size components are high cardinality
components.

In the case where the derived is independent, A ∗ T = (A ∗ T )X, the
cardinality of the set of integral iso-abstracts equals the cardinality of the set
of integral iso-deriveds,

|Y −1
U,i,T,W,z((A ∗ T )X)| = |D−1

U,i,T,z((A ∗ T )X)|

=
∏

(R,C)∈T−1

((A ∗ T )X
R + |C| − 1)!

(A ∗ T )X
R! (|C| − 1)!

and so in this case the integral iso-abstracts log-cardinality is approximately
proportional to the negative abstract size-volume scaled component size car-
dinality sum relative entropy,

ln |Y −1
U,i,T,W,z((A ∗ T )X)|
≈ (z + v) ln(z + v) − z ln z − v ln v

−
(
(z + v)× entropy((A ∗ T )X + V C ∗ T )

−z × entropy((A ∗ T )X) − v × entropy(V C ∗ T )
)

Conjecture that the logarithm of the cardinality of the integral iso indepen-
dents corresponding to AX varies with the size scaled independent entropy,

ln |Y −1
U,i,V,z(A

X)| ∼ z × entropy(AX)

The conjecture is suggested by considering the state S ∈ V CS having min-
imum count in the independent, S ∈ mind(AX), which therefore is also the
minimum of the perimeter, ∀w ∈ V (S ∩mind(QA(w)) 6= ∅). The minimum
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count of the minimum state, minr({(w,QA(w)(S%{w}) : w ∈ V }) ∈ N, lim-
its the number of ways the iso-independents can be cumulatively constructed.
See ‘Deltas and Perturbations’, below, for a discussion of the construction of
the iso-independents from a sequence of circuit deltas.

The positive correlation between the integral iso-independents log-cardinality
and the independent entropy is consistent with the negative correlation be-
tween the integral iso-abstracts log-cardinality and the relative entropy,

ln |Y −1
U,i,T,W,z((A ∗ T )X)|
∼ −

(
(z + v)× entropy((A ∗ T )X + V C ∗ T )

−z × entropy((A ∗ T )X) − v × entropy(V C ∗ T )
)

∼ z × entropy((A ∗ T )X)

As the transform tends to value full functional, Ts = {{w}CS{}T : w ∈ V }T,
the abstract tends to the independent, (A ∗ Ts)

X = AX, and the abstract
entropy, entropy((A ∗ T )X), tends to the independent entropy, entropy(AX).

The integral iso-transform-independents is a subset of the integral iso-
abstracts, Y −1

U,i,T,z((A
X∗T, (A∗T )X)) ⊆ Y −1

U,i,T,W,z((A∗T )X), so the integral iso-
transform-independents log-cardinality varies with the integral iso-abstracts
log-cardinality,

ln |Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))| ∼ ln |Y −1
U,i,T,W,z((A ∗ T )X)|

Conjecture that, in the case where formal histogram equals the abstract his-
togram, AX ∗ T = (A ∗ T )X, the integral iso-transform-independents log-
cardinality varies against the abstract size-volume scaled component size car-
dinality sum relative entropy,

ln |Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))| ∼
−
(
(z + v)× entropy((A ∗ T )X + V C ∗ T )

−z × entropy((A ∗ T )X) − v × entropy(V C ∗ T )
)

and with the size scaled abstract entropy,

ln |Y −1
U,i,T,z((A

X ∗ T, (A ∗ T )X))| ∼ z × entropy((A ∗ T )X)

3.12.7 Shuffled history

Closely related to the independent histogram are the shuffles of the non-
empty history H of histogram A = histogram(H) of size z = |H| > 0, having
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at least one variable n ≥ 1 where V = vars(H) and n = |V |. The result is
a set of histories of the same size z where the variable values are shuffled
between the states.

Define shuffles ∈ H → P(H) as the monoidal concatenation of the set of
reduced histories having shuffle prefixed event identifiers

shuffles(H) :=∏
{{{((X, x), T ) : (x, (·, T )) ∈ X} : X ∈ ids(H) · (H%{v})} : v ∈ V }

where (%) ∈ H× P(V)→ H is defined H%W := {(x, S%W )) : (x, S) ∈ H},
the monoidal product is defined

∏
X = fold1((∗), flip(Q)) for some Q ∈

enums(X), and the monoidal product operator (∗) ∈ H ×H → H is

G ∗ I := {((X ∪ Y, x), S ∪ T ) : ((X, x), S) ∈ G, ((Y, y), T ) ∈ I, x = y}

The shuffles function is defined where n ≥ 1.

The shuffles all have the same size, ∀G ∈ shuffles(H) (|G| = z). The
histograms of the shuffles include the histogram of the given history, A ∈
{his(G) : G ∈ shuffles(H)}, where his = histogram. If histogram A is sin-
gleton, |AF| = 1, then there is only one shuffle histogram, {his(G) : G ∈
shuffles(H)} = {A}. The cardinality of the shuffles is |shuffles(H)| = z!n.
The cardinality of the shuffle histograms is less than or equal to the car-
dinality of the shuffles, |{his(G) : G ∈ shuffles(H)}| ≤ |shuffles(H)|. If
history H is mono-variate, n = 1, then there is only one shuffle histogram,
{his(G) : G ∈ shuffles(H)} = {A}. All histograms of the shuffles of H are
congruent,

∀G ∈ shuffles(H) ♦B = his(H) (congruent(B,A))

All the histograms of the shuffles of H have the same independent histogram

∀G ∈ shuffles(H) ♦B = his(G) (BX ≡ AX)

The scaled sum of the histograms of any subset of the shuffled histories also
has the same independent

∀P ⊆ shuffles(H) ♦B = scalar(1/|P |) ∗
∑
G∈P

his(G) (BX ≡ AX)

The scaled sum of the histograms of the shuffled histories equals the inde-
pendent

scalar(1/z!n) ∗
∑

(his(G) : G ∈ shuffles(H)) ≡ AX
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3.13 Rolls

A roll, R ∈ S → S, is a function on the cartesian set of states of some set
of variables V in system U , R ∈ V CS → V CS.

Define the set of rolls as rolls ⊂ S → S. Define vars ∈ (S → S) → P(V) as
vars(R) := {v : S ∈ dom(R) ∪ ran(R), v ∈ vars(S)}. Rolls are constrained
such that ∀R ∈ rolls ∀S ∈ dom(R) ∪ ran(R) (vars(S) = vars(R)).

Define the application of a roll R in variables V to a histogram A having
the same variables vars(R) = vars(A) = V as roll ∈ rolls×A → A

roll(R,A) := {(S, c) : (S, c) ∈ A, S /∈ dom(R)}+
∑

S∈AS∩dom(R)

{(RS, AS)}

=
∑

S∈AS\dom(R)

{(S,AS)}+
∑

S∈AS∩dom(R)

{(RS, AS)}

Define (∗) ∈ A × rolls → A as A ∗ R := roll(R,A). The application of
the empty roll is defined A ∗ ∅ = A. (Note that the operator has a type
ambiguity between the empty roll, ∅ ∈ rolls, and the empty histogram, ∅ ∈
A.) A ∗ R is undefined if vars(R) 6= vars(A). If A is scalar then the only
applicable roll, apart from the empty roll, is {(∅, ∅)} and so a scalar rolls
to itself, scalar(z) ∗ {(∅, ∅)} = scalar(z). The rolled histogram A ∗ R is
congruent to the underlying histogram A, congruent(A,A ∗ R). That is, the
application is size-conserving, size(A∗R) = size(A) and in the same variables,
vars(A ∗ R) = vars(A). The part of A for which the states Q ⊂ states(A)
are neither in the domain nor range of R, Q = states(A) \ dom(R) \ ran(R),
is unchanged under application, A ∗ QU ∗ R = A ∗ R ∗ QU = A ∗ QU. If
A ∈ AU and R ∈ cartesian(U)(vars(A)) → cartesian(U)(vars(A)) ⊂ rolls
then A ∗R ∈ (ACS → Q≥0) ⊂ AU .

Define the identity roll id(U) ∈ P(VU) → rolls as id(U)(V ) := {(S, S) :
S ∈ V CS}. Application of the identity roll leaves a histogram A unchanged,
A ∗ id(U)(vars(A)) = A.

A roll R ∈ rolls is circular if there exists a source state which is also
a target state, dom(R) ∩ ran(R) 6= ∅. The identity roll on variables V ,
id(U)(V ), is circular.

267



The set of rolls in substrate variables V of system U , V CS → V CS ⊂ rolls,
can be constructed

V CS → V CS = {R : R ⊆ V CS × V CS, |dom(R)| = |R|} =
∏

S∈V CS

{S} × V CS

The substrate rolls includes the empty roll, ∅ ∈ V CS → V CS. The cardinality
of the set of substrate rolls is bounded |V CS → V CS| ≤ 2yyy where y = |V C|.
The subset of the substrate rolls which have cardinality equal to the volume
are the substrate complete rolls, {R ∈ V CS → V CS, |R| = |V CS|}. The
cardinality of the substrate complete rolls is |V CS :→ V CS| = yy.

A list of rolls, for example L ∈ L(V CS → V CS), in variables V , can be
applied to a histogram A in sequence, because the application of each roll
results in a congruent histogram to which a successive roll may be applied.
Define roll ∈ L(rolls) × A → A as roll(L,A) := roll(sequence(L), A) and
roll ∈ K(rolls)×A → A as

roll((R,X), A) := roll(X,A ∗R)

roll(∅, A) := A

roll(L,A) is undefined unless all of the rolls are in the same variables as the
histogram, ∀R ∈ set(L) (vars(R) = vars(A)). Define (∗) ∈ A×L(rolls)→ A
as A ∗ L := roll(L,A). The application of the empty list of rolls is defined
A∗∅ = A. (Again note the operator type ambiguity between ∅ ∈ L(rolls) and
∅ ∈ A.) The application of a list of rolls to a histogram is left associative,
A ∗ L = A ∗ L1 ∗ L2 . . . ∗ Ll = (A ∗ L1) ∗ L2 . . . ∗ Ll = ((A ∗ L1) ∗ L2) . . . ∗ Ll,
where l = |L|. The list rolled histogram A ∗L is congruent to the underlying
histogram A, congruent(A,A ∗ L). If A ∈ AU and L ∈ L(ACS → ACS) ⊂
L(rolls) then A ∗ L ∈ (ACS → Q≥0) ⊂ AU .

A pair of rolls, R1, R2 ∈ rolls, in the same variables, vars(R1) = vars(R2) =
V , is a pair of endomorphic functions and hence can be composed to form
a single roll R2 ◦ R1 = compose(R1, R2) ∈ rolls (see Appendix ‘Function
composition’). The function composition is here defined as an outer join
R2 ◦R1. Define compose ∈ (S → S)× (S → S)→ (S → S) as

compose(R1, R2) :=

{(S1, T2) : (S1, T1) ∈ R1, (S2, T2) ∈ R2, S2 = T1} ∪
{(S1, T1) : (S1, T1) ∈ R1, T1 /∈ dom(R2)} ∪
{(S2, T2) : (S2, T2) ∈ R2, S2 /∈ dom(R1)}
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DefineR2◦R1 := compose(R1, R2). compose(R1, R2) is undefined if vars(R1) 6=
vars(R2). The domain of a composition is the union of the domains of the
arguments, dom(R2◦R1) = dom(R1)∪dom(R2). A sequence of compositions
of rolls is right associative, R3 ◦R2 ◦R1 = R3 ◦ (R2 ◦R1).

If the composition of a roll R in variables V and the identity roll id(U)(V )
is equal to the identity roll, R ◦ id(U)(V ) = id(U)(V ), then R is said to be
an identity equivalent roll.

A list of rolls, L ∈ L(rolls), in variables V , ∀R ∈ set(L) (vars(R) =
V ), can be composed recursively, compose ∈ L(rolls) → rolls. For ex-
ample, compose({(1, R1), (2, R2), (3, R3)}) = R3 ◦ R2 ◦ R1. The applica-
tion of a roll list to a histogram A, roll(L,A), is equal to the application
of the joined list, A ∗ L = A ∗ compose(L). For example, let roll list
L = {(1, R1), (2, R2), (3, R3)}, then A∗L = A∗R1∗R2∗R3 = A∗(R3◦R2◦R1).

A roll list L is unique where the unioned list has the same cardinality
as the sum of the cardinalities of the rolls, |

⋃
set(L)| =

∑
i∈{1...|L|} |Ri|.

That is, each map of the rolls appears only once, ∀i ∈ {1 . . . |L| − 1} ∀i ∈
{i+ 1 . . . |L|} (Li ∩ Lj = ∅).

A roll list L is functional where the unioned list is functional,
⋃

set(L) ∈
S → S.

A roll list L is non-circular where no source state subsequently appears
as a target state,

∀i ∈ {1 . . . |L|} ∀S ∈ dom(Li) (S /∈ {S2 : R ∈ set(L{i...|L|}), (S1, S2) ∈ R})

The composition of a non-circular functional roll list, L ∈ L(V CS → V CS),
has disjoint domain and range, dom(R)∩ran(R) = ∅ where R = compose(L).
Thus R ∈ dom(R)→ (V CS \ dom(R)).

A unique non-circular functional roll list L is such that no source state sub-
sequently appears as either a source or target state,

∀i ∈ {1 . . . |L|} ♦X =
⋃

set(L{i+1...|L|})

(dom(Li) ∩ (ran(Li) ∪ dom(X) ∪ ran(X)) = ∅)

A roll R ∈ rolls having variables V can be converted to a partition
P ∈ RU , by taking the functional inverse of the roll stuffed with the iden-
tity roll, P = ran(inverse(R′)) where R′ = R ◦ id(U)(V ). A roll list, L ∈
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L(V CS → V CS), can be mapped to a reverse partition sequence. That is, a
list of partitions such that each is succeeded by parent partitions. Let K =
{(i, ran(inverse(compose(L{1...i}) ◦ id(U)(V )))) : i ∈ {1 . . . |L|}} ∈ L(RU).
Then |K| ≥ 2 =⇒ ∀i ∈ {1 . . . |K|} ∀j ∈ {i+ 1 . . . |K|} (parent(Kj, Ki)).

A roll R ∈ rolls having variables V can converted to a transform in TU,V .
One method is to create a partition transform PT ∈ TU,V on the partition
P ∈ RU of the cartesian states of the variables, P ∈ B(V CS), implied by the
functional inverse, P = ran(inverse(R ◦ id(U)(V ))). This transform has a
single derived variable, |der(PT)| = 1, and therefore the derived histogram is
independent, A∗PT = (A∗PT)X, when applied to some underlying histogram
A in variables V .

Another method is create a partition-set and thence a fud of partition
transforms. Each partition transform corresponds to an underlying variable,
v ∈ V , by reducing the target state to that variable. Each derived variable
partitions the entire cartesian set of states of all the variables, V CS, not just
the cartesian of the underlying variable, {v}CS. Define transform(U, V ) ∈
rolls→ TU,f,1 as

transform(U, V )(R) :=

{PT : v ∈ V, P = ran(inverse({(S1, S2%{v}) : (S1, S2) ∈ R′}))}T

where vars(R) = V or R = ∅, and R′ = R ◦ id(U)(V ) is the given roll stuffed
with the identity roll. Define RT := transform(U)(R) where the system U
and the substrate variables V are implicit. The transforms of rolls in vari-
ables V form a subset of the substrate transforms set, {RT : R ∈ V CS →
V CS} ⊂ TU,V . The cardinality of the derived variables of the transform of
a roll is less than or equal to the cardinality of the underlying variables,
|W | ≤ |V |, where W = der(RT). The valency of each of the derived vari-
ables is less than or equal to that of its corresponding underlying variable,
∀v ∈ V (|ran(inverse({(S1, S2%{v}) : (S1, S2) ∈ R′}))| ≤ |Uv|). Thus the
derived volume is less than or equal to the underlying volume |WC| ≤ |V C|.
In the case of non-empty substrate variables, V 6= ∅, if the cardinality of
derived and underlying variables is the same, |W | = |V |, then the volume
of the derived histogram is equal to the size of the effective cartesian sub-
volume formed by the independent of the roll of the cartesian histogram
|WC| = |(V C ∗ R)XF|. If the roll of the cartesian histogram is equal to the
cartesian histogram, (V C ∗ R)XF = V C, then the volume of the derived his-
togram is equal to the volume of the underlying, |WC| = |V C|. In this case,
the roll transform is left total, X%V = V C where X = his(RT), and the
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underlying volume equals the derived volume, |WC| = |V C|, so the roll trans-
form is a frame transform. The transform is also right total, X%W = WC,
and hence frame full functional, if the roll is an identity equivalent roll,
R ◦ id(U)(V ) = id(U)(V ), or if the roll is otherwise circular. If the roll
is an identity equivalent roll, R ◦ id(U)(V ) = id(U)(V ), then the roll trans-
form is a value full functional transform or reframe transform. In this case
the roll transform is the singleton element of the strong self non-overlapping
substrate self-cartesian transforms set, {RT} = {{{v}CS{}V T : v ∈ V }T} =
{NT : N ∈ NU,V,c ∩NU,V,n,s} ⊆ TU,V,c ∩ TU,V,n,s.

The cardinality of the set of transforms of rolls is bounded by the cardi-
nality of the subset of the substrate rolls which have cardinality equal to the
volume, |V CS :→ V CS| = yy. That is, |{RT : R ∈ V CS → V CS}| ≤ yy. This
may be compared to the cardinality of its superset, the substrate transforms
set, |TU,V | = 2bell(y).

3.13.1 Value rolls

A value roll is equivalent to a special case of a roll R ∈ V CS → V CS on
variables V . Let v ∈ V be one of the variables, and s, t ∈ Uv be source
and target values of v. The value roll (V, v, s, t) has a corresponding roll
R such that all states incident on the source value s are mapped to the
target value t, R = {(S, S \ {(v, s)} ∪ {(v, t)}) : S ∈ V CS, Sv = s}. Define
the set of value rolls rollValues(U) ⊂ P(VU) × VU × WU × WU such that
∀(V, v, s, t) ∈ rollValues(U) ((v ∈ V ) ∧ ({s, t} ⊆ Uv)).

In order to construct a non-circular roll from a value roll, define roll(U) ∈
rollValues(U)→ (rolls ∩ (SU → SU)) as

roll(U)((V, v, s, t)) :=

{(S, S \ {(v, s)} ∪ {(v, t)}) : S ∈ cartesian(U)(V ), (v, s) ∈ S} \ id(U)(V )

If t = s then the roll is empty, roll(U)((V, v, s, s)) = ∅. Define (V, v, s, t)R :=
roll(U)((V, v, s, t)).

The substrate value rolls set in variables V of system U is

{(V, v, s, t) : v ∈ V, s, t ∈ Uv} ⊆ rollValues(U)

The substrate value rolls set has cardinality |{(V, v, s, t) : v ∈ V, s, t ∈ Uv}| =∑
v∈V |Uv|2. In the case of regular variables of dimension n = |V | and valency

{d} = {|Uv| : v ∈ V }, the cardinality is nd2.
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The independent of the application of a value roll (V, v, s, t) to a histogram
A is equal to the application of a value roll to the independent histogram

(A ∗ (V, v, s, t)R)X = AX ∗ (V, v, s, t)R

Thus the application of a value roll to an independent histogram is also
independent,

AX ∗ (V, v, s, t)R = (AX ∗ (V, v, s, t)R)X

Let JU,V be the infinite substrate value roll lists set in variables V and
system U , JU,V = {L : L ∈ L(rollValues(U)), (∀(W, v, s, t) ∈ set(L) (W =
V ))}. The list of value rolls J ∈ JU,V can be converted into a list of rolls,
map(roll(U), J) = {(i, (V, v, s, t)R) : (i, (V, v, s, t)) ∈ J} ⊂ L(rolls). De-
fine JR := map(roll(U), J). A list of value rolls J may be composed in-
directly, compose(JR). The application of a value roll list to a histogram
A, roll(JR, A), is equal to the application of the joined list, A ∗ JR = A ∗
compose(JR). Rolled independent histograms remain independent AX ∗JR =
(AX ∗ JR)X.

A list of value rolls J ∈ JU,V in variables V can be rearranged without
altering its composition compose(JR) so long as the order of the value rolls
remains the same for each variable. That is, the set of lists filtered by variable
can be concatenated in any order. Let filtv(U) ∈ VU × L(rollValues(U)) →
L(rollValues(U)) be defined as filtv(U)(v, J) := filter({(N, w = v) : N ∈
rollValues(U), (·, w, ·, ·) = N}, J). Then ∀K ∈ L(V ) (|K| = |V | ∧ set(K) =
V =⇒ compose((concat({(i, filtv(U)(v, J)) : (i, v) ∈ K}))R) = compose(JR)).

Consider a non-circular functional list of value rolls J ∈ JU,V in the same
variable v ∈ V , J = filtv(U)(v, J). The cumulative initial sub-lists of J
can be mapped to a reverse partition sequence. Let l = |J |. Let K =
{(i, {(s, t)}) : (i, (·, ·, s, t)) ∈ J} ∈ L(Uv → Uv). Let id(U)(v) = {(u, u) : u ∈
Uv} ∈ Uv → Uv. Let L = {(i, ran(inverse(compose(K{1...i}) ◦ id(U)(v)))) :
i ∈ {1 . . . l}} ∈ L(B(Uv)). Then l ≥ 1 =⇒ parent(L1, id(U)(v)) and
l ≥ 2 =⇒ ∀i ∈ {1 . . . l − 1} (parent(Li+1, Li)). If, in addition, J is con-
strained to be a list of non-identity value rolls, ∀(·, ·, s, t) ∈ set(J) (s 6= t),
then l ≥ 1 =⇒ |L1| = |Uv| − 1 and l ≥ 2 =⇒ ∀i ∈ {1 . . . l − 1} (|Li+1| =
|Li| − 1). The maximum length of such a list is d − 1 where d = |Uv|. The
cardinality of the set of all such value partition lists of maximum length is
d!(d−1)!/2d−1. The maximum length of a unique non-circular functional list
of non-identity value rolls in regular variables V , having dimension n = |V |
and valency {d} = {|Uw| : w ∈ V }, is n(d− 1). The cardinality of the set of
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possible value rolls at the head of such a list is nd(d− 1). The cardinality of
the set of possible value partitions at the head is half of this, nd(d − 1)/2,
because of the degeneracy of {(s, t)} and {(t, s)}. The cardinality of the set
of value partitions which correspond to the composed initial sublists of the
lists in JU,V is

∑
((bell(d)− 1)k : k ∈ {0 . . . n}).

A list of value rolls J ∈ JU,V in variables V can be converted into a
transform, JRT = transform(U)(map(roll(U), J))), by first converting each
value roll to a roll, then composing and finally converting to a transform
as defined above. An alternative method is to construct a fud F ∈ FU,P of
partition transforms such that each partition variable corresponds to one of
the underlying variables. That is, such that there is a surjective map between
the underlying variables and the partition variables, und(F )→: der(F ). This
method highlights the fact that the resultant fud F is a non-overlapping
partition of the underlying variables. First compose by variable by filtering
the value roll list. Define compv(U) ∈ VU×L(rollValues(U))→ (WU →WU)
as compv(U)(v, J) := compose({(i, {(s, t)}) : (i, (·, ·, s, t)) ∈ filtv(U)(v, J)}),
which is such that compv(U)(v, J) ∈ Uv → Uv. Then partition the values,
define partv(U) ∈ VU ×L(rollValues(U))→ P(P(WU)) as partv(U)(v, J) :=
ran(inverse(compv(U)(v, J)◦ id(U)(v))), which is such that partv(U)(v, J) ∈
B(Uv). Then F = {{{v}×C : C ∈ partv(U)(v, J)}T : v ∈ V } ∈ FU,P. Define
transform(U) ∈ L(rollValues(U))→ TU,f,1 as

transform(U)(J) := {{{{(v, u)} : u ∈ C} : C ∈ partv(U)(v, J)}V T : v ∈ V }T

which is defined when J ∈ JU,V and J 6= ∅. Define JT := transform(U)(J).
Thus JT ∈ TU,V . Define (V, v, s, t)T := {(1, (V, v, s, t))}T.

The value roll list transform equals the roll list transform, JT = JRT. There-
fore the constraints on JRT also apply to JT. That is, the cardinality of the
derived variables is less than or equal to the cardinality of the underlying
variables, |W | ≤ |V |, where W = der(JT). The valency of each of the de-
rived variables is less than or equal to that of its corresponding underlying
variable, ∀v ∈ V (|partv(U)(v, J)| ≤ |Uv|). The value roll list transform is
non-overlapping, ¬overlap(JT). The transform is constructed from a non-
overlapping fud of partition transforms and hence the transform must be
right total, (X%W )F = WC where (X,W ) = JT. Thus the derived volume
is less than or equal to the underlying volume, |WC| ≤ |V C|. In the case of
non-empty substrate variables, V 6= ∅, if the cardinalities of the derived and
underlying variables is the same, |W | = |V |, then the volume of the derived
histogram is equal to the size of the effective cartesian sub-volume formed
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by the roll of the cartesian histogram |WC| = |(V C ∗ JR)F|. The value roll
list transform can only be full functional if the stuffed roll is the identity
roll JR ◦ id(U)(V ) = id(U)(V ). In this case the value roll list transform is a
value full functional transform or reframe transform. It is the singleton of the
strong self non-overlapping substrate self-cartesian transforms set, {JT} =
{{{v}CS{}V T : v ∈ V }T} = {NT : N ∈ NU,V,c ∩NU,V,n,s} ⊆ TU,V,c ∩ TU,V,n,s.

The set of transforms of composed value rolls, {JT : J ∈ JU,V } ⊂ TU,V
is the self non-overlapping substrate transforms set TU,V,n,s which is a subset
of the non-overlapping substrate transforms set,

{JT : J ∈ JU,V } = TU,V,n,s ⊆ TU,V,n

If V is regular having dimension n = |V | and valency {d} = {|Uw| : w ∈ V },
the cardinality of TU,V,n,s is bounded |TU,V,n,s| ≤ bell(d)n. This may be com-
pared to the cardinality of its superset, the non-overlapped substrate trans-
forms set, |TU,V,n| < 2× bell(n)× bell(dn) + 1, and thence to the cardinality
of its superset, the substrate transforms set, |TU,V | = 2bell(dn)

bell(d)n < 2× bell(n)× bell(dn) ≤ 2bell(dn)

It may also be compared to the cardinality of its superset, the set of trans-
forms of rolls, |{RT : R ∈ V CS → V CS}| ≤ dnd

n

bell(d)n < dnd
n

Finally compare it to the cardinality of its superset, the fixed dimension
substrate transforms set, |{T : T ∈ TU,V , |der(T )| = n}| = bell(dn)n/n!

bell(d)n <
1

n!
bell(dn)n

The subset of the transforms of composed value rolls, {JT : J ∈ JU,V } =
TU,V,n,s, where the value roll list has only one value roll, J = {(1, (V, v, s, t))}
and t 6= s, is the intersection of the substrate decremented transforms set and
the self non-overlapping substrate transforms set

{JT : J ∈ JU,V , |J | = 1, (·, ·, s, t) = J1, t 6= s}
= TU,V,− ∩ TU,V,n,s
= {({QV T} ∪ {{u}CS{}V T : u ∈ V \ {x}})T : x ∈ V, Q ∈ decs({x}CS{})}

where decs = decrements ∈ RU → P(RU). If the substrate V is regular hav-
ing valency d, then |TU,V,− ∩ TU,V,n,s| = nd(d− 1)/2, which is the cardinality
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of the set of possible value partitions at the head of a non-circular functional
list of non-identity value rolls.

As mentioned above, the set of transforms of composed value rolls is the
self non-overlapping substrate transforms set, {JT : J ∈ JU,V } = TU,V,n,s.
In section ‘Substrate structures’, above, the self non-overlapping substrate
transforms set, TU,V,n,s, can be constructed from linear fuds of multi-partition
transforms, L ∈ L(TU,P∗), where the first transform is the value full func-
tional transform and subsequent transforms are strong self non-overlapping
substrate decremented transforms. In the case of non-empty substrate, V 6= ∅,

TU,V,n,s = {(
⋃

set(L))TPT : M = {{v}CS{} : v ∈ V },
L ∈ subpaths({(M, tdec(U)(M))})}

where the tree of self non-overlapping substrate decremented partition-sets is
defined tdec(U) ∈ P(VU)→ trees(P(RU)) as

tdec(U)(M) := {(N, tdec(U)(N)) :

w ∈M, Q ∈ decs({w}CS{}), N = {Q} ∪ {{u}CS{} : u ∈M, u 6= w}}

A subset of the non-empty unique non-circular functional substrate value
roll lists can be defined such that the source value is greater than the target
value where there exists some order on the values of each of the variables
Dv ∈ enums(Uv). Define the decrementing value roll lists

JU,V,− = {J : J ∈ JU,V , J 6= ∅, ∀(·, ·, s, t) ∈ set(J) (s > t),

∀(i, (·, vi, si, ti)), (j, (·, vj, sj, tj)) ∈ J
(vi = vj =⇒ (i ≤ j =⇒ tj 6= si) ∧ (i 6= j =⇒ sj 6= si))}

The decrementing value roll lists, JU,V,−, can be constructed recursively by
means of a tree of value rolls tdecrv(U, V ) ∈ JU,V → trees(rollValues(U)),
defined as

tdecrv(U, V )(J) :=

{((V, v, s, t), tdecrv(U, V )(J ∪ {(|J |+ 1, (V, v, s, t))})) :

v ∈ V, s, t ∈ Uv, s > t,

X = {x : (·, w, x, ·) ∈ set(J), w = v}, s /∈ X, t /∈ X}

Each source value may be rolled no more than once for each variable, and
only to lesser target values. The decrementing value roll lists is JU,V,− =
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subpaths(tdecrv(U, V )(∅)). The decrementing value roll lists, JU,V,−, is a fi-
nite set, corresponding bijectively to linear fuds of strong self non-overlapping
substrate decremented transforms,

JU,V,− :↔: subpaths(tdec(U)(V ))

because the construction trees map bijectively,

places(tdecrv(U, V )(∅)) :↔: places(tdec(U)(V ))

To construct value rolls in a decrementing value roll list, J ∈ JU,V,−, given
the application of the decrementing value roll list so far, V C∗J{1...i}, it is only
necessary to test that the source and target values on the perimeter are non-
zero. That is, putative value roll (·, v, s, t) may be added, Ji+1 = (V, v, s, t),
if (V C ∗ JR

{1...i} % {v})({(v, s)}) 6= 0 and (V C ∗ JR
{1...i} % {v})({(v, t)}) 6= 0.

3.14 Deltas and Perturbations

A delta is a pair of histograms (D, I) ∈ A × A in the same variables
V , vars(D) = vars(I) = V . The application of a delta to a histogram A
in variables V is the subtraction of D followed by the addition of I. The
resultant histogram, A − D + I, is a perturbation of A. An effective delta
is such that the perturbation is no more effective than the given histogram,
(A−D + I)F ≤ AF. A zero delta is such that A−D + I ≡ A.

If D ≤ A then size(A − D + I) = size(A) − size(D) + size(I). If D ≤ A
and the delta is congruent, size(D) = size(I), then the histogram and its
perturbation are congruent, congruent(A, A−D + I).

If D ≤ A and the congruent delta histograms are effective singletons, |DF| =
|IF| = 1, of unit size, size(D) = size(I) = 1, then the congruent perturba-
tion, A −D + I, is an event perturbation. The set of event perturbations of
histogram A in variables V and system U is

{A− {R}U + {S}U : (R, d) ∈ A, d ≥ 1, S ∈ ACS}

The set of effective event perturbations is

{A− {R}U + {S}U : (R, d) ∈ A, d ≥ 1, (S, c) ∈ A, c > 0}

which is independent of system.
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Let (D, I) ∈ A × A be a delta of histogram A such that D ≤ A. A one
functional transform T ∈ TU,f,1 is a functor (or monoid homomorphism) of
the delta application operator, (A ∗ T )− (D ∗ T ) + (I ∗ T ) = (A−D+ I) ∗ T
where vars(D) = vars(I) = und(T ) = vars(A).

Let N(D,I) ∈ EU be a histogram expression of delta (D, I) ∈ A×A having
variables vars(D) = vars(I) = V . The expression application to histogram
A in variables V is such that N(D,I)(A) = A − D + I ∈ A. See appendix
‘Histogram expressions’ for a definition of N(D,I).

The application of a roll R ∈ V CS → V CS ⊂ rolls to a histogram A is
equivalent to the application of a congruent delta (D, I) ∈ A×A in variables
V . Define delta ∈ rolls×A → (A×A) as

delta(R,A) :=

 ∑
S∈AS∩dom(R)

{(S,AS)},
∑

S∈AS∩dom(R)

{(RS, AS)}


which is defined if vars(R) = vars(A). Thus the congruent perturbation
equals the rolled histogram, A−D + I = A ∗R, where (D, I) = delta(R,A).

A value roll (V,w, s, t) ∈ rollValues(U) is a special case of a roll, (V,w, s, t)R ∈
V CS → V CS ⊂ rolls, and hence implies an equivalent congruent pertur-
bation to the histogram, A − D + I = A ∗ (V,w, s, t)R, where (D, I) =
delta((V,w, s, t)R, A). Similarly a value roll list J ∈ JU,V ⊂ L(rollValues(U))
on variables V in system U implies an equivalent congruent perturbation,
A−D + I = A ∗ JR, where (D, I) = delta(JR, A).

Consider the subset of the substrate transforms set, TU,V , on variables V in
system U , which are transforms of value roll lists, {JT : J ∈ JU,V } ⊂ TU,V .
The application of the delta (D, I) corresponding the value roll list J ∈ JU,V ,
(D, I) = delta(JR, A), to the histogram A is isomorphic to the application of
the transform JT, A∗J = A−D+I ∼= A∗JT, but not equal because the de-
rived variables are not equal to the underlying variables, der(JT) 6= und(JT),
and hence vars(A ∗ J) 6= vars(A ∗ JT).

As shown above, the application of a value roll (V,w, s, t) ∈ rollValues(U) to
an independent histogram AX in variables V , conserves independence, AX ∗
(V,w, s, t)R = (AX ∗ (V,w, s, t)R)X. Thus the corresponding delta (D, I) =
delta((V,w, s, t)R, A) also conserves independence, AX−D+ I = (AX−D+
I)X. Similarly for value roll lists, AX ∗ JR = (AX ∗ JR)X = AX − D + I =
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(AX −D + I)X where (D, I) = delta(JR, A).

Let NR ∈ EU be a histogram expression of roll R ∈ rolls having variables
V . The expression application to histogram A in variables V is such that
NR(A) = A ∗ R ∈ A. See appendix ‘Histogram expressions’ for a definition
of NR.

Let YU,i,V,z ∈ AU,i,V,z → AU,V,z be the subset of the independent func-
tion, YU,i,V,z = {(A,AX) : A ∈ AU,i,V,z} ⊂ independent. The set of inte-
gral iso-independents of integral histogram A ∈ AU,i,V,z is Y −1

U,i,V,z(A
X). Let

QA ⊂ Ai ×Ai be the subset of the integral congruent deltas which conserve
iso-independence, ∀(D, I) ∈ QA (A −D + I ∈ Y −1

U,i,V,z(A
X)). The perimeters

of each of the iso-independent perturbations are equal, ∀(D, I) ∈ QA ∀w ∈
V ((A−D + I)%{w} = A%{w}). None of the iso-independent deltas result
in event perturbations except for the zero delta, ∀(D, I) ∈ QA (size(I) 6= 1).

Define the circuit deltas as the subset of iso-independent deltas having size
less than or equal to two, CA = {(D, I) : (D, I) ∈ QA, size(I) ≤ 2}. The
circuit deltas may be defined explicitly,

CA = {({S, T}U, {S%(V \W ) ∪ T%W, T%(V \W ) ∪ S%W}U) :

S, T ∈ AFS, W ⊆ V }

Conjecture that all of the iso-independent deltas are linear sums of the circuit
deltas.

∀(D, I) ∈ QA ∃L ∈ L(CA)

((D =
∑

X : i ∈ {1 . . . |L|}, (X, ·) = Li) ∧

(I =
∑

Y : i ∈ {1 . . . |L|}, (·, Y ) = Li))

Value roll deltas A−D+I = A∗(V,w, s, t)R cannot be iso-independent deltas,
A−D+I /∈ Y −1

U,i,V,z(A
X), because the iso-independents are equivalence classes

of the independent. That is, AX ∗ (V,w, s, t)R /∈ Y −1
U,i,V,z(A

X).

Similarly, given some one functional transform T ∈ TU,f,1 where und(T ) =
V and W = der(T ), define YU,i,T,z ∈ AU,i,V,z → (AU,W,z ×AU,W,z) as YU,i,T,z =
{(A, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,i,V,z}. The finite set of integral iso-
transform-independents of ((AX∗T ), (A∗T )X) is Y −1

U,i,T,z(((A
X∗T ), (A∗T )X)).

A delta (D, I) is iso-transform-independence conserving with respect to T
if A − D + I ∈ Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X)). In the stronger case of (i)
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the delta is iso-independence conserving, A − D + I ∈ Y −1
U,i,V,z(A

X), so that

(A−D+I)X = AX and (A−D+I)X∗T = AX∗T , and (ii) the transformed ap-
plied delta is iso-independence conserving, (A−D+I)∗T ∈ Y −1

U,i,W,z((A∗T )X),

so that the delta is iso-abstract, ((A − D + I) ∗ T )X = (A ∗ T )X, then the
delta is iso-transform-independence conserving.

If the transform is a self partition, TP = V CS{}, then the set of integral
iso-transform-independents equals the set of integral iso-independents in the
underlying variables, Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X)) = Y −1

U,i,V,z(A
X), and hence

only iso-independent deltas, A − D + I ∈ Y −1
U,i,V,z(A

X), are iso-transform-
independence conserving in this case.

If the transform is a unary partition, TP = {V CS}, then the set of inte-
gral iso-transform-independents equals the integral congruent support in the
underlying variables, Y −1

U,i,T,z(((A
X ∗T ), (A∗T )X)) = AU,i,V,z, and any congru-

ent delta is iso-transform-independence conserving in this case.

If the transform is a value roll transform, T = JT where J = {(1, (V,w, s, t))} ∈
JU,V , then the value roll delta, A−D+ I = A∗ (V,w, s, t)R, is iso-transform-
independence conserving, A ∗ (V,w, s, t)R ∈ Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X)),

because (A−D + I) ∗ T = A ∗ T and (A−D + I)X ∗ T = AX ∗ T .

As discussed in section ‘Transforms and Independent’, above, given a sub-
strate histogram A ∈ AU,V,z and a substrate transform T ∈ TU,V , having
derived variables W = der(T ), the case where the formal equals the abstract,
AX ∗ T = (A ∗ T )X, is equivalent to requiring each partition variable derived
histogram to equal the partition variable derived histogram of the indepen-
dent,

AX ∗ T = (A ∗ T )X ⇐⇒
∀P ∈ W (A ∗ PT = AX ∗ PT)

= ∀P ∈ W ∀C ∈ P (size(A ∗ CU) = size(AX ∗ CU))

If the transform is also non-overlapping, then the constraint can be expressed
in terms of the contraction of the partition variable,

¬overlap(T ) ∧ AX ∗ T = (A ∗ T )X ⇐⇒
∀P ∈ W (A%VP ∗ P%T = AX%VP ∗ P%T)

So the subset of substrate histograms which are such that the formal equals
the abstract may be partly generated from the integral congruent deltas which
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preserve iso-independence but which are constrained to the partition compo-
nent. In the case where the transform is non-overlapping,

¬overlap(T ) ∧ AX ∗ T = (A ∗ T )X =⇒
{A : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}

⊇ {(AX%VP −D + I) ∗ (ÂX%(V \ VP )) : A ∈ AU,V,z,
P ∈ W, C ∈ P, (D, I) ∈ QA%VP , D

F ⊆ CU, IF ⊆ CU}

3.15 Histogram expression lists

A histogram expression list M ∈ L(EU) may be applied to an argument his-
togram A ∈ AU in sequence to produce a list of histograms. Define histogram
expression list application M(A) ∈ L(AU) such that M(A)1 = A, |M(A)| =
|M | + 1 and ∀i ∈ {1 . . . |M |} (M(A)i+1 = Mi(M(A)i)). The application of
a histogram expression list, M(A), is (i) size conserving if the histograms
have the same size as the argument, ∀B ∈ set(M(A)) (size(B) = size(A)),
(ii) variables conserving if the histograms have the same variables as the
argument, ∀B ∈ set(M(A)) (vars(B) = vars(A)), (iii) congruent if the his-
tograms are congruent to the argument, ∀B ∈ set(M(A)) (congruent(B,A)),
(iv) independence conserving if the histograms are all independent, ∀B ∈
set(M(A)) (B = BX), (v) iso-independence conserving if the histograms are
all in the same iso-independent component, set(M(A)) ⊆ Y −1

U,V,z(A
X), (vi) cir-

cular if the last histogram is equal to the first, M(A)l = A where l = |M |+1.

Given the initial histogram A ∈ AU and two histogram expression lists R, S ∈
L(EU) which are such that the final histograms are equal, R(A)l = S(A)m,
where l = |R(A)| and m = |S(A)|, then the longer list may be said to have
smaller histogram expressions. That is, if m > l then S has smaller histogram
expressions than R, and vice-versa.

Given a list of histograms L ∈ L(A) in the same set of variables V , ∀B ∈
set(L) (vars(B) = V ), a list of deltas can be implied, P = {(Li−Li+1, Li+1−
Li) : i ∈ {1 . . . |L| − 1}} ∈ L(A × A). Let N(D,I) ∈ EU be a histogram ex-
pression of delta (D, I) ∈ A×A having variables vars(D) = vars(I) = V . If
the histogram expression list of deltas, NP = {(i, N(D,I)) : (i, (D, I)) ∈ P} ∈
L(EU), is applied to the first histogram in list L then the list is recovered,
NP (L1) = L. The delta histogram expression list, NP , is congruent with
respect to L1.

Given two histogram expression lists of deltas NP , NQ ∈ L(EU), where P,Q ∈

280



L(A × A), which are such that the final histograms are equal, NP (A)p =
NQ(A)q, where p = |NP (A)| and q = |NQ(A)|, then the longer list may be
said to have smaller delta expressions. That is, if q > p then NQ has smaller
delta expressions than NP , and vice-versa.

If a histogram expression list M ∈ L(EU) is size conserving but not con-
gruent with respect to initial histogram A ∈ AU then in some cases there
may exist a corresponding list of one functional transforms X ∈ L(TU,f,1)
such that ∀i ∈ {1 . . . |M |} (A ∗Xi = M(A)i+1). In addition, if the histogram
expression list, M , consists of transform histogram expressions, NT ∈ EU
which are such that NT (B) = B ∗T , constructed from a list of one functional
transforms Y ∈ L(TU,f,1) such that M = {(i, NT ) : (i, T ) ∈ Y }, then the
transforms of Y may be viewed as the changes between the transforms of X,
(Xi, Xi−1) ∼= Yi. Again, the longer the list, M(A), the smaller the transform
histogram expressions, set(M).

Given a histogram expression list M ∈ L(EU) and an initial histogram A ∈
AU , an orbit is the pair of histogram expression list applications initialised
by the histogram itself, A, and the independent histogram, AX. That is,
(M(A),M(AX)). The lengths of the orbit lists are equal, |M(A)| = |M(AX)|.
If it is the case that the orbit map is such that ∀i ∈ {1 . . . l} (M(A)X

i =
M(AX)i), where l = |M(A)|, then the histogram expression list, M , is inde-
pendence conserving, ∀B ∈ set(M(AX)) (B = BX), and the orbit is said to
be an independent function, map(independent,M(A)) = M(AX). If M(A)
is iso-independence conserving, set(M(A)) ⊆ Y −1

U,V,z(A
X), and the orbit is an

independent function then the histogram expressions are identity functions
when applied to the independent argument, set(M(AX)) = {AX}.

Let NR ∈ EU be a histogram expression of roll R ∈ rolls having variables
V . The orbit of the non-empty value roll list J ∈ JU,V is functionally
independent. Let MJ = {(i, N(V,w,s,t)R) : (i, (V,w, s, t)) ∈ J}, then orbit
(MJ(A),MJ(AX)) is such that {(i,MJ(A)X

i ) : i ∈ {1 . . . l}} = MJ(AX) and
hence is an independent function. The value roll histogram expression list,
MJ , is not iso-independence conserving with respect to A and hence MJ(AX)
is not singleton, |MJ(AX)| > 1.

The transforms of a non-circular fud F ∈ F can be arranged in a list of
layer fuds L = inverse({(T, layer(F, der(T ))) : T ∈ F}) ∈ L(P(F )). A
linear fud is a non-circular fud such that the underlying variables of the
transforms in each layer fud are the derived variables of the layer fud imme-
diately below, ∀i ∈ {2 . . . |L|} (und(Li) ⊆ der(Li−1)). Each of the layer fuds,
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set(L) ∈ B(F ), can be combined into a single transform. Thus a linear fud
may be represented as a histogram expression list of transform expressions,
MF = {(i, NGT) : (i, G) ∈ L} ∈ L(EU), which is such that MF (A)l = A ∗ FT

where und(F ) = vars(A) and l = |MF (A)|. The transform expressions of MF

may be viewed as changes between the cumulative fuds at each layer. Let
T{1...i} = transform(

⋃
set(take(i, L))) = {T : T ∈ F, i ≤ layer(F, der(T ))}T.

Then MF (A)i = A ∗ T{1...i} and MF (i)(A ∗ T{1...i−1}) = A ∗ T{1...i}. If the
layer transforms, {(i, GT) : (i, G) ∈ L} ∈ L(TU,f,1), are non-overlapping,
∀i ∈ {1 . . . |L|} (¬overlap(LT

i )), then the application of the linear fud his-
togram expression list, MF (AX), is independence conserving, MF (AX)i∗LT

i =
(MF (AX)i ∗ LT

i )X. However, the orbit, (MF (A),MF (AX)), is not necessar-
ily an independent function. This is because it is not always the case that
(MF (A)i ∗ LT

i )X = MF (AX)i ∗ LT
i even if LT

i is non-overlapping.

A non-circular fud H ∈ F that is not necessarily a linear fud can be viewed
as a histogram expression list of histogram expressions that multiply the ar-
gument by the product of the histograms of the layer fud transforms. Let
NG ∈ EU , where G ∈ F , be such that NG(B) = B ∗

∏
(X,·)∈GX. Then MH =

{(i, NG) : (i, G) ∈ L} ∈ L(EU), where L = inverse({(T, layer(H, der(T ))) :
T ∈ H}) ∈ L(P(H)). Then MH is such that MH(A)l % der(H) = A ∗ HT

where l = |MH(A)|. The cardinality of the variables of the histograms of the
applied list, MH(A), increase as derived variables are added in each layer,
∀i ∈ {1 . . . l} (|vars(MH(A)i+1)| ≥ |vars(MH(A)i)|). The histogram expres-
sion list, MH , is size conserving. Also the underlying histogram is conserved,
{B%V : B ∈MH(A)} = {A} where V = vars(A).

A distinct decomposition X ∈ Dd,U having underlying variables V has a
components tree, components(U)(X) ∈ trees(P(V CS)). Let L ∈ L(P(V CS))
be one of the paths, L ∈ paths(components(U)(X)). Each successive com-
ponent on the path is a subset of the previous component, ∀i ∈ {1 . . . |L| −
1} (Li+1 ⊆ Li). Thus there exists a delta histogram expression list NL =
{(i, N(D,I)) : i ∈ {1 . . . |L| − 1}, (D, I) = (LU

i − LU
i+1, ∅)} ∈ L(EU) where

N(D,I) ∈ EU is a histogram expression of delta (D, I) ∈ A × A having vari-
ables vars(D) = vars(I) = V . The application to the first component L1

recovers the components path, NL(LU
1 ) = {(i, CU) : (i, C) ∈ L}. If the path’s

components are cartesian sub-volumes, ∀C ∈ set(L) (CUF = CUXF), then the
expression list application is independence conserving.

282



3.16 Distinct geometry sized cardinal substrate his-
tograms

Let the set of sized cardinal substrate histograms Az be the set of complete
integral cardinal substrate histograms of size z and dimension less than or
equal to the size such that the independent is completely effective

Az = {A : A ∈ Ac ∩ Ai, size(A) = z, |VA| ≤ z, AU = AXF = AC}

where ACS = cartesian(UA)(VA) and UA = implied(implied(A)) and VA =
vars(A). There is no single system that contains all the substrate histograms.
The infinite implied system, UA where A ∈ Az, contains the substrate vari-
ables, VA ⊂ vars(UA), and all the partition variables in the power functional
definition set on VA, ∀F ∈ FUA,VA (vars(F ) ⊂ vars(UA)).

The set of substrate histograms of zero size is empty, A0 = ∅. The set
of substrate histograms of size one is a singleton of the mono-variate, mono-
valent histogram, A1 = {{{(1, 1)}}U}. The set of substrate histograms of a
given size is finite, |Az| < ∞. The cardinality of substrate histograms of a
given non-zero size has a lower bound implied by the strong compositions of
the reductions

|Az| ≥

 ∑
d∈{1...z}

|C({1 . . . d}, z)|

z

=

 ∑
d∈{1...z}

(z − 1)!

(d− 1)!(z − d)!

z

The finite set of sized cardinal substrate histograms may be constructed ex-
plicitly by constructing cardinal systems and cardinal histories in the sys-
tems,

Az = {A : x ∈ {1 . . . z}, V = {1 . . . x},
U ∈

∏
v∈V

{v} × {{1 . . . u} : u ∈ {1 . . . z}},

H ∈ {1 . . . z} :→ V CS,

A = histogram(H) + V CZ, AXF = AC}

Each substrate histogram A ∈ Az has |VA|!
∏

w∈VA |UA(w)|! cardinal sub-
strate permutations. These frame mappings partition the substrate histograms
into equivalence classes having the same geometry. Let Pz be the partition,
Pz ∈ B(Az), such that the components of Pz are the equivalence classes by
cardinal substrate permutation, ∀C ∈ Pz ∀A ∈ C (|C| = |VA|!

∏
w∈VA |UA(w)|).
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Each of the substrate histograms in a component of Pz, that are equivalent
by cardinal substrate permutation, have the same entropy, ∀C ∈ Pz ∀A,B ∈
C (entropy(A) = entropy(B)).

A subset Xz ⊂ Az of the substrate histograms can be defined such that each
element of Xz is uniquely chosen from a component of Pz, so that |Xz| = |Pz|
and ∃M ∈ Xz ↔ Pz ∀(A,C) ∈ M (A ∈ C). The set Xz of substrate his-
tograms, which are distinct by geometry, then forms a support of a uniform
probability function, {(A, 1/|Pz|) : A ∈ Xz} ∈ P , upon which the calculation
of expectation and variance of derived substrate structures could be made.

Instead of choosing a distinct geometry subset, Xz ⊂ Az, as the support,
consider weighting a support of Az. Let the geometry-weighted function
Qz ∈ Az → Q>0 be defined

Qz = {(A, 1

|VA|!
∏

w∈VA |UA(w)|!
) : A ∈ Az}

which is such that ∀C ∈ P ∀A ∈ C (Qz(A) = 1/|C|). The geometry-weighted
probability function Q̂z ∈ P is the normalised geometry-weighted function,
Q̂z = normalise(Qz). The geometry-weighted probability function, Q̂z, can be
calculated without explicitly calculating Pz itself. Using the weightings of
the support of substrate histograms, Az, avoids the need to specify the selec-
tion of distinct substrate histograms, Xz, from the permutation equivalence
classes, Pz.

If the substrate histograms are partitioned, for example to analyse correla-
tions grouped by low or high entropy, then the partition should be a parent
partition of Pz. That is, the substrate histograms partition should be inde-
pendent of cardinal substrate permutation.

Define the central moment functions of the geometry-weighted probability
function, Q̂z, that operate on real-valued functions of the sized cardinal
substrate histograms, Az → R. In the cases where the real-valued func-
tions are not left total, the geometry-weighted probability function Q̂z ∈ P is
renormalised for the subset of the substrate histograms. Define the function
ex(z) ∈ (Az → R)→ R as

ex(z)(F ) := expected(R̂z)(F )

where

R̂z = normalise({(A, 1

|VA|!
∏

w∈VA |UA(w)|!
) : A ∈ dom(F )}) ∈ P
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and F 6= ∅. Define the function var(z) ∈ (Az → R)→ R as

var(z)(F ) := variance(R̂z)(F )

Define the function cov(z) ∈ (Az → R)× (Az → R)→ R as

cov(z)(F,G) := covariance(R̂z)(F,G)

where dom(F ) ∩ dom(G) 6= ∅ and

R̂z = normalise({(A, 1

|VA|!
∏

w∈VA |UA(w)|!
) : A ∈ dom(F ) ∩ dom(G)}) ∈ P

Define the function corr(z) ∈ (Az → R)× (Az → R)→ R as

corr(z)(F,G) := correlation(R̂z)(F,G)

The correlation is defined only if it is the case that both variances are non-
zero, var(z)(filter(dom(G), F )) > 0 and var(z)(filter(dom(F ), G)) > 0.

Also, let the arithmetic binary operators on reals, (+), (−), (×), (/) ∈ R2 →
R, be lifted to operators on real-valued functions. That is, the addition
operator is lifted F +G := {(x, Fx +Gx) : x ∈ dom(F )∩dom(G)}. The sub-
traction operator is lifted, F −G := {(x, Fx−Gx) : x ∈ dom(F )∩ dom(G)}.
The multiplication operator is lifted, F ∗G := {(x, Fx×Gx) : x ∈ dom(F )∩
dom(G)}. The divison operator is lifted F/G := {(x, Fx/Gx) : x ∈ dom(F )∩
dom(G), Gx 6= 0}.

3.17 Distribution over histograms

The set of distributions Q is a set of positive rational valued finite functions
of integral histograms that have common variables. That is, Q ⊂ Ai → Q≥0

such that ∀Q ∈ Q (|Q| <∞) and ∀Q ∈ Q ∀A ∈ dom(Q) (vars(A) = vars(Q))
where vars ∈ Q → P(V) is defined as vars(Q) :=

⋃
{vars(A) : A ∈ dom(Q)}.

The elements of the range of a distribution Q ∈ Q, ran(Q), are called the
frequencies. The domain of Q, dom(Q), is called the support. The elements
of the support are called sample histograms if there is associated with Q a
distribution histogram E having the same variables, vars(E) = vars(Q), and
some non-zero integral size zE ∈ N>0. A draw is a pair of (i) the distribution
histogram, E, and (ii) some non-zero integral size z ∈ N>0, (E, z) ∈ Ai×N>0.
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Define the set of complete distributions QU ⊂ Q∩ (AU → Q≥0) such that all
the sample histograms of the domain are complete in system U

∀Q ∈ QU ∀A ∈ dom(Q) (AU = AC)

Define the set of congruent distributions of integral size z ∈ N, Qz ⊂ Q,
such that all the sample histograms of the domain are congruent

∀Q ∈ Qz ∀A ∈ dom(Q) (size(A) = z)

Define the set of constructible distributions which have integral frequencies,
Qi ⊂ Q,

Qi = {Q : Q ∈ Q, ran(Q) ⊂ N}

The histograms of shuffles of a history H that is congruent to the support of a
congruent distribution Q ∈ Qz, vars(H) = vars(Q) and |H| = z, may also be
in the support because they are congruent and integral, {histogram(G) : G ∈
shuffles(H)} ⊂ Ai. The independent histograms of histograms in the support
may be in the support where they are integral, {AX : A ∈ dom(Q)} ∩ Ai.

The integral congruent support AU,i,V,z of size z and variables V in system U
is the finite set of all complete congruent integral histograms

AU,i,V,z = {A : A ∈ AU,i, AU = V C, size(A) = z}

The integral congruent support can be constructed recursively, AU,i,V,z = {A+
{S}U : A ∈ AU,i,V,z−1, S ∈ V CS} where AU,i,V,0 = {V CZ}. The cardinality
of the integral congruent support is the cardinality of weak compositions
|C′(V C, z)|

|AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!

where v = |V C|.

A stuffed congruent distribution Q has a domain of the integral congruent
support, Q ∈ (AU,i,V,z → Q≥0) ∩QU ∩Qz.

The multiple support AU,i,V,{0...z} of maximum count z and variables V in
system U is the finite set of all complete integral histograms

AU,i,V,{0...z} = {A : A ∈ AU,i, AU = V C, ran(A) ⊆ {0 . . . z}}

The minimum size of the multiple support histograms is zero and the maxi-
mum size is vz where v = |V C|. That is, ∀A ∈ AU,i,V,{0...z} (0 ≤ size(A) ≤ vz).
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The maximum count is ∀A ∈ AU,i,V,{0...z} (maxr(A) ≤ z). The histograms of
a multiple support are not all congruent, but the integral congruent sup-
ports of sizes less than or equal to z are subsets, ∀i ∈ {0 . . . z} (AU,i,V,i ⊂
AU,i,V,{0...z}). The multiple supports of maximum counts less than z are sub-
sets, ∀i ∈ {0 . . . z − 1} (AU,i,V,{0...i} ⊂ AU,i,V,{0...z}). The cardinality of the
multiple support is |AU,i,V,{0...z}| = (z + 1)v.

A distribution Q ∈ Q is a probability distribution if it is in the set of
probability functions, Q ∈ P . That is, the sum of the range is 1, ∀Q ∈
Q ∩ P (sum(Q) = 1).

The positive rational sum of a distribution Q is sum(Q) ∈ Q≥0.

Define the modal set of a distribution as modes ∈ Q → P(A) as

modes(Q) := maxd(Q)

Define the mean histogram of a distribution as mean ∈ Q → A as

mean(Q) :=
∑

(scalar(f) ∗ A : (A, f) ∈ Q)/scalar(sum(Q))

The mean is undefined if the frequencies sum to zero, sum(Q) = 0. The mean
of a complete distribution is a complete histogram, MU = MC where M =
mean(Q) and Q ∈ QU . The mean of a congruent distribution Q ∈ Qz has size
equal to z, size(M) = z, and so is congruent to the sample histograms in the
support, ∀Q ∈ Qz ∀A ∈ dom(Q) (congruent(A,M)). The mean histogram is
not necessarily integral and so is not necessarily in the support, M /∈ Ai =⇒
M /∈ dom(Q). If Q is a complete probability distribution, Q ∈ QU ∩ P , then
the mean histogram is the histogram of expected counts

mean(Q) = {(S, expected(Q)({(A,AS) : A ∈ dom(Q)})) : S ∈ V CS}

where V = vars(Q).

Define the variance of the counts of a state in a complete distribution as
var(U) ∈ QU → (SU → Q≥0) as

var(U)(Q) := {(S,
∑

(f/sum(Q)× (AS −MS)2 : (A, f) ∈ Q)) : S ∈ V CS}

where V = vars(Q) and M = mean(Q). The variance is undefined if the
frequencies sum to zero, sum(Q) = 0. Note that in the case of uniform
distribution, |ran(Q)| = 1, the variance of each state, var(U)(Q)(S), is the

287



population variance, not the sample variance. Although the range of the vari-
ance is a subset of the positive rationals, it is not treated here as a histogram,
but grouped along with the higher central moments of the distribution which
are not necessarily positive. If Q is a probability distribution, Q ∈ P , then
the variance is the variance of the counts

var(U)(Q) = {(S, variance(Q)({(A,AS) : A ∈ dom(Q)})) : S ∈ V CS}

Similarly the covariance of the counts of a pair of states in a complete prob-
ability distribution is cov(U) ∈ (QU ∩ P)→ ((SU × SU)→ Q)

cov(U)(Q) := {((S,R),

covariance(Q)({(A,AS) : A ∈ dom(Q)}, {(A,AR) : A ∈ dom(Q)})) :

S,R ∈ V CS}

The moment generating function of the counts of states having moment pa-
rameters T ∈ S → R in a probability distribution is mgf ∈ (Q∩P)→ ((S →
R)→ R)

mgf(Q)(T ) := expected(Q)({(A, exp(
∑
S∈AS

TSAS)) : A ∈ dom(Q)})

where dom(T ) = dom(mean(Q)) and exp is the exponential function.

3.17.1 Historical distributions

Consider the subsets of non-empty history HE ∈ H \ {∅} of cardinality
z, {G : G ⊆ HE, |G| = z} ⊂ H. The historical distribution drawn without
replacement from HE is the distribution of these sample histories over the
histograms,

count({(histogram(G), G) : G ⊆ HE, |G| = z}) ∈ Qz

where histogram(G) := {(S, |C|) : (S,C) ∈ G−1}, and count(X) := {(a, |{c :
(b, c) ∈ X, b = a}|) : a ∈ dom(X)}.

The historical distribution can equally well be defined in terms of a sub-
set of the histogram function. Let I ⊂ histogram be the histogram valued
function of all possible subsets of the history HE of cardinality z,

I = {(G, histogram(G)) : G ⊆ HE, |G| = z}

Then the historical distribution is {(A, |D|) : (A,D) ∈ I−1} ∈ Qz.
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The event identifiers, dom(HE), serve merely to make the subsets unique so
the distribution may be defined in terms of an arbitrarily constructed history
of the distribution histogram E = histogram(HE), count({(histogram(G), G) :
G ⊆ history(E), |G| = z}) = count({(histogram(G), G) : G ⊆ HE, |G| =
z}). The set of historical distributions Qh ∈ Ai × N → Qi is the set of
constructible distributions parameterised by the without replacement draw
(E, z) ∈ Ai ×N

Qh(E, z) = count({(histogram(G), G) : G ⊆ history(E), |G| = z}) ∈ Qi∩Qz

The size of the distribution histogram is zE = size(E) = |HE| > 0. The draw
size must be less than or equal to the distribution size, z ≤ zE. All of the
sample histograms are less than or equal to the distribution histogram, ∀A ∈
dom(Qh(E, z)) (A ≤ E). The maximum count in the sample histograms is
less than or equal to the draw size ∀A ∈ dom(Qh(E, z)) (maxr(A) ≤ z).

The without replacement character of the draw can be shown by a recur-
sive definition that draws one event from the implied history at each step.
Define drawnr ∈ H ×N×H → P(H) as drawnr(H, z,G) :=

⋃
{drawnr(H \

{e}, z−1, G∪{e}) : e ∈ H} where drawnr(H, 0, G) := {G}. Then Qh(E, z) =
count({(histogram(X), X) : X ∈ drawnr(history(E), z, ∅)}).

The sum of a historical distribution Qh(E, z) is the combination of z drawn
from zE

sum(Qh(E, z)) =

(
zE
z

)
=

zE!

z! (zE − z)!
∈ N>0

Each frequency of a sample histogram A ∈ dom(Qh(E, z)) in a historical
distribution is the product of the combinations in which the subset AS is
drawn from ES for all of the states

Qh(E, z)(A) =
∏
S∈AS

(
ES
AS

)
=
∏
S∈AS

ES!

AS! (ES − AS)!
∈ N>0

If the historical distribution histogram E is incomplete, that is, it does not
contain all of its cartesian states, EU 6= EC, for some system U , then all of
the element histograms in the support must necessarily be incomplete in that
system, EU 6= EC =⇒ ∀z ∈ {1 . . . zE} ∀A ∈ dom(Qh(E, z)) (AU 6= AC).
Even if the historical distribution histogram is complete, EU = EC, many of
its element histograms would be incomplete because each must have non-zero
counts, minr(A) > 0. In fact, only when the size z is greater than or equal
to the distribution histogram’s volume, z ≥ |EC|, can any of the element
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histograms be complete, z < |EC| =⇒ ∀A ∈ dom(Qh(E, z)) (AU 6= AC).

Furthermore, the support of a historical distribution cannot equal the in-
tegral congruent support, dom(Qh(E, z)) 6= AU,i,V,z where V = vars(E), be-
cause the integral congruent support contains histograms with zero counts,
∃A ∈ AU,i,V,z (0 ∈ ran(A)). The stuffed historical distribution Qh,U(E, z) ∈
(AU,i,V,z → Q≥0)∩QU ∩Qz can be constructed from a historical distribution,
Qh(E, z), by completing the support histograms and stuffing with the disjoint
subset of the integral congruent support with zero frequencies

Qh,U(E, z) = {(A+ ACZ, f) : (A, f) ∈ Qh(E, z)} ∪
(AU,i,V,z \ {A+ ACZ : A ∈ dom(Qh(E, z))})× {0}

where V = vars(E). The stuffed historical distribution support equals the
integral congruent support, dom(Qh,U(E, z)) = AU,i,V,z, so each of the his-
tograms in the support is unique by histogram equivalence

∀A,B ∈ dom(Qh,U(E, z)) (A ≡ B =⇒ A = B)

The sum of a stuffed historical distribution equals the sum of its correspond-
ing historical distribution

sum(Qh,U(E, z)) = sum(Qh(E, z)) =
zE!

z! (zE − z)!

The stuffed historical distribution can be defined explicitly

Qh,U(E, z) = {(A, if(A ≤ E,
∏

S∈AFS

ES!

AS! (ES − AS)!
, 0)) : A ∈ AU,i,V,z}

The stuffed historical probability distribution Q̂h,U(E, z) ∈ (AU,i,V,z →
Q≥0) ∩QU ∩Qz ∩ P is defined

Q̂h,U(E, z) = normalise(Qh,U(E, z))

= {(A, f/sum(Qh,U(E, z))) : (A, f) ∈ Qh,U(E, z)}

where zE > 0 and z > 0. The stuffed historical probability distribution is a
multivariate hypergeometric distribution. The sum of the stuffed historical
probability distribution is one

sum(Q̂h,U(E, z)) = 1
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The mean of the stuffed historical probability distribution is

mean(Q̂h,U(E, z)) = scalar(z) ∗ P

where P = E/scalar(zE) + ECZ. The mean is congruent to the histograms
of the integral congruent support, ∀A ∈ AU,i,V,z (congruent(A,M)), where

M = mean(Q̂h,U(E, z)). If the mean is integral then it is in the support,
M ∈ Ai =⇒ M ∈ AU,i,V,z.

The variance of state S in the stuffed historical probability distribution is

var(U)(Q̂h,U(E, z))(S) = z
zE − z
zE − 1

PS(1− PS)

The covariance of a pair of states (S,R), where R 6= S, in the stuffed histor-
ical probability distribution is

cov(U)(Q̂h,U(E, z))((S,R)) = −z zE − z
zE − 1

PSPR

3.17.2 Multinomial distributions

Let the power of a set, Xn, be defined as the set of all n-tuples of the
elements of the set, Xn =

∏
({1 . . . n} × {X}) = {L : L ∈ L(X), |L| = n}.

The cardinality of the power is |Xn| = |X|n.

Consider the set of lists of the events drawn with replacement from non-empty
history HE ∈ H\{∅} of cardinality z, Hz

E = {L : L ∈ L(HE), |L| = z}. Con-
struct from this set, Hz

E, a set of sample histories of cardinality z with new
event identifiers modified to include the position, X = {G : L ∈ Hz

E, G =
{((i, x), S) : (i, (x, S)) ∈ L}} ⊂ H. The set of sample histories, X, is bijec-
tive with the set of event lists, |X| = |Hz

E|. The multinomial distribution
drawn with replacement from HE is the distribution of these sample histories
over the histograms,

count({(histogram(G), G) : G ∈ X}) ∈ Qz

The distribution is the same for all histories for which E = histogram(HE) is
the distribution histogram, count({(histogram(G), G) : L ∈ history(E)z, G =
{((i, x), S) : (i, (x, S)) ∈ L}}) = count({(histogram(G), G) : G ∈ X}). The
set of multinomial distributions Qm ∈ Ai×N→ Qi is the set of constructible
distributions parameterised by the with replacement draw (E, z) ∈ Ai ×N

Qm(E, z) = count({(histogram(G), G) :

L ∈ history(E)z, G = {((i, x), S) : (i, (x, S)) ∈ L}}) ∈ Qi ∩Qz
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The distribution can also be written, Qm(E, z) = count({(count({(S, i) :
(i, (·, S)) ∈ L}), L) : L ∈ history(E)z}). The size of the distribution his-
togram is zE = size(E) = |HE|. The draw size, z, is not constrained by the
distribution size, zE, z ∈ N. The maximum count in the sample histograms
is less than or equal to the draw size ∀A ∈ dom(Qm(E, z)) (maxr(A) ≤ z).

The multinomial distribution can be constructed in steps of with replace-
ment draws of one event. This contrasts with the non replacement draw
of the historical distribution. Define drawwr ∈ H × N × H → P(H) as
drawwr(H, z,G) :=

⋃
{drawwr(H, z−1, G∪{((z, x), S)}) : (x, S) ∈ H} where

drawwr(H, 0, G) := {G}. Then the multinomial distribution is such that
Qm(E, z) = count({(histogram(X), X) : X ∈ drawwr(history(E), z, ∅)}).
Here the event identifier is prefixed with a sequence position, so that

|drawwr(history(E), z, ∅)| = |Hz
E|

The sum of a multinomial distribution Qm(E, z) is equal to |Hz
E| = |HE|z

sum(Qm(E, z)) = zzE ∈ N

Each frequency of a sample histogram A ∈ dom(Qm(E, z)) in a multinomial
distribution is the product of (i) the multinomial coefficient which is the
combination in which the subsets of cardinality AS are chosen from a set of
cardinality z for all states, and (ii) the cardinality of the lists drawn with
replacement from HE equivalent to a permutation defined by some order on
the states D ∈ enums(AS), concat({(i, {1 . . . AS} × {S}) : (S, i) ∈ D}) ∈
{G : L ∈ Hz

E, G = {(i, S) : (i, (·, S)) ∈ L}}

Qm(E, z)(A) =
z!∏

S∈AS AS!

∏
S∈AS

EAS
S ∈ N>0

The generalised multinomial distribution Qm,U(E, z) ∈ (AU,i,V,z → Q≥0) ⊂
QU ∩ Qz is a stuffed congruent distribution that can be constructed from
a multinomial distribution, Qm(E, z), by completing the support histograms
and stuffing with the disjoint subset of the integral congruent support with
zero frequencies

Qm,U(E, z) = {(A+ ACZ, f) : (A, f) ∈ Qm(E, z)} ∪
(AU,i,V,z \ {A+ ACZ : A ∈ dom(Qm(E, z))})× {0}

where V = vars(E). The generalised multinomial distribution support equals
the integral congruent support, dom(Qm,U(E, z)) = AU,i,V,z, so each of the
histograms in the support is unique by histogram equivalence

∀A,B ∈ dom(Qm,U(E, z)) (A ≡ B =⇒ A = B)
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The sum of a generalised multinomial distribution equals the sum of its cor-
responding multinomial distribution

sum(Qm,U(E, z)) = sum(Qm(E, z)) = zzE

The definition of the set of generalised multinomial distributions is gen-
eralised to allow parameterisation by non-integral distribution histograms,
Qm,U ∈ A ×N → Q. Contrast this to parameterisation by draw, Ai ×N,
which is defined only for integral distribution histograms. Define the gener-
alised multinomial distribution, Qm,U(E, z) ∈ (AU,i,V,z → Q≥0) ⊂ QU ∩ Qz,
explicitly as

Qm,U(E, z) := {(A, z!∏
S∈AS AS!

∏
S∈AS

EAS
S ) : A ∈ AU,i,V,z}

where V = vars(E) and E is complete EU = EC. Define 00 = 0! = 1! = 1 so
that the multinomial coefficient is defined for zero AS. Define 0x = 0 where
x 6= 0. The multinomial coefficient is integral and is greater than or equal to
one

∀A ∈ AU,i,V,z
(

z!∏
S∈AS AS!

∈ N>0

)

The generalised multinomial probability distribution Q̂m,U(E, z) ∈ (AU,i,V,z →
Q≥0) ∩QU ∩Qz ∩ P is defined

Q̂m,U(E, z) = normalise(Qm,U(E, z))

= {(A, f/sum(Qm,U(E, z))) : (A, f) ∈ Qm,U(E, z)}

= {(A, z!∏
S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

) : A ∈ AU,i,V,z}

where sum(Qm,U(E, z)) > 0 which implies that zE > 0 and z > 0. The sum
of the generalised multinomial probability distribution is one

sum(Q̂m,U(E, z)) =
∑

A∈AU,i,V,z

z!∏
S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

= 1

The generalised multinomial probability distribution may be expressed in
terms of a probability distribution histogram Ê = E/scalar(zE) ∈ A ∩ P ,

Q̂m,U(E, z) = {(A, z!
∏
S∈AS

ÊAS
S

AS!
) : A ∈ AU,i,V,z}
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The frequencies of the generalised multinomial probability distribution can
be approximated by means of the Stirling approximation

Q̂m,U(E, z)(A) = z!
∏
S∈AS

ÊAS
S

AS!
≈
∏

S∈AFS

(
ÊS

ÂS

)AS

where Â = resize(1, A). Compare this approximation to the same term for a
scaled draw size kz and scaled sample histogram scalar(k)∗A where k ∈ N>0

Q̂m,U(E, kz)(scalar(k) ∗ A) = (kz)!
∏
S∈AS

ÊkAS
S

(kAS)!

≈

 ∏
S∈AFS

(
ÊS

ÂS

)AS

k

= (Q̂m,U(E, z)(A))k

The probability of drawing A in each of k draws (E, z) of sets of lists of the
events drawn with replacement from history HE ∈ H of cardinality z, having
total cardinality |Hz

E|k, is equal to the probability of drawing A once from
(E, z) raised to the power k, (Q̂m,U(E, z)(A))k. This is approximately equal
to the probability of drawing scalar(k) ∗ A from (E, kz) in the set of lists of
the events drawn with replacement from history HE of cardinality kz, having
the same total cardinality |Hkz

E | = |Hz
E|k. The approximation is best when

the multinomial coefficient is minimised. This is the case when the entropy
of A, entropy(A), is low, for example when A is diagonal.

Noting that the cardinality of the integral congruent support is less than or
equal to the cardinality of the scaled integral congruent support, |AU,i,V,z| ≤
|AU,i,V,kz|, the sum of the generalised multinomial probability distribution can
be approximated in terms of the scaled generalised multinomial probability
distribution

sum(Q̂m,U(E, z)) ≈
∑

A∈AU,i,V,z

(Q̂m,U(E, kz)(scalar(k) ∗ A))1/k

The mean of the generalised multinomial probability distribution is

mean(Q̂m,U(E, z)) = scalar(z) ∗ Ê

The integral mean multinomial probability distribution conjecture states that
if the mean of the multinomial probability distribution is integral then it is
also modal

mean(Q̂m,U(E, z)) ∈ Ai =⇒ mean(Q̂m,U(E, z)) ∈ modes(Q̂m,U(E, z))
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See the discussion in ‘Minimum Alignment’, below, which generalises the
multinomial probability distribution to be a probability density function (by
using the gamma function), and then shows that non-integral means can have
probability density less than the modes, in the case of negative alignment.

Consider the subset of the integral congruent support which consists of the
histograms bracketing the mean M = mean(Q̂m,U(E, z)) by floor and ceiling
counts, {A : A ∈ AU,i,V,z, ∀S ∈ AS (AS ∈ {bMSc, dMSe})}. It is the case
that there exist multinomial probability distributions such that this bracket-
ing subset is not a superset of the modes

∃(E, z) ∈ Ai ×N ♦M = mean(Q̂m,U(E, z))

∃A ∈ modes(Q̂m,U(E, z)) ∃S ∈ AS (AS /∈ {bMSc, dMSe})
The variance of state S in the generalised multinomial probability distribution
is

var(U)(Q̂m,U(E, z))(S) = zÊS(1− ÊS)

The covariance of a pair of states (S,R), where R 6= S, in the generalised
multinomial probability distribution is

cov(U)(Q̂m,U(E, z))((S,R)) = −zÊSÊR
The moment generating function of the generalised multinomial probability
distribution is

mgf(U)(Q̂m,U(E, z))(T ) =

( ∑
S∈V CS

ÊSe
TS

)z

where T ∈ V CS → R.

Compare the historical and multinomial distributions. The multinomial
coefficient can be separated from the permutorial part in both distributions
showing that the historical distribution frequency, Qh(E, z)(A), is less than
or equal to the multinomial distribution frequency, Qm(E, z)(A), of the his-
togram, A,

Qh(E, z)(A) =
∏
S∈AS

ES!

AS! (ES − AS)!

=
z!∏

S∈AS AS!

1

z!

∏
S∈AS

E
AS

S

≤ z!∏
S∈AS AS!

∏
S∈AS

EAS
S

= Qm(E, z)(A)
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where A ≤ E and xn is the falling factorial.

In the multinomial distribution, drawn with replacement, the permutorial is
the product of the counts of the states of the distribution histogram raised to
the power of the count of the corresponding state of the sample histogram,
EAS
S . The permutorial of the historical distribution, drawn without replace-

ment, is the same except that the power is falling factorial, E
AS

S .

The multinomial distribution frequency is also larger than the historical dis-
tribution frequency because of the factor of z!. This arises because in or-
der to have integral frequencies, Qm(E, z)(A) ∈ N, the multinomial dis-
tribution must modify the event identifiers with the position in the lists
in Hz

E ∈ L(L(HE)). If the historical distribution was defined to be con-
structed from a list of modified histories J = {G : L ∈ L(HE), |set(L)| =
|L| = z, G = {((i, x), S) : (i, (x, S)) ∈ L}} rather than from subsets
K = {G : G ⊆ HE, |G| = z} then the same factor, z!, would also appear in
the historical distribution, |J | = zzE and |K| = zzE/z!, hence |J | = z!|K|.

Compare the stuffed historical and multinomial probability distributions

Q̂m,U(E, z)(A) =
z!∏

S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

=
z!∏

S∈AS AS!

1

zzE

∏
S∈AS

EAS
S

Q̂h,U(E, z)(A) =
z! (zE − z)!

zE!

∏
S∈AS

ES!

AS! (ES − AS)!

=
z!∏

S∈AS AS!

1

zzE

∏
S∈AS

E
AS

S

Here the scaling factor of z! disappears.

As the ratio zE/z increases the generalised multinomial probability distri-
bution increasingly approximates to the stuffed historical probability distri-
bution, Q̂m,U(E, z) ≈ Q̂h,U(E, z). The ratio of multinomial frequency to the
historical frequency for distribution histogram E ∈ AU,i,V,zE and sample his-
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togram A ∈ AU,i,V,z such that A ≤ E and A ∈ dom(Qh,U(E, z)) is

Q̂m,U(E, z)(A)

Q̂h,U(E, z)(A)
=

zE!

(zE − z)!zzE

∏
S∈AS

(ES − AS)!

ES!
EAS
S

=
∏

i∈{1...z}

(
zE − z + i

zE

) ∏
S∈AS, j∈{1...AS}

(
ES

ES − AS + j

)
Calculating the special case of the scaled cartesian distribution histogram
E = scalar(zE/v) ∗ V C and sample histogram A = scalar(z/v) ∗ V C, where
v = |V C|, z/v ∈ N>0 and zE/z ∈ N>0, then

Q̂m,U(E, z)(A)

Q̂h,U(E, z)(A)
=

∏
i∈{1...z}

(
zE − z + i

zE

) ∏
j∈{1...z/v}

(
zE

zE − z + vj

)v
≈

∏
i∈{1...z}

(
zE − z + i

zE

) ∏
i∈{1...z}

(
zE

zE − z + i

)
= 1

Taking the root is less of an approximation where z is small, z � zE/v.

A constraint exists on the induction of the multinomial distribution his-
togram E ∈ Ai,U , of size zE, given a sample histogram A ∈ dom(Q̂m,U(E, z))

and draw size z = size(A). IfA is assumed to be modal, A ∈ modes(Q̂m,U(E, z)),
and A is not completely uniform, A 6= resize(z, AC), then E cannot be com-
pletely uniform, E 6= resize(zE, E

C). That is

A ∈ modes(Q̂m,U(E, z)) ∧ (A 6= Zz/v ∗ V C) =⇒ (E 6= ZzE/v ∗ V C)

where V = vars(E), v = |V CS| and Zx = scalar(x). The mean M of the
completely uniform distribution histogram Q̂m,U(V C, z) is also completely uni-

form, M = mean(Q̂m,U(V C, z)) = Zz/v ∗ V C. The probability of the mean
histogram is the frequency

Q̂m,U(V C, z)(M) =
z!

( z
v
!)v

(
1

v

)z
Let perturb ∈ A → P(A) be the set of effective event perturbations of a

histogram, excluding the given histogram,

perturb(A) :=

{A+ {S}U − {R}U : (S, c) ∈ A, c > 0, (R, d) ∈ A, S 6= R, d ≥ 1}
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All perturbations of the mean are less probable than the mean

∀A ∈ perturb(M) (Q̂m,U(V C, z)(A) < Q̂m,U(V C, z)(M))

because
1(

z
v
− 1
)
!
(
z
v

+ 1
)
!
<

1(
z
v
!
)2

All sample histograms can be placed in a list L ∈ L(dom(Q̂m,U(E, z))) be-
ginning with the mean and followed by perturbations of the previous item.
That is, L1 = M and ∀i ∈ {1 . . . |L| − 1} (Li+1 ∈ perturb(Li)). Each step
on paths constructed for a completely uniform distribution is subject to the
inequality above, ∀i ∈ {1 . . . |L|−1} (Q̂m,U(V C, z)(Li+1) < Q̂m,U(V C, z)(Li)).
Thus all sample histograms except for the mean are less probable than the
mean in a completely uniform distribution. Furthermore, the mean is modal
according to the conjecture above for integral means in the multinomial dis-
tribution, M ∈ modes(Q̂m,U(V C, z)). Therefore the set of modes of a com-
pletely uniform distribution histogram is a singleton of the mean histogram,
modes(Q̂m,U(V C, z)) = {M}. Hence the constraint on induction.

The entropy (defined in appendix ‘Entropy and Gibbs’ inequality’) of the
distribution histogram E scaled by the draw size z approximates to the sum
variance of the generalised multinomial probability distribution

sum(var(U)(Q̂m,U(E, z))) =
∑
S∈V CS

zÊS(1− ÊS)

∼ −z
∑
S∈EFS

ÊS ln ÊS

= z × entropy(Ê)

= z × entropy(E)

where Ê = resize(1, E) and V = vars(E). The approximate proportionality
depends on the first term of the Taylor series, lnx ≈ (x−1), and so is a very
coarse approximation. Increasing entropy tends to increase the sum variance.
Conversely, increasing entropy tends to decrease the absolute sum covari-
ance, sum(cov(U)(Q̂m,U(E, z)))− sum(var(U)(Q̂m,U(E, z))) =

∑
(−zÊSÊR :

S,R ∈ V CS, R 6= S), becoming less negative.

Conjecture that the cardinality of the modal set of the multinomial distribu-
tion tends to increase with increasing entropy for constant draw size

|modes(Q̂m,U(E, z))| ∼ sum(var(U)(Q̂m,U(E, z)))

∼ z × entropy(E)
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Note that the entropy is of the distribution histogram, entropy(E), not the
distribution itself, entropy(Q̂m,U(E, z)).

Consider the special case of a draw of size z from two uniform distribution
histograms E and D having volumes v and kv respectively where k ∈ N>1.
The ratio of the sum variance of the generalised multinomial probability dis-
tribution of these draws is

sum(var(U)(Q̂m,U(D, z)))

sum(var(U)(Q̂m,U(E, z)))
=

∑
zD̂R(1− D̂R) : R ∈ DS∑
zÊS(1− ÊS) : S ∈ ES

=
kvz 1

kv

(
1− 1

kv

)
vz 1

v

(
1− 1

v

)
=

v − 1
k

v − 1
> 1

where D̂ = resize(1, D) and Ê = resize(1, E). Thus the sum variance in-
creases with increasing volume, but the effect is not very large. Similarly, the
ratios of the entropies is

entropy(D)

entropy(E)
=
−
∑
D̂R ln D̂R : R ∈ DFS

−
∑
ÊS ln ÊS : S ∈ EFS

=
kv 1

kv
ln 1

kv

v 1
v

ln 1
v

= 1 +
ln k

ln v
> 1

Consider a one functional transform T ∈ TU,f,1 having underlying variables
equal to the variables V of uniform distribution histogram D, und(T ) = V =
vars(D). The entropy of the application of T to D must be less than or equal
to the entropy of D, entropy(V C ∗ T ) ≤ entropy(V C), because the derived
volume is less than or equal to the underlying volume, |WC| ≤ |V C| where
W = der(T ). The entropies are equal when W is a frame of V and thus T
is full functional.

The log of the generalised multinomial probability distribution, ln ◦ Q̂m,U(E, z) ∈
AU,i,V,z → R, can be approximated by the sized negative relative entropy be-
tween the sample histogram and the distribution histogram by means of the
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Stirling approximation

Q̂m,U(E, z)(A) = z!
∏
S∈AS

ÊAS
S

AS!
≈
∏

S∈AFS

(
ÊS

ÂS

)AS

where Ê = resize(1, E) and Â = resize(1, A). So

ln Q̂m,U(E, z)(A) ≈
∑
S∈AFS

AS ln
ÊS

ÂS

= −z
∑
S∈AFS

ÂS ln
ÂS

ÊS

= −z × entropyRelative(Â, Ê)

where AF ≤ EF. By Gibbs’ inequality, the logarithm is maximised when
the sample histogram is the mean, A = scalar(z/zE) ∗ E. Thus the mean
is modal within the approximation. The sized negative relative entropy can
be thought of as the similarity of the sample histogram to the distribution
histogram. This can be seen by comparing the sized negative relative entropy,

ln Q̂m,U(E, z)(A) ≈ −z
∑
S∈AFS

ÂS ln
ÂS

ÊS

≈ z
∑
S∈AFS

ÂS(1− ÂS

ÊS
)

where ÂS ≈ ÊS, to the sum variance,

sum(var(U)(Q̂m,U(E, z))) = z
∑
S∈V CS

ÊS(1− ÊS)

In any case, it can be seen that the log of the generalised multinomial prob-
ability distribution varies with the sized entropy of the sample histogram as
well as the sized negative relative entropy,

ln Q̂m,U(E, z)(A) ≈ −z
∑
S∈AFS

ÂS ln
ÂS

ÊS

= z × entropy(A) + z
∑
S∈AFS

ÂS ln ÊS
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In the case where the states are uniformly probable, the distribution his-
togram is the cartesian, V C. In this case the generalised multinomial proba-
bility distribution is proportional to the multinomial coefficient,

Q̂m,U(V C, z)(A) =
z!∏

S∈AS AS!

1

vz

and the logarithm of the multinomial probability distribution varies with the
sized entropy,

ln Q̂m,U(V C, z)(A) ∼ z × entropy(A)

This case is equivalent to the case discussed in ‘Histogram entropy’, above.
Let I ⊂ histogram be the histogram valued function of all possible histories
of size z in variables V ,

I = {(H, histogram(H)) : H ∈ {1 . . . z} :→ V CS}

Let W be the cardinality of histories for each histogram,

W = {(A, |D|) : (A,D) ∈ I−1}

The histogram probability function, Ŵ ∈ P , equals the cartesian-distributed
multinomial probability distribution,

Ŵ (A) =
z!∏

S∈AS AS!

1

vz
= Q̂m,U(V C, z)(A)

That is, the case where the histogram is drawn from the uniform cartesian
distribution histogram is equivalent to uniformly probable state.

Consider functions of the sample histograms. Conjecture that the expected
independent histogram of a generalised multinomial probability distribution
equals the scaled independent distribution histogram

{(S, expected(Q̂m,U(E, z))({(A,AX
S ) : A ∈ AU,i,V,z})) : S ∈ V CS} =

scalar(z) ∗ ÊX = mean(Q̂m,U(EX, z))

where Ê = E/scalar(zE). Conjecture that the counts of the states of the
sample histograms are positively correlated with the counts of the states of
the independent of the sample histograms, but that the correlation is less
than one

∀S ∈ V CS (0 ≤ X(E, z, S) < 1)
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where independent correlation function X(E, z, S) is defined for effective vol-
umes greater than one, |EF| > 1

X(E, z, S) :=

correlation(Q̂m,U(E, z))({(A,AS) : A ∈ AU,i,V,z}, {(A,AX
S ) : A ∈ AU,i,V,z})

Compare the positive correlation between a state of the sample histograms
and the corresponding state of the independent sample histograms to the
negative correlation between different states of the sample histograms,

cov(U)(Q̂m,U(E, z))((S,R)) = −zÊSÊR

Conjecture that the covariance between different states of the independent
of sample histograms is less negative

∀S,R ∈ V CS (R 6= S =⇒ |Y (E, z, S,R)| ≤ |cov(U)(Q̂m,U(E, z))((S,R))|)

where independent covariance function Y (E, z, S,R) is defined for R 6= S

Y (E, z, S,R) :=

covariance(Q̂m,U(E, z))({(A,AX
R) : A ∈ AU,i,V,z}, {(A,AX

S ) : A ∈ AU,i,V,z})

Consider the logarithm of the factorial function when interpolated by means
of the unit-translated gamma function. The unit-translated gamma func-
tion is defined (Γ!) ∈ R → R as Γ!x = Γ(x + 1) which is such that
∀x ∈ N (ln Γ!x = ln Γ(x + 1) = ln x!). The gamma function is log con-
vex and hence the expected logarithm of the factorial of the counts of the
states of the sample histograms is greater than or equal to the logarithm of
the factorial of the counts of the states of the mean histogram by Jensen’s
inequality

∀S ∈ V CS (expected(Q̂m,U(E, z))({(A, lnAS!) : A ∈ AU,i,V,z}) ≥ ln Γ!MS)

where the mean histogram is M = mean(Q̂m,U(E, z)). Conjecture that the
expected logarithm of the factorial of the counts of the states of the sample
histograms is greater than or equal to the expected logarithm of the factorial
of the counts of the states of the independent sample histograms

∀S ∈ V CS (expected(Q̂m,U(E, z))({(A, lnAS!) : A ∈ AU,i,V,z}) ≥
expected(Q̂m,U(E, z))({(A, ln Γ!A

X
S ) : A ∈ AU,i,V,z}))
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3.17.3 Multiple binomial distributions

Consider the set of lists of the events drawn with replacement from his-
tory HE ∈ H of cardinality z, Hz

E = {L : L ∈ L(HE), |L| = z} ⊂ L(HE).
Whereas above the lists where modified to construct multinomial sample
histories drawn with replacement, here they are modified to form binomial
sample histories drawn with replacement of some given state S ∈ V CS where
V = vars(HE). Replace all states not equal to S with a dummy empty state
∅ ∈ S to define a set of sample histories, X = {G : L ∈ Hz

E, G = {((i, x), R) :
(i, (x,R)) ∈ L, R = S} ∪ {((i, x), ∅) : (i, (x,R)) ∈ L, R 6= S}} ⊂ X → S.
Strictly speaking the set X is not a set of histories because vars(∅) 6= V (ex-
cept in the case where the history HE is scalar, V = ∅), but the construction
serves to show how the draw is binomial.

Now consider Hz
E raised to the power of the volume v = |V C|, (Hz

E)v =
{L : L ∈ L(Hz

E), |L| = v} ⊂ L(L(HE)). Each of the lists of this set repre-
sents an independent binomial draw for each of the states in the volume. Let
D ∈ enums(V CS) be some map between the states of V and the elements of
this set, ∀L ∈ (Hz

E)v (D ∈ V CS ↔ dom(L)). Construct from this set, (Hz
E)v,

a set of sample histories of cardinality less than or equal to zv, Y = {G :
L ∈ (Hz

E)v, G = {((i, j, x), S) : (S, i) ∈ D, (j, (x,R)) ∈ Li, R = S}} ⊂ H.
Here Y is a set of multiple binomial sample histories drawn with replacement.
The events of the states corresponding to the dummy empty state are not
included in this construction.

The set of multiple binomial distributions Qb,U ∈ Ai,U ×N→ QU ∩Qi is the
set of constructible distributions parameterised by the with replacement draw
(E, z) ∈ Ai,U ×N

Qb,U(E, z) = count({(histogram(G) + V CZ, G) : L ∈ (Hz
E)v,

G = {((i, j, x), S) : (S, i) ∈ D, (j, (x,R)) ∈ Li, R = S}}) ∈ QU ∩Qi

where V = vars(A) and D ∈ enums(V CS). The support of the multiple
binomial distribution is the multiple support, dom(Qb,U(E, z)) = AU,i,V,{0...z}.
Hence the sample size is not constrained to be equal to the draw size. The
minimum size of the sample histograms is zero and the maximum size is
vz, ∀A ∈ dom(Qb,U(E, z)) (0 ≤ size(A) ≤ vz). The maximum count in the
sample histograms is less than or equal to the draw size

∀A ∈ dom(Qm(E, z)) (maxr(A) ≤ z)

The sum of a multiple binomial distribution is

sum(Qb,U(E, z)) = zzvE
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The set of generalised multiple binomial distributions Qb,U ∈ AU×N→ QU is
the set of distributions parameterised by non-integral distribution histograms
as well as integral draw distribution histograms. They are defined explicitly,
Qb,U(E, z) ∈ (AU,i,V,{0...z} → Q≥0) ⊂ QU , as

Qb,U(E, z) := {(A,
∏

S∈V CS

z!

AS!(z − AS)!
EAS
S (zE −ES)z−AS) : A ∈ AU,i,V,{0...z}}

where V = vars(E).

The generalised multiple binomial probability distribution is Q̂b,U(E, z) ∈
(AU,i,V,{0...z} → Q≥0) ∩QU ∩ P

Q̂b,U(E, z) = normalise(Qb,U(E, z))

= {(A,
∏

S∈V CS

z!

AS!(z − AS)!
ÊAS
S (1− ÊS)z−AS) : A ∈ AU,i,V,{0...z}}

where Ê = E/scalar(zE).

The mean of the generalised multiple binomial probability distribution is

mean(Q̂b,U(E, z)) = scalar(z) ∗ Ê

If the mean of the generalised multiple binomial probability distribution is
integral then it is the element of the singleton modal set

M ∈ Ai =⇒ modes(Q̂b,U(E, z)) = {M}

where M = mean(Q̂b,U(E, z)). If the mean is not integral then the modal
set is a singleton consisting of the floor of the mean

modes(Q̂b,U(E, z)) = {floor(A)}

The variance of state S in the generalised multiple binomial probability dis-
tribution is

var(U)(Q̂b,U(E, z))(S) = zÊS(1− ÊS)

The covariance of a pair of states (S,R), where R 6= S, is zero because the
states are independently drawn,

cov(U)(Q̂b,U(E, z))((S,R)) = 0
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The moment generating function of the generalised multiple binomial proba-
bility distribution is

mgf(U)(Q̂b,U(E, z))(T ) =
∏

S∈V CS

(1− ÊS + ÊSe
TS)

where Ê = E/scalar(zE) and T ∈ V CS → R.

The mean and variance of the generalised multiple binomial probability dis-
tribution equals the mean and variance of the generalised multinomial prob-
ability distribution

mean(Q̂b,U(E, z)) = mean(Q̂m,U(E, z))

and
var(U)(Q̂b,U(E, z)) = var(U)(Q̂m,U(E, z))

However the covariance is not equal, cov(U)(Q̂m,U(E, z))((S,R)) 6= 0 where
ES, ER > 0. Increasing entropy of the distribution histogram, entropy(E),
tends to decrease the absolute sum covariance of joint states, R 6= S, of the
generalised multinomial probability distribution

|sum(cov(U)(Q̂m,U(E, z)))− sum(var(U)(Q̂m,U(E, z)))|

So as entropy increases the moments converge and the generalised multiple
binomial probability distribution increasingly approximates to the generalised
multinomial probability distribution where the supports intersect

{(A, f) : (A, f) ∈ Q̂b,U(E, z), size(A) = z} ≈ Q̂m,U(E, z)

Similarly, the conjecture above that the covariance between different states
of the independent of sample histograms in the generalised multinomial prob-
ability distribution is less negative than between different states of the sample
histograms suggests that the generalised multiple binomial probability distri-
bution approximates to the generalised multinomial probability distribution
better for the independent sample histograms

{(A, f) : (A, f) ∈ Q̂b,U(E, z), size(A) = z, A = AX} ≈
{(A, f) : (A, f) ∈ Q̂m,U(E, z), A = AX}

The multiple Poisson probability function is Q̂p,U(E, z) ∈ (AU,i,V,{0...z} →
R≥0) ∩ P is defined

Q̂p,U(E, z) = {(A,
∏

S∈V CS

e−zÊS(zÊS)AS

AS!
) : A ∈ AU,i,V,{0...z}}
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where Ê = E/scalar(zE). Here the Poisson distribution parameter is zÊS.
This function is not a distribution because it is real-valued. Hence it cannot
be constructed from finite HE. However at large z and v it approximates
to the generalised multiple binomial probability distribution. Using Stirling’s
approximation,

Q̂p,U(E, z) = {(A,
∏

S∈V CS

e−zÊS(zÊS)AS

AS!
) : A ∈ AU,i,V,{0...z}}

= {(A, e−zzz
∏

S∈V CS

ÊAS
S

AS!
) : A ∈ AU,i,V,{0...z}}

≈ {(A, z!
∏

S∈V CS

ÊAS
S

AS!
) : A ∈ AU,i,V,{0...z}}

≈ {(A,
∏

S∈V CS

z!

AS!(z − AS)!
ÊAS
S (1− ÊS)z−AS) : A ∈ AU,i,V,{0...z}}

= Q̂b,U(E, z)

The multiple Poisson probability function also approximates to the gener-
alised multinomial probability distribution at large z and v

{(A, z!
∏

S∈V CS

ÊAS
S

AS!
) : A ∈ AU,i,V,{0...z}} ⊃ {(A, z!

∏
S∈V CS

ÊAS
S

AS!
) : A ∈ AU,i,V,z}

= Q̂m,U(E, z)

3.17.4 Uniform distributions

The uniform distributions in system U are parameterised by a pair of (i)
a set of draw variables V ⊂ VU and (ii) a non-zero integral draw size z ∈
N>0. In terms of sets of histories, the uniform distribution is a constructible
distribution Qu,U ∈ VU ×N>0 → Qi is defined

Qu,U(V, z) = count({(histogram(G), G) : A ∈ AU,i,V,z, G = history(A)})
= AU,i,V,z × {1}

The support of uniform distributions is the integral congruent support. That
is, dom(Qu,U(V, z)) = AU,i,V,z.
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The uniform probability distribution Q̂u,U(V, z) ∈ (AU,i,V,z → Q≥0)∩QU ∩
Qz ∩ P is defined

Q̂u,U(V, z) = AU,i,V,z × {1/|AU,i,V,z|}

= AU,i,V,z ×
{
z! (v − 1)!

(z + v − 1)!

}
where v = |V CS|. The modal set of a uniform probability distribution is the
entire support, modes(Q̂u,U(V, z)) = AU,i,V,z. The mean histogram is the uni-

form histogram, mean(Q̂u,U(V, z)) = scalar(z/v) ∗ V C where v = |V C|. Com-
pare this to the mean histogram of the multiple support, mean(AU,i,V,{0...z} ×
{1}) = scalar(z/2) ∗ V C.

The supports of the uniform probability distribution Q̂u,U(V, z) and the gen-
eralised multinomial probability distribution of the uniform distribution his-
togram Q̂m,U(V C, z) are equal

dom(Q̂u,U(V, z)) = dom(Q̂m,U(V C, z)) = AU,i,V,z

but the distributions are not equal, Q̂u,U(V, z) 6= Q̂m,U(V C, z), except in the
trivial case of mono-variate, mono-valent V .

3.17.5 Iso-independent conditional multinomial distributions

The discussion ‘Historical distributions’, above, shows how the historical
distribution, Qh(E, z), is derived from subsets of the events drawn without
replacement from history HE ∈ H of cardinality z, {G : G ⊆ HE, |G| = z}.
The set of historical distributions Qh ∈ Ai×N→ Qi is the set of constructible
distributions parameterised by a without replacement draw (E, z) ∈ Ai ×N

Qh(E, z) = count({(histogram(G), G) : G ⊆ history(E), |G| = z}) ∈ Qi∩Qz

Similarly, the discussion ‘Multinomial distributions’, above, shows how the
multinomial distribution, Qm(E, z), is derived from the set of lists of the
events drawn with replacement from history HE ∈ H of cardinality z, Hz

E =
{L : L ∈ L(HE), |L| = z}. The set of multinomial distributions Qm ∈
Ai×N→ Qi is the set of constructible distributions parameterised by a with
replacement draw (E, z) ∈ Ai ×N

Qm(E, z) = count({(histogram(G), G) :

L ∈ history(E)z, G = {((i, x), S) : (i, (x, S)) ∈ L}}) ∈ Qi ∩Qz
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Both cases construct an intermediate set of histories I ⊂ H. In the histor-
ical case the intermediate histories are simply subsets of the given history,
I = {G : G ⊆ HE, |G| = z} ∈ P(H). In the multinomial case the intermedi-
ate histories are constructed by prefixing by list position the event identifiers
of lists of events of the given history, I = {G : L ∈ Hz

E, G = {((i, x), S) :
(i, (x, S)) ∈ L}} ∈ P(H). The cardinalities of the components of the par-
tition of I implied by the inverse of the histogram function, histogram ∈
H → A, form the frequencies of the constructible distribution, {(A, |C|) :
(A,C) ∈ inverse(filter(I, his))} = count({(his(G), G) : G ∈ I}) ∈ Qi, where
his = histogram. So the count partition is ran(inverse(filter(I, his))) =
ran(inverse({(G, his(G)) : G ∈ I})) ∈ B(I).

Given some partition P ∈ B(I) of the intermediate set of drawn histories
I ∈ P(H), a second intermediate set J ∈ P(H) having a corresponding par-
tition R ∈ B(J) may be constructed such that (i) there exists a bijection
M ∈ P · R between the partitions, and (ii) the cardinalities of the compo-
nents of R are uniform, |{|C ′| : C ′ ∈ R}| = 1. Each component C ′ ∈ R
corresponding to a component C ∈ P , that is, (C,C ′) ∈ M , may be con-
structed by prefixing each of the event identifiers of each of the histories in
C with the sets of histories in the product of the remaining components,∏

D∈P\{C}D ⊂ P(H). Define hiso ∈ P(P(H))→ P(P(H)) as

hiso(P ) :=

{C ′ : C ∈ P, C ′ = {{((N, x), S) : (x, S) ∈ G} : G ∈ C, N ∈
∏

D∈P\{C}

D}}

Then R = hiso(P ) and J =
⋃
R. If the argument P to the history iso

function is a partition, P ∈ B(
⋃
P ), then the cardinality of each of the com-

ponents of the resultant partition is
∏

C∈P |C|. The sum of the cardinalities
is |J | =

∑
C′∈R |C ′| = |P |

∏
C∈P |C|. The resultant second intermediate set

of histories J forms a new distribution, count({(his(G), G) : G ∈ J} ∈ Qi.

Now consider a with replacement draw parameterised by (i) a distribution
histogram E in variables V and system U , and (ii) an independent histogram
AX in variables V having integral size z = size(AX) ∈ N. That is, draw
parameters (E,AX) ∈ AU,i ×AU . The independent histogram size, z, defines
the draw size. The independent histogram is also constrained such that the
integral iso-independent set defined by it is non-empty, |Y −1

U,i,V,z(A
X)| > 0,

where YU,i,V,z = {(B,BX) : B ∈ AU,i,V,z} ⊂ independent is the integral con-
gruent independent function.
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Define the iso-independent conditional multinomial distribution Qm,y(E,AX)
as the distribution derived from the subset of the lists of the events drawn with
replacement, Hz

E, that are constrained to the set of integral iso-independents
defined by the draw parameter AX,

{L : L ∈ L(HE),

G = {((i, x), S) : (i, (x, S)) ∈ L}, B = histogram(G), BX ≡ AX} ⊆ Hz
E

That is

Qm,y(E,AX) = count({(B,G) :

L ∈ history(E)z, G = {((i, x), S) : (i, (x, S)) ∈ L},
B = histogram(G), BX ≡ AX}) ∈ Qz

The iso-independent conditional multinomial distribution, Qm,y(E,AX), is
a subset of the corresponding multinomial distribution of the same size,
Qm(E, z). That is, Qm,y(E,AX) = {(B, f) : (B, f) ∈ Qm(E, z), BX ≡ AX}.
Thus sum(Qm,y(E,AX)) ≤ sum(Qm(E, z)). The iso-independent conditional
multinomial distribution can be defined explicitly for B ∈ Y −1

U,i,V,z(A
X) as

Qm,y(E,AX)(B) = Qm(E, z)(B) =
z!∏

S∈BS BS!

∏
S∈BS

EBS
S ∈ N>0

The stuffed iso-independent conditional multinomial distribution

Qm,y,U(E,AX) ∈ Y −1
U,i,V,z(A

X)→ Q≥0 ⊂ QU ∩Qz

can be constructed from an iso-independent conditional multinomial distri-
bution, Qm,y(E,AX), by completing the support histograms and stuffing with
the disjoint subset of the integral congruent support that are iso-independent
histograms with zero frequencies

Qm,y,U(E,AX) = {(B +BCZ, f) : (B, f) ∈ Qm,y(E,AX)} ∪
(Y −1

U,i,V,z(A
X) \ {B +BCZ : B ∈ dom(Qm,y(E,AX))})× {0}

The stuffed iso-independent conditional multinomial probability distribution
Q̂m,y,U(E,AX) ∈ (Y −1

U,i,V,z(A
X)→ Q≥0) ∩QU ∩Qz ∩ P is defined

Q̂m,y,U(E,AX) = normalise(Qm,y,U(E,AX))

= {(B, f/sum(Qm,y,U(E,AX))) : (B, f) ∈ Qm,y,U(E,AX)}

where zE > 0 and z > 0.
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Finally the generalised iso-independent conditional multinomial probability
distribution over the entire integral congruent support, AU,i,V,z, can be con-
structed by treating each of the iso-independent components of the parti-
tion implied by the integral congruent independent function, ran(Y −1

U,i,V,z) ∈
B(AU,i,V,z), as equally probable. Define the generalised iso-independent con-
ditional multinomial probability distributions parameterised by both integral
and non-integral distribution histograms, Q̂m,y,U ∈ AU ×N→ QU , explicitly

Q̂m,y,U(E, z) ∈ (AU,i,V,z → Q≥0) ∩ P ⊂ QU ∩Qz as

Q̂m,y,U(E, z) := normalise({(A, Qm,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Qm,U(E, z)(B)
) : A ∈ AU,i,V,z})

which is such that

Q̂m,y,U(E, z) = normalise(
⋃

(Q̂m,y,U(E,AX) : AX ∈ ran(YU,i,V,z)))

In the case of integral distribution histogram, E ∈ Ai, this definition of the
generalised iso-independent conditional multinomial probability distribution,
Q̂m,y,U(E, z), implies a corresponding constructible distribution Qm,y,U(E, z) ∈
(AU,i,V,z → N) ⊂ Qi, by scaling the frequencies of Q̂m,y,U(E, z) by a factor,

Qm,y,U(E, z)(A) :=|ran(YU,i,V,z)|
∏

AX∈ran(YU,i,V,z)

∑
B∈Y −1

U,i,V,z(AX)

Qm,U(E, z)(B)

× Q̂m,y,U(E, z)(A)

The iso-independent function, YU,i,V,z ∈ AU,i,V,z → AU,V,z ⊂ independent, im-
plies a function of histories, {(G, YU,i,V,z(A + ACZ)) : G ∈ I, A = his(G)} =
{(G,AX + ACZ) : G ∈ I, A = his(G)} ∈ H → AU,V,z, where the multino-
mial intermediate set of histories is I = {G : L ∈ Hz

E, G = {((i, x), S) :
(i, (x, S)) ∈ L}} ∈ P(H) and his = histogram. This in turn implies a parti-
tion of histories P = ran(inverse({(G,AX + ACZ) : G ∈ I, A = his(G)})) ∈
B(I). This partition of histories is a parent partition of the partition of histo-
ries implied by the histogram function, parent(P, ran(inverse(filter(I, his)))).
The scaling factor is equal to the sum of the cardinalities of the resultant
partition of the history iso function∑
C′∈hiso(P )

|C ′| = |P |
∏
C∈P

|C| = |ran(YU,i,V,z)|
∏

AX∈ran(YU,i,V,z)

∑
B∈Y −1

U,i,V,z(AX)

Qm,U(E, z)(B)

That is, the frequencies of the multinomial distribution, Qm,U(E, z), are
partitioned by the iso-independent function, YU,i,V,z. The sum of the fre-
quencies of each component of this partition is scaled. The scaling of the
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frequencies of histograms corresponds to the repetition of histories in the
components of partition R = hiso(P ) ∈ B(J), of the second intermediate
set of histories J =

⋃
R ⊂ H, having uniform component cardinalities,

|{|C ′| : C ′ ∈ R}| = 1. The resultant second intermediate set of histories, J ,
forms the generalised iso-independent conditional multinomial distribution,
Qm,y,U(E, z) = count({(his(G), G) : G ∈ J} ∈ Qi.

The upper bound to the cardinality of the second intermediate history set,
|J |, which is the sum of the generalised iso-independent conditional multino-
mial distribution, is

sum(Qm,y,U(E, z)) ≤ r

(
zzE
r

)r
where zzE ≥ r and

r = |ran(YU,i,V,z)| =
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!

The probability of an integral congruent support histogram A ∈ AU,i,V,z
may be compared between the generalised iso-independent conditional multi-
nomial probability distribution, Q̂m,y,U(E, z), and the generalised multinomial

probability distribution, Q̂m,U(E, z). The cardinality of the range of the inte-
gral congruent independent function is

|ran(YU,i,V,z)| =
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!

If the sum of the iso-independent probabilities of A is greater than the frac-
tion implied by this cardinality∑

B∈Y −1
U,i,V,z(AX)

Q̂m,U(E, z)(B) >
1

|ran(YU,i,V,z)|

then the generalised iso-independent conditional multinomial probability is
less than the generalised multinomial probability, Q̂m,y,U(E, z)(A) < Q̂m,U(E, z)(A),
and vice-versa. In the case where the independent histogram is integral,
AX ∈ Ai and therefore an iso-independent, AX ∈ Y −1

U,i,V,z(A
X), and such that

Q̂m,U(E, z)(AX) >
1

|ran(YU,i,V,z)|
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then Q̂m,y,U(E, z)(A) < Q̂m,U(E, z)(A). Furthermore, it is conjectured above
that the logarithm of the cardinality of the integral iso-independents corre-
sponding to AX varies with the size scaled independent entropy,

ln |Y −1
U,i,V,z(A

X)| ∼ z × entropy(AX)

Therefore conjecture that the generalised iso-independent conditional multi-
nomial probability tends to be less than the generalised multinomial probabil-
ity, Q̂m,y,U(E, z)(A) < Q̂m,U(E, z)(A), when the entropy of the independent
histogram, entropy(AX), is high, and vice-versa

ln Q̂m,y,U(E, z)(A)− ln Q̂m,U(E, z)(A) ∼ − entropy(AX)

The generalised iso-independent conditional multinomial probability dis-
tribution is constructed by normalising each of the components of the iso-
independent partition of the integral congruent support, ran(Y −1

U,i,V,z) ∈ B(AU,i,V,z).
The same method can be applied to construct a conditional multinomial prob-
ability distribution given any partition. Consider the integral iso-transform-
independent partition, ran(Y −1

U,i,T,z) ∈ B(AU,i,V,z), given one functional trans-
form T ∈ TU,f,1 where und(T ) = V and W = der(T ). The integral iso-
transform-independent function is defined YU,i,T,z ∈ AU,i,V,z → (AU,W,z ×
AU,W,z) as YU,i,T,z = {(A, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,i,V,z}. Now the
subset of the lists of the events drawn with replacement, Hz

E, that are con-
strained to the set of integral iso-transform-independents defined by the draw
parameter ((AX ∗ T ), (A ∗ T )X) is

{L : L ∈ L(HE),

G = {((i, x), S) : (i, (x, S)) ∈ L}, B = histogram(G),

BX ∗ T ≡ AX ∗ T, (B ∗ T )X ≡ (A ∗ T )X} ⊆ Hz
E

The generalised iso-transform-independent conditional multinomial proba-
bility distribution over the integral congruent support, AU,i,V,z, is defined

Q̂m,y,T,U(E, z) ∈ (AU,i,V,z → Q≥0) ∩ P ⊂ QU ∩Qz as

Q̂m,y,T,U(E, z) =

normalise({(A, Qm,U(E, z)(A)∑
B∈Y −1

U,i,T,z(((AX∗T ),(A∗T )X))Qm,U(E, z)(B)
) : A ∈ AU,i,V,z})

In the case of integral distribution histogram, E ∈ Ai, this definition of
the generalised iso-transform-independent conditional multinomial probabil-
ity distribution, Q̂m,y,T,U(E, z), implies a corresponding constructible distri-
bution Qm,y,T,U(E, z) ∈ (AU,i,V,z → N) ⊂ Qi, by scaling the frequencies of
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Q̂m,y,U(E, z) by a factor,

Qm,y,T,U(E, z)(A) :=|ran(YU,i,T,z)|
∏

X∈ran(YU,i,T,z)

∑
B∈Y −1

U,i,T,z(X)

Qm,U(E, z)(B)

× Q̂m,y,T,U(E, z)(A)

3.17.6 Likely histograms

Let A ∈ AU,i,V,z be an integral substrate histogram in system U having non-
empty variables V = vars(A) 6= ∅ and non-zero size z = size(A) > 0. The
maximum likelihood estimate for the distribution histogram of the generalised
multinomial probability of the histogram, A, is the mean or histogram itself,

{A} = maxd({(D,Qm,U(D, z)(A)) : D ∈ AU,V,z})

The maximum likelihood estimate Ax ∈ AU,V,z for the distribution histogram
of the sum of the generalised multinomial probabilities of the integral iso-
independents of the histogram, A, is defined

{Ax} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) : D ∈ AU,V,z})

where the integral iso-independents is

Y −1
U,i,V,z(A

X) = {B : B ∈ AU,i,V,z, BX = AX}

Conjecture that the maximum likelihood estimate for the multinomial prob-
ability of the membership of a histogram in the iso-independents is simply
the independent, Ax = AX.

The independent is in the iso-independents, AX ∈ Y −1
U,V,z(A

X). If the in-

dependent is integral, it is in the integral iso-independents, AX ∈ Ai =⇒
AX ∈ Y −1

U,i,V,z(A
X).

The histogram independent, AX, is the maximum likelihood estimate of the
distribution histogram of the total multinomial probability of the subset of
the integral substrate histograms which are such that the independent equals
the histogram independent,

{AX} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) : D ∈ AU,V,z})
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Now consider the case where the membership of the iso-independents is a
given. Define the dependent histogram AY ∈ AU,V,z as the maximum likeli-
hood estimate of the distribution histogram of the multinomial probability of
the histogram, A, conditional that it is an iso-independent,

{AY} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,V,z})

The dependent histogram, AY, is only defined if there is a unique maximum,

|max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,V,z})| = 1

The dependent histogram equals the histogram if the histogram is indepen-
dent, A = AX =⇒ AY = A = AX.

In the case where the histogram is not independent, A 6= AX, and the in-
dependent is integral, AX ∈ Ai, then the independent term appears in the
denominator,

AX ∈ Ai =⇒ AX ∈ Y −1
U,i,V,z(A

X) =⇒

0 < Qm,U(D, z)(AX) <
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))

The histogram term, Qm,U(D, z)(A), appears in both the numerator and the
denominator, so while (a) the maximum likelihood estimate for the numerator
alone is just the mean, A, and (b) the maximum likelihood estimate for the
denominator alone is the independent, AX, optimisation overall in the iso-
independent case tends to minimise the independent term, Qm,U(D, z)(AX),
in the denominator, while maximising the histogram term, Qm,U(D, z)(A),
in the numerator. That is, in the denominator,

0 < Q̂m,U(AY, z)(AX)

≤ Q̂m,U(AY, z)(A)

<
∑

(Q̂m,U(AY, z)(B) : B ∈ Y −1
U,i,V,z(A

X))

≤ 1

So the overall maximum likelihood estimate, which is the dependent, is near
the histogram, AY ∼ A, only in as much as it is far from the independent,
AY � AX.

The dependent, AY, is sometimes not computable. Although the substrate
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histograms are countably infinite, AU,V,z ↔ N, the maximisation never ter-
minates. An approximation to the continuous case may be made by using a
scaling factor. The scaled complete integral congruent histograms equals the
complete congruent histograms in the limit

lim
k→∞
{A/Zk : A ∈ AU,i,V,kz} = AU,V,z

where k ∈ N>0 and Zk = scalar(k). The finite approximation to the depen-
dent is

{AY
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X)
) : D ∈ AU,i,V,kz})

which is defined if the maximisation is a singleton. The approximation,
AY
k ≈ AY, improves as k tends to infinity.

Given a one functional transform T ∈ TU,f,1 having underlying variables
equal to the variables V of the substrate histogram, the transform-independent
AX(T ) ∈ AU,V,z is defined as the maximum likelihood estimate for the distri-
bution histogram of the sum of the generalised multinomial probabilities of
the integral iso-transform-independents of the histogram, A,

{AX(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})

where the integral iso-transform-independents is abbreviated

AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

= {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

In the case where the integral iso-transform-independents equals the integral
substrate histograms, AU,i,y,T,z(A) = AU,i,V,z, there is no unique maximum,
and the transform-independent is defined as the scaled normalised cartesian,

AU,i,y,T,z(A) = AU,i,V,z =⇒ AX(T ) := ZA ∗ V̂ C

where ZA = scalar(size(A)) and X̂ := normalise(X). Otherwise, this defini-
tion assumes that there is always a unique maximum,

∀A ∈ AU,i,V,z ∀T ∈ TU,V (AU,i,y,T,z(A) 6= AU,i,V,z =⇒
(|max({(D,

∑
(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})| = 1))
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The transform-independent, AX(T ), is called the independent analogue of the
iso-transform-independents.

The transform-independent is sometimes not computable. The likelihood
function of the sum of the multinomial probabilities is a polynomial, so the
roots of the derivative are algebraic rather than rational. The finite approxi-
mation to the algebraic case for the transform-independent for some k ∈ N>0

is

{AX(T )
k } =

maxd({(D/Zk,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,i,V,kz})

In the case where the transform is full functional, T = Tf , where Tf =
{{w}CS{}V T : w ∈ V }T ∈ TU,V , the iso-transform-independents equals the
iso-independents, Y −1

U,i,Tf ,z
(((AX ∗Tf), (A∗Tf)

X)) = Y −1
U,i,V,z(A

X), and the trans-

form independent equals the independent, AX(Tf) = AX.

At the other extreme where the transform is unary, T = Tu, where Tu =
{V CS}T ∈ TU,V , the iso-transform-independents equals the substrate his-
tograms, Y −1

U,i,Tu,z
(((AX ∗ Tu), (A ∗ Tu)X)) = AU,i,V,z, and the transform in-

dependent equals the scaled normalised cartesian, AX(Tu) = ZA ∗ V̂ C.

It is only in the case where the formal of the transform-independent equals
the formal, AX(T )X∗T = AX∗T and the abstract of the transform-independent
equals the abstract, (AX(T ) ∗ T )X = (A ∗ T )X that the transform-independent
is in the iso-transform-independents,

(AX(T )X ∗ T = AX ∗ T ) ∧ ((AX(T ) ∗ T )X = (A ∗ T )X)

⇐⇒ AX(T ) ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))

This is the case if the transform is full functional, AX(Tf) = AX, or unary,
AX(Tu) = ZA ∗ V̂ C.

The integral iso-transform-independents have the same transform-independent,

∀B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) (BX(T ) = AX(T ))

so the relation is functional

{((AX∗T ), (A∗T )X) : A ∈ AU,i,V,z, T ∈ TU,V } :→ {AX(T ) : A ∈ AU,i,V,z, T ∈ TU,V }
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Conjecture that, in the case where the independent is not cartesian, the
relation is strictly iso-morphic,

{((AX ∗ T ), (A ∗ T )X) : A ∈ AU,i,V,z, ÂX 6= V̂ C, T ∈ TU,V } :↔:

{AX(T ) : A ∈ AU,i,V,z, ÂX 6= V̂ C, T ∈ TU,V }

While the independent is in the iso-independents, AX ∈ Y −1
U,V,z(A

X), it is
only in the iso-transform-independents if the formal independent equals the
abstract,

(AX ∗ T )X = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))

The transform-independent is only in the iso-independents if its independent
equals the independent,

AX(T )X = AX =⇒ AX(T ) ∈ Y −1
U,V,z(A

X)

The degree to which the iso-transform-independents is said to be aligned-like
is the iso-independence,

|AU,i,y,T,z(A) ∩ Y −1
U,i,V,z(A

X)|
|AU,i,y,T,z(A) ∪ Y −1

U,i,V,z(A
X)|

=
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|

As the iso-independence increases, the transform-independent, AX(T ), de-
pends less on the transform, T , and tends to the independent, AX.

The lifted transform-independent AX(T )′ ∈ AU,W,z is defined

{AX(T )′} =

maxd({(D,
∑

(Qm,U(D, z)(B′) : B ∈ A′U,i,y,T,z(A))) : D ∈ AU,W,z})

where the lifted integral iso-transform-independents is abbreviated

A′U,i,y,T,z(A)

= {B ∗ T : B ∈ AU,i,y,T,z(A)}
= {B ∗ T : B ∈ Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X))}

= {B ∗ T : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

The derived iso-independence of the integral lifted iso-transform-independents
is

|A′U,i,y,T,z(A)|
|Y −1
U,i,W,z((A ∗ T )X)|

As the derived iso-independence increases, the lifted transform-independent,
AX(T )′ , tends to the abstract, (A ∗ T )X.
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Conjecture that the maximum likelihood estimate for the integral iso-
formals is the naturalised formal, AX ∗ T ∗ T †,

{AX ∗ T ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,V,z(A

X ∗ T ))) : D ∈ AU,V,z})

where the integral iso-set does not equal the integral substrate histograms,
Y −1
U,i,T,V,z(A

X ∗ T ) 6= AU,i,V,z.

The naturalised formal, AX ∗ T ∗ T †, is the independent analogue of the
iso-formals.

In the case where the transform is full functional, T = Tf , the iso-formals
equals the iso-independents, Y −1

U,i,Tf ,V,z
(AX ∗ Tf) = Y −1

U,i,V,z(A
X), and the natu-

ralised formal equals the independent, AX ∗ Tf ∗ T †f = AX. In the case where
the transform is unary, T = Tu, the iso-formals equals the substrate his-
tograms, Y −1

U,i,Tu,V,z
(AX ∗ Tu) = AU,i,V,z, and the naturalised formal equals the

scaled normalised cartesian, AX ∗ Tu ∗ T †u = ZA ∗ V̂ C.

The naturalised formal is not necessarily in the iso-formals,

(AX ∗ T ∗ T †)X ∗ T = AX ∗ T ⇐⇒ AX ∗ T ∗ T † ∈ Y −1
U,T,V,z(A

X ∗ T )

The naturalised formal is an iso-formal if the transform is full functional,
AX ∗ Tf ∗ T †f = AX, or unary, AX ∗ Tu ∗ T †u = ZA ∗ V̂ C.

Similarly, conjecture that the maximum likelihood estimate for the integral
iso-abstracts is the naturalised abstract, (A ∗ T )X ∗ T †,

{(A ∗ T )X ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X))) : D ∈ AU,V,z})

where the integral iso-set does not equal the integral substrate histograms,
Y −1
U,i,T,W,z((A ∗ T )X) 6= AU,i,V,z.

The naturalised abstract, (A ∗ T )X ∗ T †, is the independent analogue of the
iso-abstracts.

In the case where the transform is full functional, T = Tf , the iso-abstracts
equals the iso-independents, Y −1

U,i,Tf ,W,z((A∗Tf)
X) = Y −1

U,i,V,z(A
X), and the natu-

ralised abstract equals the independent, (A∗Tf)
X∗T †f = AX. In the case where
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the transform is unary, T = Tu, the iso-abstracts equals the substrate his-
tograms, Y −1

U,i,Tu,W,z((A ∗ Tu)X) = AU,i,V,z, and the naturalised abstract equals

the scaled normalised cartesian, (A ∗ Tu)X ∗ T †u = ZA ∗ V̂ C.

The naturalised abstract is in the iso-abstracts, (A ∗ T )X ∗ T † ∈ Y −1
U,T,W,z((A ∗

T )X), because (((A ∗ T )X ∗ T †) ∗ T )X = (A ∗ T )X.

In the case where the formal equals the abstract, independent analogue of
the iso-formals equals the independent analogue of the iso-abstracts,

AX ∗ T = (A ∗ T )X =⇒ AX ∗ T ∗ T † = (A ∗ T )X ∗ T †

The iso-transform-independents is the intersection of the iso-formals and
the iso-abstracts, so conjecture that, in this case, the independent analogue
of the iso-transform-independents equals that of the iso-formals and the iso-
abstracts,

AX ∗ T = (A ∗ T )X =⇒ AX(T ) = AX ∗ T ∗ T † = (A ∗ T )X ∗ T †

In this case the transform-independent is formal, formal(AX(T ), T ),

AX ∗ T = (A ∗ T )X =⇒ AX(T ) ∗ T = AX ∗ T

and abstract, abstract(AX(T ), T ),

AX ∗ T = (A ∗ T )X =⇒ AX(T ) ∗ T = (A ∗ T )X = (AX(T ) ∗ T )X

The transform-independent, AX(T ), is the maximum likelihood estimate of
the distribution histogram of the multinomial probability of the subset of the
substrate histograms which are such that the formal equals the histogram
formal and the abstract equals the histogram abstract,

{AX(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})

Now consider the case where the membership of the iso-transform-independents
is a given. Define the transform-dependent AY(T ) ∈ AU,V,z as the maximum
likelihood estimate of the distribution histogram of the multinomial probability
of the histogram, A, conditional that it is an iso-transform-independent,

{AY(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)

) : D ∈ AU,V,z})

The transform-dependent, AY(T ), is the dependent analogue of the iso-transform-
independents.
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The transform-dependent histogram, AY(T ), is only defined if there is a unique
maximum,

|max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)

) : D ∈ AU,V,z})| = 1

The transform-dependent histogram equals the histogram if the histogram
equals the transform-independent histogram, A = AX(T ) =⇒ AY(T ) = A =
AX(T ).

The transform-dependent, AY(T ), is sometimes not computable. The finite
approximation to the transform-dependent is

{AY(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)
) : D ∈ AU,i,V,kz})

In the case where the transform is full functional, T = Tf , the iso-transform-
independents equals the iso-independents, Y −1

U,i,Tf ,z
(((AX ∗ Tf), (A ∗ Tf)

X)) =

Y −1
U,i,V,z(A

X), and the transform-dependent equals the dependent, AY(Tf) =

AY. In the case where the transform is unary, T = Tu, the iso-transform-
independents equals the substrate histograms, Y −1

U,i,Tu,z
(((AX∗Tu), (A∗Tu)X)) =

AU,i,V,z, and the transform-dependent equals the histogram, AY(Tu) = A.

The maximum likelihood estimate for the numerator alone is the histogram,
A, and the maximum likelihood estimate for the denominator alone is the
transform-independent, AX(T ), so the overall maximum likelihood estimate,
which is the transform-dependent, is near the histogram, AY(T ) ∼ A, only in
as much as it is far from the transform-independent, AY(T ) � AX(T ).

As the iso-independence,

|AU,i,y,T,z(A) ∩ Y −1
U,i,V,z(A

X)|
|AU,i,y,T,z(A) ∪ Y −1

U,i,V,z(A
X)|

=
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|

increases, the transform-dependent, AY(T ), depends less on the transform, T ,
and tends to the dependent, AY.

The maximum likelihood estimate for the integral iso-abstracts is conjec-
tured above to be the naturalised abstract, (A ∗ T )X ∗ T †,

{(A ∗ T )X ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X))) : D ∈ AU,V,z})
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The naturalised abstract, (A ∗ T )X ∗ T †, is the independent analogue of the
iso-abstracts.

The lifted abstract-independent AU(T )′ ∈ AU,W,z is defined

{AU(T )′} =

maxd({(D,
∑

(Qm,U(D, z)(B′) : B′ ∈ isowl(U)(T,A))) : D ∈ AU,W,z})

where the lifted integral iso-abstracts is abbreviated

isowl(U)(T,A) := {B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}

The lifted iso-abstracts is a subset of the derived iso-independents, {B ∗ T :
B ∈ Y −1

U,T,W,z((A ∗ T )X)} ⊆ Y −1
U,W,z((A ∗ T )X), so the derived iso-independence

of the integral lifted iso-abstracts is

|{B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}|

|Y −1
U,i,W,z((A ∗ T )X)|

As the derived iso-independence increases, the lifted abstract-independent,
AU(T )′ , tends to the abstract, (A ∗ T )X.

Now consider the case where the membership of the iso-abstracts is a given.
Define the abstract-dependent AW(T ) ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
histogram, A, conditional that it is an iso-abstract,

{AW(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,T,W,z((A ∗ T )X)
) : D ∈ AU,V,z})

The abstract-dependent, AW(T ), is the dependent analogue of the iso-abstracts.

The abstract-dependent histogram, AW(T ), is only defined if there is a unique
maximum,

|max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,T,W,z((A ∗ T )X)
) : D ∈ AU,V,z})| = 1

The abstract-dependent histogram equals the histogram if the histogram equals
the naturalised abstract, A = (A ∗T )X ∗T † =⇒ AW(T ) = A = (A ∗T )X ∗T †.
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The abstract-dependent, AW(T ), is sometimes not computable. The finite
approximation to the abstract-dependent is

{AW(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

) : D ∈ AU,i,V,kz})

In the case where the transform is full functional, T = Tf , the iso-abstracts
equals the iso-independents, Y −1

U,i,Tf ,W,z((A ∗ Tf)
X) = Y −1

U,i,V,z(A
X), and the

abstract-dependent equals the dependent, AW(Tf) = AY. In the case where
the transform is unary, T = Tu, the iso-abstracts equals the substrate his-
tograms, Y −1

U,i,Tu,W,z((A ∗ Tu)X) = AU,i,V,z, and the abstract-dependent equals

the histogram, AW(Tu) = A.

The maximum likelihood estimate for the numerator alone is the histogram,
A, and the maximum likelihood estimate for the denominator alone is the
naturalised abstract, (A ∗ T )X ∗ T †, so the overall maximum likelihood esti-
mate, which is the abstract-dependent, is near the histogram, AW(T ) ∼ A, only
in as much as it is far from the naturalised abstract, AW(T ) � (A ∗ T )X ∗ T †.

Similar to the case of the iso-transform-independents, above, consider the
case of the iso-partition-independents. Given a one functional transform
T ∈ TU,f,1 having underlying variables equal to the variables V of the substrate
histogram, the partition-independent AP(T ) ∈ AU,V,z is defined as the maxi-
mum likelihood estimate for the distribution histogram of the sum of the gen-
eralised multinomial probabilities of the integral iso-partition-independents of
the histogram, A,

{AP(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isop(U)(T,A))) : D ∈ AU,V,z})

where the integral iso-partition-independents is abbreviated

isop(U)(T,A) := Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,i,T,W,z((A ∗ T )X)

and the iso-partition-independents is such that

Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

= {B : B ∈ AU,i,V,z, (BX ∗ T )X = (AX ∗ T )X, (B ∗ T )X = (A ∗ T )X}

In the case where the transform is a substrate transform, T ∈ TU,V ,

Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

= {B : B ∈ AU,i,V,z, ∀P ∈ W (BX ∗ PT = AX ∗ PT ∧ B ∗ PT = A ∗ PT)}
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In the case where the integral iso-partition-independents equals the integral
substrate histograms, isop(U)(T,A) = AU,i,V,z, there is no unique maximum,
and the partition-independent is defined as the scaled normalised cartesian,

isop(U)(T,A) = AU,i,V,z =⇒ AP(T ) := ZA ∗ V̂ C

where ZA = scalar(size(A)) and X̂ := normalise(X). Otherwise, this defini-
tion assumes that there is always a unique maximum,

∀A ∈ AU,i,V,z ∀T ∈ TU,V (isop(U)(T,A) 6= AU,i,V,z =⇒
(|max({(D,

∑
(Qm,U(D, z)(B) : B ∈ isop(U)(T,A))) : D ∈ AU,V,z})| = 1))

The partition-independent, AP(T ), is called the independent analogue of the
iso-partition-independents.

The partition-independent is sometimes not computable. The finite approx-
imation for the partition-independent for some k ∈ N>0 is

{AP(T )
k } =

maxd({(D/Zk,
∑

(Qm,U(D, z)(B) : B ∈ isop(U)(T,A))) : D ∈ AU,i,V,kz})

In the case where the transform is full functional, T = Tf , where Tf =
{{w}CS{}V T : w ∈ V }T ∈ TU,V , the iso-partition-independents equals the iso-
independents, isop(U)(Tf , A) = Y −1

U,i,V,z(A
X), and the partition-independent

equals the independent, AP(Tf) = AX.

At the other extreme where the transform is unary, T = Tu, where Tu =
{V CS}T ∈ TU,V , the iso-partition-independents equals the substrate histograms,
isop(U)(Tu, A) = AU,i,V,z, and the partition-independent equals the scaled

normalised cartesian, AP(Tu) = ZA ∗ V̂ C.

It is only in the case where the formal independent of the partition-independent
equals the formal independent, (AP(T )X ∗T )X = (AX ∗T )X and the abstract of
the partition-independent equals the abstract, (AP(T ) ∗ T )X = (A ∗ T )X that
the partition-independent is in the iso-partition-independents,

((AP(T )X ∗ T )X = (AX ∗ T )X) ∧ ((AP(T ) ∗ T )X = (A ∗ T )X)

⇐⇒ AX(T ) ∈ Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

This is the case if the transform is full functional, AP(Tf) = AX, or unary,
AP(Tu) = ZA ∗ V̂ C.
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The integral iso-partition-independents have the same partition-independent,

∀B ∈ isop(U)(T,A) (BP(T ) = AP(T ))

so the relation is functional

{((AX∗T )X, (A∗T )X) : A ∈ AU,i,V,z, T ∈ TU,V } :→ {AP(T ) : A ∈ AU,i,V,z, T ∈ TU,V }

Conjecture that, in the case where the independent is not cartesian, the
relation is strictly iso-morphic,

{((AX ∗ T )X, (A ∗ T )X) : A ∈ AU,i,V,z, ÂX 6= V̂ C, T ∈ TU,V } :↔:

{AP(T ) : A ∈ AU,i,V,z, ÂX 6= V̂ C, T ∈ TU,V }

While the independent is in the iso-independents, AX ∈ Y −1
U,V,z(A

X), it is
only in the iso-partition-independents if the formal independent equals the
abstract,

(AX ∗ T )X = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

The partition-independent is only in the iso-independents if its independent
equals the independent,

AP(T )X = AX =⇒ AP(T ) ∈ Y −1
U,V,z(A

X)

Conjecture that the maximum likelihood estimate for the integral iso-
formal-independents is the naturalised formal independent, (AX ∗ T )X ∗ T †,

{(AX ∗ T )X ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,V,x,z((A

X ∗ T )X))) : D ∈ AU,V,z})

where the integral iso-set does not equal the integral substrate histograms,
Y −1
U,i,T,V,x,z((A

X ∗ T )X) 6= AU,i,V,z.

The naturalised formal independent, (AX ∗ T )X ∗ T †, is the independent ana-
logue of the iso-formal-independents.

In the case where the transform is full functional, T = Tf , the iso-formal-
independents equals the iso-independents, Y −1

U,i,Tf ,V,x,z
((AX∗Tf)

X) = Y −1
U,i,V,z(A

X),

and the naturalised formal independent equals the independent, (AX ∗ Tf)
X ∗

T †f = AX. In the case where the transform is unary, T = Tu, the iso-formal-
independents equals the substrate histograms, Y −1

U,i,Tu,V,x,z
((AX∗Tu)X) = AU,i,V,z,
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and the naturalised formal independent equals the scaled normalised carte-
sian, (AX ∗ Tu)X ∗ T †u = ZA ∗ V̂ C.

The naturalised formal independent is not necessarily in the iso-formals,

(((AX∗T )X∗T †)X∗T )X = (AX∗T )X ⇐⇒ (AX∗T )X∗T † ∈ Y −1
U,T,V,x,z((A

X∗T )X)

The naturalised formal independent is an iso-formal-independent if the trans-
form is full functional, (AX ∗ Tf)

X ∗ T †f = AX, or unary, (AX ∗ Tu)X ∗ T †u =

ZA ∗ V̂ C.

In the case where the formal independent equals the abstract, independent
analogue of the iso-formal-independents equals the independent analogue of
the iso-abstracts,

(AX ∗ T )X = (A ∗ T )X =⇒ (AX ∗ T )X ∗ T † = (A ∗ T )X ∗ T †

The iso-partition-independents is the intersection of the iso-formal indepen-
dents and the iso-abstracts, so conjecture that, in this case, the independent
analogue of the iso-partition-independents equals that of the iso-formal in-
dependents and the iso-abstracts,

(AX ∗ T )X = (A ∗ T )X =⇒ AP(T ) = (AX ∗ T )X ∗ T † = (A ∗ T )X ∗ T †

The partition-independent, AP(T ), is the maximum likelihood estimate of
the distribution histogram of the multinomial probability of the subset of the
substrate histograms which are such that the formal independent equals the
histogram formal independent and the abstract equals the histogram abstract,

{AP(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isop(U)(T,A))) : D ∈ AU,V,z})

Now consider the case where the membership of the iso-partition-independents
is a given. Define the partition-dependent AR(T ) ∈ AU,V,z as the maximum
likelihood estimate of the distribution histogram of the multinomial probability
of the histogram, A, conditional that it is an iso-partition-independent,

{AR(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isop(U)(T,A)

) : D ∈ AU,V,z})

The partition-dependent, AR(T ), is the dependent analogue of the iso-partition-
independents.
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The partition-dependent histogram, AR(T ), is only defined if there is a unique
maximum,

|max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isop(U)(T,A)

) : D ∈ AU,V,z})| = 1

The partition-dependent histogram equals the histogram if the histogram
equals the partition-independent histogram, A = AP(T ) =⇒ AR(T ) = A =
AP(T ).

The partition-dependent, AR(T ), is sometimes not computable. The finite
approximation to the partition-dependent is

{AR(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ isop(U)(T,A)
) : D ∈ AU,i,V,kz})

In the case where the transform is full functional, T = Tf , the iso-partition-
independents equals the iso-independents, isop(U)(Tf , A) = Y −1

U,i,V,z(A
X), and

the partition-dependent equals the dependent, AR(Tf) = AY. In the case where
the transform is unary, T = Tu, the iso-partition-independents equals the
substrate histograms, isop(U)(Tu, A) = AU,i,V,z, and the partition-dependent
equals the histogram, AR(Tu) = A.

The maximum likelihood estimate for the numerator alone is the histogram,
A, and the maximum likelihood estimate for the denominator alone is the
partition-independent, AP(T ), so the overall maximum likelihood estimate,
which is the partition-dependent, is near the histogram, AR(T ) ∼ A, only
in as much as it is far from the partition-independent, AR(T ) � AP(T ).

The maximum likelihood estimate for the integral iso-independents of his-
togram A is conjectured above to be the independent, AX,

{AX} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) : D ∈ AU,V,z})

Similarly, conjecture that, given one functional transform T ∈ TU,f,1, the
maximum likelihood estimate for the integral iso-deriveds is the naturalisa-
tion, A ∗ T ∗ T †,

{A ∗ T ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) : D ∈ AU,V,z})

326



where the integral iso-set does not equal the integral substrate histograms,
D−1
U,i,T,z(A ∗ T ) 6= AU,i,V,z.

The naturalisation, A∗T ∗T †, is the independent analogue of the iso-deriveds.

The derived of the naturalisation equals the derived, (A∗T ∗T †)∗T = A∗T ,
and the components of the naturalisation are uniform, ∀C ∈ TP(((A ∗ T ∗
T †)∗CU)∧ = (V C∗CU)∧). The naturalisation is a member of the iso-deriveds,
A ∗ T ∗ T † ∈ D−1

U,T,z(A ∗ T ). If the naturalisation is integral it is a member of
the integral iso-deriveds,

A ∗ T ∗ T † ∈ Ai =⇒ A ∗ T ∗ T † ∈ D−1
U,i,T,z(A ∗ T )

In the case where the transform is full functional, T = Tf , the integral iso-
deriveds is a singleton, D−1

U,i,Tf ,z
(A ∗ Tf) = {A}, and the naturalisation equals

the histogram, A ∗ Tf ∗ T †f = A. In the case where the transform is unary,
T = Tu, the integral iso-deriveds equals the substrate histograms, D−1

U,i,Tu,z
(A∗

Tu) = AU,i,V,z, and the naturalisation equals the scaled normalised cartesian,

A ∗ Tu ∗ T †u = ZA ∗ V̂ C.

Now consider the case where the membership of the iso-deriveds is a given.
Define the derived-dependent AD(T ) ∈ AU,V,z as the maximum likelihood es-
timate of the distribution histogram of the multinomial probability of the
histogram, A, conditional that it is an iso-derived,

{AD(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,V,z})

The derived-dependent, AD(T ), is the dependent analogue of the iso-deriveds.

The derived-dependent histogram, AD(T ), is only defined if there is a unique
maximum,

|max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,V,z})| = 1

The derived-dependent histogram equals the histogram if the histogram equals
the naturalisation histogram, A = A ∗ T ∗ T † =⇒ AD(T ) = A = A ∗ T ∗ T †.

The derived-dependent, AD(T ), is sometimes not computable. The finite ap-
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proximation to the derived-dependent is

{AD(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

) : D ∈ AU,i,V,kz})

In the case where the transform is full functional, T = Tf , the integral iso-
deriveds is a singleton, D−1

U,i,Tf ,z
(A ∗ Tf) = {A}, and the derived-dependent is

undefined. In the case where the transform is unary, T = Tu, the integral
iso-deriveds equals the substrate histograms, D−1

U,i,Tu,z
(A ∗ Tu) = AU,i,V,z, and

the derived-dependent equals the histogram, AD(Tu) = A.

The maximum likelihood estimate for the numerator alone is the histogram,
A, and the maximum likelihood estimate for the denominator alone is the
naturalisation, A ∗T ∗T †, so the overall maximum likelihood estimate, which
is the derived-dependent, is near the histogram, AD(T ) ∼ A, only in as much
as it is far from the naturalisation, AD(T ) � A ∗ T ∗ T †.

Now consider the case where the model is extended from transforms to (i)
fuds, (ii) decompositions and (iii) fud decompositions.

Let F be a one functional definition set, F ∈ FU,1, such that the under-
lying are a subset of the histogram variables, und(F ) ⊆ V , and there exists a
top transform, ∃T ∈ F (der(T ) = der(F )). The derived set valued function
of the substrate histograms is

DU,F,z = {(A, {A ∗ TF : T ∈ F}) : A ∈ AU,V,z}

where TF := depends(F, der(T ))T. In this case the top transform exists so
the set of iso-fuds is a subset of the iso-deriveds,

D−1
U,F,z({A ∗ TF : T ∈ F}) ⊆ D−1

U,FT,z
(A ∗ FT)

Define the fud-independent AEF(F ) ∈ AU,V,z, as the maximum likelihood esti-
mate for the distribution histogram of the sum of the generalised multinomial
probabilities of the integral iso-fuds of the histogram, A,

{AEF(F )} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,F,z(DU,F,z(A)))) : E ∈ AU,V,z})

The fud-independent, AEF(F ), is the independent analogue of the iso-fuds.
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Like the transform-independent, AX(T ), the fud-independent, AEF(F ), is some-
times not computable. It approximates, however, to the arithmetic average
of the naturalisations,

AEF(F ) ≈ Z1/|F | ∗
∑
T∈F

A ∗ TF ∗ T †F

Define the fud-dependent ADF(F ) ∈ AU,V,z as the maximum likelihood estimate
of the distribution histogram of the multinomial probability of the histogram,
A, conditional that it is an iso-fud,

{ADF(F )} =

maxd({(E, Qm,U(E, z)(A)∑
Qm,U(E, z)(B) : B ∈ D−1

U,i,F,z(DU,F,z(A))
) : E ∈ AU,V,z})

The fud-dependent, ADF(F ), is the dependent analogue of the set of the iso-
fuds.

The fud-dependent equals the histogram only if the histogram equals the
fud-independent,

A = AEF(F ) =⇒ ADF(F ) = A

The maximum likelihood estimate is near the histogram, ADF(F ) ∼ A, only in
as much as it is far from the fud-independent, ADF(F ) � AEF(F ).

Let D be a decomposition of one functional transforms, D ∈ DU = D ∩
trees(SU × TU,f,1), such that the underlying are a subset of the histogram
variables, und(D) ⊆ V . The component-derived relation valued function of
the substrate histograms is

DU,D,z = {(A, {(C,A ∗ C ∗ T ) : (C, T ) ∈ cont(D)}) : A ∈ AU,V,z}

where cont(D) = elements(contingents(D)).

The set of iso-decompositions is a subset of the iso-deriveds of the trans-
form of the decomposition,

D−1
U,D,z(DU,D,z(A)) ⊆ D−1

U,DT,z
(A ∗DT)

Define the decomposition-independent AED(D) ∈ AU,V,z, as the maximum like-
lihood estimate for the distribution histogram of the sum of the generalised
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multinomial probabilities of the integral iso-decompositions of the histogram,
A,

{AED(D)} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,D,z(DU,D,z(A)))) : E ∈ AU,V,z})

The decomposition-independent, AED(D), is the independent analogue of the
iso-decompositions.

The decomposition-independent, AED(D), is sometimes not computable. It
approximates, however, to the scaled sum of the slice naturalisations,

AED(D) ≈ Zz ∗

 ∑
(C,T )∈cont(D)

A ∗ C ∗ T ∗ T †
∧

where ()∧ = normalise.

Define the decomposition-dependent ADD(D) ∈ AU,V,z as the maximum likeli-
hood estimate of the distribution histogram of the multinomial probability of
the histogram, A, conditional that it is an iso-decomposition,

{ADD(D)} =

maxd({(E, Qm,U(E, z)(A)∑
Qm,U(E, z)(B) : B ∈ D−1

U,i,D,z(DU,D,z(A))
) : E ∈ AU,V,z})

The decomposition-dependent, ADD(D), is the dependent analogue of the set
of the iso-decompositions.

The decomposition-dependent equals the histogram only if the histogram
equals the decomposition-independent,

A = AED(D) =⇒ ADD(D) = A

The maximum likelihood estimate is near the histogram, ADD(D) ∼ A, only
in as much as it is far from the decomposition-independent, ADD(D) � AED(D).

Let D be a fud decomposition of one functional definition sets, D ∈ DF,U =
DF ∩ trees(SU × FU,1), such that the underlying are a subset of the his-
togram variables, und(D) ⊆ V , and the top transform exists for all of the
fuds, ∀F ∈ fuds(D) ∃T ∈ F (der(T ) = der(F )). The component-derived-set
relation valued function of the substrate histograms is

DU,D,F,z = {(A, {(C, {A∗C ∗TF : T ∈ F}) : (C,F ) ∈ cont(D)}) : A ∈ AU,V,z}
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In this case the top transforms exist, so the set of iso-fud-decompositions is
a subset of the iso-deriveds of the transform of the decomposition,

D−1
U,D,F,z(DU,D,F,z(A)) ⊆ D−1

U,DT,z
(A ∗DT)

Define the fud-decomposition-independent AED,F(D) ∈ AU,V,z, as the maximum
likelihood estimate for the distribution histogram of the sum of the generalised
multinomial probabilities of the integral iso-fuds of the histogram, A,

{AED,F(D)} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,D,F,z(DU,D,F,z(A)))) : E ∈ AU,V,z})

The fud-decomposition-independent, AED,F(F ), is the independent analogue of
the iso-fuds.

The fud-decomposition-independent, AED,F(D), is sometimes not computable.
It approximates, however, to the scaled sum of the slice arithmetic average
of the naturalisations,

AED,F(D) ≈ Zz ∗

 ∑
(C,F )∈cont(D)

(
Z1/|F | ∗

∑
T∈F

A ∗ C ∗ TF ∗ T †F

)∧

Define the fud-decomposition-dependent ADD,F(D) ∈ AU,V,z as the maximum
likelihood estimate of the distribution histogram of the multinomial probability
of the histogram, A, conditional that it is an iso-fud-decomposition,

{ADD,F(D)} =

maxd({(E, Qm,U(E, z)(A)∑
Qm,U(E, z)(B) : B ∈ D−1

U,i,D,F,z(DU,D,F,z(A))
) : E ∈ AU,V,z})

The fud-decomposition-dependent, ADD,F(D), is the dependent analogue of the
set of the iso-fud-decompositions.

The fud-decomposition-dependent equals the histogram only if the histogram
equals the fud-decomposition-independent,

A = AED,F(D) =⇒ ADD,F(D) = A

The maximum likelihood estimate is near the histogram, ADD,F(D) ∼ A, only in
as much as it is far from the decomposition-independent, ADD,F(D) � AED,F(D).
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Conjecture that the maximum likelihood estimate for the integral iso-
components is the unnaturalisation, V C

z ∗ T ∗ T�A,

{V C
z ∗ T ∗ T�A} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ C−1
U,i,T,z({(A ∗ C

U)∧ : C ∈ TP})))
: D ∈ AU,V,z})

where the integral iso-set does not equal the integral substrate histograms,
C−1
U,i,T,z({(A ∗ CU)∧ : C ∈ TP}) 6= AU,i,V,z.

The unnaturalisation, V C
z ∗ T ∗ T�A, is the independent analogue of the iso-

components.

Now consider the case where the membership of the iso-components is a
given. Define the components-dependent AC(T ) ∈ AU,V,z as the maximum
likelihood estimate of the distribution histogram of the multinomial probabil-
ity of the histogram, A, conditional that it is an iso-components,

{AC(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ C−1

U,i,T,z({(A ∗ CU)∧ : C ∈ TP})
)

: D ∈ AU,V,z})

The components-dependent, AC(T ), is the dependent analogue of the iso-
components.

The maximum likelihood estimate is near the histogram, AC(T ) ∼ A, only
in as much as it is far from the unnaturalisation, AC(T ) � V C

z ∗ T ∗ T�A.

The set of iso-liftisations is defined (in section ‘Iso-sets’, above) as the
intersection of the iso-formals and iso-deriveds

Y −1
U,T,V,z(A

X ∗ T ) ∩D−1
U,T,z(A ∗ T )

Define the liftisation, AK(T ) ∈ AU,V,z, as the maximum likelihood estimate for
the distribution histogram of the sum of the generalised multinomial proba-
bilities of the integral iso-liftisations of the histogram, A,

{AK(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isol(U)(T,A))) : D ∈ AU,V,z})

where isol(U)(T,A) := Y −1
U,i,T,V,z(A

X∗T )∩D−1
U,i,T,z(A∗T ), and the integral iso-

set does not equal the integral substrate histograms, isol(U)(T,A) 6= AU,i,V,z.
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The liftisation, AK(T ), is the independent analogue of the iso-liftisations.

Like the transform-independent, AX(T ), the liftisation, AK(T ), is sometimes
not computable.

As for the set of iso-deriveds and the corresponding independent analogue,
the naturalisation, A ∗ T ∗ T †, in the case where the transform is full func-
tional, T = Tf , the liftisation equals the histogram, AK(Tf) = A, and in the
case where the transform is unary, T = Tu, the liftisation equals the scaled
normalised cartesian, AK(Tu) = ZA ∗ V̂ C. In the case where the formal of
the naturalisation equals the formal, the liftisation equals the naturalisation,
(A ∗ T ∗ T †)X ∗ T = AX ∗ T =⇒ AK(T ) = A ∗ T ∗ T †, otherwise the liftisation
varies between the naturalised formal, AK(T ) ∼ AX ∗ T ∗ T †, and the natural-
isation, AK(T ) ∼ A ∗ T ∗ T †.

It is only in the case where the formal of the liftisation equals the formal,
AK(T )X ∗ T = AX ∗ T and the derived of the liftisation equals the derived,
AK(T ) ∗ T = A ∗ T , that the liftisation is in the iso-liftisations,

(AK(T )X ∗ T = AX ∗ T ) ∧ (AK(T ) ∗ T = A ∗ T )

⇐⇒ AK(T ) ∈ Y −1
U,T,V,z(A

X ∗ T ) ∩D−1
U,T,z(A ∗ T )

Consider the case where the membership of the iso-liftisations is a given.
Define the liftisation-dependent AL(T ) ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
histogram, A, conditional that it is an iso-liftisation,

{AL(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isol(U)(T,A)

) : D ∈ AU,V,z})

The liftisation-dependent, AL(T ), is the dependent analogue of the set of the
iso-liftisations.

The maximum likelihood estimate is near the histogram, AL(T ) ∼ A, only
in as much as it is far from the liftisation, AL(T ) � AK(T ).

The set of iso-idealisations is (i) the intersection of the iso-component-
independents and the iso-derived which is (ii) a subset of the intersection
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of the iso-independents and iso-deriveds which is (iii) a subset of the iso-
liftisations which is (iv) a subset of the iso-transform-independents which is
(v) a subset of the iso-partition-independents which is (vi) a subset of the
iso-abstracts,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) = C−1
U,T,x,z({(A ∗ C

U)X∧ : C ∈ TP}) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,V,z(A

X) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X)

⊆ Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

⊆ Y −1
U,T,W,z((A ∗ T )X)

Conjecture that, given one functional transform T ∈ TU,f,1, the maximum
likelihood estimate for the integral iso-idealisations is the idealisation, A∗T ∗
T †A,

{A ∗ T ∗ T †A} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isoi(U)(T,A))) : D ∈ AU,V,z})

where isoi(U)(T,A) := Y −1
U,i,T,†,z(A ∗T ∗T †A) and the integral iso-set does not

equal the integral substrate histograms, isoi(U)(T,A) 6= AU,i,V,z.

The idealisation, A∗T∗T †A, is the independent analogue of the iso-idealisations.

The derived of the idealisation equals the derived, (A∗T ∗T †A)∗T = A∗T , the
independent of the idealisation equals the independent, (A ∗T ∗T †A)X = AX,
and the components of the idealisation are independent, ∀C ∈ TP((A ∗ T ∗
T †A) ∗ CU = ((A ∗ T ∗ T †A) ∗ CU)X). If the idealisation is integral it is a
member of the integral iso-idealisations,

A ∗ T ∗ T †A ∈ Ai =⇒ A ∗ T ∗ T †A ∈ Y −1
U,i,T,†,z(A ∗ T ∗ T

†A)

In addition, it is a member of the integral iso-independents, integral iso-
deriveds, and the integral iso-transform-independents,

A ∗ T ∗ T †A ∈ Ai =⇒
A ∗ T ∗ T †A ∈ Y −1

U,i,V,z(A
X) ∩D−1

U,i,T,z(A ∗ T ) ∩
Y −1
U,i,T,V,z(A

X ∗ T ) ∩ Y −1
U,i,T,W,z((A ∗ T )X)

In the case where the transform is full functional, T = Tf , the integral iso-
idealisations is a singleton, Y −1

U,i,Tf ,†,z(A∗Tf ∗T †Af ) = {A}, and the idealisation
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equals the histogram, A ∗ Tf ∗ T †Af = A. In the case where the transform
is unary, T = Tu, the integral iso-idealisations equals the iso-independents,
Y −1
U,i,Tu,†,z(A ∗ Tu ∗ T †Au ) = Y −1

U,i,V,z(A
X), and the idealisation equals the inde-

pendent, A ∗ Tu ∗ T †Au = AX.

Consider the case where the membership of the iso-idealisations is a given.
Define the idealisation-dependent A†(T ) ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
histogram, A, conditional that it is an iso-idealisation,

{A†(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isoi(U)(T,A)

) : D ∈ AU,V,z})

The idealisation-dependent, A†(T ), is the dependent analogue of the set of the
iso-idealisations.

The idealisation-dependent equals the histogram if the histogram is ideal,
ideal(A, T ) =⇒ A†(T ) = A = A ∗ T ∗ T †A.

The maximum likelihood estimate is near the histogram, A†(T ) ∼ A, only
in as much as it is far from the idealisation, A†(T ) � A ∗ T ∗ T †A.

The derived-dependent is intermediate between the idealisation-dependent
and the transform-dependent, A†(T ) ∼ AD(T ) ∼ AY(T ).

The set of iso-surrealisations is the intersection of the iso-abstracts and
iso-components

Y −1
U,T,W,z((A ∗ T )X) ∩ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP})

Conjecture that the maximum likelihood estimate for the integral iso surre-
alisations is the surrealisation, (A ∗ T )X ∗ T�A,

{(A ∗ T )X ∗ T�A} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isor(U)(T,A))) : D ∈ AU,V,z})

where isor(U)(T,A) := Y −1
U,i,T,W,z((A ∗T )X) ∩ C−1

U,i,T,z({(A ∗CU)∧ : C ∈ TP})
and the integral iso-set does not equal the integral substrate histograms,
isor(U)(T,A) 6= AU,i,V,z.
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The surrealisation, (A ∗ T )X ∗ T�A, is the independent analogue of the iso-
surrealisations.

The surrealisation is an iso-surrealisation, (A ∗ T )X ∗ T�A ∈ Y −1
U,T,W,z((A ∗

T )X) ∩ C−1
U,T,z({(A ∗ CU)∧ : C ∈ TP}).

The surrealisation varies as the naturalised abstract, (A ∗ T )X ∗ T�A ∼
(A ∗ T )X ∗ T †, and the unnaturalisation, (A ∗ T )X ∗ T�A ∼ V C

z ∗ T ∗ T�A.

Consider the case where the membership of the iso-surrealisations is a
given. Define the surrealisation-dependent A�(T ) ∈ AU,V,z as the maximum
likelihood estimate of the distribution histogram of the multinomial probability
of the histogram, A, conditional that it is an iso-surrealisation,

{A�(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isor(U)(T,A)

) : D ∈ AU,V,z})

The surrealisation-dependent, A�(T ), is the dependent analogue of the set of
the iso-surrealisations.

The surrealisation-dependent equals the histogram if the histogram is sur-
real,

abstract(A, T ) =⇒ A�(T ) = A = (A ∗ T )X ∗ T�A

The maximum likelihood estimate is near the histogram, A�(T ) ∼ A, only in
as much as it is far from the surrealisation, A�(T ) � (A ∗ T )X ∗ T�A.

The surrealisation-dependent varies with the components-dependent, A�(T ) ∼
AC(T ).

The set of iso-extremes is defined in section ‘Iso-sets’, above, as the union
of the iso-liftisations and the iso-surrealisations,

(Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )) ∪

(Y −1
U,T,W,z((A ∗ T )X) ∩ C−1

U,T,z({(A ∗ C
U)∧ : C ∈ TP}))

The set of iso-extremes is not, strictly speaking, an iso-set, because there
is no independent analogue valued function for which it is the component of
the implied partition. A dependent analogue can be defined, however. Define
the midisation, AM(T ) ∈ AU,V,z, as the maximum likelihood estimate for the

336



distribution histogram of the (i) the multinomial probability of the histogram
relative to (ii) the sum of the multinomial probabilities of the union of (a)
the integral iso-liftisations and (b) the integral iso-surrealisations,

{AM(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isolr(U)(T,A)

) : D ∈ AU,V,z})

where isolr(U)(T,A) := isol(U)(T,A) ∪ isor(U)(T,A).

The midisation is sometimes not computable. The finite approximation to
the continuous case for the midisation for some k ∈ N>0 is

{AM(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ isolr(U)(T,A)
) : D ∈ AU,i,V,kz})

In the case where the transform is full functional, T = Tf , the union of the
iso-liftisations and the iso-surrealisations equals the iso-independents, and
so the midisation equals the dependent, AM(Tf) = AY. In the case where
the transform is unary, T = Tu, the union of the iso-liftisations and the
iso-surrealisations also equals the iso-independents, and so the midisation
equals the dependent, AM(Tu) = AY.

The maximum likelihood estimate is near the histogram, AM(T ) ∼ A, only in
as much as it is far from the liftisation, AM(T ) � AK(T ) and the surrealisation,
AM(T ) � (A ∗ T )X ∗ T�A. The midisation varies as the liftisation-dependent,
AM(T ) ∼ AL(T ) and the surrealisation-dependent, AM(T ) ∼ A�(T ). In as much
as the idealisation-dependent varies with the liftisation-dependent, A†(T ) ∼
AL(T ), the midisation varies as the idealisation-dependent, AM(T ) ∼ A†(T ).
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Conjecture that the entropies of the likely histograms are subject to the
following inequalities. First via the independent,

entropy(V C
z ∗ T ∗ T †) = entropy(V C

z )

≥ entropy((A ∗ T )X ∗ T †)
≥ entropy(AP(T ))

≥ entropy(AX(T ))

≥ entropy(AX)

≥ entropy(A)

≥ entropy(AY)

≥ entropy(AY(T ))

≥ entropy(AR(T ))

≥ entropy(AW(T ))

≥ entropy(ZA) = 0

Now via the idealisation,

entropy((A ∗ T )X ∗ T †)
≥ entropy(A ∗ T ∗ T †)
≥ entropy(AK(T ))

≥ entropy(A ∗ T ∗ T�AX

)

≥ entropy(A ∗ T ∗ T †A)

≥ entropy(A)

≥ entropy(A†(T ))

≥ entropy(AL(T ))

≥ entropy(AD(T ))

≥ entropy(AY(T ))

Now via the surrealisation,

entropy(V C
z ∗ T ∗ T †) = entropy(V C

z )

≥ entropy(V C
z ∗ T ∗ T�A)

≥ entropy(AX ∗ T ∗ T�A)

≥ entropy(A)

≥ entropy(A�(T ))

≥ entropy(AC(T ))
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Finally via the midisation,

entropy(AK(T ))

≥ entropy(A)

≥ entropy(AM(T ))

and

entropy((A ∗ T )X ∗ T�A)

≥ entropy(A)

≥ entropy(AM(T ))

The entropy of the dependent analogue is conjectured to be less than or
equal to entropy of the histogram. For example,

entropy(A)

≥ entropy(A†(T ))

≥ entropy(AL(T ))

≥ entropy(AD(T ))

≥ entropy(AY(T ))

≥ entropy(AR(T ))

≥ entropy(AW(T ))

The entropy of entity-like dependents varies against the cardinality of the
iso-set,

entropy(AI(T )) ∼ −|I|
where A ∈ I and I ⊆ Y −1

U,i,T,W,z((A ∗ T )X).

In the case where the dependent analogue is in the iso-set and the iso-set
is law-like, the difference in entropy must be in the entropy of the compo-
nents. In the case of derived-dependent,

AD(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒

AD(T ) ∗ T = A ∗ T =⇒ entropy(AD(T ) ∗ T ) = entropy(A ∗ T )

So

AD(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(entropy(AD(T ) ∗ C) : (R,C) ∈ T−1, (AD(T ) ∗ T )R > 0)

≤
∑

(entropy(A ∗ C) : (R,C) ∈ T−1, (A ∗ T )R > 0)
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Similarly for the idealisation-dependent,

A†(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(entropy(A†(T ) ∗ C) : (R,C) ∈ T−1, (A†(T ) ∗ T )R > 0)

≤
∑

(entropy(A ∗ C) : (R,C) ∈ T−1, (A ∗ T )R > 0)

The midisation varies with the histogram, AM(T ) ∼ A, in as much as it
varies against the liftisation, AM(T ) � AK(T ) and the surrealisation, AM(T ) �
(A∗T )X∗T�A. The multinomial probability with respect to the midisation is
maximised at the mean, so conjecture that, in the case where the midisation
is integral, AM(T ) ∈ Ai, the multinomial probability of the midisation with re-
spect to the midisation varies as the multinomial probability of the histogram
divided by the sum of the multinomial probabilities of the liftisation and the
surrealisation,

Qm,U(AM(T ), z)(AM(T ))

∼ Qm,U(AM(T ), z)(A)∑
Qm,U(AM(T ), z)(B) : B ∈ isolr(U)(T,A)

∼ Qm,U(AM(T ), z)(A)

Qm,U(AM(T ), z)(AK(T )) +Qm,U(AM(T ), z)((A ∗ T )X ∗ T�A)

Dividing out the permutorial leaves the multinomial coefficient, so, after
taking the logarithm, conjecture that the entropy of the midisation varies
very approximately as the entropy of the histogram less the entropies of the
liftisation and the surrealisation,

entropy(AM(T )) ∼ entropy(A) − entropy(AK(T ))

− entropy((A ∗ T )X ∗ T�A)

The idealisation is in the iso-liftisations, A ∗ T ∗ T †A ∈ Y −1
U,T,V,z(A

X ∗ T ) ∩
D−1
U,T,z(A ∗ T ), so, insofar as the entropy of the idealisation approximates to

the entropy of the liftisation, entropy(A ∗ T ∗ T †A) ≈ entropy(AK(T )), the
entropy of the midisation varies computably as the entropy of the histogram
less the entropies of the idealisation and the surrealisation,

entropy(AM(T )) ∼ entropy(A) − entropy(A ∗ T ∗ T †A)

− entropy((A ∗ T )X ∗ T�A)

In section ‘Converse action entropy‘, above, it is conjectured that the sum of
the entropies of the contentisation and the neutralisation varies as the sum
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of the entropies of the histogram and the independent

entropy(AX ∗T ∗T�A) + entropy(A ∗T ∗T�AX

) ∼ entropy(A) + entropy(AX)

So, insofar as the neutralisation entropy approximates to the idealisation
entropy, entropy(A ∗ T ∗ T�AX

) ≈ entropy(A ∗ T ∗ T †A), the entropy of the
midisation varies as the computable difference between the entropies of the
contentisation and the surrealisation less the entropy of the independent,

entropy(AM(T )) ∼ entropy(AX ∗ T ∗ T�A) − entropy((A ∗ T )X ∗ T�A)

− entropy(AX)

If the histogram, A, is a given, then the entropy of the independent, entropy(AX),
is a constant with respect to varying transform. If, in addition, the formal
is constrained to be independent, AX ∗ T = (AX ∗ T )X, then the entropy of
the midisation varies as the difference between the entropies of the formal
independent and the abstract,

entropy(AM(T )) ∼ entropy((AX ∗ T )X) − entropy((A ∗ T )X)

Since the entropy of the doubly-independent formal independent is greater
than or equal to that of the singly-independent abstract, entropy((AX∗T )X) ≥
entropy((A∗T )X), the minimisation of the midisation entropy, entropy(AM(T )),
tends to minimise the positive difference between the entropies of the formal
independent and the abstract, entropy((AX ∗ T )X)− entropy((A ∗ T )X) ≥ 0,
and so the abstract tends to equal the formal independent, which equals the
formal, (A ∗ T )X = (AX ∗ T )X = AX ∗ T . That is, in the case where the for-
mal is constrained to be independent, for example when non-overlapping,
¬overlap(T ) =⇒ AX ∗ T = (AX ∗ T )X, then the minimisation of the
midisation entropy, entropy(AM(T )), tends to formal-abstract equivalence,
AX ∗ T = (A ∗ T )X.

This is consistent with the difference between the partition contentisation
entropy and the partition surrealisation entropy in the case where the trans-
form is a substrate transform T ∈ TU,V , having derived variables W = der(T ).
Given a partition variable P ∈ W , the difference is

entropy(AX ∗ PT ∗ PT�A) − entropy((A ∗ PT)X ∗ PT�A)

= entropy(AX ∗ PT ∗ PT�A) − entropy(A)

where the partition contentisation entropy is between the independent en-
tropy and the histogram entropy, entropy(AX) ≥ entropy(AX ∗PT ∗PT�A) ≥
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entropy(A). When the formal independent equals the abstract, the partition
transform is formal and the partition contentisation equals the histogram,
(AX ∗ T )X = (A ∗ T )X =⇒ A ∗ PT = AX ∗ PT =⇒ AX ∗ PT ∗ PT�A = A,
and so the difference between the partition contentisation entropy and the
partition surrealisation entropy reduces to zero.

For a given histogram, A, the midisation varies against the computable
sum of the entropies of the idealisation and the surrealisation,

entropy(AM(T )) ∼ − (entropy(A ∗ T ∗ T †A) + entropy((A ∗ T )X ∗ T�A))

Conjecture that the sum of the entropies of the idealisation and the surreal-
isation is greater than or equal to the sum of the entropies of the histogram
and the independent

entropy(A ∗ T ∗ T †A) + entropy((A ∗ T )X ∗ T�A) ≥
entropy(A) + entropy(AX)

In the case where the transform is self, for example a value full functional
transform Ts = {{w}CS{}V T : w ∈ V }T, the idealisation equals the histogram
and the surrealisation equals the independent, so the sums are equal,

entropy(A ∗ Ts ∗ T †As ) + entropy((A ∗ Ts)
X ∗ T�As ) =

entropy(A) + entropy(AX)

In the case where the transform is unary, for example Tu = {V CS}T, the ide-
alisation equals the independent and the surrealisation equals the histogram,
so the sums are equal,

entropy(A ∗ Tu ∗ T †Au ) + entropy((A ∗ Tu)X ∗ T�Au ) =

entropy(AX) + entropy(A)

Conjecture that there exists some intermediate substrate transform Tm ∈ TU,V
which is neither self nor unary, Tm /∈ {Ts, Tu}, such that the sum of the
entropies of the idealisation and the surrealisation is maximised,

Tm ∈ maxd({(T, entropy(A ∗ T ∗ T †A) + entropy((A ∗ T )X ∗ T�A)) : T ∈ TU,V })

So in some cases the mid transform, Tm, minimises the midisation entropy,

Tm ∈ mind({(T, entropy(AM(T ))) : T ∈ TU,V })

The mid idealisation entropy approximates to the mid surrealisation entropy,

entropy(A ∗ Tm ∗ T †Am ) ≈ entropy((A ∗ Tm)X ∗ T�Am )
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but the mid idealisation derived entropy is less than or equal to the mid
surrealisation derived entropy,

entropy(A ∗ Tm ∗ T †Am ∗ Tm) = entropy(A ∗ Tm)

≤ entropy((A ∗ Tm)X ∗ T�Am ∗ Tm) = entropy((A ∗ Tm)X)

In the case where the minimisation constrains the formal to be independent,

Tm ∈ mind({(T, entropy(AM(T ))) : T ∈ TU,V , AX ∗ T = (AX ∗ T )X})

the mid transform tends to be such that the formal equals the abstract,
AX ∗ Tm = (A ∗ Tm)X. In these cases, the mid derived entropy is less
than or equal to the independent mid derived entropy, entropy(A ∗ Tm) ≤
entropy((A ∗ Tm)X) = entropy(AX ∗ Tm).

While the minimisation of the midisation entropy, where the formal is inde-
pendent, does not preclude a decrease in the mid derived entropy, entropy(A∗
Tm), conjecture that, overall, the mid component size cardinality relative en-
tropy is nonetheless small, entropyRelative(A ∗ Tm, V

C ∗ Tm) ≈ 0. That is,
the minimisation of the midisation entropy, where the formal is independent,
tends to a partition of the states such that the sizes of the components tend
to be synchronised with their cardinalities.

This may be seen by considering the case where the histogram is fully di-
agonalised, diagonalFull(U)(A), and uniform, |ran(A ∗AF)| = 1. In this case
the independent is cartesian, AX = V C

z , where V C
z = scalar(z/v)∗V C. In the

case where the transform is a substrate transform, T ∈ TU,V , and the formal
independent equals the abstract, each partition derived must equal the parti-
tion formal, (AX ∗ T )X = (A ∗ T )X ⇐⇒ ∀P ∈ der(T ) (A ∗ PT = AX ∗ PT).
This is satisfied by any partition that (i) partitions the effective states along
the diagonal into components, P :↔: AF, and (ii) is such that the component
cardinalities are uniform, |{|C| : C ∈ P}| = 1. Let F ⊂ TU,V be the set of
transforms,

F = {T : T ∈ TU,V , ∀P ∈ der(T ) (P :↔: AF ∧ |{|C| : C ∈ P}| = 1)}

All of these transforms are such that the formal independent equals the ab-
stract, ∀T ∈ F ((AX ∗ T )X = (A ∗ T )X), and all are such that the cross
entropy equals the derived entropy, ∀T ∈ F (entropyCross(A ∗ T, V C ∗ T ) =
entropy(A∗T )), and so have zero relative entropy, ∀T ∈ F (entropyRelative(A∗
Tm, V

C ∗ Tm) = 0). Each of the derived variables of the value full functional
transform partitions the diagonal and has uniform component cardinality,
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{{w}CS{}V T : w ∈ V }T ∈ F . As the constraints on the histogram are relaxed
such that (i) the diagonal is not uniform, so the independent is no longer
cartesian, AX 6= V C

z , and (ii) effective off-diagonal states are allowed, so bi-
jections, P :↔: AF are fewer, the cardinality of transforms that are such
that the formal independent equals the abstract decreases, but the sizes of
the components still tend to be synchronised with their cardinalities and so
relative entropy remains small.

The idealisation independent equals the independent, so the idealisation
entropy is less than or equal to the independent entropy, entropy(AX) =
entropy((A ∗ T ∗ T †A)X) ≥ entropy(A ∗ T ∗ T †A). Equality occurs in the
case where the transform is unary, entropy(A ∗ Tu ∗ T †Au ) = entropy(AX).
The idealisation entropy is greater than or equal to the histogram entropy,
entropy(A ∗ T ∗ T †A) ≥ entropy(A). Equality occurs in the case where the
transform is self, entropy(A ∗ Ts ∗ T †As ) = entropy(A). Therefore the mid
idealisation entropy is between the independent entropy and the histogram
entropy,

entropy(AX) ≥ entropy(A ∗ Tm ∗ T †Am ) ≥ entropy(A)

The idealisation equals the sum of its independent commponents, A∗T ∗T †A =∑
(·,C)∈T−1(A ∗ C)X. Consider the case where the idealisation is integral, for

example if it were the histogram of some history. In this case the components
are independent and integral,

A ∗ T ∗ T †A ∈ Ai =⇒ ∀(·, C) ∈ T−1 ((A ∗ C)X ∈ Ai)

As shown in section ‘Independent histograms’, above, the logarithm of the
cardinality of integral independent histograms of a given set of variables V
and size z varies against the volume v = |V C|,

ln |{A : A ∈ Ai, A
XF = V C, size(A) = z, A = AX}| ∼ −v

Given that the total component cardinality is the volume,
∑

(R,·)∈T−1(V C ∗
T )R =

∑
(·,C)∈T−1 |C| = v, and the total component size is the size,

∑
(R,·)∈T−1(A∗

T )R =
∑

(·,C)∈T−1 size(A ∗ C) = z, a minimisation of the integral idealisation
entropy from the mid transform tends to increase the mid component size
cardinality cross entropy,

entropyCross(A ∗ Tm, V
C ∗ Tm) ∼ − entropy(A ∗ Tm ∗ T †Am )

The mid idealisation entropy approximates to the mid surrealisation entropy,
entropy(A ∗ Tm ∗ T †Am ) ≈ entropy((A ∗ Tm)X ∗ T�Am ), but the mid idealisation
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derived entropy is less than or equal to the mid surrealisation derived entropy,
entropy(A∗Tm) ≤ entropy((A∗Tm)X). So in the case where the minimisation
of the integral idealisation entropy from the mid transform does not increase
the derived entropy, entropy(A ∗ Tm), the mid component size cardinality
relative entropy varies against the mid idealisation entropy,

entropyRelative(A ∗ Tm, V
C ∗ Tm) ∼ − entropy(A ∗ Tm ∗ T †Am )

That is, a minimisation of the integral idealisation entropy starting from the
mid transform is a maximisation of the relative entropy. So high size compo-
nents tend to be low cardinality components and low size components tend
to be high cardinality components.

This may be contrasted with the minimisation of the midisation entropy,
entropy(AM(T )), where the formal is independent, AX ∗T = (AX ∗T )X, which
has low relative entropy, entropyRelative(A ∗ Tm, V

C ∗ Tm) ≈ 0, because the
formal independent approximates to the abstract, (AX∗T )X ≈ (A∗T )X. That
is, a minimisation of the midisation entropy, where the formal is indepen-
dent, tends to decrease the relative entropy, but a subsequent minimisation
of the integral idealisation entropy tends to increase the relative entropy.

The transform-independent, AX(T ), is the maximum likelihood estimate of
the distribution histogram of the multinomial probability of membership of
the iso-transform-independents,

{AX(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})

The corresponding the transform-dependent, AY(T ), is the maximum likeli-
hood estimate of the distribution histogram of the multinomial probability of
the histogram, A, conditional that it is an iso-transform-independent,

{(AY(T ),
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
)} =

max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)

) : D ∈ AU,V,z})

Conjecture that the logarithm of the maximum conditional multinomial prob-
ability varies against the corresponding logarithm of the conditional proba-
bility where the distribution histogram is not the dependent analogue, AY(T ),
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but the independent analogue, AX(T ),

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼

− ln
Qm,U(AX(T ), z)(A)∑

Qm,U(AX(T ), z)(B) : B ∈ AU,i,y,T,z(A)

This may be seen by considering first the conditional probability with re-
spect to the dependent-analogue on the left hand side of this relation. If
the independent-analogue is in the iso-set, AX(T ) ∈ AU,i,y,T,z(A), and the his-
togram is not equal to the independent-analogue, A 6= AX(T ), then the terms
of the denominator with respect to the dependent-analogue are such that

0 < Q̂m,U(AY(T ), z)(AX(T ))

< Q̂m,U(AY(T ), z)(A)

<
∑

(Q̂m,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A))

≤ 1

That is, the independent-analogue term is less than the numerator,

Qm,U(AY(T ), z)(AX(T )) < Qm,U(AY(T ), z)(A)

Conjecture that independent-analogue term is the least of the denominator,

∀B ∈ AU,i,y,T,z(A) (Qm,U(AY(T ), z)(AX(T )) ≤ Qm,U(AY(T ), z)(B))

Now consider the conditional probability with respect to the independent-
analogue on the right hand side of this relation. Here the terms of the
denominator with respect to the independent-analogue are such that

0 < Q̂m,U(AX(T ), z)(A)

< Q̂m,U(AX(T ), z)(AX(T ))

<
∑

(Q̂m,U(AX(T ), z)(B) : B ∈ AU,i,y,T,z(A))

≤ 1

Conjecture that independent-analogue term is the greatest of this denomina-
tor,

∀B ∈ AU,i,y,T,z(A) (Qm,U(AX(T ), z)(AX(T )) ≥ Qm,U(AX(T ), z)(B))

Conjecture that the probability of drawing the histogram from the dependent-
analogue is greater than that from the independent-analogue, Q̂m,U(AY(T ), z)(A) >
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Q̂m,U(AX(T ), z)(A), and so the numerator of the right hand side is less than
that of the left hand side. Conjecture further, however, that the probability of
drawing the independent-analogue from the independent-analogue is greater
than the probability of drawing the histogram from the dependent-analogue,
Q̂m,U(AY(T ), z)(A) < Q̂m,U(AX(T ), z)(AX(T )), and so the denominator of the
right hand side is conjectured to be greater than that of the left hand side.
Hence the conditional probability with respect to the dependent-analogue is
conjectured to vary against the conditional probability with respect to the
independent-analogue.

The independent-analogue term is the largest of the denominator with respect
to the independent-analogue, ∀B ∈ AU,i,y,T,z(A) (Qm,U(AX(T ), z)(AX(T )) ≥
Qm,U(AX(T ), z)(B)). So the logarithm of the maximum conditional probabil-
ity is conjectured to vary against the logarithm of the relative probability
with respect to the independent-analogue,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼ − ln

Qm,U(AX(T ), z)(A)

Qm,U(AX(T ), z)(AX(T ))

Define the distribution-relative multinomial space of a histogram A ∈ AU,V,z
with respect to a distribution histogram E ∈ AU,V,z as spaceRelative ∈ A →
(A → R), the negative logarithm relative multinomial probability density,

spaceRelative(E)(A) := − ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(E)

In the case where the histogram and distribution histogram are integral,
A,E ∈ Ai, the distribution-relative multinomial space is the negative log-
arithm relative multinomial probability,

spaceRelative(E)(A) := − ln
Qm,U(E, z)(A)

Qm,U(E, z)(E)

So, in this case, the relative space of the histogram with respect to the
transform-independent is

spaceRelative(AX(T ))(A) := − ln
Qm,U(AX(T ), z)(A)

Qm,U(AX(T ), z)(AX(T ))

and the logarithm of the maximum conditional probability is conjectured to
vary with the relative space,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼ spaceRelative(AX(T ))(A)
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Conjecture that in the case where an independent analogue is in the iso-set,
and so is in the denominator, the relative space of a histogram with respect
to the independent analogue is always positive and less than or equal to the
relative space of the corresponding dependent analogue with respect to the
independent analogue. So,

AX ∈ Ai =⇒ 0 ≤ spaceRelative(AX)(A)

≤ spaceRelative(AX)(AY)

AX(T ) ∈ AU,i,y,T,z(A) =⇒ 0 ≤ spaceRelative(AX(T ))(A)

≤ spaceRelative(AX(T ))(AY(T ))

A ∗ T ∗ T †A ∈ Ai =⇒ 0 ≤ spaceRelative(A ∗ T ∗ T †A)(A)

≤ spaceRelative(A ∗ T ∗ T †A)(A†(T ))

(A ∗ T )X ∗ T�A ∈ Ai =⇒ 0 ≤ spaceRelative((A ∗ T )X ∗ T�A)(A)

≤ spaceRelative((A ∗ T )X ∗ T�A)(A�(T ))

A ∗ T ∗ T † ∈ Ai =⇒ 0 ≤ spaceRelative(A ∗ T ∗ T †)(A)

≤ spaceRelative(A ∗ T ∗ T †)(AD(T ))

(A ∗ T )X ∗ T † ∈ Ai =⇒ 0 ≤ spaceRelative((A ∗ T )X ∗ T †)(A)

≤ spaceRelative((A ∗ T )X ∗ T †)(AW(T ))

Conjecture that the relative space of the dependent is less than or equal to
that of the transform-dependent which, in turn, is less than or equal to that
of the abstract-dependent,

spaceRelative(AX)(AY)

≤ spaceRelative(AX(T ))(AY(T ))

≤ spaceRelative((A ∗ T )X ∗ T †)(AW(T ))

where AX(T ) ∈ AU,i,y,T,z(A).

Conjecture that, in the case where the formal equals the abstract, AX ∗ T =
(A∗T )X, the relative space of the idealisation-dependent is less than or equal
to that of the derived-dependent, which, in turn, is less than or equal to that
of the transform-dependent

spaceRelative(A ∗ T ∗ T †A)(A†(T ))

≤ spaceRelative(A ∗ T ∗ T †)(AD(T ))

≤ spaceRelative((A ∗ T )X ∗ T †)(AY(T ))

where (A ∗ T )X ∗ T † ∈ AU,i,y,T,z(A).
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Conjecture that the relative space of the surrealisation-dependent is less than
or equal to that of the components-dependent,

spaceRelative((A ∗ T )X ∗ T�A)(A�(T ))

≤ spaceRelative(V C
z ∗ T ∗ T�A)(AC(T ))

3.18 Encoding space

Note that, in the following, the use of the terminology space is in the
sense of computational space, i.e. the logarithm of the cardinality of some
discrete set of states, rather than in the sense of the structured sets of math-
ematical spaces, such as topological space. See the appendices ‘Coders’ and
‘Computers’ for more formal definitions.

3.18.1 History space

The set of histories HU ⊂ X → SU in finite system U is a superset of the
histories HU,X ⊂ HU where the domains of the histories are restricted to a
finite subset of the event identifiers X ⊂ X , so that HU,X ⊂ X → SU . Now
HU,X is finite and can be constructed

HU,X =
⋃
{X → cartesian(U)(V ) : V ⊆ vars(U)}

HU,X includes the empty history ∅. It also includes non-variate histories if
there are any events, |{H : H ∈ HU,X , vars(H) = ∅}| > 0 where |X| > 0.

The set of states in a system U is SU = {S : V ⊆ vars(U), S ∈ V CS}.
In the case of a regular system U , having dimension n = |U | and such that
all the variables have the same valency {d} = {|W | : W ∈ ran(U)}, the
cardinality of the set of states is

|SU | =
∑

k∈{0...n}

(
n

k

)
dk < 2ndn ≤ d2n

where d ≥ 2. The cardinality of the histories is

|HU,X | = 1 +
∑

k∈{0...n}

(
n

k

) ∑
z∈{1...y}

(
y

z

)
dkz ≤ 2n+ydny

where y = |X|.
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Coders encapsulate the logic of codes of lists of a given coder domain,
such that the space of the elements of the coder domain is computable.
A coder C ∈ coders(Y ) on a coder domain Y defines the code, Y :↔
N, and the space function, space(C) ∈ Y :→ ln N>0. The encode func-
tion, encode(C) ∈ L(Y ) :→ N, and the decode function, decode(C) ∈
N × N →: L(Y ), are functions of the code and the space such that ∀L ∈
L(Y ) (decode(C)(|L|, encode(C)(L)) = L).

The space required to encode a list L ∈ L(Y ) is the sum of the spaces of the
list elements,

∑
i∈{1...|L|}C

s(Li), where Cs(x) := space(C)(x). The space of a
list is always sufficient to encode the list,

∀L ∈ L(Y )
( ∏
i∈{1...|L|}

eC
s(Li) > encode(C)(L)

)
A probability function on the coder domain P ∈ (Y :→ Q≥0) ∩ P implies an
expected space, expected(P )(space(C)). The expected space is greater than
or equal to the entropy of the probability function, expected(P )(space(C)) ≥
entropy(P ).

A minimal coder Cm is one where the expected space of a uniform prob-
ability function is the logarithm of the cardinality of the coder domain,
expected(Y × {1/|Y |})(space(Cm)) = ln |Y |. See appendix ‘Coders’ for a
formal definition of coders.

History coders coders(HU,X) are coders where the coder domain is the set
of all histories in system U and identifier set X. When |HU,X | is small it is
practicable to construct a coder of histories explicitly.

For example, if the system U contains a single, mono-valent variable, U =
{(v, {w})}, so that there are only two states SU = {∅, S}, where S = {(v, w)},
and such that there is only one event identifier X = {x} then there are
only three possible histories, HU,X = {∅, {(x, ∅)}, {(x, S)}}. Choose an
enumeration N ∈ enums(HU,X) and then we can construct a history coder
C ∈ coders(HU,X) such that

∀(H, i) ∈ N ((encode(C)({(1, H)}) = i−1)∧(decode(C)(1, i−1) = {(1, H)}))

C is a minimal coder if we choose it such that ∀H ∈ HU,X (space(C)(H) =
ln 3), because the total space of C is |HU,X | ln |HU,X | = 3 ln 3.
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Even in the case when the coder domain |HU,X | is small, the decode rela-
tion of a coder must be defined algorithmically (that is, recursively) because
it is an infinite set. (In the case of fixed-width coders where the space is
constant, this algorithm is straightforward, however.) The decode function
implies constraints on the space, so the code and the space of coders are usu-
ally defined algorithmically too. We shall describe several algorithmic coders
of histories and their classifications.

Let DX be an order, DX ∈ enums(X), on the event identifiers X mapping
them to the natural numbers, DX ∈ X :↔ N, by one of the enumerations
enums(X) = X · {1 . . . |X|}. Given order DX we can choose an enumeration
for any subset Q ⊂ X such that order(DX, Q) ∈ enums(Q).

Let DV be an order DV ∈ enums(vars(U)) on the variables in the system U .
Given order DV and subset V ⊂ vars(U), we have order(DV, V ) ∈ enums(V ).
Let DS be an order DS ∈ enums(SU) on the states. See appendix ‘Construct-
ing states order from variables and values orders’ for an example of how DS

can be constructed. Given order DS and variables V , we have the enumera-
tion of the cartesian set of states

order(DS, cartesian(U)(V )) ∈ enums(cartesian(U)(V ))

Note that the choice of orders on the event identifiers or variables or states
can be entirely arbitrary, say, for example, lexical. There are no semantics
imposed by any order, nor constraining the order. In particular, the events
of a history are not necessarily chronological.

Consider the index coder of histories

CH = coderHistoryIndex(U,X,DV, DS, DX) ∈ coders(HU,X)

A history H ∈ HU,X can be encoded in a tuple TH ∈ N2×N2×L(N). This
tuple TH can then be encoded into a natural number EH ∈ {0 . . . SH − 1}.
The space of the history is the space of this encoding, space(CH)(H) =
space(SH) = lnSH .

The first pair of the tuple TH encodes the set of variables. Each history
H ∈ HU,X has a subset vars(H) ⊆ vars(U) of the variables of the system.
Let r = |vars(U)|. Let V = vars(H) and n = |V |. Given DV choose an
enumeration N in the enumerations of the set of subsets of the variables of
cardinality n in system U

N ∈ enums({W : W ∈ P(vars(U)), |W | = n})
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The pair encoding the variables of H is (n,NV ) where n ∈ {0 . . . r} and

NV ∈ {1 . . .
r!

(r − n)! n!
}

Define the space to encode dimension n in system U as spaceDimension ∈
U → ln N>0

spaceDimension(U) := ln(|vars(U)|+ 1)

Define spaceSubset ∈ N×N→ ln N>0 as the space of a binomial combination

spaceSubset(a, b) := ln

(
a

b

)
= ln

a!

(a− b)! b!

where a ≥ b.

Define the space of the pair encoding a set of variables of dimension n in
system U as spaceVariables(U) ∈ N→ ln N>0

spaceVariables(U)(n) := spaceDimension(U) + spaceSubset(|vars(U)|, n)

The space of (n,NV ) is spaceVariables(U)(n).

Similarly, the second pair of the tuple TH encodes the set of event identifiers.
Each history H ∈ HU,X has a subset ids(H) ⊆ X of the event identifier set.
Let y = |X|. Let I = ids(H) and z = |I| = |H|. Given DX choose an
enumeration Z of the set of subsets of the event identifiers of cardinality z
in system U

Z ∈ enums({Q : Q ∈ P(X), |Q| = z})

The pair encoding the event identifiers of H is (z, ZI) where z ∈ {0 . . . y}
and

ZI ∈ {1 . . .
y!

(y − z)!z!
}

Define the space of the size, z, of the set of event identifiers as spaceSize ∈
N→ ln N>0

spaceSize(y) := ln(y + 1)

Define the space of the pair encoding a subset of the set of event identifiers
as spaceIds ∈ N×N→ ln N>0

spaceIds(y, z) := spaceSize(y) + spaceSubset(y, z)

The space of (z, ZI) is spaceIds(y, z).
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Note that an alternative representation of membership of a subset is the
use of the fixed width list of bits, L(bits). In the case of variables, the length
of the list is the cardinality of the variables in the system, |vars(U)|, and
so the space required would be r ln 2. In the case of the event identifiers
the length of the list is the cardinality of the event identifiers, |X|, and so
the space would be y ln 2. The fixed width representation requires less space
where entropy is high, that is where n ≈ r/2 and z ≈ y/2.

The last element L ∈ L(N) of the tuple TH encodes the states of events in a
list of fixed width space. Given order DS and variables V = vars(H), let M be
an enumeration of the cartesian set of states, M = order(DS, cartesian(U)(V )).
Let v = volume(U)(V ). Then |M | = v and hence L ∈ L({1 . . . v}). Given
order DX and event identifiers I = ids(H), let Q be an enumeration of the
event identifiers, Q = order(DX, I). Then

L = {(Qx,MS) : (x, S) ∈ H}

Here MS is the index number of the state, S, in the enumeration, M .

Define the space of the list encoding the events of history H in a system
U as spaceEvents(U) ∈ HU → ln N>0

spaceEvents(U)(H) := z ln v

where z = |H|, V = vars(H) and v = volume(U)(V ).

Finally the tuple TH = ((n,NV ), (z, ZI), L) can be encoded to EH ∈ {0 . . . SH−
1} where

SH = (r + 1)× r!

(r − n)! n!
× (y + 1)× y!

(y − z)! z!
× vz

The total space of the index coder CH of a history H is the sum of the
variables space, ids space and events space

space(CH)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spaceEvents(U)(H)

A variation of the index history coder, CH, is to encode only the effective
volume in the fixed width space. Here the history H ∈ HU,X is encoded in a
tuple TH ∈ N2×N2×N2×L(N) that has an extra pair of integers (x, FQ) ∈
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N2 which encode (i) the effective volume x = |AF|, where A = histogram(H),
and (ii) the index, FQ, into an enumeration of the effective states subsets,

FQ ∈ {1 . . .
v!

(v − x)! x!
}

Now M is an enumeration of the effective set of states, M = order(DS, A
FS).

Then |M | = x and hence L ∈ L({1 . . . x}).

The tuple TH = ((n,NV ), (z, ZI), (x, FQ), L) can be encoded to EH ∈ {0 . . . SH−
1} where

SH = (r + 1)× r!

(r − n)! n!
× (y + 1)× y!

(y − z)! z!
× v × v!

(v − x)! x!
× xz

Given the set of effective states, Q = AFS, the effective events need only a
space of z lnx. Define the space of the volume, v = |AC|, as spaceVolume ∈
N>0 → ln N>0

spaceVolume(v) := ln v

Define the effective space of histogram A in a system U as spaceEffective(U) ∈
AU → ln N>0

spaceEffective(U)(A) := spaceVolume(v) + spaceSubset(v, x)

where v = |AC| and x = |AF|. The effective space is undefined for zero size,
z = 0.

Define the effective events space as spaceEventsEffective(U) ∈ HU → ln N>0

spaceEventsEffective(U)(H) := z lnx

where z = |H|, A = histogram(H) and x = |AF|.

Define the effective index history coder

CH,F = coderHistoryIndexEffective(U,X,DV, DS, DX) ∈ coders(HU,X)

The total space of the effective index coder CH,F of a non-empty history H 6= ∅
is the sum of the variables space, ids space, effective space and effective events
space

space(CH,F)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spaceEffective(U)(A) +

spaceEventsEffective(U)(H)
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where A = histogram(H).

In the case where the histogram is completely effective, AF = AC, the ef-
fective volume equals the volume, x = v, so the effective events space equals
the events space, spaceEventsEffective(U)(H) = spaceEvents(U)(H). In this
case the space of the effective index coder is greater than or equal to the
space of the index coder Cs

H,F(H) ≥ Cs
H(H).

In the case where the histogram is a singleton, x = |ran(H)| = |AF| = 1,
the effective events space is zero, spaceEventsEffective(U)(H) = 0. The ef-
fective space is twice the volume space, spaceEffective(U)(A) = 2 ln v, and so
does not depend on the size, z. In the case where the size is greater than
or equal to two, z ≥ 2, the space of the effective index coder is less than or
equal to the space of the index coder Cs

H,F(H) ≤ Cs
H(H).

3.18.2 Histogram space

Define the finite set of trimmed integral histograms in system U having
size less than or equal to y ∈ N as

AU,i,≤y = {trim(A) : A ∈ AU,i, size(A) ≤ y}

In the case of a regular system U , having dimension n = |U | and such that
all the variables have the same valency {d} = {|W | : W ∈ ran(U)}, the
cardinality of the set of trimmed integral histograms is such that |AU,i,≤y| <
y2n|AU,i,vars(U),y|. Hence

|AU,i,≤y| < y2n
(y + dn − 1)!

y! (dn − 1)!

An explicit minimal coder CA,m ∈ coders(AU,i,≤y) exists which, if given an
order DA ∈ AU,i,≤y ↔ N on the histograms in system U , simply enumerates
the coder domain so that space(CA,m)(A) = ln |AU,i,≤y|.

Consider a coder of histograms

CA = coderHistogram(U, y,DV, DS) ∈ coders(AU,i,≤y)

where y = |X| is the cardinality of the identifier set X.

A histogram A ∈ AU,i,≤y can be encoded in a tuple TA ∈ N2 ×N×N. This
tuple TA can then be encoded into a natural number EA ∈ {0 . . . SA − 1}.
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The space of the histogram is the space of this encoding, space(CA)(A) =
space(SA) = lnSA.

The first pair of the tuple TA encodes the set of variables in the same way as
for the history coder, CH. The space of the pair (n,NV ) is spaceVariables(U)(n)
where V = vars(A) and n = |V |.

The second element of the tuple TA encodes the size z = size(A). Then
z ∈ {0 . . . y} and the space of z is spaceSize(y) = ln(y + 1).

The last element of the tuple TA encodes the set of counts of the states.
The coder defined here has a coder domain of trimmed histograms rather
than complete histograms. So, for example, the histograms of histories,
A = histogram(H), and the histograms of unit transforms (X, ·) ∈ TU, are
members of the coder domain. Let DA be an order on the coder domain

DA ∈ enums(AU,i,≤y)

DA can be chosen arbitrarily, or constructed from DS. The support of a
multinomial distribution is the set of complete integral congruent histograms
in AU,i having variables V and size z in system U , previously defined

AU,i,V,z := {B : B ∈ AU,i, BU = V C, size(B) = z}

The integral congruent support consists of complete histograms. It forms a
bijective map to the set of trimmed integral congruent histograms

{trim(B) ∈ AU,i,V,z} :↔: AU,i,V,z

The integral congruent support implies the equivalence classes in AU,i such
that trim(A) ≡ A+ ACZ. Thus for any trimmed histogram A = trim(A) the
equivalent complete histogram is in the integral congruent support, A+ACZ ∈
AU,i,V,z. Given DA, choose enumeration R of the enumerations of the trimmed
support of the multinomial distribution

R ∈ enums({trim(B) : B ∈ AU,i,V,z})

The trimmed support has the same cardinality as the integral congruent sup-
port, so the last element of the tuple TA encoding the counts of the states of
A is RA which is such that

RA ∈ {1 . . .
(z + v − 1)!

z! (v − 1)!
}
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RA is the weak composition number of A. Define the space of a weak com-
position as spaceCompositionWeak ∈ N>0 ×N→ ln N>0

spaceCompositionWeak(k, n) := ln |C′({1 . . . k}, n)| = ln
(n+ k − 1)!

n! (k − 1)!

Define the space of the encoding of the counts of the states of histogram A
in a system U as spaceCounts(U) ∈ AU,i → ln N>0

spaceCounts(U)(A) := ln
(z + v − 1)!

z! (v − 1)!
= spaceCompositionWeak(v, z)

where z = size(A), V = vars(A) and v = volume(U)(V ). The space of RA is
spaceCounts(U)(A).

Finally the tuple TA = ((n,NV ), z, RA) can be encoded to EA ∈ {0 . . . SA−1}
where

SA = (r + 1)× r!

(r − n)! n!
× (y + 1)× (z + v − 1)!

z! (v − 1)!

The total space of the coder CA of a histogram A is the sum of the variables
space, size space and counts space

space(CA)(A) = spaceVariables(U)(|vars(A)|) +

spaceSize(y) +

spaceCounts(U)(A)

The coder domain AU,i,≤y of CA excludes integral histograms having zero
states, AF 6= AU, where A ∈ AU,i and size(A) ≤ y. However the equivalent
trimmed histogram, trim(A) ≡ A, will be in the coder domain, trim(A) ∈
AU,i,≤y, so there is always a means of encoding equivalent histograms although
the coder cannot distinguish between them. An example is the empty his-
togram ∅ which is encoded, whereas its completed equivalent the zero scalar
histogram {(∅, 0)} is not. However, trim({(∅, 0)}) = ∅.

Also, note that the histogram counts space depends only on the size and
volume, not the actual counts in a histogram. Nor does it depend on the
cardinality of the identifier set.

Consider the counts space spaceCounts(U)(A) of histogram A in system
U . Scale analysis would suggest that the space of a fixed width encoding
L({1 . . . z}) (similar to that of history events space L({1 . . . v})) would be an
upper bound, so that

spaceCounts(U)(A) ≤ v ln z
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where z = size(A), z > 0, v = volume(U)(V ). This is in fact the case where
z > 1 because

(z + v − 1)!

z! (v − 1)!
=

v

z + v

∏
i∈{1...v}

z + i

i
≤ zv

By a symmetrical argument, if z > 0

spaceCounts(U)(A) ≤ z ln v

This is obvious in the case where A is effectively complete and so z ≥ v, but
also holds if z < v because

(z + v − 1)!

z! (v − 1)!
=

∏
i∈{1...z}

v − 1 + i

i
≤ vz

Thus if A is the histogram of history H, A = histogram(H), then the history
events space is greater than the histogram counts space spaceCounts(U)(A) ≤
spaceEvents(U)(H).

In the case where z = av2 where a ∈ R and a ≥ 1

(z + v − 1)!

z! (v − 1)!
=

1

av + 1

∏
i∈{1...v}

av2 + i

i
≥ (av + 1)v−1

Hence where z ≥ v2 and z > 1

(v − 1) ln v < spaceCounts(U)(A) ≤ v ln z < z ln v

In the case where v = az2 where a ∈ R and a ≥ 1 and z > 0

(z + v − 1)!

z! (v − 1)!
=

∏
i∈{1...z}

az2 − 1 + i

i
≥ (az)z

Hence where v ≥ z2 and z > 0

z ln z < spaceCounts(U)(A) ≤ z ln v

Similarly to the effective index coder CH,F, above, an effective histogram
coder can be defined that encodes the effective states in a pair (x, FQ) ∈ N2

added to the tuple, TA ∈ N2×N×N2×N. The pair encodes (i) the effective
volume x = |AF| and (ii) the index, FQ, into an enumeration of the effective
states subsets,

FQ ∈ {1 . . .
v!

(v − x)! x!
}
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Given the set of effective states, Q = AFS, the counts can be encoded in a
strong composition instead of a weak composition. The last element of the
tuple, RA, is now the strong composition number of A,

RA ∈ {1 . . .
(z − 1)!

(z − x)! (x− 1)!
}

The tuple TA = ((n,NV ), z, (x, FQ), RA) can be encoded to EA ∈ {0 . . . SA−
1} where

SA = (r + 1)× r!

(r − n)! n!
× (y + 1)× v × v!

(v − x)! x!
× (z − 1)!

(z − x)! (x− 1)!

Define the space of a strong composition as spaceComposition ∈ N>0 ×
N>0 → ln N>0

spaceComposition(k, n) := ln |C({1 . . . k}, n)| = ln
(n− 1)!

(n− k)! (k − 1)!

Define the effective counts space as spaceCountsEffective(U) ∈ AU,i → ln N>0

spaceCountsEffective(U)(A) := ln
(z − 1)!

(z − x)! (x− 1)!
= spaceComposition(x, z)

where z = size(A) and x = |AF|. The effective counts space is undefined for
zero size, z = 0.

Define the effective histogram coder

CA,F = coderHistogramEffective(U, y,DV, DS) ∈ coders(AU,i,≤y)

The total space of the effective histogram coder CA,F of a non-zero histogram
A is the sum of the variables space, size space, effective space and effective
counts space

space(CA,F)(A) = spaceVariables(U)(|vars(A)|) +

spaceSize(y) +

spaceEffective(U)(A) +

spaceCountsEffective(U)(A)

The effective histogram coder space, Cs
A,F(A), is less than the histogram

coder space, Cs
A(A), if spaceEffective(U)(A)+spaceCountsEffective(U)(A) <

spaceCounts(U)(A),

ln v + ln
v!

(v − x)! x!
+ ln

(z − 1)!

(z − x)! (x− 1)!
< ln

(z + v − 1)!

z! (v − 1)!
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In the case of an effective singleton, x = |AF| = 1, this simplifies to

2 ln v < ln
(z + v − 1)!

z! (v − 1)!

In this case the effective histogram coder space does not depend on the size,
z, so for given volume v there exists some size z such that the effective his-
togram coder space is less than the histogram coder space, Cs

A,F(A) < Cs
A(A).

In the case of unit uniform histogram, trim(A) = AF, the effective volume
equals the size, x = z, and the inequality simplifies to

v v!

(v − z)!
<

(z + v − 1)!

(v − 1)!

In this case the effective histogram coder space is less than the histogram
coder space, Cs

A,F(A) < Cs
A(A), if the size is at least two, z ≥ 2.

3.18.3 Classification space

Classifications are lossless transformations of histories and vice-versa

∀H ∈ H (history(classification(H)) = H)

∀G ∈ G (classification(history(G)) = G)

Given a system U ∈ U and an identifier set X ⊂ X , we can define GU,X ⊆
SU → (P(X) \ {∅}). Now GU,X :↔: HU,X and HU,X is finite, so GU,X is finite
and can be constructed

GU,X =
⋃
{cartesian(U)(V )↔ P : V ⊂ vars(U), P ∈ B(X)} ∪ {∅}

Consider the classification coder of histories

CG = coderClassification(U,X,DV, DS, DX) ∈ coders(HU,X)

The coder domain is the same as that of the index coder, CH. A classification
G ∈ GU,X , where G = classification(H) and H ∈ HU,X , can be encoded in a
tuple TG ∈ N2 ×N2 ×N ×N. This tuple TG can then be encoded into a
natural number EG ∈ {0 . . . SG − 1}. The space of the classification is the
space of this encoding, space(CG)(H) = space(SG) = lnSG.

The first pair of the tuple TG encodes the set of variables in the same way as
for the history coder, CH, or the histogram coder, CA. The space of the pair
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(n,NV ) is spaceVariables(U)(n) where A = histogram(G), V = vars(A) and
n = |V |.

The second pair of the tuple TG encodes the set of event identifiers in the
same way as for the history coder, CH. The space of the pair (z, ZI) is
spaceIds(y, z) where y = |X| and z = size(A).

The third element of the tuple TG encodes the set of counts of the states
in the same way as for the histogram coder, CA. The space of the element
RA is spaceCounts(U)(A).

The last element of the tuple TG encodes the classification of the events.
Let Q be the partition of event identifiers represented by non-empty G 6= ∅,
Q = ran(G) = {C : (S,C) ∈ G} ∈ B(ids(G)). Given DX, choose enu-
meration F of the enumerations of the partitions of the event identifiers
corresponding to the classification

F ∈ enums({P : P ∈ B(ids(G)), ∃X ∈ P :↔: Q ∀(Y, Z) ∈ X (|Y | = |Z|)})

The last element of the tuple TG encoding the classification of the event
identifiers of G is FQ

FQ ∈ {1 . . .
z!∏

S∈dom(G) |GS|!
}

Define the space of the encoding of the classification of the event identifiers of
G having histogram A = histogram(G) as spaceClassification ∈ Ai → ln N>0

spaceClassification(A) := ln z!−
∑
S∈AS

lnAS!

where A 6= ∅ and z = size(A). Define spaceClassification(∅) := 0. The space
of FQ is spaceClassification(histogram(G)).

This function can be defined more generically as spaceClassification ∈ (X →
N)→ ln N>0

spaceClassification(Q) := ln z!−
∑

x∈dom(Q)

lnQx!

where z = sum(Q). With this definition spaceSubset is a special case of
spaceClassification where |Q| = 2.
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The events classification space is also called the multinomial space because
the spaceClassification(histogram(G)) is the logarithm of the multinomial
coefficient of its histogram

spaceClassification(A) = ln z!−
∑
S∈AS

lnAS! = ln
z!∏

S∈AS AS!

The multinomial coefficient forms part of the multinomial distribution,

Qm(E, z)(A) =
z!∏

S∈AS AS!

∏
S∈AS

EAS
S

to count the permutations of the probabilities of the distribution histogram’s
states. The multinomial coefficient forms part of the classification space by
counting the permutations or orders of the events within the partition by
state.

Finally the tuple TG = ((n,NV ), (z, ZI), RA, FQ) can be encoded to EG ∈
{0 . . . SG − 1} where

SG = (r+1)× r!

(r − n)! n!
×(y+1)× y!

(y − z)! z!
×(z + v − 1)!

z! (v − 1)!
× z!∏

S∈dom(G) |GS|!

where z > 0, otherwise

SG = (r + 1)× r!

(r − n)! n!
× (y + 1)

The total space of a classification coder of a history H is the sum of the
variables space, ids space, histogram counts space and events classification
space

space(CG)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spaceCounts(U)(A) +

spaceClassification(A)

where A = histogram(H).

The space of a non-empty non-scalar integral histogram A in the histogram
coder, CA, is less than or equal to the space in the corresponding classification
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coder, CG, of its history, A = histogram(H), because the event identifiers are
aggregated into counts

SG = (r+1)× r!

(r − n)! n!
× (y+1)× (z + v − 1)!

z! (v − 1)!
× y!

(y − z)!
∏

S∈dom(G) |GS|!

and so

space(CG)(H) = space(CA)(A) + ln
yz∏

S∈AS AS!

where yz is the falling factorial, y!/(y−z)!. The second term is always positive
because yz ≥ z!. The part of the space of the classification that depends on
the volume, and hence the system, is encapsulated in the histogram space.

Define a generic classification coder of histories CG,A which is parame-
terised by an underlying coder of histograms C ∈ coders(AU,i,≤y)

CG,A = coderClassificationGeneric(C,X,DX) ∈ coders(HU,X)

The generic classification coder encodes the variables space, size space and
counts space via the underlying coder. It adds the ids space (less size space)
and events classification space such that

space(CG,A)(H) = space(C)(A) +

spaceIds(y, |H|)− spaceSize(y) +

spaceClassification(A)

where H ∈ HU,X and A = histogram(H). In the case where the underlying
coder is C = CA, which is constructed CA = coderHistogram(U, y,DV, DS),
then the generic classification coder space equals the classification coder
space, space(CG,A)(H) = space(CG)(H).

Define the effective classification coder CG,F with the generic classification
coder, CG,A, parameterised by the effective histogram coder, CA,F,

CG,F = coderClassificationGeneric(CA,F, X,DX) ∈ coders(HU,X)

The total space of the effective classification coder CG,F of a non-empty
history H 6= ∅ is the sum of the variables space, ids space, effective space,
effective counts space and events classification space

space(CG,F)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spaceEffective(U)(A) +

spaceCountsEffective(U)(A) +

spaceClassification(A)
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where A = histogram(H).

The effective classification coder space is less than the classification coder
space when the effective histogram coder space is less than the histogram
coder space,

Cs
G,F(H) < Cs

G(H) ⇐⇒ Cs
A,F(A) < Cs

A(A)

Compare the classification coder, CG, and the index coder, CH, using a
couple of special cases.

In the case of singleton classifications, A = histogram(G) such that |AF| = 1,
the space of the classification is less than or equal to the space of the history
H = history(G). That is, space(CG)(H) ≤ space(CH)(H)

spEv(U)(H)− spCt(U)(A)− spCl(A)

= z ln v − ln
(z + v − 1)!

z! (v − 1)!
− ln

z!

z!
≥ 0

because spCt(U)(A) ≤ z ln v, where spEv = spaceEvents, spCt = spaceCounts
and spCl = spaceClassification.

In the case of completely effective uniform classifications, A = histogram(G)
such that AF = AC and |ran(A)| = 1, the space of the classification is
greater than or equal to the space of the history H = history(G). That is,
space(CG)(H) ≥ space(CH)(H). Let z = kv where k ∈ N and k ≥ 1

spEv(U)(H)− spCt(U)(A)− spCl(A)

= z ln v − ln
(z + v − 1)!

z! (v − 1)!
− ln

z!

((z/v)!)v

= kv ln v − ln(kv + v − 1)! + ln(v − 1)! + v ln k!

= ln
∏

c∈{1...kv}

v k
√
k!

c+ v − 1
≤ 0

This is obviously true for k = 1. It is conjectured to be true for other values
of k. Also the conjecture only applies to the case where there is an integral
ratio z/v ∈ N.

The special case of the singleton classification, |AF| = 1, forms a minimum
for the events classification space

spaceClassification(A) ≥ 0
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The second case of completely effective uniform classifications, A = Zz/v ∗V C

where Zx = scalar(x), forms a maximum

spaceClassification(A) ≤ ln z!− v ln(z/v)!

where z/v ∈ N. This is a local maximum because (z/v − 1)!(z/v + 1)! >
((z/v)!)2. Proof that it is everywhere a maximum can be shown by means of
sequences of perturbations. See the similar case of the mean of the multino-
mial probability distribution of a cartesian distribution above. The probability
of the mean histogram is the maximum frequency

Q̂m,U(V C, z)(M) =
z!

( z
v
!)v

(
1

v

)z
where M = mean(Q̂m,U(V C, z)) = Zz/v ∗ V C.

Apply Stirling’s approximation to the maximum case

ln z!− v ln(z/v)! < z ln z − v
(z
v

ln
z

v
− z

v

)
= z(ln v + 1)

Thus
spaceClassification(A) < z(ln v + 1)

The classification coder and index coder cannot differ by more than z(ln v+1)
and so are always of the same order of complexity

space(CG) ∈ O(space(CH), 2)

The appearance of the multinomial coefficient in the classification coder
suggests a relationship with entropy. In fact, the events classification space,
spaceClassification, can be approximated by the sized entropy, by the use of
Stirling’s approximation

spaceClassification(A) := ln z!−
∑
S∈AS

lnAS!

≈ z ln z − z −
∑
S∈AFS

(AS lnAS − AS)

= z ln z − z
∑
S∈AFS

NS ln zNS

= −z
∑
S∈AFS

NS lnNS

= z × entropy(A)
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where z > 0 and N = resize(1, A). Thus events classification space increases
with increasing entropy. This is consistent with the two special cases above.
In the first case, the singleton histogram has low entropy and the classifica-
tion coder requires less space than the index coder. In the second case, the
uniform histogram has high entropy and hence the reverse is true.

Consider the scaled entropy, z × entropy(A), at the break-even space, where
the classification coder space equals the index coder space, Cs

G(H) = Cs
H(H),

z × entropy(A) ≈ z ln v − ln
(z + v − 1)!

z! (v − 1)!

≈ z ln v − ((z + v) ln(z + v) − z ln z − v ln v)

That is, if the scaled entropy, z× entropy(A), of a history, H, is greater than
the break-even scaled entropy, z ln v−((z+v) ln(z+v)−z ln z−v ln v), then the
index coder requires less space than the classification coder, Cs

G(H) > Cs
H(H),

and vice-versa.

Also, entropy can be the basis of a coder. See the Appendix ‘Entropy encod-
ing of states’.

The events classification space does not depend on the internal structure
of the states in the classification G, only that the states form a functional
domain. That is, events classification space does not depend on the variables
in the states nor their valencies, except in respect of the total volume and
the equivalence of states. To demonstrate, create a unit functional transform
T = (X, {w}) with a single derived variable w such that if we choose an enu-
meration of the cartesian states, Q ∈ enums(ACS), where A = histogram(G)
and such that Uw = ran(Q) and X = {(S ∪ {(w, i)}, 1) : (S, i) ∈ Q}, then
we have the same events classification space spaceClassification(A ∗ T ) =
spaceClassification(A).

Conjecture that neither the index coder nor the classification coder of
histories is a minimal coder,

∀U ∈ U ∀X ⊂ X ∀C ∈ {CH, CG} (
∑

H∈HU,X

space(C)(H) > |HU,X | ln |HU,X |)

This is the case even for only variate histories. Let

HU,X,v = {H : H ∈ HU,X , |vars(H)| > 0}
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The variate histories, HU,X,v, exclude empty histories, so z > 0. The space
of the coders for the variate coder domain is calculated by subtracting the
space required for non-variate

space(CG,v)(H) = space(CG)(H)− ln
r + 1

r
− ln

y + 1

y

However, the total space of the variate-classification coder of histories, CG,v,
is still greater than a minimal coder of HU,X,v.

A classification G ∈ GU,X is the inverse of its corresponding history,
G = classification(H) = H−1 where H ∈ HU,X , and so it may be viewed
as a relation between (i) the effective states, dom(G) = ran(H) = AFS,
where A = histogram(H), and (ii) the components of a partition of the
event identifiers, ran(G) ∈ B(dom(H)). That is, G ∈ AFS :→: ran(G).
Thus a classification may be encoded by encoding (i) the effective states,
AFS, (ii) the permutation of the components of the partition, x! where
x = |AFS|, given some order on the states, DS, and (iii) the partition in-
dex, {1 . . . stir(z, x)} where z = |H| and the Stirling number of the second
kind is stir(n, k) := |S({1 . . . n}, k)|.

Define the partition classification coder,

CG,B = coderClassificationPartition(U,X,DV, DS, DX) ∈ coders(HU,X)

Define the space of the encoding of the permutation and index of the event
identifiers components as spaceEventsComponents(U) ∈ AU,i → ln N>0

spaceEventsComponents(U)(A) := ln x! + ln stir(z, x)

where x = |AF| and z = size(A).

The total space of the partition classification coder CG,B of a non-empty
history H 6= ∅ is the sum of the variables space, ids space, effective space,
and events components space

space(CG,B)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spaceEffective(U)(A) +

spaceEventsComponents(U)(A)

where A = histogram(H).
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The partition classification coder, CG,B, is less dependent on the histogram,
A, than the effective classification coder, CG,F, because it depends on the ef-
fectiveness of the states and the total of the counts, rather than the individual
counts of the states. That is, spaceEventsComponents(U)(A), only depends
on (i) the size, z = size(A), and (ii) the effective volume, x = |AF|, whereas
spaceClassification(A) depends on the histogram as a relation, A ∈ S → Q≥0.
In this, the partition classification coder, CG,B, resembles the effective index
coder, CH,F, where the effective events space, spaceEventsEffective(U)(H) :=
z lnx, only depends on the size, z and effective volume, x . Thus the partition
classification coder, CG,B, is intermediate between the effective index coder,
CH,F, and the effective classification coder, CG,F.

3.18.4 Derived history space

In section ‘Histogram space’, above, the histogram coder is constructed

CA = coderHistogram(U, y,DV, DS) ∈ coders(AU,i,≤y)

where y = |X| is the cardinality of the identifier set X ⊂ X , and AU,i,≤y is
the set of trimmed integral histograms in system U having size less than or
equal to y.

The histogram coder, CA, is defined such that the space of trimmed inte-
gral histogram A ∈ AU,i,≤y is

space(CA)(A) = spaceVariables(U)(|V |) +

spaceSize(y) +

spaceCounts(U)(A)

where V = vars(A).

The histogram counts space is the weak composition space,

spaceCounts(U)(A) := ln
(z + v − 1)!

z! (v − 1)!
= spaceCompositionWeak(v, z)

where z = size(A), and v = volume(U)(V ). In the case where the size is less
than or equal to the volume, z ≤ v, the counts space may be approximated

ln
(z + v − 1)!

z! (v − 1)!
= z ln v − z ln z

≈ z ln
v

z
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by abuse of notation. If the size, z, is fixed, the histogram counts space,
spaceCounts(U)(A), varies with the logarithm of the volume, ln v.

In the case where the size is greater than the volume, z > v, the counts
space approximates

ln
(z + v − 1)!

z! (v − 1)!
≈ v ln z − v ln v

≈ v ln
z

v

If the volume, v, is fixed, the histogram counts space, spaceCounts(U)(A),
varies with the logarithm of the size, ln z.

The weak composition space may also be analysed by means of Stirling’s
approximation,

ln
(z + v − 1)!

z! (v − 1)!
≈ (z + v) ln(z + v) − z ln z − v ln v − ln

z + v

v

= z ln
z + v

z
+ (v − 1) ln

z + v

v

≈ (z ln
v

z
: z < v) +

(2z ln 2 : z = v) +

(v ln
z

v
: z > v)

The following discussion considers how the volume, v, or size, z, may be bro-
ken into components by means of partitioning the volume with a transform,
in order to reduce the overall counts space. That is, a one functional trans-
form T ∈ TU,f,1 has an inverse, T−1 = inverse(T ), which implies a partition
of the volume TP ∈ B(V CS) where TP = {CS : C ∈ ran(T−1)}.

Let the substrate histogram coder CA,V ∈ coders(AU,V,i,≤y) be a histogram
coder, CA, but with given variables V . The coder domain, AU,V,i,≤y, is the
subset of the trimmed integral histograms of size less than or equal to y which
are also in variables V . The substrate histograms is defined

AU,V,i,≤y = {trim(A) : A ∈ AU,i, size(A) ≤ y, vars(A) = V }

which has cardinality

|AU,V,i,≤y| =
∑

z∈{1...y}

(z + v − 1)!

z! (v − 1)!
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where v = |V C|.

The substrate histogram coder is such that

space(CA,V )(A) = space(CA)(A)− spaceVariables(U)(V )

The substrate histogram coder space is

space(CA,V )(A) = spaceSize(y) +

spaceCounts(U)(A)

Now consider the derived substrate histogram coder CA,V,T given one func-
tional transform T ∈ TU,f,1 in variables V = und(T ). The coder domain is
the subset of the trimmed integral histograms of size less than or equal to
y which are also in variables V , AU,V,i,≤y. The derived substrate histogram
coder is instantiated

CA,V,T =

coderHistogramSubstrateDerived(U, y, T,DS) ∈ coders(AU,V,i,≤y)

The histogram, A ∈ AU,V,i,≤y, can be encoded in an intermediate tuple
TA = (z, R′A∗T , L) ∈ N×N× L(N).

There is no need to encode the variables, V , because these are defined by
the transform, T , in the derived substrate histogram coder parameters. So
the first element, z ∈ N, of the tuple, TA, encodes the size z = size(A) ∈
{0 . . . y}, which has space spaceSize(y) = ln(y + 1).

The second element, R′A∗T ∈ N, of the tuple, TA, is the encoding of the
counts of the possible derived volume of the derived histogram, A ∗ T ,

R′A∗T ∈ {1 . . .
(z + w′ − 1)!

z! (w′ − 1)!
}

where W = der(T ), derived volume w = |WC| and possible derived volume
w′ = |(V C ∗ T )F| = |T−1| ≤ w. This is similar to the encoding of the counts
in the histogram coder, CA, but the derived coder excludes necessarily inef-
fective states, WCS\(V C∗T )FS, that occur when the transform is overlapped,
overlap(T ). The derived coder can compute the possible derived volume, w′,
at instantiation because it depends only on the transform, T , which is a
parameter of the constructor. The space is spaceCountsDerived(U)(A, T )
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where spaceCountsDerived(U) ∈ AU,i × TU,f,1 → ln N>0 is defined

spaceCountsDerived(U)(A, T ) := ln
(z + w′ − 1)!

z! (w′ − 1)!

= spaceCompositionWeak(w′, z)

The possible derived volume is less than or equal to the derived volume,
w′ ≤ w, so the derived counts space is no greater than the counts space of the
derived histogram, spaceCountsDerived(U)(A, T ) ≤ spaceCounts(U)(A ∗ T ).
The possible derived volume equals the derived volume if and only if the
transform is non-overlapped, ¬overlap(T ) ⇐⇒ w′ = w, because it is only
in this case that the transform is right total, dom(T−1) = WCS. In this case,
the derived counts space equals the counts space of the derived histogram,
¬overlap(T ) ⇐⇒ spaceCountsDerived(U)(A, T ) = spaceCounts(U)(A ∗ T ).
The possible derived volume is less than or equal to the underlying volume,
w′ ≤ v, so the derived counts space is no greater than the counts space of the
underlying histogram, spaceCountsDerived(U)(A, T ) ≤ spaceCounts(U)(A).

The last element, L ∈ L(N), of the tuple, TA, is a list of the encodings
of the counts of each of the components of the transform inverse, T−1,

LM ′(R) ∈ {1 . . .
((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!
}

where (R,C) ∈ T−1, M ′ = order(DS,W
CS) ∈ enums(WCS) and DS is some

order on the states in system U . Define the partition components counts
space as spaceCountsPartition ∈ A× Tf → ln N>0

spaceCountsPartition(A, T ) :=
∑

(R,C)∈T−1

ln
((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

The partition components counts space required for an ineffective compo-
nent, (A ∗ T )R = 0, is zero, regardless of the component’s cardinality. That
is, spaceCompositionWeak(|C|, 0) = 0. The partition components counts
space is also zero where the component is a singleton, |C| = 1, regardless
of the derived count, spaceCompositionWeak(1, (A ∗ T )R) = 0. If all of the
derived counts are in singleton components, ∀(R,C) ∈ T−1 ((A ∗ T )R >
0 =⇒ |C| = 1), then overall partition components counts space is zero,
spaceCountsPartition(A, T ) = 0.
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The derived substrate histogram coder space is

space(CA,V,T)(A) = spaceSize(y) +

spaceCountsDerived(U)(A, T ) +

spaceCountsPartition(A, T )

Compare the derived substrate histogram coder, CA,V,T, to the substrate
histogram coder, CA,V .

In the case of the full functional transform, T = {{u}CS{}T : u ∈ V }T, the
partition components counts space is zero, spaceCountsPartition(A, T ) = 0,
because the derived volume equals the underlying volume, |WC| = |V C|, and
the transform is right total, ∀(·, C) ∈ T−1 (|C| = 1). In this case the derived
counts space equals the underlying counts space,

spaceCountsDerived(U)(A, {{u}CS{}T : u ∈ V }T) = spaceCounts(U)(A)

and so the derived substrate histogram coder space equals the substrate his-
togram coder space, Cs

A,V,T(A) = Cs
A,V (A).

Conversely, in the case of the unary transform, T = {V CS}T, the derived
counts space is zero, spaceCountsDerived(U)(A, T ) = 0, because the derived
volume is a singleton, |WC| = 1. The partition components counts space
equals the underlying counts space,

spaceCountsPartition(A, {V CS}T) = spaceCounts(U)(A)

because there is only one component, C = V C. So in this case also, the
derived substrate histogram coder space equals the substrate histogram coder
space, Cs

A,V,T(A) = Cs
A,V (A).

In the domain where the size is less than or equal to the possible derived
volume, z ≤ w′, the derived counts space varies with the log possible derived
volume,

spaceCountsDerived(U)(A, T ) ∼ lnw′

In the domain where the size is greater than the possible derived volume,
z > w′, the derived counts space varies with the possible derived volume,

spaceCountsDerived(U)(A, T ) ∼ w′
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The partition components counts space can be defined in terms of derived
state or component,

spaceCountsPartition(A, T ) =
∑

(R,C)∈T−1

ln
((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

=
∑

(R,·)∈T−1

ln
((A ∗ T )R + (V C ∗ T )R − 1)!

(A ∗ T )R! ((V C ∗ T )R − 1)!

=
∑

(·,C)∈T−1

ln
(size(A ∗ C) + |C| − 1)!

size(A ∗ C)! (|C| − 1)!

This is just the logarithm of the cardinality of the set of integral iso-deriveds,

spaceCountsPartition(A, T ) = ln |D−1
U,i,T,z(A ∗ T )|

The integral iso-deriveds log-cardinality is discussed in ‘Integral iso-sets and
entropy’, above.

In the case where the volume is much greater than one, v � 1, the partition
components counts space varies against the size-volume scaled component
size cardinality sum relative entropy,

spaceCountsPartition(A, T ) ∼
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

In the domain where the size is less than or equal to the volume, z ≤ v, the
partition components counts space varies against the size scaled component
size cardinality relative entropy,

spaceCountsPartition(A, T ) ∼ −z × entropyRelative(A ∗ T, V C ∗ T )

Similarly, in the domain where the size is greater than the volume, z >
v, the partition components counts space varies against the volume scaled
component cardinality size relative entropy,

spaceCountsPartition(A, T ) ∼ −v × entropyRelative(V C ∗ T,A ∗ T )

In both domains the partition components counts space varies against the
relative entropy. That is, partition components counts space is minimised
when (a) the cross entropy is maximised and (b) the component entropy
is minimised. The cross entropy is maximised when high size components
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are low cardinality components and low size components are high cardinality
components.

Consider the difference in space betweeen the derived substrate histogram
coder, CA,V,T, and the substrate histogram coder, CA,V ,

Cs
A,V,T(A)− Cs

A,V (A)

= spaceCountsDerived(U)(A, T ) + spaceCountsPartition(A, T )−
spaceCounts(U)(A)

= ln
(z + w′ − 1)!

z! (w′ − 1)!
+

∑
(R,C)∈T−1

ln
((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!
−

ln
(z + v − 1)!

z! (v − 1)!

for each of three domains. First, in the domain where the size is less than or
equal to the possible derived volume, z ≤ w′ ≤ v, the difference varies with
the log possible derived volume and against the component size cardinality
relative entropy,

Cs
A,V,T(A)− Cs

A,V (A) ∼ lnw′ − entropyRelative(A ∗ T, V C ∗ T )

In the domain where the size is between the possible derived volume and the
volume, w′ ≤ z ≤ v, the difference varies with the possible derived volume
and against the size scaled component size cardinality relative entropy,

Cs
A,V,T(A)− Cs

A,V (A) ∼ w′ − z × entropyRelative(A ∗ T, V C ∗ T )

Last, in the domain where the size is greater than the volume, w′ ≤ v < z,
the difference varies with the possible derived volume and against the volume
scaled component cardinality size relative entropy,

Cs
A,V,T(A)− Cs

A,V (A) ∼ w′ − v × entropyRelative(V C ∗ T,A ∗ T )

So the space of the derived substrate histogram coder, CA,V,T, is minimised
when (a) the possible derived volume is minimised, (b) the component entropy
is minimised, and (c) high size components are low cardinality components
and low size components are high cardinality components.

For example, consider the mono-variate tri-valent singleton cardinal sub-
strate histogram A = {({(u, 1)}, z)}, with binary partition transform T =
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{{{(u, 1)}}, {{(u, 2)}, {(u, 3)}}}T which rolls the ineffective states into a sin-
gle derived state. The difference in space is exactly

Cs
A,V,T(A)− Cs

A,V (A) = ln
(z + 2− 1)!

z! (2− 1)!
+ ln

(z + 1− 1)!

z! (1− 1)!
+ ln

(0 + 2− 1)!

0! (2− 1)!
−

ln
(z + 3− 1)!

z! (3− 1)!

= − ln(z + 2) + ln 2

< 0

where z > 0. This example has high sizes in low cardinalities and vice-versa,
unconstrained by domain.

If the derived histogram is independent, A ∗ T = (A ∗ T )X, the derived
equals the abstract and the transform is surreal, A = (A ∗T )X ∗T�A. In this
case the derived histogram, A ∗ T , may be encoded by means of a perimeter
coder of histograms, CA,p. The space of the encoding of the perimeter is

spacePerimeter(U)(A ∗ T ) :=
∑
u∈W

ln
(z + |Uu| − 1)!

z! (|Uu| − 1)!

When compared to the histogram coder, CA, the counts space of the derived
histogram decreases, Cs

A,p(A ∗T )−Cs
A(A ∗T ) = spacePerimeter(U)(A ∗T )−

spaceCounts(U)(A ∗ T ) ≤ 0. The derived histogram is independent and so
tends to have higher entropy, entropy(A ∗ T ) = entropy((A ∗ T )X). Derived
perimeter encoding should be used in derived coders where the derived en-
tropy is expected to be high.

In contrast, if the partition components are independent, ∀C ∈ ran(T−1) (A∗
C = (A ∗ C)X), the transform is ideal, A = A ∗ T ∗ T †A. In this case, each
of the components may be encoded by means of a perimeter histogram coder
having space ∑

(R,C)∈T−1

∑
u∈V

ln
(zR + |(C%{u})F| − 1)!

zR! (|(C%{u})F| − 1)!

Note that the component may be larger than the effective cartesian sub-
volume

(A ∗ C)F = (A ∗ C)XF ≤ C

If the component is not a cartesian sub-volume, C 6= CX, the perimeter
histogram space of the component may be greater than the histogram space.
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Now consider derived substrate history coders given one functional trans-
form T ∈ TU,f,1 in variables V = und(T ). The substrate coders’ domain
HU,V,X ⊂ HU is the subset of the histories in system U where the event
identifiers are in the event identifiers set X ⊂ X , and the variables are the
given set V ⊆ vars(U),

HU,V,X = {H : H ∈ HU , ids(H) ⊆ X, vars(H) = V }

which has cardinality

|HU,V,X | =
∑

z∈{1...y}

(
y

z

)
vz

where v = |V C|.

The derived substrate histogram coder, CA,V,T, divides the histogram encoding
between (i) a derived histogram encoding, and (ii) a set of component sub-
histogram encodings. Similarly, the derived substrate history coders divide
the history encoding into (i) a derived history encoding, and (ii) a set of com-
ponent sub-history encodings. The canonical history coders are (i) the index
history coder, CH, and (ii) the classification history coder, CG. The index
history coder, CH, requires less space to encode high entropy histories than
the classification history coder, CG, and vice-versa. Each of the derived his-
tory and component sub-histories may be encoded with each of the canonical
history coders. So there are four possible derived substrate history coders : (a)
the index derived substrate history coder CH,V,T,H, which has index derived
and index components, (b) the classification derived substrate history coder
CG,V,T,G, which has classification derived and classification components, (c)
the specialising derived substrate history coder CG,V,T,H, which has classifica-
tion derived and index components, and (d) the generalising derived substrate
history coder CH,V,T,G, which has index derived and classification components.

The index derived substrate history coder is constructed

CH,V,T,H =

coderHistorySubstrateDerivedIndex(U,X, T,DS, DX) ∈ coders(HU,V,X)

The index derived substrate history coder, CH,V,T,H, is similar to an index his-
tory coder, CH. Let H ∈ HU,V,X be a history of the derived substrate history
coder domain. The derived history isH∗T whereH∗T := transform(T,H) :=
{(x, PS) : (x, S) ∈ H} and P = split(V, his(T )FS). The histogram is A =
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histogram(H). The event identifiers are encoded in space of spaceIds(y, z),
where y = |X| and z = |H| = size(A). The derived history, H ∗ T , is en-
coded in fixed width space, spaceEventsDerived(U)(H,T ) := z lnw′, where
W = der(T ), w = |WC| and w′ = |(V C ∗ T )F| = |T−1| ≤ w. Then each sub-
history, HC , corresponding to a component of the partition, HC = filter((H ∗
T )−1

R , H) = flip(filter(CS, flip(H))) ⊆ H, where (R,C) ∈ T−1, is encoded in
a fixed width list. The space of the sub-history is spaceEvents(U)(HC) =
(A ∗ T )R ln |C|. The sub-history fixed width lists are concatenated together
into a variable width list.

The history, H ∈ HU,V,X , can be encoded in an intermediate tuple TH =
((z, ZI), L

′, L) ∈ N2 × L(N)× L(N).

There is no need to encode the variables, V , because these are defined by the
transform, T , in the derived substrate history coder parameters. So the first
element, (z, ZI) ∈ N2, of the tuple, TH , encodes the event identifiers in the
same way as the index history coder, CH, above. The space is spaceIds(y, z),
where y = |X| and z = |H| = size(A).

The second element L′ ∈ L(N) of the tuple TH encodes the states of de-
rived events in a list of fixed width space. Given order DS, let M ′ be an
enumeration of the possible derived states, M ′ = order(DS, dom(T−1)). Let
w′ = |(V C ∗ T )F| = |T−1|. Then |M ′| = w′ and hence L ∈ L({1 . . . w′}).
Given order DX and event identifiers I = ids(H), let Q be an enumeration
of the event identifiers, Q = order(DX, I). Then

L′ = {(Qx,M
′
R) : (x,R) ∈ H ∗ T}

The space is spaceEventsDerived(U)(H,T ), where spaceEventsDerived(U) ∈
HU × TU,f,1 → ln N>0 is defined

spaceEventsDerived(U)(H,T ) := z lnw′

The possible derived volume is less than or equal to the derived volume,
w′ ≤ w, so the derived events space is no greater than the events space of
the derived history, spaceEventsDerived(U)(H,T ) ≤ spaceEvents(U)(H ∗T ).
The possible derived volume equals the derived volume if and only if the
transform is non-overlapped, ¬overlap(T ) ⇐⇒ w′ = w, because it is only
in this case that the transform is right total, dom(T−1) = WCS. In this
case, the derived events space equals the events space of the derived history,
¬overlap(T ) ⇐⇒ spaceEventsDerived(U)(H,T ) = spaceEvents(U)(H ∗ T ).
The possible derived volume is less than or equal to the underlying volume,
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w′ ≤ v, so the derived events space is no greater than the events space of the
history, spaceEventsDerived(U)(H,T ) ≤ spaceEvents(U)(H).

The last element L ∈ L(N) of the tuple, TH , encodes the underlying states
of derived events. Given order DS and variables V = vars(H), let M be a
map of enumerations indexed by derived state

M = {(R, order(DS, C
S)) : (R,C) ∈ T−1}

Then
L = {(Qx,MR(S)) : (x, S) ∈ H, R = PS}

where P = split(V, his(T )S). Define the space of the list, L, encoding the
partitioned events of history H as spaceEventsPartition ∈ A× Tf → ln N>0

spaceEventsPartition(A, T ) :=
∑

(R,C)∈T−1

(A ∗ T )R ln |C|

The total space of the index derived substrate history coder, CH,V,T,H, of a
history H ∈ HU,V,X is the sum of the ids space, derived events space, and
partitioned events space

space(CH,V,T,H)(H) = spaceIds(|X|, |H|) +

spaceEventsDerived(U)(H,T ) +

spaceEventsPartition(A, T )

The index derived substrate history coder, CH,V,T,H, may be compared to
the index substrate history coder, CH,V ∈ coders(HU,V,X). The difference in
space for a history H ∈ HU,V,X is

Cs
H,V,T,H(H)− Cs

H,V (H)

= spaceEventsDerived(U)(H,T ) + spaceEventsPartition(A, T )−
spaceEvents(U)(H)

= z lnw′ +
∑

(R,C)∈T−1

(A ∗ T )R ln |C| −

z ln v

The partitioned events space varies against the component size cardinality
cross entropy,

spaceEventsPartition(A, T ) :=
∑

(R,C)∈T−1

(A ∗ T )R ln |C|

∼ − entropyCross(A ∗ T, V C ∗ T )

378



The difference varies with the log possible derived volume and varies against
the component size cardinality cross entropy,

Cs
H,V,T,H(H)− Cs

H,V (H) ∼ lnw′ − entropyCross(A ∗ T, V C ∗ T )

So the space of the index derived substrate history coder, CH,V,T,H, is min-
imised when (a) the possible derived volume is minimised, and (b) high size
components are low cardinality components and low size components are high
cardinality components.

For example, consider the mono-variate tri-valent singleton cardinal substrate
histogram A = {({(u, 1)}, z)}, where vars(A) = {u}, with binary partition
transform T = {{{(u, 1)}}, {{(u, 2)}, {(u, 3)}}}T which rolls the ineffective
states into a single derived state. The difference in space is

Cs
H,V,T,H(H)− Cs

H,V (H) = z ln 2 + z ln 1 + 0 ln 2− z ln 3

= z ln 2/3

< 0

where z > 0. Equivalently, the expected logarithm of the component cardi-
nality scaled by the derived volume fraction is

Cs
H,V,T,H(H)− Cs

H,V (H) = z
2

2
ln

(
2

3
× 1

)
+ z

0

2
ln

(
2

3
× 2

)
= z ln 2/3

A transform T that partitions the volume, TP ∈ B(V CS), into components
having the same cardinality, ∀C ∈ ran(T−1) (|C| = v/w′), and the same size,
∀C ∈ ran(T−1) (size(A ∗ C) = z/w′), has no space difference

Cs
H,V,T,H(H)− Cs

H,V (H) = w′
z

w′
ln
w′

v

v

w′

= 0

An example is where the derived histogram is a scaled cartesian, A ∗ T =
resize(z,WC), and the component cardinalities equal the derived volume fac-
tor, ∀C ∈ ran(T−1) (|C| = v/w).

The classification derived substrate history coder is constructed

CG,V,T,G =

coderHistorySubstrateDerivedClassification(U,X, T,DS, DX)

∈ coders(HU,V,X)
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The classification derived substrate history coder, CG,V,T,G, is similar to a
classification history coder, CG. Let H ∈ HU,V,X be a history of the derived
substrate history coder domain. The derived history is H ∗ T . The his-
togram is A = histogram(H). The event identifiers are encoded in space
of spaceIds(y, z). The derived histogram, A ∗ T , is encoded in space of
spaceCountsDerived(U)(A, T ). The derived history, H ∗ T , is encoded as a
classification, (H ∗ T )−1 = classification(H ∗ T ). The classification has space
of spaceClassification(A ∗ T ). Then each sub-history, HC , corresponding to
a component of the partition, HC ⊆ H, where (R,C) ∈ T−1, is encoded as a
component histogram having space spaceCounts(U)(A ∗C) and a component
classification having space spaceClassification(A ∗ C).

The history, H ∈ HU,V,X , can be encoded in an intermediate tuple TH =
((z, ZI), R

′
A∗T , F

′
Q′ , L,M) ∈ N2 ×N×N× L(N)× L(N).

The first element, (z, ZI) ∈ N2, of the tuple, TH , encodes the event iden-
tifiers in the same way as the index history coder, CH, above. The space is
spaceIds(y, z), where y = |X| and z = |H| = size(A).

The second element, R′A∗T ∈ N, of the tuple, TH , is the encoding of the
derived counts as in the derived histogram coder, CA,V,T, above,

R′A∗T ∈ {1 . . .
(z + w′ − 1)!

z! (w′ − 1)!
}

where W = der(T ), w = |WC| and w′ = |(V C ∗ T )F| = |T−1| ≤ w. The space
is spaceCountsDerived(U)(A, T ).

The third element, F ′Q′ ∈ N, of the tuple, TH , is the encoding of the classifi-
cation of the derived history (H ∗T )−1, as in the classification history coder,
CG, above. Here Q′ is the partition of event identifiers, Q′ = ran((H∗T )−1) ∈
B(ids(H)), and F ′ is an enumeration of the possible partitions of correspond-
ing component cardinalities,

F ′ ∈ enums({P : P ∈ B(ids(H)), ∃X ∈ P :↔: Q′ ∀(Y, Z) ∈ X (|Y | = |Z|)})

so that

F ′Q′ ∈ {1 . . . z!∏
R∈dom((H∗T )−1) |(H ∗ T )−1

R |!
}

= {1 . . . z!∏
R∈(A∗T )S(A ∗ T )R!

}
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The space is spaceClassification(A ∗ T ).

The fourth element L ∈ L(N) of the tuple, TH , encodes the counts of com-
ponents. For all (R,C) ∈ T−1 let

RR(A ∗ C) ∈ {1 . . . ((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!
}

Then
L = {(M ′

R, RR(A ∗ C)) : (R,C) ∈ T−1}

The space is spaceCountsPartition(A, T ).

The last element M ∈ L(N) of the tuple, TH , encodes the classifications
of components. For all (R,C) ∈ T−1 let QR = ran(H−1

C ) ∈ B(ids(HC)) and

FR ∈ enums({P : P ∈ B(ids(HC)), ∃X ∈ P :↔: QR ∀(Y, Z) ∈ X (|Y | = |Z|)})

so that

FR(QR) ∈ {1 . . . (A ∗ T )R!∏
S∈CS AS!

}

in
M = {(M ′

R, FR(QR)) : (R,C) ∈ T−1}

Define the space of the list, M , encoding the partitioned classifications of the
sub-histories of H as spaceClassificationPartition ∈ A× Tf → ln N>0

spaceClassificationPartition(A, T ) :=
∑

(R,C)∈T−1

(
ln(A ∗ T )R!−

∑
S∈CS

lnAS!
)

=
∑

(R,·)∈T−1

(
ln(A ∗ T )R!

)
−
∑
S∈AS

(
lnAS!

)
which is such that

spaceClassification(A) = spaceClassification(A ∗ T ) +

spaceClassificationPartition(A, T )

The total space of the classification derived substrate history coder, CG,V,T,G,
of a history H ∈ HU,V,X is the sum of the ids space, derived counts space,
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derived classification space, partitioned counts space, and partitioned classifi-
cation space

space(CG,V,T,G)(H) = spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceCountsPartition(A, T ) +

spaceClassificationPartition(A, T )

= spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A, T ) +

spaceCountsPartition(A, T ) +

spaceClassification(A)

The classification derived substrate history coder, CG,V,T,G, may be com-
pared to the classification substrate history coder, CG,V ∈ coders(HU,V,X).
The difference in space for a history H ∈ HU,V,X equals the difference in
space between the derived substrate histogram coder, CA,V,T, and the sub-
strate histogram coder, CA,V , for the histogram A = histogram(H),

Cs
G,V,T,G(G)− Cs

G,V (G)

= spaceCountsDerived(U)(A, T ) + spaceCountsPartition(A, T )−
spaceCounts(U)(A)

= Cs
A,V,T(A)− Cs

A,V (A)

= ln
(z + w′ − 1)!

z! (w′ − 1)!
+

∑
(R,C)∈T−1

ln
((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!
−

ln
(z + v − 1)!

z! (v − 1)!

So the space of the classification derived substrate history coder, CG,V,T,G, is
minimised when (a) the possible derived volume is minimised, (b) the compo-
nent entropy is minimised, and (c) high size components are low cardinality
components and low size components are high cardinality components.

The specialising derived substrate history coder is constructed

CG,V,T,H =

coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)

∈ coders(HU,V,X)
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The specialising derived substrate history coder, CG,V,T,H, is intermediate be-
tween a classification history coder, CG, and an index history coder, CH. Let
H ∈ HU,V,X be a history of the derived substrate history coder domain. The
derived history isH∗T . The histogram is A = histogram(H). The event iden-
tifiers are encoded in space of spaceIds(y, z). The derived histogram, A ∗ T ,
is encoded in space of spaceCountsDerived(U)(A, T ). The derived history,
H ∗T , is encoded as a classification, (H ∗T )−1 = classification(H ∗T ), having
space of spaceClassification(A ∗ T ). Then each sub-history, HC , correspond-
ing to a component of the partition, HC ⊆ H, where (R,C) ∈ T−1, is encoded
in a fixed width list. The space of the sub-history is spaceEvents(U)(HC) =
(A ∗ T )R ln |C|. The sub-history fixed width lists are concatenated together
into a variable width list which has space spaceEventsPartition(A, T ).

The history, H ∈ HU,V,X , can be encoded in an intermediate tuple TH =
((z, ZI), R

′
A∗T , F

′
Q′ , L) ∈ N2 ×N×N× L(N).

The first element, (z, ZI) ∈ N2, of the tuple, TH , encodes the event iden-
tifiers in the same way as the index history coder, CH, above. The space is
spaceIds(y, z), where y = |X| and z = |H| = size(A).

The second element, R′A∗T ∈ N, and the third element, F ′Q′ ∈ N, of the
tuple, TH , are encoded as in the classification derived substrate history coder,
CG,V,T,G, above. The space is

spaceCountsDerived(U)(A, T ) + spaceClassification(A ∗ T )

The last element L ∈ L(N) of the tuple, TH , encodes the underlying states
of derived events in the same way as for the index derived substrate history
coder, CH,V,T,H, above. The space is spaceEventsPartition(A, T ).

The total space of the specialising derived substrate history coder, CG,V,T,H,
of a history H ∈ HU,V,X is the sum of the ids space, derived counts space,
derived classification space, and partitioned events space

space(CG,V,T,H)(H) = spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )

The space of the specialising derived substrate history coder, CG,V,T,H, is
minimised for a history H ∈ HU,V,X which has a single state S1, H ∈

383



X → {S1}, in the case of one functional transform T ∈ TU,f,1 which (i)
is non-overlapping, ¬overlap(T ), so the possible derived volume equals the
derived volume, w′ = w where w′ = |T−1|, W = der(T ), and w = |WCS|,
(ii) has two derived states, {R1, R2} = WCS, of which only one is effective,
(A ∗ T )R1 = AS1 = z and (A ∗ T )R2 = 0 where A = histogram(H) and
z = |H|, and (iii) is such that the component C1 = {S1}U corresponding to
the effective derived state, R1, is a singleton, |C1| = 1, and the remaining
volume, |C2| = v − 1, corresponds to the ineffective derived state, R2, where
{(R1, C1), (R2, C2)} = T−1, and v = |V CS|.

The partitioned events space varies against the component size cardinality
cross entropy,

spaceEventsPartition(A, T ) :=
∑

(R,C)∈T−1

(A ∗ T )R ln |C|

= z ln v − z × entropyCross(A ∗ T, V C ∗ T )

The partitioned events space is minimised when high size components are low
cardinality components and low size components are high cardinality compo-
nents. In the case of single state history, H, and single effective derived
state transform, T , all of the size is in a singleton component, size(A ∗C1) =
(A ∗ T )R1 = AS1 = z, and hence the partitioned events space is zero.

The derived counts space,

spaceCountsDerived(U)(A, T ) := ln
(z + w′ − 1)!

z! (w′ − 1)!

is minimised for fixed size, z, when the possible derived volume is small-
est, w′ = 1. Then the derived counts space is zero. In that case, however,
the partitioned events space would be z ln v. In the case of the transform,
T , the possible derived volume is two, w′ = 2, the derived counts space is
ln(z + 1) < z ln v, and so the overall space is smaller.

In the domain where the size is less than or equal to the possible derived
volume, z ≤ w′, the derived counts space varies with the log possible derived
volume,

spaceCountsDerived(U)(A, T ) ∼ lnw′

In the domain where the size is greater than the possible derived volume,
z > w′, the derived counts space varies with the possible derived volume,

spaceCountsDerived(U)(A, T ) ∼ w′
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The derived classification space varies with the derived entropy

spaceClassification(A ∗ T ) := ln z!−
∑

(R,·)∈T−1

ln(A ∗ T )R!

∼ z × entropy(A ∗ T )

So the derived classification space is minimised when the derived entropy
or component size entropy, entropy(A ∗ T ), is minimised. This is the case
here of single effective derived state, |(A ∗ T )F| = 1, which has zero entropy,
entropy(A∗T ) = 0 and zero derived classification space, spaceClassification(A∗
T ) = 0.

The transform, T , described above only minimises the space where the history
has one state, A = {(S1, z)}. If there is more than one effective state, |AF| >
1, the derived classification space is non-zero, spaceClassification(A∗T ) > 0,
and so there is a balance between the increasing derived entropy, entropy(A∗
T ), and the increasing derived counts space, spaceCountsDerived(U)(A, T ),
caused by increasing possible derived volume, w′. Also the partitioned events
space, spaceEventsPartition(A, T ), may be non-zero if the components are
not all singletons.

The space of the specialising derived substrate history coder, CG,V,T,H, is

space(CG,V,T,H)(H) = spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )

= spaceIds(|X|, |H|) +

ln
(z + w′ − 1)!

z! (w′ − 1)!
+

ln z!−
∑

R∈(A∗T )S

ln(A ∗ T )R! +

∑
(R,C)∈T−1

(A ∗ T )R ln |C|

The space of the specialising derived substrate history coder, CG,V,T,H, varies
(i) with the possible derived volume, w′, where the possible derived volume is
less than the size, w′ < z, otherwise with the size scaled log possible derived
volume, z lnw′, and (ii) against the size scaled component size cardinality
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relative entropy,

Cs
G,V,T,H(H) ∼

(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyRelative(A ∗ T, V C ∗ T )

So the space of the specialising derived substrate history coder, CG,V,T,H, is
minimised when (a) the possible derived volume is minimised, (b) the derived
entropy or component size entropy is minimised, and (c) high size components
are low cardinality components and low size components are high cardinality
components.

Compare the specialising derived substrate history coder, CG,V,T,H, to the
index derived substrate history coder, CH,V,T,H. The difference in space of the
history, H, is

Cs
G,V,T,H(H)− Cs

H,V,T,H(H)

In the case of non-overlapping transform, ¬overlap(T ), the difference in space
of the history, H, equals the difference in space of the derived history, H ∗T ,
between the classification history coder, CG, and the index history coder, CH,

Cs
G,V,T,H(H)− Cs

H,V,T,H(H) = Cs
G(H ∗ T )− Cs

H(H ∗ T )

As shown in section ‘Classification space‘, above, the classification coder, CG,
may require less space than the index coder, CH, in the case of low entropy.
So if the derived histogram, A∗T , has low entropy, then the specialising coder,
CG,V,T,H, may have smaller space than the index derived coder, CH,V,T,H. For
example, a regular pluri-derived-variate transform T1, of derived valency d
and derived dimension n > 1, where the derived histogram is uniformly diag-
onalised, has lower entropy than a transform T2 which has uniform cartesian
congruent derived histogram,

entropy(A ∗ T1)− entropy(A ∗ T2) =

(
− ln

1

d

)
−
(
− ln

1

dn

)
= −(n− 1) ln d

< 0

The difference in space between the specialising derived substrate history
coder, CG,V,T,H, and the index substrate history coder, CH,V , is

Cs
G,V,T,H(H)− Cs

H,V (H)
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In the case of non-overlapping transform, ¬overlap(T ), this simplifies to

Cs
G,V,T,H(H)− Cs

H,V (H) = Cs
G,V,T,H(H)− Cs

H,V,T,H(H) +

Cs
H,V,T,H(H)− Cs

H,V (H)

= Cs
G(H ∗ T )− Cs

H(H ∗ T ) +

Cs
H,V,T,H(H)− Cs

H,V (H)

The difference in space between the specialising derived substrate history
coder, CG,V,T,H, and the classification derived substrate history coder, CG,V,T,G,
equals the difference in summed space between the index history coder, CH,
and the classification history coder, CG, for each of the components,

Cs
G,V,T,H(H)− Cs

G,V,T,G(H) =
∑

(·,C)∈T−1

Cs
H(HC)− Cs

G(HC)

where the sliced-history is defined HC = {(x, S) : (x, S) ∈ H, {S}U ∗ C 6=
∅} ⊆ H. The space of the components will be lower in the index history coder,
CH, if their entropies are high. This is the case, for example, if the transform
is ideal, A = A∗T∗T †A, and the histogram is completely effective, AF = V C. A
special case is the frame full functional transform, T = {{u}CS{}V T : u ∈ V }T.
In this case the difference in summed component space is zero.

The difference in space between the specialising derived substrate history
coder, CG,V,T,H, and the classification substrate history coder, CG,V , is

Cs
G,V,T,H(H)− Cs

G,V (H) = Cs
G,V,T,H(H)− Cs

G,V,T,G(H) +

Cs
G,V,T,G(H)− Cs

G,V (H)

=
∑

(·,C)∈T−1

(
Cs

H(HC)− Cs
G(HC)

)
+

Cs
A,V,T(A)− Cs

A,V (A)

Given some substrate history H ∈ HU,V,X , the transform T in the pa-
rameters of the specialising derived substrate history coder, CG,V,T,H, may be
chosen to minimise the encoding space with respect to the space in either
of the canonical history coders, (i) the index history coder, CH, and (ii) the
classification history coder, CG. That is, the transform is chosen to minimise(

Cs
G,V,T,H(H)− Cs

H,V (H)
)

+
(
Cs

G,V,T,H(H)− Cs
G,V (H)

)
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In the case of non-overlapping transform, ¬overlap(T ), this simplifies to(
Cs

G,V,T,H(H)− Cs
H,V (H)

)
+
(
Cs

G,V,T,H(H)− Cs
G,V (H)

)
=

(
Cs

G,V,T,H(H)− Cs
H,V,T,H(H)

)
+
(
Cs

H,V,T,H(H)− Cs
H,V (H)

)
+(

Cs
G,V,T,H(H)− Cs

G,V,T,G(H)
)

+
(
Cs

G,V,T,G(H)− Cs
G,V (H)

)
=

(
Cs

G(H ∗ T )− Cs
H(H ∗ T )

)
+
(
Cs

H,V,T,H(H)− Cs
H,V (H)

)
+∑

(·,C)∈T−1

(
Cs

H(HC)− Cs
G(HC)

)
+
(
Cs

A,V,T(A)− Cs
A,V (A)

)
The first term, Cs

G(H ∗ T ) − Cs
H(H ∗ T ), varies with the derived entropy or

component size entropy,

Cs
G(H ∗ T )− Cs

H(H ∗ T ) ∼ entropy(A ∗ T )

The third term,
∑

(·,C)∈T−1

(
Cs

H(HC) − Cs
G(HC)

)
, varies against the size ex-

pected component entropy∑
(·,C)∈T−1

(
Cs

H(HC)− Cs
G(HC)

)
∼ −

∑
(R,C)∈T−1

(Â ∗ T )R × entropy(A ∗ C)

= − entropyComponent(A, T )

The second term, Cs
H,V,T,H(H)−Cs

H,V (H), varies with the log possible derived
volume and varies against the component size cardinality cross entropy,

Cs
H,V,T,H(H)− Cs

H,V (H) ∼ lnw′ − entropyCross(A ∗ T, V C ∗ T )

The fourth term, Cs
A,V,T(A)−Cs

A,V (A), varies as follows. First, in the domain
where the size is less than or equal to the possible derived volume, z ≤ w′ ≤ v,
the difference varies with the log possible derived volume and against the
component size cardinality relative entropy,

Cs
A,V,T(A)− Cs

A,V (A) ∼ lnw′ − entropyRelative(A ∗ T, V C ∗ T )

In the domain where the size is between the possible derived volume and the
volume, w′ ≤ z ≤ v, the difference varies with the possible derived volume
and against the size scaled component size cardinality relative entropy,

Cs
A,V,T(A)− Cs

A,V (A) ∼ w′ − z × entropyRelative(A ∗ T, V C ∗ T )
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Last, in the domain where the size is greater than the volume, w′ ≤ v < z,
the difference varies with the possible derived volume and against the volume
scaled component cardinality size relative entropy,

Cs
A,V,T(A)− Cs

A,V (A) ∼ w′ − v × entropyRelative(V C ∗ T,A ∗ T )

The specialising-index space difference is

Cs
G,V,T,H(H)− Cs

H,V (H) = spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )−
spaceEvents(U)(A, T )

= ln
(z + w′ − 1)!

z! (w′ − 1)!

+ ln z!−
∑

R∈(A∗T )S

ln(A ∗ T )R!

+
∑

(R,C)∈T−1

(A ∗ T )R ln |C| −

− z ln v

This varies just as the specialising space, Cs
G,V,T,H(H). That is, the specialising-

index space difference varies (i) with the possible derived volume, w′, where
the possible derived volume is less than the size, w′ < z, otherwise with the
size scaled log possible derived volume, z lnw′, and (ii) against the size scaled
component size cardinality relative entropy,

Cs
G,V,T,H(H)− Cs

H,V (H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyRelative(A ∗ T, V C ∗ T )
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The specialising-classification space difference is

Cs
G,V,T,H(H)− Cs

G,V (H) = spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )−
spaceCounts(U)(A)−
spaceClassification(A)

= ln
(z + w′ − 1)!

z! (w′ − 1)!

+ ln z!−
∑

R∈(A∗T )S

ln(A ∗ T )R!

+
∑

(R,C)∈T−1

(A ∗ T )R ln |C|

− ln
(z + v − 1)!

z! (v − 1)!

−
(

ln z!−
∑
S∈AS

lnAS!
)

So the specialising-classification space difference varies as

Cs
G,V,T,H(H)− Cs

G,V (H) ∼ ln
(z + w′ − 1)!

z! (w′ − 1)!

+
∑

(R,C)∈T−1

(A ∗ T )R ln |C|

−
∑

(R,C)∈T−1

(
ln(A ∗ T )R!−

∑
S∈CS

ln(A ∗ C)S!
)

The specialising-classification space difference varies (i) with the possible de-
rived volume, w′, where w′ < z, otherwise with the size scaled log possible
derived volume, z lnw′, (ii) against the size scaled component size cardinal-
ity cross entropy and (iii) against the size scaled size expected component
entropy,

Cs
G,V,T,H(H)− Cs

G,V (H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyCross(A ∗ T, V C ∗ T )

− z × entropyComponent(A, T )

Overall, the specialising-canonical space difference, 2Cs
G,V,T,H(H)−Cs

H,V (H)−
Cs

G,V (H), is the sum of the specialising-index space difference, Cs
G,V,T,H(H)−
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Cs
H,V (H), and the specialising-classification space difference, Cs

G,V,T,H(H) −
Cs

G,V (H). The specialising-canonical space difference varies (i) with twice
the possible derived volume, 2w′, where w′ < z, otherwise with twice the size
scaled log possible derived volume, 2z lnw′, (ii) with the size scaled derived
entropy, (iii) against twice the size scaled component size cardinality cross
entropy and (iv) against the size scaled size expected component entropy,

2Cs
G,V,T,H(H)− Cs

H,V (H)− Cs
G,V (H) ∼

2
(
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

)
+ z × entropy(A ∗ T )

− 2z × entropyCross(A ∗ T, V C ∗ T )

− z × entropyComponent(A, T )

So the specialising-canonical space difference, 2Cs
G,V,T,H(H) − Cs

H,V (H) −
Cs

G,V (H), is minimised when (a) the possible derived volume is minimised,
(b) the derived entropy is minimised, (c) high size components are low cardi-
nality components and low size components are high cardinality components,
and (d) the expected component entropy is maximised.

The canonical term, Cs
H,V (H) + Cs

G,V (H), is independent of the transform,
T , so properties of the specialising-canonical space difference, 2Cs

G,V,T,H(H)−
Cs

H,V (H)−Cs
G,V (H), are also properties of the specialising space, Cs

G,V,T,H(H).
This is because the derived entropy, entropy(A ∗ T ), and the size expected
component entropy, entropyComponent(A, T ), are dual.

The fourth derived coder is the generalising derived substrate history coder,
constructed

CH,V,T,G =

coderHistorySubstrateDerivedGeneralising(U,X, T,DS, DX)

∈ coders(HU,V,X)

The generalising derived substrate history coder, CH,V,T,G, is intermediate be-
tween an index history coder, CH and a classification history coder, CG. Let
H ∈ HU,V,X be a history of the derived substrate history coder domain. The
derived history isH∗T . The histogram is A = histogram(H). The event iden-
tifiers are encoded in space of spaceIds(y, z). The derived history, H ∗ T , is
encoded in fixed width space, spaceEventsDerived(U)(H,T ) := z lnw′, where
w′ = |T−1|. Then each sub-history, HC , corresponding to a component of
the partition, HC ⊆ H, where (R,C) ∈ T−1, is encoded as a component his-
togram having space spaceCounts(U)(A ∗ C) and a component classification
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having space spaceClassification(A ∗ C).

The history, H ∈ HU,V,X , can be encoded in an intermediate tuple TH =
((z, ZI), L

′, L,M) ∈ N2 × L(N)× L(N)× L(N).

The first element, (z, ZI) ∈ N2, of the tuple, TH , encodes the event iden-
tifiers in the same way as the index history coder, CH, above. The space is
spaceIds(y, z), where y = |X| and z = |H| = size(A).

The second element, L′ ∈ L(N), of the tuple, TH , is encoded as in the index
derived substrate history coder, CH,V,T,H, above. The space of this element is
spaceEventsDerived(U)(H,T ) := z lnw′.

The third element, L ∈ L(N), and the last element, M ∈ L(N), of the
tuple, TH , are encoded as in the classification derived substrate history coder,
CG,V,T,G, above. The space is

spaceCountsPartition(A, T ) + spaceClassificationPartition(A, T )

The total space of the generalising derived substrate history coder, CH,V,T,G,
of a history H ∈ HU,V,X is the sum of the ids space, derived events space,
partitioned counts space, and partitioned classification space

space(CH,V,T,G)(H) = spaceIds(|X|, |H|) +

spaceEventsDerived(U)(H,T ) +

spaceCountsPartition(A, T ) +

spaceClassificationPartition(A, T )

Similar to the specialising coder, CG,V,T,H, above, given some substrate his-
tory H ∈ HU,V,X , the transform T in the parameters of the generalising
derived substrate history coder, CH,V,T,G, may be chosen to minimise the en-
coding space with respect to the space in either of the canonical history
coders, (i) the classification history coder, CG, and (ii) the index history
coder, CH. That is, the transform is chosen to minimise(

Cs
H,V,T,G(H)− Cs

G,V (H)
)

+
(
Cs

H,V,T,G(H)− Cs
H,V (H)

)
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In the case of non-overlapping transform, ¬overlap(T ), this simplifies to(
Cs

H,V,T,G(H)− Cs
G,V (H)

)
+
(
Cs

H,V,T,G(H)− Cs
H,V (H)

)
=

(
Cs

H,V,T,G(H)− Cs
G,V,T,G(H)

)
+
(
Cs

G,V,T,G(H)− Cs
G,V (H)

)
+(

Cs
H,V,T,G(H)− Cs

H,V,T,H(H)
)

+
(
Cs

H,V,T,H(H)− Cs
H,V (H)

)
=

(
Cs

H(H ∗ T )− Cs
G(H ∗ T )

)
+
(
Cs

A,V,T(A)− Cs
A,V (A)

)
+∑

(·,C)∈T−1

(
Cs

G(HC)− Cs
H(HC)

)
+
(
Cs

H,V,T,H(H)− Cs
H,V (H)

)
The first term, Cs

H(H ∗ T )−Cs
G(H ∗ T ), equals the negative of the first term

of the specialising-canonical space difference. The second term, Cs
A,V,T(A)−

Cs
A,V (A), equals the fourth term of the specialising-canonical space difference.

The third term,
∑

(·,C)∈T−1

(
Cs

G(HC) − Cs
H(HC)

)
, equals the negative of the

third term of the specialising-canonical space difference. The fourth term,
Cs

H,V,T,H(H)− Cs
H,V (H), equals the second term of the specialising-canonical

space difference.

Thus, the generalising-canonical space difference, 2Cs
H,V,T,G(H)−Cs

G,V (H)−
Cs

H,V (H), is minimised when (a) the possible derived volume is minimised, (b)
the derived entropy or component size entropy is maximised, (c) the expected
component entropy is minimised, and (d) high size components are low cardi-
nality components and low size components are high cardinality components.

The four derived substrate history coders, (a) the index derived substrate
history coder, CH,V,T,H, (b) the classification derived substrate history coder,
CG,V,T,G, (c) the specialising derived substrate history coder, CG,V,T,H, and
(d) the generalising derived substrate history coder, CH,V,T,G, all encode the
history by means of a one functional transform T ∈ TU,f,1 in variables
V = und(T ). Now consider extending the model for the specialising de-
rived substrate history coder, CG,V,T,H, to (i) fuds, (ii) decompositions, and
(iii) fud decompositions.

Given the one functional definition set F ∈ FU,1, such that und(F ) = V ,
which is constrained such that only first layer transforms depend on the sub-
strate, ∀T ∈ F (und(T ) * V =⇒ und(T )∩ V = ∅), a substrate history H ∈
HU,V,X could be encoded simply by encoding each of the transforms sepa-
rately in a specialising coder. The total space of coder C(F ) ∈ coders(HU,V,X)
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would be

C(F )s(H) =
∑

(CG,VT ,T,H(T )s(H%VT )− s : T ∈ F, VT ⊆ V )

+
∑

(CG,VT ,T,H(T )s(H ∗ dep(F, VT )T)− s : T ∈ F, VT * V )

+ s

where s = spaceIds(|X|, |H|), VT = und(T ), dep = depends and the special-
ising derived substrate history coder is constructed

CG,V,T,H(T ) = coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)

This method of encoding, however, means that any fud, F , requires at least as
much space as its bottom layer, C(F )s(H) ≥ C({T : T ∈ F, VT ⊆ V })s(H).
This is because the bottom layer has complete coverage of the substrate and
so the history can be decoded from the decodings of the reduced histories of
the bottom layer coders, {H%VT : T ∈ F, VT ⊆ V }.

Consider a two layer fud F = {T1, T2}, where V1 = V and V2 = W1. A
specialising coder of the first layer, CG,V1,T,H(T1), encodes the derived his-
tory, H ∗ T1, in a classification coder which has a space of Cs

G,W1
(H ∗ T1)

(ignoring ids space). In some cases, however, the first layer derived history
may be encoded in less space by means of a specialising coder of the second
layer, if CG,V2,T,H(T2)s(H ∗ T1) < Cs

G,W1
(H ∗ T1). So consider a coder that

encodes the layer derived history in the layer above if it exists. The space in
this case is the sum of the ids space, second layer derived counts space, second
layer derived classification space, second layer partitioned events space and
first layer partitioned events space,

CG,V1,T,H(T1)s(H)− Cs
G,W1

(H ∗ T1) + CG,V2,T,H(T2)s(H ∗ T1) =

spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A, T2) +

spaceClassification(A ∗ T1 ∗ T2) +

spaceEventsPartition(A ∗ T1, T2) +

spaceEventsPartition(A, T1)

The difference in space is

CG,V2,T,H(T2)s(H ∗ T1)− Cs
G,W1

(H ∗ T1) =∑
(·,C)∈T−1

2

(
Cs

H((H ∗ T1)C)− Cs
G((H ∗ T1)C)

)
+

CA,V2,T(T2)s(A ∗ T1)− Cs
A,V2

(A ∗ T1)
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which is sometimes negative.

The specialising fud substrate history coder is constructed

CG,V,F,H(F ) =

coderHistorySubstrateFudSpecialising(U,X, F,DS, DX) ∈ coders(HU,V,X)

The total space of the specialising fud substrate history coder, CG,V,F,H, of a
history H ∈ HU,V,X is the sum of the specialising derived substrate history
coder space for each transform less the sum of the classification history coder
space for each transform which has derived variables that are not in the fud
derived variables,

space(CG,V,F,H(F ))(H) =∑
(CG,VT ,T,H(T )s(H%VT )− s : T ∈ F, VT ⊆ V )

+
∑

(CG,VT ,T,H(T )s(H ∗ dep(F, VT )T)− s : T ∈ F, VT * V )

−
∑

(Cs
G,WT

(H ∗ dep(F,WT )T)− s : T ∈ F, WT ∩ der(F ) = ∅)
+ s

This definition can be generalised to allow for fuds having transforms higher
than the first layer that have underlying variables in the substrate, und(T )∩
V /∈ {∅, und(T )},

space(CG,V,F,H(F ))(H) =∑
(CG,VT ,T,H(T )s(HF%VT )− s : T ∈ F )

−
∑

(Cs
G,WT

(HF%WT )− s : T ∈ F, WT ∩ der(F ) = ∅)
+ s

where the history, HF , is the expanded history to vars(F ),

HF = {(x, S) : (x,R) ∈ H, (S, ·) ∈
∏

(X,·)∈F

X, R ⊆ S}

Note that, given a fud that has underlying variables that are a proper subset
of the substrate, und(F ) ⊂ V , the fud can be expanded to the remaining
variables L = V \ und(F ) by adding a unary partition transform, {LCS}T,
which adds space of Cs

H,L(H%L)− s.

Note also that, given a fud that has a transform T ∈ F having derived vari-
ables that are partially a subset of the fud derived variables, WT ∩ der(F ) ⊂
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WT , the fud can be altered to save the classification space of the remaining
variables LT = WT ∩ der(F ) by adding a self partition transform, L

CS{}T
T ,

which subtracts space of Cs
G,WT

(HF%WT )− Cs
G,LT

(HF%LT ).

In the law-like case where the fud has a top transform, ∃T ∈ F (WT =
der(F )), the space is

space(CG,V,F,H(F ))(H) =

spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A,FT) +

spaceClassification(A ∗ FT) +∑
T∈F

spaceEventsPartition(A ∗ dep(F, VT )T, T )

Let w′ be the possible derived volume of the transform of the fud, w′ =
|(FT)−1|. The space of the specialising fud substrate history coder, CG,V,F,H,
varies (i) with the possible fud derived volume, w′, where the possible fud
derived volume is less than the size, w′ < z, otherwise with the size scaled
log possible fud derived volume, z lnw′, (ii) with the size scaled transform fud
derived entropy and (iii) against the sum of the size scaled component size
cardinality cross entropies of the transforms of the fud,

CG,V,F,H(F )s(H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

+ z × entropy(A ∗ FT)

− z ×
∑
T∈F

entropyCross(A ∗ dep(F,WT )T, V C
T ∗ T )

So the space of the specialising fud substrate history coder, CG,V,F,H, is min-
imised when (a) the possible fud derived volume is minimised, (b) the derived
entropy or component size entropy of the fud transform is minimised, and
(c) high size components are low cardinality components and low size com-
ponents are high cardinality components for each of the fud transforms.

Consider a transform T added to the top of a fud F . As mentioned above,
in some cases the specialising space of the transform, T , is less than the clas-
sification space of its underlying. The change in the specialising fud coder
space equals the difference between the specialising space and the underlying
classification space of the transform,

CG,V,F,H(F ∪ {T})s(H)− CG,V,F,H(F )s(H) =

CG,VT ,T,H(T )s(H ∗ FT)− Cs
G,VT

(H ∗ FT)
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Recursing for all transforms, conjecture that the specialising-classification
space difference for the fud varies with the sum of the specialising-classification
space differences for the transforms,

CG,V,F,H(F )s(H)− Cs
G,V (H) ∼∑

T∈F

(
CG,VT ,T,H(T )s(H ∗ dep(F, VT )T)− Cs

G,VT
(H ∗ dep(F, VT )T)

)
Conjecture that it is also the case that the specialising-index space difference
for the fud varies with the sum of the specialising-index space differences for
the transforms,

CG,V,F,H(F )s(H)− Cs
H,V (H) ∼∑

T∈F

(
CG,VT ,T,H(T )s(H ∗ dep(F, VT )T)− Cs

H,VT
(H ∗ dep(F, VT )T)

)
Together the specialising-canonical space difference for the fud varies with
the sum of the specialising-canonical space differences for the transforms,

2CG,V,F,H(F )s(H)− Cs
H,V (H)− Cs

G,V (H) ∼∑
T∈F

(
2CG,VT ,T,H(T )s(H ∗ dep(F, VT )T)

−Cs
H,VT

(H ∗ dep(F, VT )T)− Cs
G,VT

(H ∗ dep(F, VT )T)
)

The specialising-canonical space difference varies (i) with twice the total pos-
sible derived volume of the transforms, where the possible derived volumes
are less than the size, otherwise with twice the total size scaled log possible
derived volume, (ii) with the sum of the size scaled derived entropies, (iii)
against twice the sum of the size scaled component size cardinality cross en-
tropies and (iv) against the sum of the size scaled size expected component
entropies,

2CG,V,F,H(F )s(H)− Cs
H,V (H)− Cs

G,V (H) ∼∑
T∈F

2
(
(w′T : w′T < z) + (z lnw′T : w′T ≥ z)

)
+
∑
T∈F

z × entropy(A ∗ TF )

−
∑
T∈F

2z × entropyCross(A ∗ TF , V C
T ∗ T )

−
∑
T∈F

z × entropyComponent(A ∗ dep(F, VT )T, T )
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where w′T = |T−1| and TF = dep(F,WT )T. So the specialising-canonical space
difference, 2CG,V,F,H(F )s(H) − Cs

H,V (H) − Cs
G,V (H), is minimised when (a)

the total possible derived volume is minimised, (b) the total derived entropy
is minimised, (c) high size components are low cardinality components and
low size components are high cardinality components for each transform, and
(d) the total expected component entropy is maximised. The canonical terms,
Cs

H,V (H) and Cs
G,V (H), are independent of the model, so these properties are

also the properties of the specialising derived substrate history coder space,
CG,V,F,H(F )s(H).

If it is the case that the space of the fud, F , is less than that of any proper
subfud,

∀G ⊂ F (und(G) = und(F ) =⇒ CG,V,F,H(F )s(H) < CG,V,F,H(G)s(H))

then the specialising-classification space differences are always negative,

∀T ∈ F (VT ∩ V = ∅ =⇒
CG,VT ,T,H(T )s(H ∗ dep(F, VT )T)− Cs

G,VT
(H ∗ dep(F, VT )T) < 0)

Let it also be the case that (i) the fud, F , consists of a single transform
in each layer, ∀i ∈ {1 . . . l} (Fi = {Ti}) where l = layer(F, der(F )) and
Fi = {T : T ∈ F, layer(F,WT ) = i}, (ii) the fud, F , is a linear fud which is
such that the underlying variables of each layer are the derived variables of
the layer immediately below, ∀i ∈ {2 . . . l} (Vi = Wi−1) where Vi = und(Fi)
and Wi = der(Fi), and (iii) the size is greater than the derived volume of
each of the intermediate layers, ∀i ∈ {1 . . . l} (z > |WC

i |). Let the cumulative
fud F{1...i} =

⋃
j∈{1...i} Fj = dep(F,Wi). Then conjecture that, in general, (i)

the derived entropy decreases up the layers,

∀i ∈ {2 . . . l} (entropy(A ∗ FT
{1...i}) < entropy(A ∗ FT

{1...i−1}))

(ii) the possible derived volume decreases up the layers,

∀i ∈ {2 . . . l} (|WC
i | < |WC

i−1|)

(iii) the expected component entropy increases up the layers,

∀i ∈ {2 . . . l}
(entropyComponent(A,FT

{1...i}) > entropyComponent(A,FT
{1...i−1}))

and (iv) the component size cardinality cross entropy increases up the layers,

∀i ∈ {2 . . . l}
(entropyCross(A ∗ FT

{1...i}, V
C ∗ FT

{1...i}) >

entropyCross(A ∗ FT
{1...i−1}, V

C ∗ FT
{1...i−1}))
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Terms (i) and (iv) together are equivalent to the component size cardinality
relative entropy increasing up the layers,

∀i ∈ {2 . . . l}
(entropyRelative(A ∗ FT

{1...i}, V
C ∗ FT

{1...i}) >

entropyRelative(A ∗ FT
{1...i−1}, V

C ∗ FT
{1...i−1}))

Therefore to minimise specialising fud space, CG,V,F,H(F )s(H), by varying the
fud, in the case where the first layer has complete coverage of the substrate,
V1 = V , it is sufficient to (a) maximise the component size cardinality cross
entropy and the expected component entropy, and (b) minimise the derived
entropy and possible derived volume, for each layer in sequence from the first
layer upwards. Thus the optimisation of a fud without a layer limit may
be made computable by building the fud layer by layer, minimising the spe-
cialising space at each step, until the addition of a layer fails to reduce the
specialising space.

The space of the specialising fud substrate history coder, CG,V,F,H(F )s(H),
is related to the space of the specialising derived substrate history coder pa-
rameterised by the transform of the fud, CG,V,T,H(FT)s(H). In some cases
the spaces are equal. For example, consider the case of a single layer fud
of unary partition transforms, ∀T ∈ F ((VT ⊆ V ) ∧ (T = {V CS

T }T)), when
applied to a scaled cartesian histogram, A = V CS×{z/v} where z = |H| and
v = |V C|. There is no derived history classification space,

Cs
G(H ∗ FT)− s =

∑
T∈F

(Cs
G(H ∗ T )− s)

= 0

and the partitioned events spaces of the underlying components are equal,

spaceEventsPartition(A,FT) =
∑
T∈F

spaceEventsPartition(A, T )∑
(R,C)∈(FT)−1

(A ∗ FT)R ln |C| =
∑
T∈F

∑
(R,C)∈T−1

(A ∗ T )R ln |C|

= z ln v

so the specialising spaces are equal, CG,V,F,H(F )s(H) = CG,V,T,H(FT)s(H).

In the law-like case where the fud has a top transform, ∃T ∈ F (WT =
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der(F )), the space difference is just the difference in partitioned events space,

CG,V,F,H(F )s(H)− CG,V,T,H(FT)s(H) =∑
T∈F

spaceEventsPartition(A ∗ dep(F, VT )T, T )

− spaceEventsPartition(A,FT)

which is the size scaled difference in component size cardinality cross en-
tropies,

CG,V,F,H(F )s(H)− CG,V,T,H(FT)s(H) =

z × entropyCross(A ∗ FT, V C ∗ FT)

− z ×
∑
T∈F

entropyCross(A ∗ dep(F,WT )T, V C
T ∗ T )

Now consider extending the model for the specialising derived substrate
history coder, CG,V,T,H, to decompositions. Let a distinct decomposition of
one functional transforms D ∈ DU = D ∩ trees(SU × TU,f,1) be such that
the fud of each path of the application tree has complete coverage of the
substrate,

∀L ∈ paths(D∗) (
⋃

(·,(T,·))∈L

VT = V )

where VT = und(T ).

The specialising decomposition substrate history coder is constructed

CG,V,D,H(D) =

coderHistorySubstrateDecompSpecialising(U,X,D,DS, DX)

∈ coders(HU,V,X)

The total space of the specialising decomposition substrate history coder,
CG,V,D,H, of a history H ∈ HU,V,X is the sum of the specialising derived
substrate history coder space for each transform for each slice,

space(CG,V,D,H(D))(H) =∑
(CG,VT ,T,H(T )s(HC%VT )− s : (C, T ) ∈ cont(D))

+ s

where cont(D) = elements(contingents(D)), the sliced-history is definedHC =
{(x, S) : (x, S) ∈ H, {S}U ∗ C 6= ∅}, and s = spaceIds(|X|, |H|).
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Similarly, consider extending the model for the specialising derived sub-
strate history coder, CG,V,T,H, to fud decompositions. Let a distinct fud decom-
position of one functional definition sets D ∈ DF,U = DF∩trees(SU×FU,1) be
such that the fud of each path of the application tree has complete coverage
of the substrate,

∀L ∈ paths(D∗) (
⋃

(·,(F,·))∈L

VF = V )

where VF = und(F ).

The specialising fud decomposition substrate history coder is constructed

CG,V,D,F,H(D) =

coderHistorySubstrateFudDecompSpecialising(U,X,D,DS, DX)

∈ coders(HU,V,X)

The total space of the specialising fud decomposition substrate history coder,
CG,V,D,F,H, of a history H ∈ HU,V,X is the sum of the specialising fud substrate
history coder space for each fud for each slice,

space(CG,V,D,F,H(D))(H) =∑
(CG,VF ,F,H(F )s(HC%VF )− sC : (C,F ) ∈ cont(D))

+ s

where sC = spaceIds(|X|, |HC |).

Note that, whereas the optimisation of a fud without a layer limit may
be made computable by building the fud layer by layer, this method of op-
timisation of a fud decomposition merely constructs a decomposition that
has singleton fuds with singleton underlying variables, ∀F ∈ fuds(D) (|F | =
1 ∧ |und(F )| = 1). This is because a decomposition fud F ∈ fuds(D) is not
constrained to cover the substrate, VF ⊆ V . Only the union of the fuds of the
application paths must have complete coverage. So the first layer of a fud, F ,
is not constrained at least to partition the substrate, {VT : T ∈ F1} ∈ B(V ),
and the minimisation of specialising space is uninteresting. A way to ad-
dress this would be to limit the transforms of the fud to have a minimum
underlying dimension, ∀T ∈ F (|VT | ≥ kmin) where kmin ∈ N>1.

The derived history coders discussed above, such as the specialising de-
rived substrate history coder, CG,V,T,H ∈ coders(HU,X), are substrate history
coders in that they are restricted to the histories in the underlying variables
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of the transform, HU,V,X , where V = und(T ). Now consider how the de-
rived substrate history coders may be generalised to the unrestricted history
coder domain where the histories may be in any of the system variables,
HU,X =

⋃
{X → V CS : V ⊆ vars(U)}.

The expanded specialising derived history coder CG,T,H(T ) ∈ coders(HU,X)
is derived from the specialising derived substrate history coder, CG,V,T,H. It
expands the transform to the history variables, VH , where the set of his-
tory variables is a superset of the underlying variables, V = und(T ), and
otherwise defaults to an index coder,

CG,T,H(T )s(H) = (CG,VH ,T,H(TPVHT)s(H) + s|VH | : VH ⊇ V ) +

(Cs
H(H) : VH + V )

where sn = spaceVariables(U)(n). Note that the expansion is equivalent
to adding index space for the additional variables, CG,VH ,T,H(TPVHT)s(H) =
CG,V,T,H(T )s(H%V ) + Cs

H,V (H % (VH \ V )). The expansion always adds at
least canonical space, minimum(Cs

H(H % (VH \ V )), Cs
G(H % (VH \ V ))).

Similarly the expanded specialising fud history coder CG,F,H(F ) ∈ coders(HU,X)
is derived from the specialising fud substrate history coder, CG,V,F,H,

CG,F,H(F )s(H) = (CG,VH ,F,H(F VH )s(H) + s|VH | : VH ⊇ V ) +

(Cs
H(H) : VH + V )

where F V is the expansion that adds a unary transform in the remaining
underlying variables, F ∪ {{(V \ und(F ))CS}T}. Again, the expansion is
equivalent to adding index space for the additional variables.

Lastly the expanded specialising fud decomposition history coder CG,D,F,H(D) ∈
coders(HU,X) is derived from the specialising fud decomposition substrate his-
tory coder, CG,V,D,F,H,

CG,D,F,H(D)s(H) = (CG,VH ,D,F,H(DVH )s(H) + s|VH | : VH ⊇ V ) +

(Cs
H(H) : VH + V )

where DV is the expansion that adds a unary transform in the remaining
underlying variables to the leaf fuds in the decomposition tree such that the
fud of each path of the application tree has complete coverage of the substrate,

∀L ∈ paths(D∗) (
⋃

(·,(F,·))∈L

VF = V )

where VF = und(F ).
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Given a system U and event identifiers X, a history coder domain proba-
bility function P ∈ (HU,X :→ Q≥0) ∩ P is defined as entropic with respect
to history coder C ∈ coders(HU,X) if the coder is an entropy coder. See
appendix ‘Coders and entropy’ for the definition of the entropy coder. The
coder is an entropy history coder if and only if the space of a history equals
the negative logarithm of the non-zero probability, ∀H ∈ HU,X (PH > 0 =⇒
Cs(H) = − lnPH). Then the expected space of the coder equals the entropy
of the history probability function.

expected(P )(Cs) =
∑

H∈HU,X

PH × Cs(H)

= −
∑

(PH lnPH : H ∈ HU,X , PH > 0)

= entropy(P )

An entropy coder has the smallest expected space of all coders given the
probability function.

Note that entropy history coders should be distinguished from the theoretical
variable-width history coder CE that encodes its states in an entropy coder,
described in appendix ‘Entropy encoding of states’. The variable-width his-
tory coder, CE, can only encode the subset of histories for which there exists
a states coder that is an entropy coder with respect to the normalised his-
togram. That is, ∃C ∈ coders(AFS) ∀R ∈ AFS (Cs(R) = − ln ÂR) where
H ∈ HU,X and A = histogram(H). Even for this subset of the histories
for which an entropy states coder, C, can be constructed, the space of the
variable-width history coder is always greater than or equal to the space of
the classification coder, Cs

E(H) ≥ Cs
G(H).

Similar to the definition of entropic history probability functions, a history
coder domain probability function P ∈ (HU,X :→ Q≥0) ∩ P is defined as
structured with respect to derived history coder C ∈ coders(HU,X), if the
expected space of the derived history coder is less than the expected lesser
space of the canonical history coders, (i) index history coder, CH, and (ii)
classification history coder, CG,

expected(P )(Cs) < expected(P )(minimum(Cs
H, C

s
G))

where minimum(Cs
H, C

s
G) ∈ HU,X → ln N>0.

The degree of structure is defined structure(U,X) ∈ ((HU,X :→ Q≥0)∩P)×
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coders(HU,X)→ Q ln Q>0/ ln Q>0 as

structure(U,X)(P,C) :=
canonical(U,X)(P )− expected(P )(Cs)

canonical(U,X)(P )− entropy(P )

where canonical(U,X) ∈ ((HU,X :→ Q≥0) ∩ P)→ Q≥0 ln N>0 is defined

canonical(U,X)(P ) := expected(P )(minimum(Cs
H, C

s
G))

The degree of structure is undefined if the canonical coders are already en-
tropic, canonical(U,X)(P ) = entropy(P ). The degree of structure is defined
for all history coders, not just derived history coders.

Define the compression of coder C with respect to probability function P
as a synonym for the degree of structure of probability function P with re-
spect to the coder C.

The degree of structure is always less than or equal to one,

∀P ∈ (HU,X :→ Q≥0) ∩ P (structure(U,X)(P,C) ≤ 1)

If the degree of structure equals one, structure(U,X)(P,C) = 1, the coder,
C, is an entropy coder of the probability function, P , expected(P )(Cs) =
entropy(P ).

If the degree of structure less than or equal to zero, structure(U,X)(P,C) ≤ 0,
the probability function, P , is structureless with respect to the coder, C, or,
equivalently, the coder, C, is non-compressing with respect to the probability
function, P . For example, the theoretical variable-width history coder, CE,
is non-compressing with respect to all probability functions for which it can
be defined, because the space is always greater than or equal to the space of
the classification coder, Cs

E(H) ≥ Cs
G(H).

Structured history probability functions are less strongly constrained than
entropic history probability functions because entropy coders have least ex-
pected space, 0 < structure(U,X)(P,C) ≤ 1.

A history coder Cmin(H,G) of the lesser space of the canonical history coders
can be implemented with a flag to indicate which of the canonical coders was
chosen. The space is Cs

min(H,G)(H) = minimum(Cs
H(H), Cs

G(H)) + ln 2. The
lesser canonical history coder, Cmin(H,G), is necessarily structureless,

∀P ∈ (HU,X :→ Q≥0) ∩ P (structure(U,X)(P,Cmin(H,G)) < 0)
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because of the additional space of the flag.

Conjecture that there is no coder such that the uniform history probability
function, ĤU,X = HU,X × {1/|HU,X |} ∈ P , has structure,

∀C ∈ coders(HU,X) (structure(U,X)(ĤU,X , C) < 0)

where canonical(U,X)(ĤU,X) 6= entropy(ĤU,X).

The degree of structure has two arguments, (i) the probability function
P ∈ (HU,X :→ Q≥0) ∩ P , and (ii) the coder C ∈ coders(HU,X). The func-
tion can be viewed as (i) a measure of the structure of the histories of the
probability function, P , with respect to a fixed coder, C, or (ii) a measure of
the compression, or canonical-entropic relative space, of the coder, C, given
a probability function, P .

3.19 Computation time and representation space

The set of computers, computers, is a type class that formalises compu-
tation time and representation space. Define the application of a computer,
apply ∈ computers → (X → Y). Define the shorthand I∗ := apply(I).
Define the domain of the application, domain ∈ computers → P(X ), and
the range of the application, range ∈ computers → P(Y), such that ∀I ∈
computers (I∗ ∈ domain(I) → range(I)) and ∀I ∈ computers (dom(I∗) =
domain(I)). The computation or application time is defined as time ∈
computers → (X → N>0). Define the shorthand It := time(I). The repre-
sentation space is defined as space ∈ computers → (X → ln N>0). Define
the shorthand Is := space(I). See appendix ‘Computers’ for a more formal
definition.

3.19.1 Computation of histograms

The computation of various operations on histograms depends on the con-
crete representation or encoding. Consider an array histogram represen-
tation. Let A ∈ AU and V = vars(A). Let complete histogram A′ =
A + ACZ. The array is implemented in a list LA ∈ L(Q≥0) such that
∃X ∈ LA ↔ A′ ∀((i, d), (S, c)) ∈ X (d = c) and |X| = |LA| = |A′| = v where
v = volume(U)(V ). The operation to set a count in the histogram is imple-
mented with the list setter on the positive rationals, IL,s = listSetter(Q≥0).
The operation to access a count is implemented with the corresponding list
getter, IL,g = listGetter(Q≥0). The space complexity of the list accessors is
the length of the list, which is the volume, v.
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In order to index the array, define an encoding of the state, index(U, V ) ∈
enum(V CS) ⊂ SU ↔ N>0, which is such that ∀S ∈ V CS (index(U, V )(S) ∈
{1 . . . v}). Then LA is such that ∀S ∈ V CS (LA(index(U, V )(S)) = A′S). The
lookup, I∗L,g(LA, index(U, V )(S)) ∈ Q≥0, has overall time complexity equal
to that of the index computation, because the time complexity of the list
getter is constant.

If the values of V are constrained such that ∀w ∈ V (Uw = {0 . . . |Uw| − 1}),
then a state S ∈ V CS maps to a tuple of values in Nn, where dimension
n = |V |, which is bounded by a tuple of valencies in Nn

>0. The index func-
tion can be defined to map from the tuple of values to the volume, {1 . . . v},
by application of the tuple of valencies. Let M ∈ L(V ) be the bijective
map between positions in the tuples and the variables. M is the inverse of
some enumeration of the variables, flip(M) ∈ enums(V ). The tuple of values
is {(i, Sw) : i ∈ {1 . . . n}, w = Mi} ∈ L(N) and the tuple of valencies is
{(i, |Uw|) : i ∈ {1 . . . n}, w = Mi} ∈ L(N>0). The index function can be
defined index(U, V )(S) = index(U, S,M) + 1, and then recursively as

index(U, S,M) := index(U, S, tail(M)) ∗ |U(M1)|+ S(M1)

index(U, S, ∅) := 0

The index method is similar to the encode method of coders.

A concrete implementation of the index function depends on the representa-
tion of the state S. Consider the case where the state is represented as a list
or tuple of variable-value pairs, K ∈ L(V ×N) such that set(K) = S and
|K| = |S|. That is, flip(K) ∈ enums(S). If K is ordered in the same order
as M , ∀i ∈ {1 . . . n} ♦(w, ·) = Ki (Mi = w), then the lists can be zipped to-
gether and the time complexity of the index computation is n. Let N be the
tuple of valencies, N = {(i, |Uw|) : i ∈ {1 . . . n}, w = Mi}. Consider the or-
dered list state representation. Let IS,o = stateOrderedIndexer(U, V,M,N) ∈
computers, domain(IS,o) = {flip(Q) : S ∈ V CS, Q ∈ enums(S), ∀((w, ·), i) ∈
Q (Mi = w)}, range(IS,o) = {1 . . . |V CS|} and apply(IS,o)(K) = in(N,L, n)+1
where L = {(i, u) : (i, (·, u)) ∈ K}, in(N,L, i) := in(N,L, i− 1) ∗Ni +Li and
in(N,L, 0) := 0. Then It

S,o(K) > nIt
×(1, 1) + nIt

+(0, 0) and

∃m ∈ N>0 (It
S,o ∈ O({(K,n) : K ∈ domain(IS,o), n = |K|},m))

Another implementation of the index function is of the unordered list state
representation where K ∈ L(V × N) is not ordered with M . Let IS,u =
stateUnorderedIndexer(U, V,M,N) ∈ computers. The domain is a superset
of the ordered case, domain(IS,u) = {flip(Q) : S ∈ V CS, Q ∈ enums(S)}. In
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the unordered case the time complexity of the index computation, It
S,u, is n2

because the indexer must find each variable within the unordered state list
by searching the entire list.

A third implementation of the index function is where the variables of the
state are constrained to be natural numbers, V ⊂ N, then the state, S ∈
N → N, has a binary map state representation, B ∈ B(ran(S)), where
B = mapBinary(S). Let IS,B = stateMapBinaryIndexer(U, V,M,N) ∈
computers. Let domain(IS,B) = {mapBinary(S) : S ∈ V CS}, range(IS,B) =
{1 . . . |V CS|} and apply(IS,B)(B) = in(M,N,B, n)+1 where in(M,N,B, i) :=
in(M,N,B, i − 1) ∗ Ni + find(B,Mi) and in(M,N,B, 0) := 0. In this case
the time complexity, It

S,B, is n lnn, which intermediate between the ordered,
It

S,o, and unordered, It
S,u, cases.

Each of the indexers, IS,o, IS,B and IS,u, has a corresponding inverse in-
dexer, JS,o, JS,B and JS,u. These recursively take the modulus and per-
form integral division of the given index to obtain the representation of
the state. For example, domain(JS,o) = {1 . . . |V CS|} and apply(JS,o)(k) =
un(M,N, n, k) where un(M,N, i, k) := ((Mi, k%Ni), un(M,N, i − 1, k/Ni))
and un(M,N, 0, k) := ∅. Modulus and divide are the natural number oper-
ators. The method is similar to the decode method of fixed width coders.
Note that the inverse indexer JS,u is simply equal to JS,o and therefore
not a true inverse computer of IS,u because the order of the variable-value
list is not preserved, ∃K ∈ domain(IS,u) (J∗S,u(I∗S,u(K)) 6= K), although
∀K ∈ domain(IS,u) (set(J∗S,u(I∗S,u(K))) = set(K)). The time complexity of
inverse indexers JS,o and JS,B is the same as that of the corresponding in-
dexer, n and n lnn respectively. The time complexity of inverse indexer JS,u

is that of JS,o, n. Note that these complexities suggest that it may require
less computation to apply the inverse index to an index k than to find the
state S indexed by k in a binary map N→ S. That is, J t

S,o(k) < It
B,g((B, k))

where B ∈ B(V CS), S = find(B, k) and IB,g = mapBinaryGetter(V CS). If
the binary map has cardinality |function(B)| equal to the volume |V CS| then
the time complexity is ln v where v = |V CS|. This complexity is greater than
n, at least in the case of regular V of valency d when ln v = n ln d.

Given an ordered list state representation K where set(K) = S, the indexer,
IS,o, has time complexity n. So the overall time complexity of an ordered list
state representation index operation on an array histogram representation,
I∗L,g(LA, I

∗
S,o(K)), is n.
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Having considered the array histogram representation and three types of
indexers of state representations that index the array, consider a binary map
histogram representation. The binary map BA ∈ B(Q≥0) is such that ∃X ∈
function(BA) ↔ A ∀((i, d), (S, c)) ∈ X (d = c) and |function(BA)| = |A|.
The operation to set a count in the histogram is implemented with the bi-
nary map setter on the positive rationals, IB,s = mapBinarySetter(Q≥0).
The operation to access a count is implemented with the corresponding bi-
nary map getter, IB,g = mapBinaryGetter(Q≥0). The space complexity of
the binary map accessors is |A| ln |A|. The space complexity of the binary
map histogram representation is greater than the array histogram represen-
tation if the histogram is complete, AU = AC, and so v log2v ≥ v where the
volume v > 1. The space of the binary map histogram representation is least
for the effective equivalent, trim(A) ≡ A, because |AF| ≤ |A|.

Given an index function, index(U, V ) ∈ enum(V CS) ⊂ SU ↔ N>0, then
BA is such that ∀(S, c) ∈ A (find(BA, index(U, V )(S)) = c). The lookup,
I∗B,g(BA, index(U, V )(S)) ∈ Q≥0, has time complexity of the greater of the
binary map getter, ln |A|, and that of the index computation. The implemen-
tation of the index function may be one of the indexers (above) depending
on the representation of the state. Given an ordered list state representation
K ∈ L(S) such that flip(K) ∈ enums(S), the indexer, IS,o, has time complex-
ity n. So the overall time complexity of an ordered list state representation
index operation on a binary map histogram representation, I∗B,g(BA, I

∗
S,o(K)),

is ln v where v = |AC|. In the case of a regular histogram A of valency d, the
time complexity of the operation is n ln d. This time complexity of a binary
map histogram representation, n ln d, is greater than that for the array his-
togram representation, n. The array histogram representation may require
less time, but the array must be of cardinality equal to the volume, and so its
space complexity is v, which may be greater than that of the effective binary
map histogram representation, |AF| ln |AF|.

Closely related to the binary map histogram representation, having a func-
tion indexed by the natural numbers, are the poset binary map histogram
representations, which are indexed by state representations and which im-
plement the find operation using corresponding comparators rather than
indexers. For example the poset binary map of histogram A on the or-
dered list state representation BA ∈ mapBinaryPosets(domain(IS,o),Q≥0),
where IS,o = stateOrderedIndexer(U, V,M,N) and V = vars(A), is such that
{(set(K), c) : (K, c) ∈ function(BA)} = A. The accessor operations to set
and get a count in the histogram are implemented with a poset binary map
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setter, IB,P,s = mapBinaryPosetSetter(I±, domain(IS,o),Q≥0) and a poset
binary map getter, IB,P,g = mapBinaryPosetGetter(I±, domain(IS,o),Q≥0)
given some ordered list state comparator I± such that domain(I±) = domain(IS,o)×
domain(IS,o). The ordered list state comparator compares the values of a
pair of ordered list states in sequence, I∗±((K, J)) ∈ {−1, 0, 1} where K, J ∈
domain(IS,o). The comparators do not have inverse computers unlike the
indexers. Assuming the self comparison has the greatest time, the time com-
plexity of the ordered list state comparator is the same as for the ordered
list state indexer, n, where n = |V |. The lookup, I∗B,P,g(BA, K) ∈ Q≥0, has
time complexity of n ln v where v = volume(U)(V ). In the case of a regular
histogram A of valency d, the time complexity of the operation is n2 ln d.

As well as array and binary map representations of histograms there are list
histogram representations. For example, consider the list representation of
histogram A in variables V = vars(A) in system U where each state is an or-
dered list state representation of variable-values, PA ∈ L({(ord(U,D)(S), c) :
(S, c) ∈ A}) ⊂ L(L(VU × WU) × Q≥0) where D ∈ enums(vars(U)), and
ord(U,D)(S) ∈ L(S). In this case, {((set(L), c), i) : (i, (L, c)) ∈ PA} ∈
enums(A). The ord(U,D) function implies some variables tuple, ∃M ∈
L(V ) (flip(M) ∈ enums(V )∧(∀S ∈ V CS ({(i, w) : (i, (w, ·)) ∈ ord(U,D)(S)} =
M))). Note that the order D is implied if the variables are natural numbers,
V ⊂ N. If the values are also natural numbers, for example if ∀w ∈ V (Uw =
{1 . . . |Uw|}), then PA ∈ L(L(N×N)×Q≥0).

Another example of a list representation of histograms is where variables
are natural numbers, V ⊂ N, and the states are binary map state represen-
tations, QA ∈ L(B(WU)×Q≥0) which is such that {(function(B), c) : (B, c) ∈
QA} = A. If the values are also natural numbers, then QA ∈ L(B(N)×Q≥0).

A third example of list representation of histograms is where the state is rep-
resented by an index, RA ∈ L({(index(U, V )(S), c) : (S, c) ∈ A}) ⊂ L(N ×
Q≥0). Here the index state representation is implemented with one of the in-
dexers (above). The histogram is recovered from the representation by means
of the corresponding inverse indexer. For example, in the case of the ordered
list state representation indexer, flip(RA) ∈ enums({(I∗S,o(ord(U,D)(S)), c) :
(S, c) ∈ A}) and {(set(J∗S,o(k)), c) : (i, (k, c)) ∈ RA} = A. This example
of a list representation is related to the array representation of histograms,
set(RA) ∈ L(Q≥0), in the special case where A is complete, AU = AC. The
list representation is also related to the binary map representation of his-
tograms, set(RA) = function(B) where B ∈ B(Q≥0).
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All of these list histogram representations are such that the cardinality of
the list is the same as that of the histogram, |PA| = |QA| = |RA| = |A|.
Unlike the array representation, these list representations are not subject to
the constraint that the cardinality be equal to the volume, |AC|. In fact,
there are list representations which are not constrained to be in a bijective
mapping to the histogram, but which equal the given histogram after a sum-
mation. For example, XA ∈ L({ord(U,D)(S) : S ∈ V CS} ×Q≥0) such that∑

({(set(L), c)} : (i, (L, c)) ∈ XA) ≡ A. In this case ∃XA ∈ L(L(VU×WU)×
Q≥0) ({(set(L), c) : (i, (L, c)) ∈ XA} /∈ SU → Q≥0). An example is that of a
history H ∈ H which is such that ids(H) = {1 . . . |H|}, histogram(H) = A,
|states(H)| < |H| and XA = {(i, (ord(U,D)(S), 1)) : (i, S) ∈ H}. Then
|XA| = |H| > |A|. Both the time and space complexities of list histogram
representations is the length of the list, which is at least |A|. While the
space complexity of list histogram representations may be less than that of
the binary map representations, the time complexity may be greater.

Given a system U and set of variables V ⊆ VU , consider the computation
time to calculate the cartesian set of states, cartesian(U)(V ) ⊂ SU . Let IC =
cartesianer(U) ∈ computers. Then domain(IC) = P(VU), range(IC) = {Q :
Q ⊂ SU , ∀S ∈ Q (vars(S) = vars(Q))} and apply(IC)(V ) = cartesian(U)(V ).
If the cartesianer is implemented using a binary map histogram representa-
tion on ordered list state representations, then the time complexity is v ln v

∃m ∈ N>0 (It
C ∈ O({(V, v ln v) : V ∈ domain(IC), v = |V C|},m))

If V is regular having dimension n = |V | and valency {d} = {|Uw| : w ∈ V }
then v = dn and the time complexity is dn ln dn = ndn ln d.

Given a histogram A ∈ A and set of variables V ⊆ V , consider the compu-
tation time to reduce the histogram, A%V . Let I% = reducer ∈ computers.
Then domain(I%) = P(V) × A, range(I%) = A and apply(I%)((V,A)) =
A%V . If the reducer is implemented using a binary map histogram represen-
tation on ordered list state representations, then the reducer is constrained
to system U . That is, A ∈ AU and V ⊆ vars(U). The time complexity is
defined

∃m ∈ N>0 (It
% ∈ O({((V,A),maximum(y ln y, ny)) :

(V,A) ∈ domain(I%), y = |A|, n = |V |},m))

Note that |A| ≥ |A%V | and so |A| has the greater complexity. In the case
where A is reduced to a scalar the reducer must compute at least |A| − 1
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additions, It
%((∅, A)) > (|A| − 1)It

+((0, 0)). If A is regular in system U
having dimension n = |vars(A)| and valency {d} = {|Uw| : w ∈ vars(A)}
and A is complete, AU = AC, then y = dn and the time complexity is at
most dn ln dn = ndn ln d.

Given a pair of histograms A,B ∈ A, consider the computation time of
the multiplication, A ∗ B. Let I∗ = multiplicationer ∈ computers. Then
domain(I∗) = A × A, range(I∗) = A and apply(I∗)((A,B)) = A ∗ B. If the
multiplicationer is implemented using a binary map histogram representation
on ordered list state representations in system U , then

∃m ∈ N>0 (It
∗ ∈ O({((A,B),maximum(xy lnxy,maximum(nAx, nBy))) :

A,B ∈ A, x = |A|, y = |B|, nA = |vars(A)|, nB = |vars(B)|},m))

In the case where B is a scalar the multiplicationer must compute at least |A|
multiplications, It

∗((A, scalar(size(B)))) > |A|It
×((1, 1)) where I× = multiplier.

In the case where the variables of A and B do not intersect, vars(A) ∩
vars(B) = ∅, the multiplicationer must compute at least |A||B| multiplica-
tions, It

∗((A,B)) > |A||B|It
×((1, 1)). If A and B are complete and have vol-

umes v = |AC| and w = |BC|, then the time complexity is at most vw ln vw.

A special case of a multiplicationer is the one functional multiplicationer
where the second histogram B is the histogram of some one functional trans-
form T . That is, ∃T ∈ TU,f,1 (his(T ) = B). The domain is also constrained
such that the underlying variables of the transform T are a subset of the vari-
ables of the first histogram A, und(T ) ⊆ vars(A), and the derived variables
of T are disjoint with the variables of A, der(T ) ∩ vars(A) = ∅. Then the
multiplication can be thought of as adding variables to A without changing
the cardinality or the counts. That is, vars(A∗B) = V ∪W = V ∪der(T ) and
{(S%V, c) : (S, c) ∈ A∗B} = A where V = vars(A) and W = vars(B). There
exists a mapping Q = {(S, S ∪ R) : S ∈ AS, R ∈ BS, |S ∩ R| = |V ∩W |} ∈
V CS → (V ∪W )CS which is such that |Q| = |A|. The one functional multipli-
cationer need only remap the states without modifying the counts however
they are represented. No multiplications nor additions are computed. Let
I∗1 = multiplicationOneFunctionaler ∈ computers. Then domain(I∗1) =
{(A, his(T )) : U ∈ U , A ∈ AU , T ∈ TU,f,1, und(T ) ⊆ vars(A), der(T ) ∩
vars(A) = ∅}, range(I∗1) = A and apply(I∗1)((A,B)) = A ∗ B. If the his-
tograms A and B are represented with a binary map histogram representa-
tion on ordered list state representations then It

∗1((A,B)) > |A| ln |B| and
It
∗1((A,B)) > |A| ln |A|. The volume of A is greater than or equal to that of

the underlying of T , |V C| ≥ |(V ∩W )C|, so the time complexity is at most
v ln v where v = |AC|.
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3.19.2 Computation of the application of a transform

The application of the transform T ∈ TU to a histogram A ∈ AU in system
U can be implemented by applying a multiplicationer followed by a reducer,
A ∗ T = I∗%((W, I∗∗ ((A,X)))) where (X,W ) = T . In the case when the
histograms are represented with a binary map histogram representation on
ordered list state representations, this method has time complexity, vw ln vw,
where v = volume(U)(vars(A)) and w = volume(U)(vars(T )). The compu-
tation does not assume that the transform is functional and hence is less
efficient than an implementation using a one functional multiplicationer.

If the transform is constrained to be one functional, T ∈ TU,f,1, and
such that the underlying variables of T are a subset of the histogram A,
und(T ) ⊆ vars(A), and the derived variables of T are disjoint with the vari-
ables of A, der(T ) ∩ vars(A) = ∅, then the application can be implemented
by applying a one functional multiplicationer followed by a reducer, A ∗ T =
I∗%((W, I∗∗1((A,X)))). Let I∗T = transformer ∈ computers, domain(I∗T) =
{(T,A) : U ∈ U , A ∈ AU , T ∈ TU,f,1, und(T ) ⊆ vars(A), der(T )∩vars(A) =
∅}, range(I∗T) = range(I%) and

apply(I∗T)((T,A)) = transform(T,A) = I∗%((W, I∗∗1((A,X))))

where (X,W ) = T . Then It
∗T ((T,A)) > |A| ln |X| and It

∗T ((T,A)) > |A| ln |A|.
The overall time complexity is v ln v where v = volume(U)(V ) and V =
vars(A). If A is a regular histogram of dimension n = |V | and valency
{d} = {|Uw| : w ∈ V } then v = dn and the time complexity is dn ln dn.

3.19.3 Computation of functional definition sets

A functional definition set F is a set of unit functional transforms, F ∈
F ⊂ P(TU ∩ Tf). The equivalent transform, FT, is defined transform(F ) :=
(
∏

his(F ) % (V ∪ W ),W ) ∈ TU ∩ Tf , where W = der(F ) and V = und(F ).
Let L ∈ L(A) be a list of the histograms of a non-empty fud F such that
the inverse is an enumeration of the histograms, flip(L) ∈ enums(his(F )).
Then the product can be computed by application of a multiplicationer re-
cursing on L. Let mul(L) := I∗∗ ((mul(tail(L)), L1)) and mul({(1, A)}) := A.
Let IF,T = fudsTransformer ∈ computers. Then range(IF,T) = TU ∩ Tf ,
domain(IF,T) = F \ {∅} and apply(IF,T)(F ) = (I∗%((V ∪ W,mul(L))),W ) =
FT where flip(L) ∈ enums(his(F )). The cardinality of the intermediate
histogram |

∏
set(L{1...i})|, and hence the computation times of subsequent

multiplications, It
∗((
∏

set(L{1...i}), Li+1)), depends on the order in which the
multiplications take place in L. If the fud transformer is implemented where
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L is chosen such that the intermediate equivalent transform is always func-
tional, ∀i ∈ {1 . . . |L|} ((X{1...i}, vars(X{1...i}) \ V ) ∈ Tf), where X{1...i} =∏

set(L{1...i}), then the time complexity of the fud transformer is at most
the time complexity of the reducer, v lnu where v = volume(U)(V ) and
u = volume(U)(vars(F )). If L is chosen arbitrarily then the time complexity
of the fud transformer is at most u lnu.

The partition set transformer IN,T = partitionSetsTransformer ∈ computers
is a variation of the fud transformer which has a domain of partition sets,
domain(IN,T) = P(R) \ {∅}. The application promotes each partition to a
transform and the computes the equivalent fud, apply(IN,T)(Q) = {PT :∈
Q}T. The time complexity of the partition set transformer is the same as
the fud transformer, v ln y.

Direct application of functional definition sets to histograms, apply ∈
F × A → A, reduces computation time and space by navigating through
the fud reducing any non-derived variables as soon as possible. If the fud
is constrained to be one functional, F ∈ FU,1 ⊂ P(TU,f,1), then the im-
plementation may use the one functional multiplicationer rather than the
multiplicationer and the reduction can optionally be left to the end with-
out increasing the cardinality of the cumulative histogram product. The
one functional multiplicationer must be applied in sequence such that the
intermediate equivalent transform is always functional. Let M ∈ L(TU,f,1)
be a list of the transforms of F such that flip(M) ∈ enums(F ) and such
that und(M1) ⊆ V and der(M1) ∩ V = ∅ where V = vars(A) and ∀i ∈
{2 . . . |M |} ♦Q = vars(set(M{1...i−1})) (und(Mi) ⊆ Q∧der(Mi)∩Q = ∅). Let
mul1(A,M) := I∗∗1((mul1(A, tail(M)), his(M1))) and mul1(A, ∅) := A.

First define the application without reduction. Let I∗X = applier ∈ computers
in system U . Then domain(I∗X) = {(F,A) : U ∈ U , A ∈ AU , F ∈
FU,1, und(F ) ⊆ vars(A), vars(F ) \ und(F ) ∩ vars(A) = ∅}, range(I∗X) = A
and I∗∗X((F,A)) = mul1(A, reverse(M)). Then It

∗X((F,A)) > r|A| where
r = |vars(F )|, and It

∗X((F,A)) > f |A| ln |A| where f = |F |.

Now define the application with reduction. Let I∗F = fuder ∈ computers
in system U . Then domain(I∗F) = domain(I∗X), range(I∗F) = range(I%) and
I∗∗F((F,A)) = apply(F,A) = I∗%((W, I∗∗X((F,A)))) where W = der(F ).
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3.19.4 Computation of independent

Given a histogram A consider the computation time to calculate its in-
dependent AX. Let IX = independenter ∈ computers. Let domain(IX) =
range(IX) = A, and apply(IX)(A) = AX. Consider non-zero histogram A ∈ A
having size z = size(A), variables V = vars(A), and dimension n = |V |. In
order to calculate AX the independenter must calculate (n − 1) additions
for each effective state, AF, to construct the reductions R = {(v,A%{v}) :
v ∈ V } = {(v,

∑
({(S%{v}, c)} : (S, c) ∈ A, c > 0)) : v ∈ V }. Then the

independenter must calculate n multiplications for each state of the effective
cartesian sub-volume AXF, AX = {(S,

∏
(Rv(S%{v}) : v ∈ V )/zn−1) : S ∈

states(
∏
{RF

v : v ∈ V })}. Thus It
X(A) > |AF|(n− 1)It

+(0, 0) + |AXF|nIt
×(1, 1)

where I+ = adder and I× = multiplier. Implementing the histograms with
an array histogram representation on ordered list state representations

∃m ∈ N>0 (It
X ∈ O({(A, ny) : A ∈ A, y = |AXF|, n = |vars(A)|},m))

In other words, the time to calculate the independent histogram AX is of
complexity of ny where y is the effective independent cartesian sub-volume.
If A is a regular histogram in a system U of dimension n = |V | and va-
lency {d} = {|Uv| : v ∈ V } for which the independent is completely effective,
AXF = AC, then y is the volume, |V C| and the time complexity is ndn.

If the independent is completely effective, AXF = AC, then the space complex-
ity of an array histogram representation, v, is less than the space complexity
of a binary map histogram representation, v ln v.

4 Alignment

4.1 Definition

The alignment of a histogram A is defined, alignment ∈ A → R

alignment(A) :=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

where the unit-translated gamma function is defined (Γ!) ∈ R → R as
Γ!x = Γ(x + 1) which is such that ∀i ∈ N (Γ!i = i!). The alignment of the
empty histogram is defined as zero, alignment(∅) := 0. The first term of the
expression,

∑
S∈AS ln Γ!AS, is called the non-independent term. The second

term,
∑

S∈AXS ln Γ!A
X
S , is the independent term.
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In the case where A,AX ∈ Ai then

alignment(A) =
∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S ! ∈ ln Q>0

In the following, the alignment function will sometimes be abbreviated,
algn = alignment.

The alignments of equivalent histograms are equal, ∀A,B ∈ A (A ≡ B =⇒
alignment(A) = alignment(B)).

For each histogram A ∈ AU in system U there exists a set of cardinal
substrate permutations which are non-literal frame mappings X ∈ V ↔
(N>0× (W ↔ N>0)) such that the reframed histogram is a cardinal substrate
histogram, reframe(X,A) ∈ Ac. The alignment of each of the cardinal sub-
strate histograms under permutation equals the alignment of the histogram,
alignment(reframe(X,A)) = alignment(A). There are |V |!

∏
w∈V |Uw|! car-

dinal substrate permutations of histogram A. These cardinal substrate his-
tograms are isomorphic with respect to alignment.

The alignment of an independent histogram, A = AX, is zero. The align-
ment of each of the following is zero because in each of these cases the
histogram is equivalent to its independent histogram, A ≡ AX : (i) zero
histograms, size(A) = 0, (ii) scalar histograms, vars(A) = ∅, (iii) mono-
variate histograms, |vars(A)| = 1, (iv) uniform cartesian histograms, A =
scalar(q) ∗ AC where q ∈ Q≥0, (v) uniform full planar histograms, (vi) uni-
form linear histograms, (vii) singleton histograms, |A| = 1, and (viii) uniform
cartesian sub-volumes, A = scalar(q) ∗ AXF.

Conjecture that the alignment of an integral histogram is zero if and only
if it is independent, ∀A ∈ Ai (A = AX ⇐⇒ algn(A) = 0). The set of
integral iso-independents of histogram A of size z and variables V in system
U is Y −1

U,i,V,z(A
X) ⊂ AU,i,V,z. It contains at most one independent histogram,

|{B : B ∈ Y −1
U,i,V,z(A

X), B = BX}| ≤ 1, which, if it exists, has zero align-

ment, algn(AX) = 0. The other histograms have alignment not equal zero,
∀B ∈ Y −1

U,i,V,z(A
X) (B 6= AX =⇒ algn(B) 6= 0).
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4.2 Derivation

The generalised multinomial probability distribution Q̂m,U(E, z) ∈ (AU,i,V,z →
Q≥0) ∩ P is defined

Q̂m,U(E, z) := {(A, z!∏
S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

) : A ∈ AU,i,V,z}

where (E, z) ∈ AU ×N, zE = size(E) > 0, V = vars(E) and E is complete,
EU = EC. The domain of the generalised multinomial probability distribution
is the finite integral congruent support

dom(Q̂m,U(E, z)) = AU,i,V,z = {A : A ∈ AU ∩ Ai, A
U = V C, size(A) = z}

The generalised multinomial probability distribution can be further gener-
alised to a probability density function by means of the gamma function.
First generalise the support. Let the set of complete congruent histograms in
system U , of variables V and size z be

AU,V,z = {A : A ∈ AU , AU = V C, size(A) = z}

The complete congruent histograms is an infinite superset of the integral con-
gruent support, AU,i,V,z ⊂ AU,V,z.

Let E be a complete histogram, EU = EC, of non-zero size, size(E) > 0.
Let the multinomial probability density function, mpdf(U) ∈ AU × Q≥0 →
(AU → R≥0) be such that mpdf(U)(E, z) is a real valued function of the
complete congruent histograms of size z and variables equal to those of E,
defined mpdf(U)(E, z) ∈ AU,V,z → R≥0 as

mpdf(U)(E, z) := {(A, Γ!z∏
S∈AS Γ!AS

∏
S∈AS

(
ES
zE

)AS

) : A ∈ AU,V,z}

The generalised multinomial probability distribution is a subset of the multi-
nomial probability density function

Q̂m,U(E, z) ⊂ mpdf(U)(E, z)

The infinite domain of the multinomial probability density function, which is
the set of congruent histograms, dom(mpdf(U)(E, z)) = AU,V,z, corresponds
to the finite domain of the generalised multinomial probability distribution,
which is the integral congruent support, dom(Q̂m,U(E, z)) = AU,i,V,z.
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The scaled distribution histogram M = scalar(z/zE) ∗ E is in the domain of
the multinomial probability density function, M ∈ dom(mpdf(U)(E, z)) =
AU,V,z. The mean of the generalised multinomial probability distribution

equals the scaled distribution histogram, mean(Q̂m,U(E, z)) = M = scalar(z/zE)∗
E where the draw size z is integral. Thus the mean of the generalised multi-
nomial probability distribution is in the domain of the multinomial probability
density function even if the mean is not itself integral, M /∈ Ai.

The independent histogram of each of the histograms in the domain of the
multinomial probability density function are also in the domain because the
independent histogram is congruent, ∀A ∈ AU,V,z (AX ∈ AU,V,z).

The scaled uniform histogram resize(z, V C) is in the domain of the multino-
mial probability density function, scalar(z/v) ∗ V C ∈ AU,V,z, where v = |V C|.

Similarly to the generalised multinomial probability distribution, the multi-
nomial probability density function can be approximated by means of the
Stirling approximation

mpdf(U)(E, z)(A) = Γ!z
∏
S∈AS

ÊAS
S

Γ!AS
≈
∏

S∈AFS

(
ÊS

ÂS

)AS

where Ê = resize(1, E) and Â = resize(1, A). The approximation is best
for high entropy sample histograms for which the multinomial coefficient is
largest.

Compare this approximation to the same term for a scaled draw size kz
and scaled sample histogram scalar(k) ∗ A where k ∈ Q>0

mpdf(U)(E, kz)(scalar(k) ∗ A) = Γ!kz
∏
S∈AS

ÊkAS
S

Γ!kAS

≈

 ∏
S∈AFS

(
ÊS

ÂS

)AS

k

= (mpdf(U)(E, z)(A))k

The parameterised multinomial probability density function, mpdf(U)(E, z),
does not have a continuous domain. Rather, its domain is countably infinite,
AU,V,z ↔ N, consisting as it does of histograms which are rational valued
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functions of finite domain. The integration of the multinomial probability
density function, which is the cumulative density function, when summed
over the whole domain equals one. The integration is defined here in terms
of the scaled multinomial probability density function. The scaled complete
integral congruent histograms equals the complete congruent histograms in
the limit

lim
k→∞
{A/Zk : A ∈ AU,i,V,kz} = AU,V,z

where k ∈ N>0 and Zk = scalar(k). Therefore define the integration∫
A∈AU,V,z

mpdf(U)(E, z)(A) dA =

lim
k→∞

∑
(mpdf(U)(E, kz)(Zk ∗ A) : A ∈ AU,V,z, Zk ∗ A ∈ Ai)

In the case where the distribution histogram is integral, E ∈ Ai and the draw
size z is integral and non-zero, z ∈ N>0∑

(mpdf(U)(E, kz)(Zk ∗ A) : A ∈ AU,V,z, Zk ∗ A ∈ Ai) =∑
(mpdf(U)(E, kz)(A) : A ∈ AU,i,V,kz) =∑
(Q̂m,U(E, kz)(A) : A ∈ AU,i,V,kz) = 1

Thus the integration can be approximated by a finite summation for some
large k, with the approximation improving as k is increased. A further ap-
proximation is to take the k-th power of the unscaled density∫

A∈AU,V,z

mpdf(U)(E, z)(A) dA ≈

lim
k→∞

∑
((mpdf(U)(E, z)(A))k : A ∈ AU,V,z, Zk ∗ A ∈ Ai)

When k = zn−1, where n = |V |, all of the independent histograms of the
integral sample histograms are approximated

{AX : A ∈ AU,i,V,z} ⊂ {A/scalar(zn−1) : A ∈ AU,i,V,zn}

because {scalar(zn−1) ∗ AX : A ∈ AU,i,V,z} ⊂ Ai.

The definition of the unit-translated gamma function, (Γ!) ∈ R→ R, is such
that the minimum value of positive real arguments is less than one, approx-
imately (0.4616, 0.8856). In fact, ∀x ∈ R (0 < x < 1 =⇒ 0! > Γ!x < 1!).
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However, all integral histograms have multinomial probability density function
less than or equal to one

∀A ∈ AU,V,z (A ∈ Ai =⇒ mpdf(U)(E, z)(A) = Q̂m,U(E, z)(A) ≤ 1)

where E is integral and complete.

The condition for an independent histogram AX to contain at least one frac-
tional count, minr(trim(AX)) < 1, is∏

v∈V

minr(trim(A)%{v}) < zn−1

where V = vars(A), n = |V |, n > 0 and z = size(A) > 0. For some
histograms the independent term of the alignment expression is negative,∑

S∈AXS ln Γ!A
X
S < 0. For example, let A = resize(0.4616v, V C) where v =

|V C| ≥ 1, then ∑
S∈AXS

ln Γ!A
X
S = v ln Γ!0.4616 ≈ −0.1215v

If the sample histogram is integral, A ∈ Ai, and the independent term is nega-
tive,

∑
S∈AXS ln Γ!A

X
S < 0, then the alignment must be positive, algn(A) ≥ 0.

Consider the complete integral congruent support sample histogram A ∈
AU,i,V,z. In the case where (a) the independent is integral, AX ∈ Ai, and
therefore also in the integral congruent support, AX ∈ AU,i,V,z, and (b) the dis-
tribution histogram E is as effective as the independent, EF ≥ AXF, then the
generalised multinomial probability of the sample histogram, Q̂m,U(E, z)(A),
may be decomposed into (i) the independent multinomial probability and (ii)
relative dependent multinomial probability

Q̂m,U(E, z)(A) = Q̂m,U(E, z)(AX)× Q̂m,U(E, z)(A)

Q̂m,U(E, z)(AX)

The relative dependent multinomial probability is

Q̂m,U(E, z)(A)

Q̂m,U(E, z)(AX)
=

z!∏
S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

/
z!∏

S∈AXS AS!

∏
S∈AXS

(
ES
zE

)AX
S

=
∏

S∈AXS

AX
S !

AS!

EAS
S

E
AX

S
S
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In some cases the relative dependent multinomial probability may be greater
than 1, Q̂m,U(E, z)(A)/Q̂m,U(E, z)(AX) > 1. Therefore relative probability is
not strictly speaking a probability per se.

In the case where the sample histogram is independent, A = AX, the rel-
ative dependent multinomial probability is 1

Q̂m,U(E, z)(AX)

Q̂m,U(E, z)(AX)
= 1

The relative dependent multinomial probability may be generalised to cases
where the independent is not integral, AX /∈ Ai, and therefore not in the fi-
nite integral congruent support, AX /∈ AU,i,V,z, by considering the multinomial
probability density function, mpdf(U)(E, z). Here the sample histogram need
not be integral either, but is a complete congruent histogram, A ∈ AU,V,z. De-
compose the multinomial probability density into (i) the independent multi-
nomial probability density and (ii) relative dependent multinomial probability
density

mpdf(U)(E, z)(A) = mpdf(U)(E, z)(AX)× mpdf(U)(E, z)(A)

mpdf(U)(E, z)(AX)

Again, the distribution histogram must be as effective as the independent,
EF ≥ AXF, so that the relative independent multinomial probability density
is non-zero, mpdf(U)(E, z)(AX) > 0. The relative dependent multinomial
probability density is

mpdf(U)(E, z)(A)

mpdf(U)(E, z)(AX)

=
Γ!z∏

S∈AS Γ!AS

∏
S∈AS

(
ES
zE

)AS

/
Γ!z∏

S∈AXS Γ!AS

∏
S∈AXS

(
ES
zE

)AX
S

=
∏

S∈AXS

Γ!A
X
S

Γ!AS

EAS
S

E
AX

S
S

The negative logarithm relative dependent multinomial probability density is

− ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(AX)

=
∑
S∈AXS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S −

∑
S∈AXS

(AS − AX
S ) lnES

=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S −

∑
S∈AXS

(AS − AX
S ) lnES
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because ∑
S∈AXS

ln Γ!AS =
∑
S∈AS

ln Γ!AS

In the case where the sample histogram is independent, A = AX, the negative
logarithm relative dependent multinomial probability density is 0

− ln
mpdf(U)(E, z)(AX)

mpdf(U)(E, z)(AX)
= 0

In the special case where the distribution histogram, E, from which the
sample histogram is drawn, is a scaled uniform cartesian distribution his-
togram E = resize(zE, V

C), then the negative logarithm relative dependent
multinomial probability density simplifies to

− ln
mpdf(U)(resize(zE, V

C), z)(A)

mpdf(U)(resize(zE, V C), z)(AX)

= − ln
mpdf(U)(V C, z)(A)

mpdf(U)(V C, z)(AX)
=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

because
mpdf(U)(resize(zE, V

C), z) = mpdf(U)(V C, z)

and ∑
S∈AXS

(AS − AX
S ) lnV C

S = ln
1

v

∑
S∈AXS

(AS − AX
S ) = 0

where volume v = |V C|. Thus, in this case the negative logarithm relative
dependent multinomial probability density does not depend on the distribu-
tion histogram.

In fact, the negative logarithm relative dependent multinomial probability
density simplifies to the same expression under the weaker constraint that
the distribution histogram is independent, E = EX,

− ln
mpdf(U)(EX, z)(A)

mpdf(U)(EX, z)(AX)
=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

To prove this it is necessary to show that∑
S∈AS

AS ln ÊX
S =

∑
S∈AXS

AX
S ln ÊX

S
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where Ê = resize(1, E) ∈ P . Define ln ∈ A → (S → ln Q>0) as ln(A) :=
{(S, lnAS) : S ∈ AFS}, in∑

S∈AS

AS ln ÊX
S =

∑
S∈AS

AS ln(ÊX)(S)

=
∑
S∈AS

AS
∑
v∈V

ln(ÊX%{v})(S%{v})

=
∑
v∈V

∑
S∈AS

AS ln(ÊX%{v})(S%{v})

=
∑
v∈V

∑
R∈(A%{v})S

A%{v}(R) ln(ÊX%{v})(R)

=
∑
v∈V

∑
R∈(AX%{v})S

AX%{v}(R) ln(ÊX%{v})(R)

=
∑
S∈AXS

AX
S ln ÊX

S

In this case, where the distribution histogram is independent, E = EX, the
negative logarithm relative dependent multinomial probability density does
not depend on the distribution histogram.

The alignment may be derived from the negative logarithm relative dependent
multinomial probability density in the case when the distribution histogram
is independent, E = EX,

− ln
mpdf(U)(EX, z)(A)

mpdf(U)(EX, z)(AX)
=

∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

= alignment(A)

That is, the alignment is the negative logarithm independently-distributed
relative dependent multinomial probability density.

The alignment, alignment(A), does not depend on the distribution his-
togram,

∀E ∈ AU,V,zE (EXF ≥ AXF =⇒ − ln
mpdf(U)(EX, z)(A)

mpdf(U)(EX, z)(AX)
= alignment(A))

The alignment, alignment(A), does not depend on the completeness or oth-
erwise of the sample histogram, A,

∀U ∈ U ∀A,B ∈ AU (A ≡ B =⇒ alignment(A) = alignment(B))
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If the distribution histogram equals the independent sample, E = AX,
then the negative logarithm independent-sample-distributed relative depen-
dent multinomial probability density equals the alignment

− ln
mpdf(U)(AX, z)(A)

mpdf(U)(AX, z)(AX)
= alignment(A)

If the distribution histogram equals the cartesian histogram, E = V C, then
the negative logarithm cartesian-distributed relative dependent multinomial
probability density equals the alignment

− ln
mpdf(U)(V C, z)(A)

mpdf(U)(V C, z)(AX)
= alignment(A)

In the case where both the sample histogram and the independent sample
are integral, A,AX ∈ AU,i,V,z, and the distribution histogram is independent,
E = EX, and sufficiently effective, EF ≥ AXF, then the negative logarithm
independently-distributed relative dependent multinomial probability equals
the alignment expressed in terms of factorials,

− ln
Q̂m,U(EX, z)(A)

Q̂m,U(EX, z)(AX)
=

∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S !

= alignment(A)

In this case the alignment is the difference of the logarithms of the multino-
mial coefficients of the independent histogram and the sample histogram

alignment(A) = ln
z!∏

S∈AXS AX
S !
− ln

z!∏
S∈AS AS!

In this case, also, it is conjectured below (‘Minimum alignment’) that the
alignment is always positive,

(A,AX ∈ AU,i,V,z) ∧ (E = EX) =⇒ alignment(A) ≥ 0

and so the relative dependent multinomial probability must be less than or
equal to one,

0 <
Q̂m,U(EX, z)(A)

Q̂m,U(EX, z)(AX)
≤ 1

Therefore in this case relative probability is a probability per se.

In the case where both the sample histogram and the independent sample
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are integral, A,AX ∈ AU,i,V,z, and the distribution histogram is equal to the
scaled independent, E = resize(zE, A

X), then the independent is the modal
mean, AX = mean(Q̂m,U(AX, z)) ∈ modes(Q̂m,U(AX, z)). In this case the
alignment is the negative logarithm modal-independently-distributed relative
dependent multinomial probability,

alignment(A) = − ln
Q̂m,U(AX, z)(A)

Q̂m,U(AX, z)(AX)

In the cases where the distribution histogram is not independent, E 6= EX,
then the alignment may not be equal to the negative logarithm relative de-
pendent multinomial probability density. The difference is the mis-alignment∑

((AS − AX
S ) lnES : S ∈ AXS). That is,

− ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(AX)
= alignment(A)−

∑
S∈AXS

(AS − AX
S ) lnES

The mis-alignment does depend on the distribution histogram, but not its
size, zE

∀q ∈ Q>0 (
∑
S∈AXS

(AS − AX
S ) ln(Zq ∗ E)(S) =

∑
S∈AXS

(AS − AX
S ) lnES)

where Zq = scalar(q).

In the derivations of alignment above, the starting point has been to take a
distribution histogram E and then to show that if the distribution histogram
is independent, E = EX, then the alignment can be derived from it but does
not depend on it. In fact, the alignment can be derived without reference to
a distribution histogram at all. Consider the classification coder of histories

CG = coderClassification(U,X,DV, DS, DX) ∈ coders(HU,X)

The coder domain is the finite set of histories HU,X ⊂ HU in system U
where the domains of the histories are restricted to a finite subset of the
event identifiers X ⊂ X . Consider the history H ∈ HU,X of size z = |H| and
variables V = vars(H). The total space of a classification coder of a history
H is the sum of the variables space, ids space, histogram counts space and
events classification space

space(CG)(H) = spaceVariables(U)(|V |) +

spaceIds(|X|, z) +

spaceCounts(U)(A) +

spaceClassification(A)
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where A = histogram(H) and events classification space is defined

spaceClassification(A) := ln z!−
∑
S∈AS

lnAS!

In the case where the independent histogram, AX, is in the histograms of the
coder domain, AX ∈ {histogram(G) : G ⊆ HU,X}, and is therefore integral,
AX ∈ Ai, then the classification coder space of history H may be decomposed
into (i) the independent classification coder space and (ii) relative dependent
classification coder space

space(CG)(H) = spaceVariables(U)(|V |) +

spaceIds(|X|, z) +

spaceCounts(U)(AX) +

spaceClassification(AX) +

(spaceClassification(A)−
spaceClassification(AX))

In this case the negative relative dependent classification coder space equals
the alignment

−(spaceClassification(A)− spaceClassification(AX))

=
∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S ! = alignment(A)

In the case where the sample histogram is independent, A = AX, the negative
relative dependent classification coder space is 0

−(spaceClassification(AX)− spaceClassification(AX)) = 0

Although there is no mention of a distribution histogram in this derivation,
it may be viewed as defaulting to the cartesian histogram, V C.

4.3 Alignment of types of histogram

4.3.1 Diagonal alignment

The alignment of a uniform full diagonal regular histogram of size z, di-
mension n and valency d is

d ln Γ!
z

d
− dn ln Γ!

z

dn
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A uniform full diagonal regular histogram is maximally diagonal. If the size
is scaled by valency, z = dx where x is the size per value, then the non-
independent term scales with valency for given size per value, d ln Γ!(z/d) =
d ln Γ!x.

Applying Stirling’s approximation, the alignment approximates to z(n −
1) ln d. Thus diagonal alignment increases linearly with increasing size or
dimension, and logarithmically with valency. Note that the first term de-
creases with increasing valency but the second term decreases more rapidly.

A uniform full anti-diagonal histogram is planar and hence its alignment
is zero.

4.3.2 Crown alignment

The alignment of a uniform full crown histogram of size z and dimension
n > 0 is

n ln Γ!
z

n
−

∑
k∈{0...n}

n!

k!(n− k)!
ln Γ!

(n− 1)kz

nn

A uniform full crown histogram is maximally orthogonal. If the size is
scaled by dimension, z = nx where x is the size per dimension, then the
non-independent term scales with dimension for given size per dimension,
n ln Γ!(z/n) = n ln Γ!x.

The alignment increases with size and dimension. Valencies greater than
two have the same alignment because in each effective state each variable
has exactly one of two values, ∀w ∈ V (|AF%{w}| = 2). Thus the cartesian
sub-volume of the independent is effectively bi-valent, |AXF| = 2n.

4.3.3 Axial alignment

The alignment of a uniform full axial regular histogram missing the pivot
of size z, dimension n and valency d is

b ln Γ!
z

b
−

∑
k∈{0...n}

n!

k!(n− k)!
(d− 1)k ln Γ!

(n− 1)n−kz

nn(d− 1)k

= b ln Γ!
z

b
−

∑
k∈{0...n}

n!

k!(n− k)!
(d− 1)k ln Γ!

(b− (d− 1))n−kz

bn

where the cardinality of effective states is b = n(d− 1).
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The alignment of a uniform full axial regular histogram with a pivot is

c ln Γ!
z

c
−

∑
k∈{0...n}

n!

k!(n− k)!
(d− 1)k ln Γ!

(c− (d− 1))n−kz

cn

where the cardinality of effective states is c = b + 1 and the cardinality of
non-pivot effective states is b = n(d− 1).

In the case of uniform full axial regular histogram missing the pivot, of size
(1−p)z, plus a singleton of the pivot state, of size pz, where the pivot fraction
is p ∈ Q such that 0 ≤ p ≤ 1, the alignment is

b ln Γ!
qz

b
+ ln Γ!pz −

∑
k∈{0...n}

n!

k!(n− k)!
(d− 1)k ln Γ!

qk(n− q)n−kz
nn(d− 1)k

where the cardinality of effective states is c = b + 1, the cardinality of non-
pivot effective states is b = n(d− 1) and the non-pivot fraction is q = 1− p.
The alignment varies between (i) zero where the pivot fraction is one, p = 1,
and the histogram is effectively singleton, (ii) the alignment of the with-pivot
case where the pivot fraction p = 1/c, and (iii) the alignment of the without-
pivot case where the pivot fraction is zero, p = 0.

A uniform full axial regular histogram missing the pivot is part diagonal and
part orthogonal. If the size is scaled by dimension times the non-null valency,
z = n(d− 1)x where x is the size per dimension per non-null value, then the
non-independent term scales with dimension times the non-null valency for
given size per dimension per non-null value, b ln Γ!(z/b) = n(d− 1) ln Γ!x. If
the histogram is bi-valent, d = 2, then the uniform full axial regular histogram
missing the pivot is a uniform full crown histogram and therefore orthogonal.
Otherwise the uniform full axial regular histogram missing the pivot is partly
diagonal. In the case of uniform full axial regular histogram with non-zero
pivot count, the histogram is partly singleton.

Axial histograms are intermediate between diagonal, orthogonal and single-
ton. The smaller the valency, the more orthogonal. The larger the pivot
count, the more singleton.

4.3.4 Skeletal alignment

A uniform full regular skeleton histogram A can be defined such that the
variables V = vars(A) map to the derived variables of the nullable transform
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DT of a well behaved decomposition D ∈ Dw,U , V ↔ der(DT).

Given valency d ∈ N>0, let Q ∈ trees(V × {1 . . . d}) be a tree of depth
l ∈ N>0 such that (i) ∀L ∈ paths(Q) (|dom(set(L))| = |L| = l) and (ii)
∀X ∈ {Q} ∪ ran(nodes(Q)) (X 6= ∅ =⇒ (|X| = d) ∧ (|dom(dom(X))| =
1) ∧ (ran(dom(X)) = {1 . . . d})). Then a skeletal histogram of size z can be
constructed A = resize(z, {S ∪ ((V \ vars(S))× {null}) : L ∈ paths(Q), S =
set(L)}U) ∈ A where V = dom(elements(Q)) and the null value is null ∈ W .
Then (i) skeletal(A), (ii) size(A) = z, (iii) ran(A) = {z/dl} and (iv) ∀w, u ∈
V (axial(A%{w, u})). The dimension is n = |V | =

∑
di−1 : i ∈ {1 . . . l}.

The volume is v = |AC| = d(d+ 1)n−1. The effective states b = |AF| = dl.

The alignment of uniform full regular skeleton histogram A is

b ln Γ!
z

b
−∑(

n!

p (n−m)!
dm ln Γ!

( z

dm

∏
i∈{1...l}

(di−1 − 1)d
i−1−Ki

d(i−1)di−1

)
:

K ∈
∏

i∈{1...l}

{i} × {1 . . . di−1}, m =
∑

i∈{1...l}

Ki, p =
∏

i∈{1...l}

Ki!

)

If the depth, l, is constrained such that the counts of the histogram, A, are
at least one, l = bln z/ ln dc, the skeleton alignment is minimised at integral
valency d = 2. That is, where the regular skeleton tree, Q, is a binary tree.

4.3.5 Pivoted alignment

The alignment of a uniform full pivoted regular histogram of size z, dimen-
sion n and valency d is

b ln Γ!
z

b
−

∑
k∈{0...n}

(
n

k

)
(d− 1)k ln Γ!

(d− 1)k(n−1)z

bn

where the cardinality of effective states is b = (d− 1)n + 1. When the regular
histogram is bi-valent, d = 2, the histogram is diagonalised. So the cardinal-
ity of effective states is two, b = d, and the alignment equals the diagonal
alignment.

A uniform full pivoted regular histogram is roughly volumar. If the size
is scaled by volume, z = dnx where x is the size per volume, then the non-
independent term approximately scales with volume for given size per volume,
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b ln Γ!(z/b) ≈ dn ln Γ!x.

The alignment of a full pivoted regular histogram that has uniform non-pivot
states and a pivot state of size pz, where the pivot fraction is p ∈ {x : x ∈
Q, 0 ≤ x ≤ 1}, is

ln Γ!pz + (d− 1)n ln Γ!qz −
∑

k∈{0...n}

(
n

k

)
(d− 1)k ln Γ!(d− 1)k(n−1)qkpn−kz

where the non-pivot fraction of a single non-pivot state is q = (1−p)/(d−1)n.

The alignment of a uniform full anti-pivoted regular histogram of size z,
dimension n and valency d is

b ln Γ!
z

b
−

∑
k∈{0...n}

(
n

k

)
(d− 1)k ln Γ!

(dn−1 − (d− 1)n−1)k(dn−1 − 1)n−kz

bn

where the cardinality of effective states is b = dn− ((d− 1)n + 1). When the
regular histogram is bi-valent, d = 2, the histogram is complement diagonal.
When the regular histogram is bi-variate, n = 2, the histogram is axial miss-
ing the pivot.

A uniform full anti-pivoted regular histogram is also roughly volumar.

4.4 Scaled alignment

The alignment of a scaled histogram Zk ∗ A, where k ∈ Q≥0 and Zk =
scalar(k), weakly approximates to the scaled alignment of the histogram,
alignment(Zk ∗ A) ≈ k × alignment(A)

alignment(Zk ∗ A) = − ln
mpdf(U)(EX, kz)(Zk ∗ A)

mpdf(U)(EX, kz)(Zk ∗ AX)

≈ − ln

(
mpdf(U)(EX, z)(A)

mpdf(U)(EX, z)(AX)

)k
= k × alignment(A)

Thus scale analysis suggests that alignment has the units of size.

The scaled multinomial probability density function

mpdf(U)(EX, kz)(Zk ∗ A) ≈ (mpdf(U)(EX, z)(A))k
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approximates best for high entropy sample histograms for which the multino-
mial coefficient is largest. The entropy of the independent histogram is often
greater than that of the histogram, entropy(AX) ≥ entropy(A) (see ‘Mini-
mum alignment’ below), so the approximation is best for low alignments.

4.5 Minimum alignment

If a histogram is integral, A ∈ Ai, and the independent histogram, AX, is
such that all of the counts are fractional, ∀c ∈ ran(AX) (0 ≤ c ≤ 1), then the
gamma functions of the counts are such that ∀c ∈ ran(AX) (0! ≥ Γ!c ≤ 1!).
Hence

∑
S∈AXS ln Γ!A

X
S ≤ 0 and so the alignment is positive, algn(A) ≥ 0.

Note that in this case z ≤ v where z = size(A) and v = |AC|.

If the independent histogram is integral scaled uniform cartesian, AX =
Zz/v ∗V C ∈ Ai where Zx = scalar(x), V = vars(A), z = size(A) and v = |V C|
such that z/v ∈ N>0, then its multinomial coefficient

z!∏
S∈AXS AX

S !
=

z!

((z/v)!)v

is maximised. The classification space is the logarithm of the multinomial
coefficient and so it is maximised too

0 ≤ spaceClassification(A) ≤ spaceClassification(AX) = ln z!− v ln(z/v)!

See ‘Classification space’ above for a discussion showing that the classification
space is maximised at maximum entropy. Thus in this case the alignment is
positive

algn(A) = spaceClassification(AX)− spaceClassification(A) ≥ 0

Note that there exists a non-singleton set of integral iso-independents of
integral scaled uniform cartesian independent, |Y −1

U,i,V,z(Zz/v ∗ V C)| > 1, if the
histogram is pluri-variate, |V | > 1, and each variable is pluri-valent, ∀w ∈
V (|Uw| > 1), for all z/v ∈ N>0. Of the integral iso-independents set only
the independent histogram has zero alignment, Zz/v ∗V C ∈ Y −1

U,i,V,z(Zz/v ∗V C)

and algn(Zz/v ∗ V C) = 0. The others have alignment greater than zero,
∀B ∈ Y −1

U,i,V,z(Zz/v ∗ V C) (B 6= Zz/v ∗ V C =⇒ algn(B) > 0).

The minimum alignment conjecture states that if the independent his-
togram is integral, AX ∈ Ai, then the minimum alignment is conjectured to
be zero,

∀A ∈ A (AX ∈ Ai =⇒ algn(A) ≥ 0)
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or minr({(A, algn(A)) : A ∈ A, AX ∈ Ai}) ≥ 0. This is a consequence
of the integral mean multinomial probability distribution conjecture which
states that if the mean of the multinomial probability distribution is inte-
gral then it is also modal, mean(Q̂m,U(E, z)) ∈ Ai =⇒ mean(Q̂m,U(E, z)) ∈
modes(Q̂m,U(E, z)). Thus for complete integral independent histogram (AXU =

AC) ∧ (AX ∈ Ai) =⇒ AX ∈ AU,i,V,z and AX = mean(Q̂m,U(AX, z)) =⇒
AX ∈ maxd(Q̂m,U(AX, z)). Thus

∀A ∈ AU,i,V,z (AX ∈ Ai =⇒

z!∏
S∈AS AS!

∏
S∈AS

(
AX
S

z

)AS

≤ z!∏
S∈AXS AX

S !

∏
S∈AXS

(
AX
S

z

)AX
S

)

where z = size(A) > 0. The distribution histogram, AX, is independent so

∀A ∈ AU,i,V,z (AX ∈ Ai =⇒ z!∏
S∈AS AS!

≤ z!∏
S∈AXS AX

S !
)

Alignment does not depend on completeness, algn(A) = algn(A + ACZ) =
algn(A∗AF), thus integral independent histogram implies positive alignment,
∀A ∈ A (AX ∈ Ai =⇒ algn(A) ≥ 0).

Moreover, within the degree to which Stirling’s approximation holds, the min-
imum alignment is zero even for non-integral independent histogram. Utilis-
ing the identity ∑

S∈NFS

NS lnNX
S =

∑
S∈NXFS

NX
S lnNX

S

where N ∈ A ∩ P , and noting that the relative entropy between the sample
histogram and its independent histogram is greater than or equal to zero by
Gibbs’ inequality, then

alignment(A) :=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

≈ z
∑
S∈NFS

NS lnNS − z
∑

S∈NXFS

NX
S lnNX

S

= z
∑
S∈NFS

NS lnNS − z
∑
S∈NFS

NS lnNX
S

= z
∑
S∈NFS

NS ln
NS

NX
S

= z × entropyRelative(N,NX)

≥ 0
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where z = size(A) > 0 and N = resize(1, A) ∈ P . Alignment is approxi-
mately equal to the scaled difference between the entropy of the independent
histogram and the entropy of the histogram, which in this case is the scaled
relative entropy between histogram and independent, or scaled mutual entropy

alignment(A) ≈ z × entropy(AX)− z × entropy(A)

= z × entropyRelative(A,AX)

Thus entropy(AX) ≥ entropy(A).

Similar logic was used above to show that the log of the generalised multino-
mial probability distribution, ln ◦ Q̂m,U(E, z) ∈ AU,i,V,z → R, can be approx-
imated by the negative relative entropy between the sample histogram and
the distribution histogram by means of the Stirling approximation

Q̂m,U(E, z)(A) = z!
∏
S∈AS

PAS
S

AS!
≈
∏

S∈AFS

(
PS
NS

)AS

where P = resize(1, E) and N = resize(1, A). So

ln mpdf(U)(E, z)(A) ≈
∑
S∈AS

AS ln
PS
NS

= −z
∑
S∈NFS

NS ln
NS

PS

where AF ≤ EF. Let the distribution histogram equal the independent his-
togram, E = AX, then

ln mpdf(U)(AX, z)(A) ≈ −z
∑
S∈NFS

NS ln
NS

NX
S

≈ −alignment(A)

= ln
mpdf(U)(AX, z)(A)

mpdf(U)(AX, z)(AX)

which implies that mpdf(U)(AX, z)(AX) ≈ 1 within the Stirling approxima-
tion and that the alignment is positive.

As shown above, the gamma function is log convex and hence the expected
logarithm of the factorial of the counts of the states of the sample histograms
is greater than or equal to the logarithm of the factorial of the counts of the
states of the mean histogram by Jensen’s inequality

∀S ∈ V CS (expected(Q̂m,U(E, z))({(A, lnAS!) : A ∈ AU,i,V,z}) ≥ ln Γ!MS)
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where the mean histogram is M = mean(Q̂m,U(E, z)). Consider a draw of
size z from independent distribution histogram EX. Let

Y = {(S, expected(Q̂m,U(EX, z))({(A, lnAS!) : A ∈ AU,i,V,z})) : S ∈ V CS}

and X = {(S,Γ−1
! (ey)) : (S, y) ∈ Y } ∈ SU → R. Let X ′ be a histogram,

which is a rational valued function, that approximates closely to X, which
is a real valued function, X ′ ≈ X. Let z′ = size(X ′). Conjecture that
z′ ≥ z. Conjecture that scalar(z/z′) ∗ X ′ ≈ scalar(z/zE) ∗ EX, but that
algn(scalar(z/z′) ∗X ′) ≥ 0. That is, even where the alignment is small, the
log convexity tends to make it positive.

However, alignment is negative for some histograms. For example, the
alignment of a uniform full anti-pivoted regular histogram A of size z = 1000,
dimension n = 2 and valency d = 101 is

algn(A) =

b ln Γ!
z

b
−

∑
k∈{0...n}

n!

k!(n− k)!
(d− 1)k ln Γ!

z(n− 1)k

nn(d− 1)k
≈ −277.52

where the cardinality of effective states is b = dn− ((d−1)n+1) = 200. Note
that the independent of the example uniform full anti-pivoted regular his-
togram is non-integral, AX /∈ Ai. The independent cannot be the distribution
histogram of a generalised multinomial probability distribution. The indepen-
dent is not maximal in the multinomial probability density function param-
eterised by the independent, mpdf(U)(AX, z)(AX) < mpdf(U)(AX, z)(A).

Conjecture that there exist non-integral histograms which are not indepen-
dent but have zero alignment, ∃A ∈ A (A 6= AX∧algn(A) = 0). However, al-
though the example above, of a uniform full anti-pivoted regular histogram of
dimension n = 2 and valency d = 101, has a real solution of z ≈ 3850.38 ∈ R
such that alignment equals zero, there may not be a rational solution size
z ∈ Q.

The minimum alignment is sometimes negative, depending on the geometry
of the variables V in system U , and the size z. However, conjecture that the
expected alignment is always positive if the sample histograms are drawn from
the generalised multinomial probability distribution where the distribution

433



histogram is independent, E = EX. The expected exponential alignment is

expected(Q̂m,U(EX, z))({(A, exp(algn(A))) : A ∈ AU,i,V,z})

=
∑

A∈AU,i,V,z

z!∏
S∈AS AS!

∏
S∈AS

(
EX
S

zE

)AS mpdf(U)(EX, z)(AX)

mpdf(U)(EX, z)(A)

=
∑

A∈AU,i,V,z

z!∏
S∈AXS Γ!AX

S

∏
S∈AXS

(
EX
S

zE

)AX
S

=
∑

A∈AU,i,V,z

mpdf(U)(EX, z)(AX)

= expected(Q̂u,U(V, z))({(A,mpdf(U)(EX, z)(AX)) : A ∈ AU,i,V,z})× |AU,i,V,z|
≥ expected(Q̂u,U(V, z))({(A,mpdf(U)(EX, z)(A)) : A ∈ AU,i,V,z})× |AU,i,V,z|
= sum(Q̂m,U(EX, z)) = 1

where Q̂u,U(V, z) is the uniform probability distribution and exp ∈ R →
R is the exponential function. The entropy of the independent histogram
is greater than or equal to the entropy of the histogram, entropy(AX) ≥
entropy(A). So the probability of drawing the independent histogram, AX,
from an independent distribution, EX, is expected in the uniform probability
distribution, Q̂u,U(V, z), to be greater than or equal to that of the sample
histogram, A. If the expected exponential alignment is conjectured to be
greater than or equal to 1 then conjecture that the expected alignment is
positive

expected(Q̂m,U(EX, z))({(A, algn(A)) : A ∈ AU,i,V,z}) ≥ 0

However, note that Jensen’s inequality implies that the expected alignment is
only less than or equal to the logarithm of the expected exponential alignment

exp(expected(Q̂m,U(EX, z))({(A, algn(A)) : A ∈ AU,i,V,z}))
≤ expected(Q̂m,U(EX, z))({(A, exp(algn(A))) : A ∈ AU,i,V,z})

In the case where E = V C then the sum must be less than the maximum
entropy histogram, A = resize(z, V C)

expected(Q̂m,U(V C, z))({(A, exp(algn(A))) : A ∈ AU,i,V,z})

≤
∑

A∈AU,i,V,z

z!∏
S∈V CS Γ!(z/v)

∏
S∈V CS

(
1

v

)z/v
=

(z + v − 1)!

(v − 1)!

1

((z/v)!)v
1

vz
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where v = |V C|. Hence, by Jensen’s inequality

expected(Q̂m,U(V C, z))({(A, algn(A)) : A ∈ AU,i,V,z})
≤ ln(z + v − 1)!− ln(v − 1)!− v ln(z/v)!− z ln v

If z � v then this approximates to v ln(z/v). Therefore conjecture that
expected alignment varies as the volume for constant size greater than the
volume

expected(Q̂m,U(EX, z))({(A, algn(A)) : A ∈ AU,i,V,z}) ∼ v

If z � v then the expression above approximates to z ln(v/z). Conjecture
that expected alignment varies as the logarithm of the volume for constant
size less than the volume

expected(Q̂m,U(EX, z))({(A, algn(A)) : A ∈ AU,i,V,z}) ∼ ln v

The partially independent set RA of histogram A of variables V = vars(A)
is the set of partially independent histograms

RA = {ZA ∗
∏
{ A
ZA

% C : C ∈ P} : P ∈ B(V )}

where ZA = scalar(size(A)). The independent is a member, AX ∈ RA. The
alignment of the partially independent histograms is such that

∀B ∈ RA (0 ≤ algn(B) ≤ algn(A))

in the case where algn(A) ≥ 0.

4.6 Maximum alignment

The maximum alignment of a histogram A is conjectured to occur when
the histogram is both uniform, |ran(trim(A))| = 1, and fully diagonalised,
diagonalFull(U)(A). The set of congruent maximum alignment histograms
for a set of variables V in system U can be calculated explicitly. There is
a uniform histogram of size z for each of the subsets of the cartesian states
having maximum cardinality and which are such that the elements have zero
mutual incidence, {resize(z, A) : A ∈ P(V C), diagonalFull(U)(A)}.

The maximum alignment of a regular histogram A with variables V in sys-
tem U and size z = size(A), dimension n = |V | and valency d, where
{d} = {|Uv| : v ∈ V }, is

d ln Γ!
z

d
− dn ln Γ!

z

dn
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If a histogram is not regular, its maximum alignment is that of a regular
histogram of the same size z and dimension n having valency d equal to the
minimum valency, d = minr({(v, |Uv|) : v ∈ V }). This regular histogram
is effectively congruent to the independent histogram’s cartesian sub-volume,
|AXF| = dn. Define alignmentMaximum(U) ∈ P(VU)×Q≥0 → R

alignmentMaximum(U)(V, z) := d ln Γ!
z

d
− dn ln Γ!

z

dn

where n = |V | and d = minr({(v, |Uv|) : v ∈ V }). alignmentMaximum is
undefined for scalars, V = ∅.

If a uniform diagonalised histogram is not fully diagonalised its alignment
is equal to the maximum alignment of the regular histogram having the same
dimension n and valency d equal to the effective valency of the independent
histogram’s cartesian sub-volume, d = |AXF|1/n.

Applying Stirling’s approximation, the maximum alignment approximates
to z(n − 1) ln d. So maximum alignment increases with increasing size, di-
mension and valency. For a given set of variables V , the alignment is of the
same complexity as the size, alignment ∈ O(size,m) where the multiplier m
depends on the dimension and valencies of V .

In some special cases, the application of Stirling’s approximation is exact,
alignmentMaximum(U)(V, z) = z(n − 1) ln d. Zero histograms, z = 0, and
mono-variate histograms, n = 1, have zero alignment and zero maximum
alignment in the approximation. Pluri-variate singleton histograms satisfy
the requirement for zero incidence, but the maximum alignment is zero be-
cause they are effectively mono-valent, ln d = 0.

Consider constructing a single derived variable w of valency equal to the
effective cardinality of a diagonalised pluri-variate histogram A in a system
U such that Uw = states(AF) then we can calculate a mono-variate histogram
B = {({(w, S)}, c) : (S, c) ∈ trim(A)} that represents the diagonal of A. The
events classification space of the derived histogram spaceClassification(B) is
maximised when the alignment of the diagonalised histogram is maximised.
In other words, the entropy of the diagonal is maximised when alignment
is maximised. Let D be the set of diagonalised histograms of size z and
variables V in a system U , D ∈ P(AU)

D = {A : A ∈ AU , vars(A) = V, size(A) = z, diagonal(A)}
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then

maxd({(A, algn(A)) : A ∈ D}) = maxd({(A, spCl(A)) : A ∈ D})
= maxd({(A, entropy(A)) : A ∈ D})

where algn = alignment and spCl = spaceClassification. This is counter-
intuitive because a glance at the definition of alignment would suggest that
maximum alignment would increase with decreasing events classification
space. But as the maximum is approached the sensitivity to the indepen-
dent events classification space becomes more important. For example a
singleton which has a low events classification space, but also has an equally
low independent events classification space and hence zero alignment.

Consider the effective states states(AF) of a diagonalised histogram that
is not necessarily at maximum alignment. The subsets of the states which
are incident on each of the states on the diagonal form a set of exclusive
singleton histograms and thus independent histograms

∀A ∈ A (diagonal(A) =⇒ (∀S ∈ AFS ♦B = A\incidence(A, S, 0) (B = BX)))

In other words, the partition of the volume of diagonalised histogram A,
{A \ incidence(A, S, 0) : S ∈ AFS} ∈ B(ACS), which has the components
corresponding to each of these singletons, consists of a set of independent
histograms.

4.7 Dependent alignment

Given a substrate histogram A ∈ AU,V,z, the independent, AX ∈ AU,V,z,
is conjectured in section ‘Likely histograms’, above, to be the maximum
likelihood estimate of the sum of the generalised multinomial probabilities
of the integral iso-independents of the histogram, A,

{AX} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X))) : D ∈ AU,V,z})

where the integral iso-independents is

Y −1
U,i,V,z(A

X) = {B : B ∈ AU,i,V,z, BX = AX}

The corresponding dependent histogram, AY ∈ AU,V,z, is defined

{AY} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,V,z})
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Alignment may be defined as the negative logarithm independent-sample-
distributed relative dependent multinomial probability density

algn(A) = − ln
mpdf(U)(AX, z)(A)

mpdf(U)(AX, z)(AX)

which is the independent-distributed-relative multinomial space,

algn(A) = spaceRelative(AX)(A)

where the distribution-relative multinomial space is defined, in section ‘Likely
histograms’, above, as

spaceRelative(E)(A) := − ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(E)

In the case where both the histogram and independent are integral, A,AX ∈
Ai, the independent-distributed-relative multinomial space is

spaceRelative(AX)(A) := − ln
Qm,U(AX, z)(A)

Qm,U(AX, z)(AX)

The independent-distributed-relative multinomial space of the independent is
zero,

spaceRelative(AX)(AX) = algn(AX) = 0

In section ‘Likely histograms’, above, it is conjectured that the logarithm of
the maximum conditional probability with respect to the dependent analogue
varies with the relative space with respect to the independent analogue, which
in this case is the alignment,

ln
Qm,U(AY, z)(A)∑

Qm,U(AY, z)(B) : B ∈ Y −1
U,i,V,z(A

X)
∼ − ln

Qm,U(AX, z)(A)

Qm,U(AX, z)(AX)

= spaceRelative(AX)(A)

= algn(A)

In the case where the histogram and independent are integral, A,AX ∈ Ai,
the independent-distributed-relative multinomial space is conjectured to be
greater than or equal to zero and less than or equal to the independent-
distributed-relative multinomial space of the dependent,

0 ≤ spaceRelative(AX)(A) ≤ spaceRelative(AX)(AY)
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In the case where the independent of the dependent equals the independent,
AYX = AX, then the inequality is

0 ≤ algn(A) ≤ algn(AY)

This is consistent with the entropies,

entropy(AX) ≥ entropy(A) ≥ entropy(AY)

Conjecture that if the histogram is at maximum alignment the dependent
equals the histogram,

algn(A) = alignmentMaximum(U)(V, z) =⇒ AY = A

4.8 Capacity and Alignment density

Functions on the geometry, called capacities, of a histogram A can be for-
malised in terms of the effective states AFS. Let this set of functions be
defined as capacities ⊂ P(S) → R>0 such that ∀K ∈ capacities ∀Q ∈
dom(K) ∀S, T ∈ Q (vars(S) = vars(T )). The application of capacity func-
tion K to the empty set, K(∅), is undefined.

Given some capacity function, K ∈ capacities, the alignment density of non-
zero histogram A is defined as alignment(A)/K(AFS) ∈ R. The alignment
density of a zero histogram, size(A) = 0, is undefined.

The unit capacity function is constant 1. Define capacityUnit ∈ capacities
as capacityUnit(Q) := 1. The alignment unit density equals the alignment
alignment(A)/capacityUnit(AFS) = alignment(A).

The effective capacity is the cardinality of the effective histogram. Define
capacityEffective ∈ capacities as capacityEffective(Q) := |Q|.

The volume capacity is the volume of the variables. Define capacityVolume(U) ∈
capacities as capacityVolume(U)(Q) := v where v = volume(U)(vars(Q)),
and vars ∈ P(S)→ P(V) is defined as vars(Q) =

⋃
{vars(S) : S ∈ Q}.

The valency capacity is the geometrical mean of the valencies of the variables.
Define capacityValency(U) ∈ capacities in system U as

capacityValency(U)(Q) := v1/n
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where n = |vars(Q)|. The alignment valency density is

alignment(A)

capacityValency(U)(AFS)

The effective valency capacity is similar to the valency capacity except that
the interesting volume is the cardinality of the cartesian sub-volume of the
effective independent. Define capacityValencyEffective(U) ∈ capacities in
system U as

capacityValencyEffective(U)(Q) := |QUXF|1/n

The diagonal capacity is the cardinality of the values of the shortest vari-
able. Define capacityDiagonal(U) ∈ capacities as capacityDiagonal(U)(Q) :=
minr({|Uw| : w ∈ vars(Q)}).

The maximum alignment of a histogram of size z and variables V approxi-
mates to z(n − 1) ln d where d = minr({|Uw| : w ∈ V }) and n = |V |. The
aligned capacity is the log of the valency capacity scaled by n − 1. Define
capacityAligned(U) ∈ capacities as

capacityAligned(U)(Q) := (1− 1/n) ln v

The alignment aligned density at maximum alignment of a regular volume,
{d} = {|Uw| : w ∈ V }, is approximately independent of geometry

alignmentMaximum(U)(V, z)

capacityAligned(U)(V CS)
≈ z(n− 1) ln d

(1− 1/n) ln v
= z

4.9 Alignment and independent histograms

The multinomial probability density of an independent histogram AX of size z
and variables V drawn from an independent distribution EX is approximately
equal to the product of the multinomial probability densities of the reduced
independent histogram AX%{w}, where w ∈ V , drawn from the reduced
independent distribution EX%{w}

mpdf(U)(EX, z)(AX) ≈
∏
w∈V

mpdf(U)(EX%{w}, z)(AX%{w})

To see this (i) use the notation Aw = A%{w} and Sw = S%{w}, (ii) let
PX = resize(1, EX), (iii) note that∑

S∈AXS

AX
S lnPX

S =
∑
w∈V

∑
R∈AXS

w

AX
w,R lnPX

w,R
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which follows from the proof that
∑

S∈AS AS lnPX
S =

∑
S∈AXS AX

S lnPX
S above,

and (iv) apply Stirling’s approximation,

ln mpdf(U)(EX, z)(AX)

= ln Γ!z −
∑
S∈AXS

ln Γ!A
X
S +

∑
S∈AXS

AX
S lnPX

S

≈ z ln z −
∑
S∈AXS

AX
S lnAX

S +
∑
S∈AXS

AX
S lnPX

S

=
∑
w∈V

z ln z −
∑
R∈AXS

w

AX
w,R lnAX

w,R +
∑
R∈AXS

w

AX
w,R lnPX

w,R


≈

∑
w∈V

ln Γ!z −
∑
R∈AXS

w

ln Γ!A
X
w,R +

∑
R∈AXS

w

AX
w,R lnPX

w,R


= ln

∏
w∈V

mpdf(U)(EX%{w}, z)(AX%{w})

It can be shown, however, that the multinomial probability density of an
independent histogram is not exactly equal to product of the multinomial
probability densities, but only approximately equal. For example, in the case
of a regular scaled cartesian histogram of size z dimension n = |V | and
valency d, AX = scalar(z/dn) ∗ V C drawn from V C

ln

∏
w∈V mpdf(U)(EX%{w}, z)(AX%{w})

mpdf(U)(EX, z)(AX)

= n ln Γ!z − nd ln Γ!
z

d
+ nz ln

1

d

− ln Γ!z + dn ln Γ!
z

dn
− z ln

1

dn

= n ln Γ!z − nd ln Γ!
z

d
− ln Γ!z + dn ln Γ!

z

dn
6= 0

≈ nz ln d− z ln dn = 0

This approximation of the multinomial probability density of an independent
histogram is related to the method used by the dimensional classification
coder of histories, CG,n, to encode the reduced classifications. This is a special
case where the distribution histogram is cartesian, EX = V C∏
w∈V

mpdf(U)({w}C, z)(AX%{w}) = n ln Γ!z −
∑
w∈V

∑
R∈AXS

w

ln Γ!A
X
w,R

=
∑
w∈V

spaceClassification(AX%{w})
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There is an analogy between the size scaling of alignment and what may
be called dimension scaling of the logarithm of the multinomial probability
density of an independent histogram. Choose one of the variables w ∈ V
then

alignment(Zk ∗ A) ≈ − ln

(
mpdf(U)(EX, z)(A)

mpdf(U)(EX, z)(AX)

)k
= k alignment(A)

ln mpdf(U)(EX, z)(AX) ≈ ln(mpdf(U)(EX%{w}, z)(AX%{w}))n

= n ln mpdf(U)(EX%{w}, z)(AX%{w})

where k ∈ Q≥0, Zk = scalar(k) and n = |V |.

4.10 Independent cartesian sub-volume

The effective states of the independent histogram form a cartesian sub-volume,
that is, AXF =

∏
{(A%{v})F : v ∈ V }. This volume is less than the whole

volume if there are volumes incident on the reduced variables such that the in-
cident states have zero count. The union of this set of zero sub-volumes forms
the complement of the independent cartesian sub-volume,

⋃
{CU : v ∈ V, w ∈

Uv, S = {(v, w)}, B = A+ACZ, C = B \ incidence(B, S, 0), size(C) = 0} =
AC \ AXF . The alignment of the cartesian sub-volume is the same as that
for the whole volume, alignment(A ∗ AXF) = alignment(A).

A unit functional transform that represents the cartesian sub-volume slice
having derived variables of truncated valency can be constructed. The trans-
formed histogram has the same alignment. Let P = {(v, (A%{v})FS) :
v ∈ V }, such that ∀v ∈ V ((Pv, Pv) ∈ U) and transform T = ({S ∪
{(Pv, (v, w)) : (v, w) ∈ S} : S ∈

∏
ran(P )}U, ran(P )). Then alignment(A ∗

T ) = alignment(A).

4.11 Mis-alignment

The negative relative dependent space of sample histogram A drawn from
distribution histogram E equals the alignment minus the mis-alignment

alignment(A)−
∑
S∈AXS

(AS − AX
S ) lnES

where the sample histogram is as complete as the independent, AU ≥ AXU

and the distribution histogram is as effective as the independent, EF ≥ AXU.
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In terms of probability density, the negative relative dependent space is the
negative logarithm relative dependent multinomial probability density

− ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(AX)
= alignment(A)−

∑
S∈AXS

(AS − AX
S ) lnES

The mis-alignment does depend on the distribution histogram, but not its
size, zE

∀q ∈ Q>0 (
∑
S∈AXS

(AS − AX
S ) ln(Zq ∗ E)(S) =

∑
S∈AXS

(AS − AX
S ) lnES)

where Zq = scalar(q).

The mis-alignment is zero if the sample histogram is independent, A = AX,∑
S∈AXS

(AX
S − AX

S ) lnES = 0

The mis-alignment is zero if the distribution histogram is independent, E =
EX, ∑

S∈AXS

(AS − AX
S ) lnEX

S = 0

Now consider some examples of the mis-alignment for non-independent dis-
tribution histograms, E 6= EX. First consider the case where the distribu-
tion histogram E is equal to the sample histogram A, E = A, and where
the sample is not independent, A 6= AX, and is as effective as its indepen-
dent AF = AXF. In this case the alignment of the distribution distribution
equals the sample histogram, algn(E) = algn(A), because E = A. The mis-
alignment is approximately greater than or equal to the alignment of the
sample histogram, algn(A). So the negative relative dependent space is ap-
proximately less than or equal to zero. Applying Gibbs’ inequality and then
Stirling’s approximation,∑

S∈AXS

(AS − AX
S ) lnAS =

∑
S∈AS

AS lnAS −
∑
S∈AXS

AX
S lnAS

>
∑
S∈AS

AS lnAS −
∑
S∈AXS

AX
S lnAX

S

≈
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

= algn(A)
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In terms of probability density, the probability of drawing histogram A from
distribution histogram A is approximately higher than the probability of draw-
ing histogram AX

− ln
mpdf(U)(A, z)(A)

mpdf(U)(A, z)(AX)
≤ 0

and so

mpdf(U)(A, z)(A) ≥ mpdf(U)(A, z)(AX)

When mis-alignment is positive the distribution distribution, E, is said to be
aligned with the sample histogram A.

A similar case is where the distribution histogram is a ratio of the sample
and the independent sample, E = resize(z, A/AX), where A 6= AX, AF ≥ AXF

and z = size(A). The alignment of the distribution histogram is less than the
alignment of the sample, algn(E) < algn(A). The mis-alignment is positive,
but less than the alignment of the sample, algn(A),∑

S∈AXS

(AS − AX
S ) ln

AS
AX
S

=
∑
S∈AXS

AS ln
AS
AX
S

+
∑
S∈AXS

AX
S ln

AX
S

AS

> 0

Again the inequality is Gibbs’ inequality. The distribution distribution A/AX

is aligned with the sample histogram A.

A symmetrical example is where the distribution histogram is a scaled ra-
tio of the independent sample and the sample, E = resize(z, AX/A), where
A 6= AX and AF ≥ AXF. The alignment of the distribution histogram is
still less than the alignment of the sample, algn(E) < algn(A), but the mis-
alignment is negative∑

S∈AXS

(AS − AX
S ) ln

AX
S

AS
= −

∑
S∈AXS

AS ln
AS
AX
S

−
∑
S∈AXS

AX
S ln

AX
S

AS

> 0

The distribution distribution AX/A is aligned against the sample histogram A.

A fourth example of a distribution histogram E derived from the sample
histogram A is where E is the independent additive complement defined
E = resize(z, (A − AX)F ∗ AX + (AX − A)F ∗ A), where AF ≥ AXF. In this
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case, the distribution histogram, E, may be more aligned than the sample,
algn(E) > algn(A) but the mis-alignment is negative∑

S∈AXS

AS lnES −
∑
S∈AS

AX
S lnES

=
∑

S∈(AX−A)FS

AS lnAS +
∑

S∈(A−AXS)F

AS lnAX
S −

(
∑

S∈(AX−A)FS

AX
S lnAS +

∑
S∈(A−AX)FS

AX
S lnAX

S )

= −
∑

S∈(AX−A)FS

(AX
S − AS) lnAS −

∑
S∈(A−AX)FS

(AS − AX
S ) lnAX

S

< 0

In this case, the distribution distribution E is aligned against the sample his-
togram A.

The examples above are of aligned distribution histograms that are either
aligned with the sample histogram or aligned against the sample histogram.
Another case is where the distribution histogram is orthogonally aligned to
the sample histogram. In this case the distribution histogram alignment is
non-zero, E 6= EX, and the sample histogram alignment is non-zero, A 6= AX,
but the mis-alignment is zero,∑

S∈AXS

(AS − AX
S ) lnES = 0

If the size of the distribution histogram is much larger than the size of the
sample histogram, zE � z, and such that each distribution histogram count
is greater than the corresponding count of both the sample and independent
sample, E > A and E > AX, then there is a approximate condition for
orthogonal alignment. First approximate the mis-alignment as an alignment

445



delta∑
S∈AXS

(AS − AX
S ) lnES

=
∑
S∈AXS

(AS − AX
S ) lnES −

∑
S∈AXS

(AS − AX
S ) lnEX

S

≈
∑
S∈ES

(E + A− AX)S lnES −
∑
S∈EXS

(EX + A− AX)S lnEX
S − algn(E)

≈
∑
S∈ES

(E + A− AX)S lnES −
∑
S∈EXS

(E + A− AX)X
S lnEX

S − algn(E)

≈
∑
S∈ES

(E + A− AX)S ln(E + A− AX)S −∑
S∈EXS

(E + A− AX)X
S ln(E + A− AX)X

S − algn(E)

≈ algn(E + A− AX)− algn(E)

The perturbed distribution histogram, E + A − AX, is the distribution his-
togram, E, plus the delta, (AX, A). The approximate condition for orthogonal
alignment is thus algn(E + A − AX) ≈ algn(E). A symmetrical argument
yields a similar approximate condition algn(E+AX−A) ≈ algn(E). Together
the condition is algn(E+A−AX)− algn(E+AX−A) ≈ 0. The appropriate
degree of approximation can be guaged by calculating the alignment delta of
the perturbed distribution histogram relative to itself after scaling

algn(E + Zz/zE ∗ E − Zz/zE ∗ EX)− algn(E + Zz/zE ∗ EX − Zz/zE ∗ E)

where Zq = scalar(q).

The constraints on E to make the perturbed distribution histogram align-
ment delta, algn(E +A−AX)− algn(E +AX−A), a reasonable limit on the
orthogonal alignment condition, are similar to those that make multinomial
distributions approximations to historical distributions. That is, that the gen-
eralised multinomial probability distribution approximates to the stuffed his-
torical probability distribution, Q̂m,U(E, z) ≈ Q̂h,U(E, z), where z � minr(E),
E ∈ Ai and EF = EC.
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4.12 Alignment of partially independent

A histogram A of variables V = vars(A) is said to be partially independent
in a partition of the variables P ∈ B(V ) if

A = ZA ∗
∏
K∈P

A

ZA
%K

where ZA = scalar(size(A)). Conjecture that the alignment of the histogram
equals the sum of the alignments of the reductions

algn(A) =
∑
K∈P

algn(A%K)

The components of the partition are said to be independent of eachother. So,
for example, given K, J ∈ P then algn(A ∗ {KCS{}T, JCS{}T}T) = 0.

A histogram may be contracted by removing the largest subset of inde-
pendent variables. Let {J} = mind({(K, |K|) : K ⊆ V, A = A%K ∗∏

w∈V \K(A/ZA)%{w}}), then algn(A) = algn(A%J). Note that there is

exactly one contraction. If the histogram is independent, A = AX, then it
contracts to a scalar, A%∅.

4.13 Alignment of axial reductions

Let non-scalar non-singleton trimmed histogram A = trim(A) have variables
V = vars(A). Let PA be a non-unary partition of the trimmed histogram,
PA ∈ B(A) and |PA| > 1. Let PV be a partition of the variables, PV ∈
B(V ), of the same cardinality, |PV | = |PA|. Consider the total bijection
Q ∈ PA :↔: PV . If the map, Q, is (i) such that there exists a pivot state
X =

⋃
{(A ∗ C % (V \ K))S : (C,K) ∈ Q} ∈ cartesian(U)(V ) for implied

system U = implied(A), and (ii) such that all of the sliced reductions are
diagonalised, ∀(C,K) ∈ Q (diagonal(A ∗ C % K)), then for all selections
M ∈ PA :↔ V of Q, ∀C ∈ PA (MC ∈ QC), there exists a reduced histogram

BM =
∑

(C,w)∈M

(A ∗ C % {w}) ∗ (X % (ran(M) \ {w}))

which is axial, axial(BM). Conjecture that for all such selections, M , of such
maps, Q, the alignment of the histogram equals the alignment of the axial
reduction plus the sum of the alignments of the sliced diagonalised reductions

algn(A) = algn(BM) +
∑

(C,K)∈Q

algn(A ∗ C % K)
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The sliced diagonalised reductions, {A ∗ C % K : (C,K) ∈ Q}, are said
to be axially independent of eachother and axially independent of the axial
reduced histogram, BM , because the alignments sum together similarly to
the alignments of a partially independent histogram, see section ‘Alignment
of partially independent’ above. The pivot state, X, need not be effective,
only that it is a member of the cartesian set of states, X ∈ V CS. If X /∈ AS

then the axial is missing the pivot.

4.14 Alignment and conditional probability

Consider the complete integral congruent support sample histogram A ∈
AU,i,V,z drawn with replacement from distribution histogram E ∈ AU,V,zE . In
the case where the distribution histogram E is as effective as the indepen-
dent, EF ≥ AXF, then the generalised multinomial probability of the sample
histogram, Q̂m,U(E, z)(A), may be decomposed into (i) the iso-independents
multinomial probability and (ii) iso-independent conditional dependent multi-
nomial probability

Q̂m,U(E, z)(A) =
∑

B∈Y −1
U,i,V,z(AX)

Q̂m,U(E, z)(B)× Q̂m,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(E, z)(B)

where the generalised multinomial probability distribution Q̂m,U(E, z) ∈ (AU,i,V,z →
Q≥0) ∩ P is defined

Q̂m,U(E, z) := {(A, z!∏
S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

) : A ∈ AU,i,V,z}

and the integral iso-independent function, YU,i,V,z ∈ AU,i,V,z → AU,V,z, is
defined

YU,i,V,z = {(B,BX) : B ∈ AU,i,V,z} ⊂ YU,V,z ⊂ independent

Compare the conditional dependent to the relative dependent. In the case of
the relative dependent the generalised multinomial probability is decomposed
into (i) the independent multinomial probability and (ii) relative dependent
multinomial probability

Q̂m,U(E, z)(A) = Q̂m,U(E, z)(AX)× Q̂m,U(E, z)(A)

Q̂m,U(E, z)(AX)

Unlike in the relative dependent case, where the independent histogram must
be integral, AX ∈ Ai, in the conditional dependent case there is no need for the
independent histogram to be integral because the integral iso-independents,
Y −1
U,i,V,z(A

X) ⊆ AU,i,V,z, is non-empty regardless.
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Defined in terms of the generalised multinomial probability, the generalised
iso-independent conditional multinomial probability distribution, Q̂m,y,U , is

Q̂m,y,U(E, z) = normalise({(A, Q̂m,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(E, z)(B)
) : A ∈ AU,i,V,z})

So

Q̂m,y,U(E, z)(A) =
1

|ran(YU,i,V,z)|
Q̂m,U(E, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(E, z)(B)

and the generalised multinomial probability may be decomposed

Q̂m,U(E, z)(A) =
∑

B∈Y −1
U,i,V,z(AX)

Q̂m,U(E, z)(B)× |ran(YU,i,V,z)|Q̂m,y,U(E, z)(A)

The cardinality of the components of the partition of AU,i,V,z is the normali-
sation factor,

|ran(YU,i,V,z)| =
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!

The relative dependent multinomial probability equals the iso-independent
conditional dependent multinomial probability if the iso-independents set is a
singleton containing the independent, for example if the histogram is mono-
variate, |V | = 1. In this case, however, the sample must be independent,
Y −1
U,i,V,z(A

X) = {AX} =⇒ A = AX, and therefore the probability is 1,

Q̂m,U(E, z)(AX)∑
B∈{AX} Q̂m,U(E, z)(B)

=
Q̂m,U(E, z)(AX)

Q̂m,U(E, z)(AX)
= 1

and the generalised iso-independent conditional multinomial probability does
not depend on AX

Q̂m,y,U(E, z)(AX) =
1

|ran(YU,i,V,z)|

The iso-independent conditional dependent multinomial probability is greater
than 0 and less than or equal to 1

0 <
Q̂m,U(E, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(E, z)(B)

≤ 1

449



because

0 < Q̂m,U(E, z)(A) ≤
∑

B∈Y −1
U,i,V,z(AX)

Q̂m,U(E, z)(B) ≤ 1

The iso-independent conditional dependent multinomial probability only equals
1 if the sample is independent

Q̂m,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(E, z)(B)
= 1 =⇒ A = AX

because a non-independent sample has more than one integral iso-independents,
A 6= AX =⇒ |Y −1

U,i,V,z(A
X)| > 1.

In some cases the relative probability may be greater than one,

∃E,A ∈ A (
Q̂m,U(E, z)(A)

Q̂m,U(E, z)(AX)
> 1)

and hence relative probability is not strictly speaking a probability per se. In
the conditional dependent case, however, the conditional probability is always
between zero and one, yielding a probability function,

{(C, Q̂m,U(E, z)(C)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(E, z)(B)
) : C ∈ Y −1

U,i,V,z(A
X)} ∈ P

Therefore conditional probability is a probability proper.

The iso-independent conditional dependent multinomial probability may
be generalised to a probability density. Instead of drawing an integral sample
histogram from the finite integral congruent support, AU,i,V,z, the sample his-
togram is drawn from the infinite complete congruent histograms, A ∈ AU,V,z.
The iso-independent conditional dependent multinomial probability density
given the infinite iso-independents is

mpdf(U)(E, z)(A)∫
B∈Y −1

U,V,z(AX)
mpdf(U)(E, z)(B) dB

which is defined if the distribution histogram E is as effective as the indepen-
dent sample, EF ≥ AXF.
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The iso-independent conditional dependent multinomial probability density
is greater than 0 and less than or equal to 1

0 <
mpdf(U)(E, z)(A)∫

B∈Y −1
U,V,z(AX)

mpdf(U)(E, z)(B) dB
≤ 1

because

0 < mpdf(U)(E, z)(A) ≤
∫
B∈Y −1

U,V,z(AX)

mpdf(U)(E, z)(B) dB ≤ 1

The iso-independent conditional dependent multinomial probability tends to
the iso-independent conditional dependent multinomial probability density as
the size increases

lim
k→∞

Q̂m,U(E, kz)(Zk ∗ A)∑
B∈Y −1

U,i,V,kz(Zk∗AX) Q̂m,U(E, kz)(B)
=

mpdf(U)(E, z)(A)∫
B∈Y −1

U,V,z(AX)
mpdf(U)(E, z)(B) dB

where Zk = scalar(k). This is because (i) either the finite integral iso-
independents becomes a larger subset of the iso-independents as the size
increases, Y −1

U,i,V,z(A
X) ⊂ Y −1

U,V,z(A
X), or (ii) both are singletons, Y −1

U,i,V,z(A
X) =

Y −1
U,V,z(A

X) = {AX}.

Consider the case where the distribution histogram is independent, E =
EX, as well as sufficiently effective, EXF ≥ AXF. The negative logarithm
independently-distributed iso-independent conditional dependent multinomial
probability is− ln

Q̂m,U(EX, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(EX, z)(B)
: EXF ≥ AXF


= − ln Q̂m,U(EX, z)(A) + ln

∑
B∈Y −1

U,i,V,z(AX)

Q̂m,U(EX, z)(B)

= − ln
z!∏

S∈AS AS!

∏
S∈AS

(
EX
S

zE

)AS

+ ln
∑

B∈Y −1
U,i,V,z(AX)

z!∏
S∈BS BS!

∏
S∈BS

(
EX
S

zE

)BS

=
∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

because

∀B ∈ Y −1
U,i,V,z(A

X)(∑
S∈BS

BS lnEX
S =

∑
S∈BXS

BX
S lnEX

S =
∑
S∈AXS

AX
S lnEX

S =
∑
S∈AS

AS lnEX
S

)
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As in the case of the negative logarithm independently-distributed relative
dependent multinomial probability density of the sample, which is the align-
ment, ∑

S∈AS

lnAS!−
∑
S∈AXS

ln Γ!A
X
S = alignment(A)

the negative logarithm independently-distributed iso-independent conditional
dependent multinomial probability,∑

S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

does not depend on the distribution histogram, E, so long as the distribution
histogram is sufficiently effective, EF ≥ AXF, and independent, E = EX.

Let integral congruent delta (D, I) ∈ Ai×Ai be such that its perturbation,
A−D+I, is iso-independence conserving, A−D+I ∈ Y −1

U,i,V,z(A
X), so that (A−

D + I)X = AX. The change in negative logarithm independently-distributed
iso-independent conditional dependent multinomial probability because of the
application of delta, (D, I), is− ln

Q̂m,U(EX, z)(A−D + I)∑
B∈Y −1

U,i,V,z((A−D+I)X) Q̂m,U(EX, z)(B)

−
− ln

Q̂m,U(EX, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(EX, z)(B)


=

 ∑
S∈(A−D+I)S

ln(A−D + I)S! + ln
∑

B∈Y −1
U,i,V,z((A−D+I)X)

1∏
S∈BS BS!

−
∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!


=

∑
S∈(A−D+I)S

ln(A−D + I)S!−
∑
S∈AS

lnAS!

This difference equals the difference in alignments, algn(A−D+I)−algn(A),
because the independent perturbation, (A−D+I)X, and the independent sam-
ple, AX, are equal.
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The idealisation of a histogram given an effective transform, A ∗ T ∗ T †A,
is in the iso-independents, A ∗T ∗T †A ∈ Y −1

U,V,z(A
X), because the independent

of the idealisation equals the independent histogram, (A∗T ∗T †A)X = AX. In
the case where the idealisation is integral, A ∗ T ∗ T †A ∈ Y −1

U,i,V,z(A
X), there is

a corresponding iso-independence conserving delta, A ∗T ∗T †A = A−D+ I.
The change in negative logarithm independently-distributed iso-independent
conditional dependent multinomial probability because of the integral ideali-
sation of the sample histogram is− ln

Q̂m,U(EX, z)(A ∗ T ∗ T †A)∑
B∈Y −1

U,i,V,z((A∗T∗T †A)X) Q̂m,U(EX, z)(B)

−
− ln

Q̂m,U(EX, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(EX, z)(B)


=

 ∑
S∈(A∗T∗T †A)S

ln(A ∗ T ∗ T †A)S! + ln
∑

B∈Y −1
U,i,V,z((A∗T∗T †A)X)

1∏
S∈BS BS!

−
∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!


=

∑
S∈(A∗T∗T †A)S

ln(A ∗ T ∗ T †A)S!−
∑
S∈AS

lnAS!

This difference equals the difference in alignments, algn(A∗T ∗T †A)−algn(A),
because the independent idealisation, (A ∗ T ∗ T †A)X, and the independent
sample, AX, are equal.

In the case where the independent histogram is integral, AX ∈ Ai, then the
independent histogram is in the iso-independents, AX ∈ Y −1

U,i,V,z(A
X), and the

negative logarithm independently-distributed iso-independent conditional de-
pendent multinomial probability can be rearranged in terms of the alignment,

∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

= algn(A) + ln
∑

B∈Y −1
U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

The minimum alignment conjecture, defined above in ‘Minimum alignment’,
states that the alignment is conjectured to be always greater than or equal
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to zero where the independent is integral, ∀B ∈ Y −1
U,i,V,z(A

X) (algn(B) ≥ 0),
and hence

∀B ∈ Y −1
U,i,V,z(A

X) (

∏
S∈AXS AX

S !∏
S∈BS BS!

≤ 1)

and so

0 ≤ ln
∑

B∈Y −1
U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

≤ ln |Y −1
U,i,V,z(A

X)|

and so

algn(A) ≤
∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

≤ algn(A)+ln |Y −1
U,i,V,z(A

X)|

The negative logarithm independently-distributed iso-independent conditional
dependent multinomial probability where the independent is integral is such
that

algn(A)

≤

− ln
Q̂m,U(EX, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(EX, z)(B)

: EXF ≥ AXF, AX ∈ Ai


≤ algn(A) + ln |Y −1

U,i,V,z(A
X)|

The negative logarithm independently-distributed iso-independent conditional
dependent multinomial probability where the independent is integral equals
the alignment only if the sample histogram is independent and the iso-
independents is a singleton,∑

S∈AXS

lnAX
S ! + ln

∑
B∈{AX}

1∏
S∈BS BS!

= algn(AX) = 0

Therefore the alignment is always an underestimate of the negative loga-
rithm independently-distributed iso-independent conditional dependent multi-
nomial probability where the independent is integral and the sample is non-
independent

A 6= AX =⇒ algn(A) <
∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

The cardinality of the integral iso-independents must be less than or equal
to the cardinality of the integral congruent support,

|Y −1
U,i,V,z(A

X)| ≤ |AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!
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where v = |V C|. Thus ln |Y −1
U,i,V,z(A

X)| < v ln z if z > v. So∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

< algn(A) + v ln z

Compare this to maximum alignment, alignmentMaximum(U)(V, z), which
for large size, z � v, approximates to z(n − 1) ln d for a regular histogram
of dimension n = |V | and valency {d} = {|Uw| : w ∈ V }. Therefore,
in some cases the difference between the alignment and the negative loga-
rithm independently-distributed iso-independent conditional dependent multi-
nomial probability is less than the alignment, ln |Y −1

U,i,V,z(A
X)| < v ln z <

alignment(A). That is, in some cases

algn(A) ≤
∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

≤ 2× algn(A)

In the case where the independent is integral, AX ∈ Ai, the negative log-
arithm independently-distributed relative dependent multinomial probability,
which is the alignment, can be expressed in terms of multinomial coefficients

alignment(A) = ln

(
z!∏

S∈AXS AX
S !

)
− ln

(
z!∏

S∈AS AS!

)
In all cases, the negative logarithm independently-distributed iso-independent
conditional dependent multinomial probability can be expressed in terms of
multinomial coefficients∑

S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

=

ln

 ∑
B∈Y −1

U,i,V,z(AX)

z!∏
S∈BS BS!

− ln

(
z!∏

S∈AS AS!

)

In the case where the independent is integral, AX ∈ Ai, the negative loga-
rithm independently-distributed iso-independent conditional dependent multi-
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nomial probability,− ln
Q̂m,U(EX, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(EX, z)(B)

: EXF ≥ AXF, AX ∈ Ai


=

algn(A) + ln
∑

B∈Y −1
U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

 ∈ ln Q>0

may be abbreviated to the alignment-bounded iso-independent space.

The difference between the alignment-bounded iso-independent space and the
alignment is the alignment-bounded iso-independent error

ln
∑

B∈Y −1
U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

The numerator in the alignment-bounded iso-transform error expression is
derived from the independent term of the alignment,

∑
S∈AXS lnAX

S !, which
varies against the entropy of the independent histogram, entropy(AX). In
the case of uniform independent histogram of size z and volume v where
z/v ∈ N>0, the independent term is v ln(z/v)! ≈ z ln(z/v). So the alignment-
bounded iso-transform error with respect to the numerator varies with the
size, z, and varies against the logarithm of the volume, ln v. The independent
histogram, AX, tends to be more uniform at higher alignments.

The alignment-bounded iso-independent error varies with the cardinality of
the integral iso-independents, |Y −1

U,i,V,z(A
X)|. As shown above, the average

cardinality of the integral iso-independents is

|AU,i,V,z|
|ran(YU,i,V,z)|

=
(z + v − 1)!

z! (v − 1)!
/
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!

The average cardinality of the integral iso-independents varies with both size,
z, and volume, v. Hence the error varies with both size, z, and volume, v.

In the case where the size is greater than the volume, z > v, the loga-
rithm of the average cardinality is less than v ln z. In this case the negative
contribution to the variation between the error and the volume from the
numerator, ln v, is outweighed by the positive contribution from the summa-
tion, v. Hence, in the case where z > v, the error varies with both size, z,

456



and volume, v.

For a given volume, v, the average cardinality of the integral iso-independents
varies with the entropy of the valencies, entropy({(w, |Uw|) : w ∈ V }). Hence
the error also varies with valency entropy. Thus the error tends to increase
with dimension, n = |V |. Regular histograms tend to have higher error than
irregular.

It is conjectured above that the cardinality of the integral iso-independents
corresponding to AX varies with the entropy of the independent, AX,

ln |Y −1
U,i,V,z(A

X)| ∼ z × entropy(AX)

Therefore the alignment-bounded iso-independent error also varies with the
entropy of the independent, entropy(AX).

The ratio of the alignment-bounded iso-independent error to the alignment
is ln

∑
B∈Y −1

U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

 /algn(A)

where the histogram is not independent, A 6= AX =⇒ algn(A) > 0.

As the alignment increases to maximum alignment, alignmentMaximum(U)(V, z) ≈
z ln v where z � v, the ratio decreases, v ln z/z ln v.

On the other hand, as noted above, the alignment approximates to the
difference in entropy between the independent and the sample histogram,
algn(A) ≈ z × entropy(AX)− z × entropy(A). Hence increases in alignment
imply increases in the entropy of the independent to some degree. So there
is a tendency to increase the ratio of the alignment-bounded iso-independent
error to the alignment at higher alignments due to the independent entropy
which partly counteracts the tendency to decrease the ratio at higher align-
ments due to the size.

In the case where the alignment is approximately equal to the expected align-
ment, it is conjectured above (‘Minimum alignment’) that expected alignment
varies as the volume for constant size greater than the volume

expected(Q̂m,U(EX, z))({(A, algn(A)) : A ∈ AU,i,V,z}) ∼ v
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So in the case of expected alignment the alignment-bounded iso-independent
error tends to be greater than the alignment and the ratio is greater than
one, v ln z/v.

The change in alignment-bounded iso-independent space because of the
application of iso-independence conserving delta, A−D+ I ∈ Y −1

U,i,V,z(A
X), is

equal to the change in alignmentalgn(A−D + I) + ln
∑

B∈Y −1
U,i,V,z((A−D+I)X)

∏
S∈(A−D+I)XS(A−D + I)X

S !∏
S∈BS BS!

−
algn(A) + ln

∑
B∈Y −1

U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!


= algn(A−D + I)− algn(A)

A special case is the integral idealisation, A ∗ T ∗ T †A ∈ Y −1
U,i,V,z(A

X), where
the change in alignment-bounded iso-independent space because of the integral
idealisation of the sample histogram isalgn(A ∗ T ∗ T †A) + ln

∑
B∈Y −1

U,i,V,z((A∗T∗T †A)X)

∏
S∈(A∗T∗T †A)XS(A ∗ T ∗ T †A)X

S !∏
S∈BS BS!

−
algn(A) + ln

∑
B∈Y −1

U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!


= algn(A ∗ T ∗ T †A)− algn(A)

Similarly, consider the integral idealisations of two transforms T1 and T2,
where A ∗ T1 ∗ T †A1 , A ∗ T2 ∗ T †A2 ∈ Y −1

U,i,V,z(A
X). In this case the change in

alignment-bounded iso-independent space between the two integral idealisa-
tions of the sample histogram is

algn(A ∗ T2 ∗ T †A2 )− algn(A ∗ T1 ∗ T †A1 )

4.15 Transform alignment

Let the set OU,z ⊂ AU × TU,f,1 be the set of pairs of (i) histograms of non-
zero size z > 0 such that the independent histogram is completely effective
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and (ii) one functional transforms having underlying variables equal to the
histogram variables

OU,z =

{(A, T ) : A ∈ AU , size(A) = z, AXF = AC, T ∈ TU,f,1, und(T ) = vars(A)}

So ∀A ∈ dom(OU,z) (size(A) = z), ∀A ∈ dom(OU,z) (AXF = AC) and
∀(A, T ) ∈ OU,z (und(T ) = vars(A)). For any given A ∈ dom(OU,z) of vari-
ables V = vars(A) the set {T : (B, T ) ∈ OU,z, B = A} is a superset of the
finite substrate transforms set in V , TU,V ⊂ ran(filter({A},OU,z)).

Let (A, T ) ∈ OU,z. The application of the transform T to its corresponding
histogram A is called the derived histogram A∗T . In this context, A is called
the underlying histogram. The application to create the derived histogram is
size conserving, ∀(A, T ) ∈ OU,z (size(A∗T ) = z). If the transform is not right
total, |T−1| < |WC|, then the derived histogram is always incompletely effec-
tive, (X%W )F < WC =⇒ (A ∗ T )F < (A ∗ T )C, where (X,W ) = T . If the
transform is right total, then the volume of the derived histogram must be less
than or equal to that of the underlying, (X%W )F = WC =⇒ |V C| ≥ |WC|
and so |AC| ≥ |(A ∗ T )C|, where (X,W ) = T and V = und(T ).

The idealisation and the neutralisation are both size conserving, ∀(A, T ) ∈
OU,z (size(A ∗ T ∗ T †A) = z) and ∀(A, T ) ∈ OU,z (size(A ∗ T ∗ T�AX

) = z).
The idealisation and the neutralisation are both at least as effective as the
underlying, (A ∗T ∗T †A)F ≥ AF and (A ∗T ∗T�AX

)F ≥ AF. A surrealisation
is size-conserving if the derived histogram is as effective as the abstract his-
togram, ∀(A, T ) ∈ OU,z ((A∗T )F = (A∗T )XF =⇒ size((A∗T )X∗T�A) = z).
Otherwise the size of the surrealisation is less than the size of the histogram,
∀(A, T ) ∈ OU,z ((A∗T )F < (A∗T )XF =⇒ size((A∗T )X ∗T�A) < z). A con-
tentisation is size-conserving if the derived histogram is as effective as the for-
mal histogram, ∀(A, T ) ∈ OU,z ((A∗T )F ≥ (AX∗T )F =⇒ size(AX∗T∗T�A) =
z). Otherwise the size of the contentisation is less than the size of the his-
togram, ∀(A, T ) ∈ OU,z ((A ∗ T )F < (AX ∗ T )F =⇒ size(AX ∗ T ∗ T�A) < z).
The surrealisation and the contentisation are no more effective than the
underlying, ((A ∗ T )X ∗ T�A)F ≤ AF and (AX ∗ T ∗ T�A)F ≤ AF.

The alignment of the derived histogram is called the derived alignment,

algn(A ∗ T )

where (A, T ) ∈ OU,z and algn = alignment.
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The alignment of the underlying histogram is called the underlying align-
ment,

algn(A)

The formal alignment is the derived alignment of the independent histogram,

algn(AX ∗ T )

The derived alignment relative to the formal alignment is called the content
alignment

algn(A ∗ T )− algn(AX ∗ T )

The idealisation alignment is

algn(A ∗ T ∗ T †A)

The surrealisation alignment is

algn((A ∗ T )X ∗ T�A)

The midisation pseudo-alignment is the histogram alignment less the surre-
alisation alignment less the idealisation alignment

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A)

The derived variables of a transform T ∈ TU,f,1 are non-overlapping if there
exists an equivalent transform of a fud F ∈ FU,1 which is non-overlapping,
∃F ∈ FU,1 ((FT = T ) ∧ ¬overlap(F )). There exists histogram-transform
pairs (A, T ) ∈ OU,z for which the transform, T , is non-overlapping, ∃(A, T ) ∈
OU,z (¬overlap(T )).

Consider the histogram-transform pair (A, T ) ∈ OU,z. The transform T
is effectively non-overlapping with respect to histogram A if there exists an
equivalent fud F ∈ FU,1 which is non-overlapping in the application to the
effective histogram, ∃F ∈ FU,1 ((AF ∗FT = AF ∗T )∧¬overlap(F )). A trans-
form T that is overlapping, but is effectively non-overlapping with respect to
histogram A, must be effectively overlapping with respect to the independent
underlying AX because the independent underlying is completely effective
AXF = AC.

Define the degree of overlap of T ∈ TU,f,1 as algn(V C
z ∗ T ) relative to size

z where V = und(T ) and the scaled cartesian is V C
z = resize(z, V C). Define

alignmentOverlap(U) ∈ TU,f,1 ×Q>0 → R as

alignmentOverlap(U)(T, z) := algn(V C
z ∗ T )
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If a transform T is non-overlapping its application to a complete uniform
histogram leaves the derived variables independent of each other, and so the
derived alignment is zero and the degree of overlap is zero, ¬overlap(T ) =⇒
V C ∗ T = (V C ∗ T )X and hence alignmentOverlap(U)(T, z) = 0.

Derived variables x, y ∈ W are said to be tautological if their partitions
are equal, partition((X%(V ∪ {x}), {x})) = partition((X%(V ∪ {y}), {y})),
where (X,W ) = T and V = und(T ). A transform is tautologically overlapped
if all of its derived variables are tautological. A tautology is always overlapped,
∀T ∈ Tf ∩ TU (tautology(T ) =⇒ overlap(T )). A tautologically overlapped
transform has a high degree of overlap, algn(V C

z ∗T ), because V C∗T is regular
and fully diagonalised in the underlying cartesian, diagonalFull(U)(V C ∗ T ).
None of the transforms in the substrate transforms set, TU,V , contain tau-
tologically derived variables because each derived variable corresponds to a
different partition, ∀(X,W ) ∈ TU,V (|{partition((X%(V ∪ {w}), {w})) : w ∈
W}| = |W |). Thus none are tautologically overlapped ∀T ∈ TU,V (¬tautology(T )).

There is a case of a tautologically overlapping transform that has maximum
degree of overlap, algnOver(U)(T, z) = algnMax(U)(W, z) where T ∈ TU,f,1,
W = der(T ), algnOver = alignmentOverlap, algnMax = alignmentMaximum,
and T is such that tautology(T ). This is the case where the derived vari-
ables are each frames of the same underlying variable v. For example, let
V = {v}, and ∀w ∈ W (Uw = Uv) and his(T ) = {{(v, u)}∪{(w, u) : w ∈ W} :
u ∈ Uv}U. All the derived variables are tautologically aligned. The degree
of overlap of T is equal to maximum alignment, algn(resize(z, {v}C) ∗ T ) =
algnMax(U)(W, z). This example is of a literal frame where the values are
shared, Uw = Uv, but non-literal frames are also tautologically aligned. The
non-literal frame transforms can be constructed using bijective maps, ∀w ∈
W ∃Mw ∈ Uv ↔ Uw (|Mw| = |Uv|) and his(T ) = {{(v, u)} ∪ {(w,Mw(u)) :
w ∈ W} : u ∈ Uv}U.

Another case of tautologically overlapping transform T ∈ TU,f,1 that has
maximum degree of overlap is such that each of the tautologically aligned
derived variables enumerates the cartesian underlying states and are there-
fore self-partitions. For example, ∀w ∈ W (Uw = {{S} : S ∈ V CS}) and
his(T ) = {S ∪ {(w, {S}) : w ∈ W} : S ∈ V CS}U where W = der(T )
and V = und(T ). The degree of overlap of T is equal to maximum align-
ment, algnOver(U)(T, z) = algnMax(U)(W, z). This approximately scales
the underlying maximum alignment (m − 1)n/(n − 1) × algnMax(U)(V, z)
where m = |W | and n = |V | and the underlying histogram is regular,
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algnMax(U)(V, z) ≈ z(n− 1) ln d, where d is the regular valency, |V CS| = dn.

Consider the histogram-transform pair (A, T ) where A ∈ AU , T ∈ TU,f,1,
und(T ) = vars(A) and the T is tautologically aligned, algnOver(U)(T, z) =
algnMax(U)(W, z). If the derived alignment is less than maximum align-
ment, algn(A ∗ T ) < algnMax(U)(W, z), then the content alignment may be
negative, algn(AX ∗ T ) > algn(A ∗ T ). AX is more uniform than A in the
sense that the entropy of AX is approximately greater than or equal to the
entropy of A, entropy(AX) ≥ entropy(A), if the minimum alignment con-
jecture is true. Hence the diagonalised formal histogram, diagonal(AX ∗ T ),
is sometimes more uniform along the diagonal than the derived histogram,
entropy(AX ∗ T%{w}) ≥ entropy(A ∗ T%{w}) where w ∈ W . Therefore
the formal alignment algn(AX ∗ T ) may be closer to maximum alignment
algnMax(U)(W, z) than the derived alignment algn(A ∗ T ).

There exist histogram-transform pairs, (A, T ) ∈ OU,z, such that the de-
rived alignment equals the underlying alignment, algn(A ∗ T ) = algn(A).
An example is the value full functional transform T for which the derived
histogram is a non-literal reframe of the underlying histogram. That is, let
M ∈ (V ↔ W ) → (U ↔ U), such that dom(M) ∈ V · W and ∀(v, w) ∈
dom(M) (Mv,w ∈ Uv ·Uw) and his(T ) = {S ∪{(w,Mv,w(u)) : (v, u) ∈ S, w =
dom(M)(v)} : S ∈ V CS}U, where V = und(T ) and W = der(T ). For ex-
ample, the self non-overlapping substrate self-cartesian value full functional
transform, T = {{v}CS{}V T : v ∈ V }T. The content alignment of the non-
overlapping transform also equals the alignment of the underlying histogram,
algn(A ∗T )− algn(AX ∗T ) = algn(A) because algn(AX ∗T ) = algn(AX) = 0.

A derived histogram can be independent even though the underlying his-
togram is not, ∃(A, T ) ∈ OU,z ((A ∗T = (A ∗T )X)∧ (A 6= AX)). This implies
that the derived alignment is sometimes less than the underlying alignment,
∃(A, T ) ∈ OU,z (algn(A ∗ T ) < algn(A)). Examples of independent derived
histograms include singletons, mono-variate and effectively mono-valent. If
the transform is a unary partition transform, |inverse(T )| = 1, for example
T = {V CS}T, then the derived histogram is necessarily a singleton. Trans-
forms having one derived variable, |der(T )| = 1, imply a mono-variate derived
histogram.

A transform that is non-overlapping,¬overlap(T ), and such that the derived
variables partition the underlying variables of a partially independent under-
lying histogram, must be independent, algn(A ∗ T ) = 0. The independent
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underlying histogram AX is a partially independent histogram by definition
and so it follows that for non-overlapping transforms the formal histogram is
independent, ¬overlap(T ) =⇒ AX ∗ T ≡ (AX ∗ T )X, hence formal alignment
is zero, ¬overlap(T ) =⇒ algn(AX ∗ T ) = 0.

If a transform is non-overlapping, ¬overlap(T ), then it has an equiva-
lent fud, FT = T , such that the transforms have a single derived variable,
∀R ∈ F (|der(R)| = 1), and the underlying of the transforms partition the
underlying variables V , {und(depends(F, {w})) : w ∈ der(T )} ∈ B(und(T )).
Therefore the derived dimension must be less than or equal to the underlying
dimension, ∀T ∈ TU,V (¬overlap(T ) =⇒ |W | ≤ |V |) where V = und(T ) and
W = der(T ). Each of the transforms is one functional, F ⊂ TU,f,1, and each is
right total because the derived variables are partition variables and hence the
transform T must be right total, ∀T ∈ TU,V (¬overlap(T ) =⇒ (X%W )F =
WC) where (X,W ) = T . Therefore the derived volume must be less than or
equal to the underlying volume, ∀T ∈ TU,V (¬overlap(T ) =⇒ |WC| ≤ |V C|).

If a histogram A ∈ dom(OU,z) is irregular, |{|Uv| : v ∈ V }| > 1 where
V = vars(A), then it must be less than maximally aligned, algn(A) <
algnMax(U)(V, z). The independent histogram AX is constrained to be com-
pletely effective, AXF = AC and so A cannot be diagonalised.

The alignment of a derived histogram may be less than the alignment of the
underlying histogram even when neither is independent, ∃(A, T ) ∈ OU,z (((A∗
T ) 6= (A ∗ T )X) ∧ (A 6= AX) ∧ algn(A ∗ T ) < algn(A)). This can be shown
to be true by first showing that if a transform is non-overlapping, then the
maximum alignment of the derived histogram must be less than or equal to
the maximum underlying alignment, ¬overlap(T ) =⇒ algnMax(U)(W, z) ≤
algnMax(U)(V, z) where V = und(T ) and W = der(T ). The derived volume
must be less than or equal to the underlying volume |WC| ≤ |V C|. If an un-
derlying histogram is maximally aligned, algn(A) = algnMax(U)(V, z), then
it must be regular because the independent histogram AX is constrained to
be completely effective, A ∈ dom(OU,z). The largest maximum derived align-
ment occurs when the derived histogram is regular. Let dV be the underlying
valency such that d

|V |
V = |V C|. Let dW be the derived valency such that d

|W |
W =

|WC|. Approximate the maximal alignments, algnMax(U)(V, z) ≈ z(|V | −
1) ln dV and algnMax(U)(W, z) ≈ z(|W | − 1) ln dW . Then |WC| ≤ |V C| =⇒
d
|W |
W ≤ d

|V |
V =⇒ |W | ln dW ≤ |V | ln dV . But |W | ≤ |V | hence (|W | −

1) ln dW ≤ (|V | − 1) ln dV =⇒ algnMax(U)(W, z) ≤ algnMax(U)(V, z). If
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both A and A∗T are maximally aligned and |WC| < |V C| then algn(A∗T ) <
algn(A).

If the transform is not right total, the derived histogram is pluri-variate
and each of the reductions of the derived histogram is complete, then the
derived histogram must be aligned, ((X%W )F < WC) ∧ (|W | > 1) ∧ (∀w ∈
W (((A ∗ T )%{w})F = {w}C) =⇒ algn(A ∗ T ) > 0, where (X,W ) = T .
This is the case even if the underlying histogram is independent, ((X%W )F <
WC)∧(|W | > 1)∧(∀w ∈ W (((AX∗T )%{w})F = {w}C) =⇒ algn(AX∗T ) >
0.

The derived alignment, algn(A∗T ), of a histogram-transform pair (A, T ) ∈
OU,z constructed from a partition of the variables Y ∈ B(V ), where V =
und(T ) = vars(A), such that the derived variables map to components
and the values enumerate the cartesian states of the components, ∀w ∈
W ∃K ∈ Y (|Uw| = |KC|) where W = der(T ), is less than or equal to
the underlying alignment, algn(A ∗ T ) ≤ algn(A). For example, ∀Y ∈
B(V ) (algn(A ∗ {KCS{} : K ∈ Y }T) ≤ algn(A)).

This may be shown for the partition of the variables Y = {K,V \ K} and
transform T = {KCS{}, (V \K)CS{}}T. The entropy of the partially indepen-
dent histogram corresponding to the independent term of the alignment is
such that∑

S∈WXS

ln Γ!(A ∗ T )X
S =

∑
S∈V XS

ln Γ!(
1

ZA
∗ (A%K) ∗ (A%(V \K)))S

≥
∑
S∈V XS

ln Γ!(
1

ZA
∗ (A%K) ∗ (A%(V \K))X)S

≥
∑
S∈V XS

ln Γ!A
X
S

The dependent term of the alignment is unchanged∑
S∈WXS

ln Γ!(A ∗ T )S =
∑
S∈V XS

ln Γ!AS

Hence the upper bound of the underlying alignment,

algn(A ∗ T ) ≤ algn(A)
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Similarly, the derived alignment function and the parent partition relation
are monotonic,

∀Y1, Y2 ∈ B(V ) (parent(Y1, Y2) =⇒
algn(A ∗ {KCS{} : K ∈ Y1}T) ≤ algn(A ∗ {KCS{} : K ∈ Y2}T))

The derived alignment, algn(A ∗ T ), and the derived alignment valency-
density, algn(A ∗ T )/capacityValency(U)((A ∗ T )FS) = algn(A ∗ T )/w1/m,
where derived variables W = der(T ), derived dimension m = |W | = |Y |,
volume w = |WC| = |V C|, and the valency capacity is defined in section
‘Capacity and Alignment density’, above, are therefore also monotonic. For
example, ∀Y ∈ B(V ) ♦T = {KCS{} : K ∈ Y }T ♦W = der(T ) (algn(A ∗
T )/|WC|1/|W | ≤ algn(A)/|V C|1/|V |). This is because for any derived dimen-
sion, m, the valency capacity is constant

(
∏
K∈Y

|KC|)1/m = |V C|1/m = w1/m

and the valency capacity of a parent partition of the variables is greater than
that of the child partition where the volume is greater than one, |V C| > 1,

∀Y1, Y2 ∈ B(V ) (parent(Y1, Y2) =⇒ |V C|1/|Y1| > |V C|1/|Y2|)

Conjecture that the alignments of the abstract converse actions, which
depend on the derived histogram, A∗T , and the abstract histogram, (A∗T )X,
are constrained to be less than or equal to the alignment of the histogram,
in the case where the independent is integral, AX ∈ Ai, given the minimum
alignment conjecture. Conjecture that the idealisation alignment is always
less than or equal to the alignment of the histogram, where the independent
is integral, AX ∈ Ai,

∀(A, T ) ∈ OU,z (AX ∈ Ai =⇒ algn(A ∗ T ∗ T †A) ≤ algn(A))

The non-idealisation alignment is defined as the difference, algn(A)−algn(A∗
T ∗ T †A).

Conjecture that the surrealisation alignment is always less than or equal to
the alignment of the histogram, where the independent is integral, AX ∈ Ai,

∀(A, T ) ∈ OU,z (AX ∈ Ai =⇒ algn((A ∗ T )X ∗ T�A) ≤ algn(A))

This is the case whether the surrealisation is effective or not, (A ∗ T )F ≤
(A ∗ T )XF. If it is ineffective, (A ∗ T )F < (A ∗ T )XF, then the size of the
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surrealisation is less, size((A ∗ T )X ∗ T�A) < z, and the alignment is corre-
spondingly less. The non-surrealisation alignment is defined as the difference,
algn(A)− algn((A ∗ T )X ∗ T�A).

If the abstract converse actions are integral then the alignments must be
positive, given the minimum alignment conjecture

∀(A, T ) ∈ OU,z (A ∗ T ∗ T †A ∈ Ai =⇒ 0 ≤ algn(A ∗ T ∗ T †A))

and

∀(A, T ) ∈ OU,z ((A ∗ T )X ∗ T�A ∈ Ai =⇒ 0 ≤ algn((A ∗ T )X ∗ T�A))

Consider the histogram-transform pair (A, T ) ∈ OU,z where the derived
histogram is as effective as the formal histogram, (A ∗ T )F ≥ (AX ∗ T )F, so
that the contentisation is size-conserving, size(AX ∗ T ∗ T�A) = size(A).

In section ‘Likely histograms’, above, it is conjectured that the midisation
entropy varies as the entropy of the histogram less the entropies of the lifti-
sation and the surrealisation,

entropy(AM(T )) ∼ entropy(A) − entropy(AK(T ))

− entropy((A ∗ T )X ∗ T�A)

and that insofar as the idealisation entropy approximates to the liftisation
entropy, entropy(A∗T ∗T †A) ≈ entropy(AK(T )), the midisation entropy varies
as the histogram entropy less the entropies of the idealisation and the surre-
alisation,

entropy(AM(T )) ∼ entropy(A) − entropy(A ∗ T ∗ T †A)

− entropy((A ∗ T )X ∗ T�A)

Alignment is approximately equal to the scaled difference between the inde-
pendent entropy and the histogram entropy,

algn(A) ≈ z × entropy(AX)− z × entropy(A)

where z = size(A). So, insofar as the midisation independent entropy approx-
imates to the independent entropy, entropy(AM(T )X) ≈ entropy(AX), and the
surrealisation independent entropy approximates to the independent entropy,
entropy(((A ∗ T )X ∗ T�A)X) ≈ entropy(AX), the midisation alignment varies
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as the histogram alignment less the alignments of the idealisation and the
surrealisation,

algn(AM(T )) ∼ algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A)

The computable right hand side is called the midisation pseudo-alignment to
distinguish it from the usually incomputable midisation alignment.

The midisation pseudo-alignment is not necessarily positive, but it is al-
ways greater than or equal to the greater of −algn((A ∗ T )X ∗ T�A) and
−algn(A ∗ T ∗ T †A), because algn(A)− algn(A ∗ T ∗ T †A) ≥ 0 and algn(A)−
algn((A ∗ T )X ∗ T�A) ≥ 0. If the abstract converse actions are integral,
A ∗T ∗T †A ∈ Ai and (A ∗T )X ∗T�A ∈ Ai, then midisation pseudo-alignment
must be less than or equal to the histogram alignment, algn(A).

If the transform is a unary partition transform Tu = {V CS}T ∈ TU,f,1 then the
idealisation equals the independent, A∗Tu∗T †Au ≡ AX, and the surrealisation
equals the histogram, (A∗Tu)X∗T�Au ≡ A, so the midisation pseudo-alignment
is zero, algn(A)− algn((A ∗ Tu)X ∗ T�Au )− algn(A ∗ Tu ∗ T †Au ) = 0.

If the transform is a full functional transform, for example a value full func-
tional transform Ts = {{w}CS{}T : w ∈ V }T, then the idealisation equals
the histogram, A ∗ Ts ∗ T †As ≡ A, and the surrealisation equals the inde-
pendent if the histogram is as effective as the independent, AF = AXF =⇒
(A ∗Ts)

X ∗T�As ≡ AX, so the midisation pseudo-alignment is zero, algn(A)−
algn((A ∗ Ts)

X ∗ T�As )− algn(A ∗ Ts ∗ T †As ) = 0.

The midisation alignment may also be expressed in terms of the contentisa-
tion alignment. In section ‘Likely histograms’, above, it is conjectured that
the midisation entropy varies as the difference between the entropies of the
contentisation and the surrealisation less the entropy of the independent,

entropy(AM(T )) ∼ entropy(AX ∗ T ∗ T�A) − entropy((A ∗ T )X ∗ T�A)

− entropy(AX)

Insofar as the contentisation independent entropy approximates to the inde-
pendent entropy, entropy((AX ∗ T ∗ T�A)X) ≈ entropy(AX), the midisation
alignment varies as the difference between the alignments of the contentisa-
tion and the surrealisation,

algn(AM(T )) ∼ algn(AX ∗ T ∗ T�A)− algn((A ∗ T )X ∗ T�A)
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As shown in section ‘Likely histograms’, above, if the histogram, A, is a given,
and the formal is constrained to be independent, AX ∗ T = (AX ∗ T )X, so
that the contentisation equals the doubly-independent formal independent
converse action, AX ∗ T ∗ T�A = (AX ∗ T )X ∗ T�A, then as the midisation
entropy, entropy(AM(T )), is minimised the contentisation entropy decreases
to equal the surrealisation entropy, and formal tends to equal the abstract,
AX ∗ T = (A ∗ T )X. Similarly, as the midisation alignment, algn(AM(T )), is
maximised the contentisation alignment increases to equal the surrealisation
alignment, and so midisation alignment maximisation also tends to formal-
abstract equivalence, AX ∗ T = (A ∗ T )X.

The discussion of midisation entropy in ‘Likely histograms’, above, goes on
to conjecture that there exists a mid substrate transform Tm ∈ TU,V which is
neither self nor unary, Tm /∈ {Ts, Tu}, where the formal is independent and
the midisation entropy is minimised,

Tm ∈ mind({(T, entropy(AM(T ))) : T ∈ TU,V , AX ∗ T = (AX ∗ T )X})

At the mid transform the formal tends to the abstract, AX ∗Tm ≈ (A∗Tm)X,
and the mid component size cardinality relative entropy is small,

entropyRelative(A ∗ Tm, V
C ∗ Tm) ≈ 0

Conjecture that an approximation to the mid transform may also be obtained
by a maximisation of the midisation pseudo-alignment,

Tm ∈ maxd({(T, algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A)) :

T ∈ TU,V , AX ∗ T = (AX ∗ T )X})

The discussion in ‘Likely histograms’ then goes on to show that subsequent
minimisation of the idealisation entropy, where the mid idealisation is inte-
gral, A ∗ Tm ∗ T †Am ∈ Ai, tends to increase the mid component size cardinality
relative entropy,

entropyRelative(A ∗ Tm, V
C ∗ Tm) ∼ − entropy(A ∗ Tm ∗ T †Am )

Conjecture, therefore, that subsequent maximisation of the idealisation align-
ment also tends to increase the relative entropy,

entropyRelative(A ∗ Tm, V
C ∗ Tm) ∼ algn(A ∗ Tm ∗ T †Am )
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Consider the histogram-transform pair (A, T ) ∈ OU,z where the derived
histogram is as effective as the formal histogram, (A ∗ T )F ≥ (AX ∗ T )F, so
that the contentisation is size-conserving, size(AX ∗T ∗T�A) = size(A). The
idealisation histogram, A ∗ T ∗ T †A, can be defined as the summation of its
independent components

A ∗ T ∗ T †A ≡
∑

((A ∗ C)X : (R,C) ∈ T−1)

where T−1. Hence conjecture that the non-idealisation alignment, algn(A)−
algn(A ∗ T ∗ T †A), varies as the sum of the alignments of the components

algn(A)− algn(A ∗ T ∗ T †A) ∼
∑

(algn(A ∗ C) : (R,C) ∈ T−1)

So, the non-idealisation alignment varies as the sum of the alignments of the
derivedly re-sized components

algn(A)− algn(A ∗ T ∗ T †A) ∼∑
(algn(ZDR/DR

∗ A ∗ C) : (R,C) ∈ T−1, DR > 0)

where D = A∗T and Zx = scalar(x). Similarly, the surrealisation alignment,
algn((A ∗ T )X ∗ T�A), varies as the sum of the alignments of the abstractly
re-sized components

algn((A ∗ T )X ∗ T�A) ∼∑
(algn(ZDX

R/DR
∗ A ∗ C) : (R,C) ∈ T−1, DR > 0)

Therefore the midisation pseudo-alignment, algn(A)−algn((A∗T )X∗T�A)−
algn(A ∗ T ∗ T †A), varies as the difference

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A) ∼∑
(algn(ZDR/DR

∗ A ∗ C)− algn(ZDX
R/DR

∗ A ∗ C) : (R,C) ∈ T−1, DR > 0)

Stated roughly in terms of the most effective states of a highly diagonalised
derived histogram, the midisation pseudo-alignment increases as on-diagonal
component alignments, algn(A ∗ C) where (R,C) ∈ T−1 and R ∈ ((A ∗ T )−
(A ∗ T )X)FS, exceed off-diagonal abstractly re-sized component alignments,
algn(ZDX

R/DR
∗ A ∗ C) where (R,C) ∈ T−1 and R ∈ ((A ∗ T )X − (A ∗ T ))FS.

Conjecture that the midisation pseudo-alignment (i) increases with the de-
rived alignment, increasing the difference between the on-diagonal and off-
diagonal component sizes, but (ii) decreases with the length of the diagonal,
because long diagonals decrease the component sizes. That is,

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A) ∼ algn(A ∗ T )/w1/m
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where m = |W |, w = |WC| and W = der(T ). Here the length of the diagonal,
w1/m, is approximated to the geometric average of the valencies of the derived
variables, w1/m = (

∏
u∈W |Uu|)1/m. In other words, the midisation pseudo-

alignment varies with the derived alignment valency density,

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A) ∼
algn(A ∗ T )/capacityValency(U)((A ∗ T )FS)

where valency capacity is defined in section ‘Capacity and Alignment den-
sity’, above, capacityValency(U) ∈ capacities in system U as

capacityValency(U)(Q) := x1/p

where x = volume(U)(vars(Q)) and p = |vars(Q)|.

Although the idealisation alignment, algn(A ∗ T ∗ T †A), varies with the de-
rived alignment, algn(A ∗ T ), this is less the case in the region of short di-
agonals. The idealisation alignment is a convex, positive-gradient function
of derived histogram diagonal length. The convexity increases with derived
alignment for given diagonal length because the on-diagonal components
have greater size and the alignment of the components is a convex func-
tion of component size. That is, the alignment only scales linearly with size,
algn(scalar(k)∗A) ≈ k×algn(A), at high entropies and low alignments, as dis-
cussed in ‘Scaled alignment’, above. For example, the sum of the alignments
of the components of a uniformly diagonalised regular derived histogram of
valency 2 is expected to be greater than for valency 3 in the same under-
lying histogram,

∑
(·,C1)∈T−1

1
algn(A ∗ C1) >

∑
(·,C2)∈T−1

2
algn(A ∗ C2) where

|(A∗T1)F| = 2 and |(A∗T2)F| = 3. So the effect of rendering the compenents
independent, when the independent converse, T †A, is applied, is greater in
the idealisation at shorter valencies.

The surrealisation alignment, algn((A ∗ T )X ∗ T�A), varies against the de-
rived alignment, algn(A ∗ T ), because the application of the actual con-
verse, T�A, to the derived, A ∗ T , is the constant underlying histogram,
A∗T ∗T�A = A. The surrealisation alignment is a convex, negative-gradient
function of derived histogram diagonal length. The convexity increases with
derived alignment for given diagonal length because ineffective off-diagonal
components are still ineffective after abstract re-sizing, size(A ∗ C) = 0 =⇒
algn(ZDX

R/DR
∗ A ∗ C) = 0, where (R,C) ∈ T−1 and R /∈ (A ∗ T )FS.

Thus the midisation pseudo-alignment, algn(A) − algn((A ∗ T )X ∗ T�A) −
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algn(A ∗T ∗T †A), which depends on the alignments of histograms in the un-
derlying variables, varies with the derived alignment valency density, algn(A∗
T )/w1/m, which depends only on the geometry and alignment of the derived
histogram in the derived variables.

Consider the example of a histogram-transform pair (A, T ) ∈ OU,z+y, where
the histogram is a regular cardinal histogram, A ∈ Ac, of dimension n and
valency d that consists of a diagonal histogram of size z plus a cartesian
histogram of size y,

A = {(S, z/d) : S ∈ {{(x, u) : x ∈ {1 . . . n}} : u ∈ {1 . . . d}}}+

{(S, y/dn) : S ∈
∏
{{(x, u) : u ∈ {1 . . . d}} : x ∈ {1 . . . n}}}

and the transform, T , has a derived variable for every underlying variable
having derived values which roll up adjacent d/c underlying values, where c
is the derived valency,

T = ({(S ∪ {(x+ n, (u/c) + 1) : (x, u) ∈ S}, 1) :

S ∈
∏
{{(x, u) : u ∈ {1 . . . d}} : x ∈ {1 . . . n}}}, {n+ 1 . . . n+ n})

where (/) ∈ N×N>0 → N.

Let q0 = y, q1 = z + y, qc = cn−1z + y, qd = dn−1z + y, and r = d/c.
The histogram alignment is

algn(A) = d ln
qd

dn
! + (dn − d) ln

q0

dn
!− dn ln

q1

dn
!

The derived alignment is

algn(A ∗ T ) = c ln
qc

cn
! + (cn − c) ln

q0

cn
!− cn ln

q1

cn
!

The formal histogram equals the abstract histogram, AX ∗ T = (A ∗ T )X, so
the formal alignment is zero

algn(AX ∗ T ) = 0

The neutralisation equals the idealisation, A ∗ T ∗ T�AX
= A ∗ T ∗ T †A. The

idealisation alignment is

algn(A ∗ T ∗ T †A) = rnc ln
qc

dn
! + rn(cn − c) ln

q0

dn
!− dn ln

q1

rncn
!

= rnc ln
qc

rncn
! + rn(cn − c) ln

q0

rncn
!− rncn ln

q1

rncn
!
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Each of the terms of the expression for the derived alignment, algn(A ∗ T ),
has a corresponding term in the expression for the idealisation alignment,
algn(A ∗ T ∗ T †A), scaled by rn and such that the argument to the facto-
rial is inversely scaled by rn. Thus the idealisation alignment is approxi-
mately less than the derived alignment, algn(A ∗T ∗T †A) ≈ algn(A ∗T ), and
algn(A ∗ T ∗ T †A) ≤ algn(A ∗ T ).

When c = 1 both the derived alignment and the idealisation alignment are
zero, c = 1 =⇒ algn(A∗T ) = algn(A∗T ∗T †A) = 0. This is the case, for ex-
ample, if the transform is a unary partition transform Tu = {V CS}T. When
c = d both the derived alignment and the idealisation alignment equal the
histogram alignment, c = d =⇒ algn(A ∗ T ) = algn(A ∗ T ∗ T †A) = algn(A).
This is the case, for example, if the transform is a value full functional trans-
form Ts = {{w}CS{}T : w ∈ V }T. The partial derivative of the idealisation
alignment with respect to c is positive where 1 ≤ c ≤ d,

∂

∂c

(
dn

cn−1
ln
qc

dn
!− 1

cn−1
ln
q0

dn
!

)
≥ 0

The contentisation equals the surrealisation, AX ∗T ∗T�A = (A ∗T )X ∗T�A.
The surrealisation alignment is

algn((A ∗ T )X ∗ T�A) = d ln
qd

dn
q1

qc

! + (rnc− d) ln
q0

dn
q1

qc

!− rnc ln
q1

dn
!

When c = 1 the surrealisation alignment equals the histogram alignment,
c = 1 =⇒ algn((A ∗ T )X ∗ T�A) = algn(A). When c = d the surrealisation
alignment is zero, c = d =⇒ algn((A ∗ T )X ∗ T�A) = 0. The partial
derivative of the surrealisation alignment with respect to c is negative where
1 < c < d,

∂

∂c

(
d ln

qd

dn
q1

qc

! + (
dn

cn−1
− d) ln

q0

dn
q1

qc

!− dn

cn−1
ln
q1

dn
!

)
≤ 0

The midisation pseudo-alignment is

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A) =(
d ln

qd

dn
! + (rnc− d) ln

q0

dn
! + rnc ln

q1

dn
!
)
−(

d ln
qd

dn
q1

qc

! + (rnc− d) ln
q0

dn
q1

qc

! + rnc ln
qc

dn
!

)
When c = 1 or c = d the midisation pseudo-alignment is zero, (c = 1) ∧
(c = d) =⇒ algn(A) − algn((A ∗ T )X ∗ T�A) − algn(A ∗ T ∗ T †A) = 0.
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Elsewhere the midisation pseudo-alignment is greater than zero, 1 < c <
d =⇒ algn(A)− algn((A ∗T )X ∗T�A)− algn(A ∗T ∗T †A) > 0, therefore the
midisation pseudo-alignment as a function of c contains a maximum away
from the boundaries.

Having shown that the midisation pseudo-alignment varies with derived
alignment valency density

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A) ∼ algn(A ∗ T )/w1/m

conjecture that the approximation to the mid transform obtained by a max-
imisation of the midisation pseudo-alignment, where the formal is indepen-
dent,

Tm ∈ maxd({(T, algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A)) :

T ∈ TU,V , AX ∗ T = (AX ∗ T )X})

also has high derived alignment, algn(A ∗ Tm), and hence low derived en-
tropy, entropy(A ∗ Tm). Although the mid derived entropy decreases, the
mid derived relative entropy is small, entropyRelative(A ∗ Tm, V

C ∗ Tm) ≈ 0,
because the formal tends to the abstract, AX∗Tm ≈ (A∗Tm)X. That is, while
a maximisation of the midisation pseudo-alignment, where the formal is in-
dependent, tends to decrease the derived entropy, the relative entropy also
tends to decrease. A subsequent maximisation of the mid integral idealisa-
tion alignment, algn(A∗Tm ∗T †Am ), which tends to lengthen derived diagonals
towards full functional, is necessary to recover the relative entropy.

Given a histogram-transform pair (A, T ) ∈ OU,z, having variables V =
vars(A), size z = size(A) and volume v = |V C|, it is conjectured in section
‘Likely histograms’, above, that the maximum likelihood estimate for the
integral iso-deriveds is the naturalisation, A ∗ T ∗ T †,

{A ∗ T ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) : D ∈ AU,V,z})

The corresponding dependent analogue is the derived-dependent, AD(T ) ∈
AU,V,z, defined

{AD(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,V,z})
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The naturalisation-distributed-relative multinomial space is

spaceRelative(A ∗ T ∗ T †)(A) := − ln
mpdf(U)(A ∗ T ∗ T †, z)(A)

mpdf(U)(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

where the distribution-relative multinomial space is defined, in section ‘Likely
histograms’, above, as

spaceRelative(E)(A) := − ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(E)

The naturalisation is computable, so a rational approximation to the natu-
ralisation distributed-relative multinomial space is computable.

In the case where both the histogram and naturalisation are integral, A, A ∗
T ∗ T † ∈ Ai, the naturalisation-distributed-relative multinomial space is

spaceRelative(A ∗ T ∗ T †)(A) := − ln
Qm,U(A ∗ T ∗ T †, z)(A)

Qm,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

The naturalisation-distributed-relative multinomial space of the naturalisa-
tion is zero,

spaceRelative(A ∗ T ∗ T †)(A ∗ T ∗ T †) = 0

In the case where the histogram and naturalisation are integral, A, A∗T ∗T † ∈
Ai, the naturalisation-distributed-relative multinomial space is conjectured to
be greater than or equal to zero, and less than or equal to the naturalisation-
distributed-relative multinomial space of the derived-dependent,

0 ≤ spaceRelative(A ∗ T ∗ T †)(A) ≤ spaceRelative(A ∗ T ∗ T †)(AD(T ))

This is consistent with the entropies,

entropy(A ∗ T ∗ T †) ≥ entropy(A) ≥ entropy(AD(T ))

In the case where the transform is full functional, T = Tf , the naturalisation
equals the histogram, A ∗ Tf ∗ T †f = A, and so the naturalisation-distributed-
relative multinomial space equals zero,

spaceRelative(A ∗ Tf ∗ T †f )(A) = 0

At the other extreme where the transform is unary, T = Tu, the naturalisa-
tion equals the scaled normalised cartesian, A ∗ Tu ∗ T †u = scalar(z/v) ∗ V C,
and so the naturalisation-distributed-relative multinomial space simplifies to

spaceRelative(A ∗ Tu ∗ T †u)(A) =
∑
S∈AS

ln Γ!AS − v ln Γ!(z/v)
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The naturalisation-derived is equal to the derived, (A ∗ T ∗ T †) ∗ T = A ∗ T ,
so the naturalisation-derived alignment equals the derived alignment,

algn((A ∗ T ∗ T †) ∗ T ) = algn(A ∗ T )

Of the integral iso-deriveds, only the naturalisation has zero naturalisation-
distributed-relative multinomial space,

∀B ∈ D−1
U,i,T,z(A∗T ) (B 6= A∗T ∗T † =⇒ spaceRelative(A∗T ∗T †)(B) > 0)

Insofar as the naturalisation is approximately equal to the independent, A ∗
T ∗ T † ≈ AX, then the naturalisation-distributed-relative multinomial space
approximates to

spaceRelative(A ∗ T ∗ T †)(A) ≈
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!(A ∗ T ∗ T †)S

≈ z × entropy(A ∗ T ∗ T †)− z × entropy(A)

The difference is the mis-naturalisation-distributed-relative multinomial space,∑
S∈AXS

(AS − (A ∗ T ∗ T †)S) ln(A ∗ T ∗ T †)S

The degree to which the integral iso-derived is aligned-like is the iso inde-
pendence,

|D−1
U,i,T,z(A ∗ T ) ∩ Y −1

U,i,V,z(A
X)|

|D−1
U,i,T,z(A ∗ T ) ∪ Y −1

U,i,V,z(A
X)|

As the iso-independence of an iso-set increases, the independent analogue
tends to the independent. In this case the naturalisation, A∗T ∗T †, tends to
the independent, AX, and so the relative space, spaceRelative(A ∗T ∗T †)(A),
tends to the alignment, algn(A). That is, as the integral iso-deriveds be-
comes more aligned-like, the relative space becomes less dependent on the
transform, T .

The iso-set is law-like, so in the case where the dependent analogue is in
the iso-set, AD(T ) ∈ D−1

U,T,z(A ∗ T ), the dependent derived equals the derived,

AD(T ) ∗T = A ∗T , and the difference in relative space between the histogram
and the dependent must be in the relative spaces of the components,

AD(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T † ∗ C)(A ∗ C)

≤
∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T † ∗ C)(AD(T ) ∗ C)
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and so

AD(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(·,C)∈T−1

∑
S∈CS

ln Γ!AS ≤
∑

(·,C)∈T−1

∑
S∈CS

ln Γ!A
D(T )
S

or

AD(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒

∑
S∈V CS

ln Γ!AS ≤
∑
S∈V CS

ln Γ!A
D(T )
S

In ‘Iso-sets’, above, the cardinality of the set of integral iso-deriveds is the
product of the weak compositions of the components,

|D−1
U,i,T,z(A ∗ T )| =

∏
(R,C)∈T−1

((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

It is shown in ‘Integral iso-sets and entropy’, above, that the integral iso-
deriveds log-cardinality varies against the size-volume scaled component size
cardinality sum relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

In the domain where the size is less than or equal to the volume, z ≤ v, the
integral iso-deriveds log-cardinality varies against the size scaled component
size cardinality relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −z × entropyRelative(A ∗ T, V C ∗ T )

In the domain where the size is greater than the volume, z > v, the inte-
gral iso-deriveds log-cardinality varies against the volume scaled component
cardinality size relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −v × entropyRelative(V C ∗ T,A ∗ T )

The relative entropy is the cross entropy minus the component entropy, so
in the case where the size is less than or equal to the volume, z ≤ v, the
iso-derived log-cardinality varies against the component size cardinality cross
entropy and varies with the derived entropy or component size entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −z × entropyCross(A ∗ T, V C ∗ T )

and

ln |D−1
U,i,T,z(A ∗ T )| ∼ z × entropy(A ∗ T )

476



Given a histogram-transform pair (A, T ) ∈ OU,z, it is conjectured above
that the maximum likelihood estimate for the integral iso-idealisations is the
idealisation, A ∗ T ∗ T †A,

{A ∗ T ∗ T †A} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isoi(U)(T,A))) : D ∈ AU,V,z})

where isoi(U)(T,A) := Y −1
U,i,T,†,z(A ∗ T ∗ T †A).

The corresponding dependent analogue is the idealisation-dependent, A†(T ) ∈
AU,V,z, defined

{A†(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isoi(U)(T,A)

) : D ∈ AU,V,z})

The idealisation-distributed-relative multinomial space is

spaceRelative(A ∗ T ∗ T †A)(A) := − ln
mpdf(U)(A ∗ T ∗ T †A, z)(A)

mpdf(U)(A ∗ T ∗ T †A, z)(A ∗ T ∗ T †A)

The idealisation is computable, so a rational approximation to the idealisation-
distributed-relative multinomial space is computable.

In the case where both the histogram and idealisation are integral, A, A ∗
T ∗ T †A ∈ Ai, the idealisation-distributed-relative multinomial space is

spaceRelative(A ∗ T ∗ T †A)(A) := − ln
Qm,U(A ∗ T ∗ T †A, z)(A)

Qm,U(A ∗ T ∗ T †A, z)(A ∗ T ∗ T †A)

The idealisation-distributed-relative multinomial space of the idealisation is
zero,

spaceRelative(A ∗ T ∗ T †A)(A ∗ T ∗ T †A) = 0

In the case where the histogram and idealisation are integral, A, A∗T ∗T †A ∈
Ai, the idealisation-distributed-relative multinomial space is conjectured to
be greater than or equal to zero, and less than or equal to the idealisation-
distributed-relative multinomial space of the idealisation-dependent,

0 ≤ spaceRelative(A ∗ T ∗ T †A)(A) ≤ spaceRelative(A ∗ T ∗ T †A)(A†(T ))

This is consistent with the entropies,

entropy(A ∗ T ∗ T †A) ≥ entropy(A) ≥ entropy(A†(T ))
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In the case where the transform is full functional, T = Tf , the idealisation
equals the histogram, A ∗ Tf ∗ T †Af = A, and so the idealisation equals zero,

spaceRelative(A ∗ Tf ∗ T †Af )(A) = 0

At the other extreme where the transform is unary, T = Tu, the idealisation
equals the independent, A∗Tu∗T †Au = AX, and so the idealisation-distributed-
relative multinomial space equals the alignment

spaceRelative(A ∗ Tu ∗ T †Au )(A) = algn(A)

Conjecture that the relative space of the histogram with respect to the ide-
alisation is less than or equal to that with respect to the independent,

spaceRelative(A ∗ T ∗ T †A)(A) ≤ spaceRelative(AX)(A) = algn(A)

and similarly for the idealisation-dependent

spaceRelative(A ∗ T ∗ T †A)(A†(T )) ≤ spaceRelative(AX)(A†(T )) = algn(A†(T ))

because the idealisation entropy is less than or equal to the independent en-
tropy, entropy(A ∗ T ∗ T †A) ≤ entropy(AX).

The idealisation-derived is equal to the derived, (A ∗ T ∗ T †A) ∗ T = A ∗ T ,
so the idealisation-derived alignment equals the derived alignment,

algn((A ∗ T ∗ T †A) ∗ T ) = algn(A ∗ T )

Of the integral iso-idealisations, only the idealisation has zero idealisation-
distributed-relative multinomial space,

∀B ∈ Y −1
U,i,T,†,z(A ∗ T ∗ T

†A)

(B 6= A ∗ T ∗ T †A =⇒ spaceRelative(A ∗ T ∗ T †A)(B) > 0)

Insofar as the transform approximates to unary, T ≈ Tu, the idealisation
approximates to the independent, A ∗ T ∗ T †A ≈ AX, and the idealisation-
distributed-relative multinomial space approximates to

spaceRelative(A ∗ T ∗ T †A)(A) ≈
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!(A ∗ T ∗ T †A)S

≈ z × entropy(A ∗ T ∗ T †A)− z × entropy(A)

The difference is the mis-idealisation-distributed-relative multinomial space,∑
S∈AXS

(AS − (A ∗ T ∗ T †A)S) ln(A ∗ T ∗ T †A)S

478



The iso-idealisations is a subset of the iso-independents, Y −1
U,T,†,z(A∗T ∗T †A) ⊆

Y −1
U,V,z(A

X), so the iso-independence is the fraction of their integral cardinal-
ities,

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,V,z(A

X)|
In some cases the iso-independence of the iso-idealisations is greater than or
equal to the iso-independence of the iso-derived,

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,V,z(A

X)|
≥
|D−1

U,i,T,z(A ∗ T ) ∩ Y −1
U,i,V,z(A

X)|
|D−1

U,i,T,z(A ∗ T ) ∪ Y −1
U,i,V,z(A

X)|

As the iso-independence increases, the transform becomes more unary, the
idealisation, A∗T ∗T †A, tends to the independent, AX, and the relative space,
spaceRelative(A ∗ T ∗ T †A)(A), tends to the alignment, algn(A).

The iso-set is law-like, so in the case where the dependent analogue is in
the iso-set, A†(T ) ∈ D−1

U,T,z(A ∗ T ), the dependent derived equals the derived,

A†(T ) ∗ T = A ∗ T , and the difference in relative space between the histogram
and the dependent must be in the relative spaces of the components,

A†(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T †A ∗ C)(A ∗ C)

≤
∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T †A ∗ C)(A†(T ) ∗ C)

So, in the case of the idealisation-dependent, the component alignments must
be greater than or equal to the component alignments of the histogram,

A†(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(·,C)∈T−1

algn(A ∗ C) ≤
∑

(·,C)∈T−1

algn(A†(T ) ∗ C)

The iso-derivedence, or degree of law-likeness, of the iso-idealisations is

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|D−1

U,i,T,z(A ∗ T )|
≤ 1

As the iso-derivedence increases, the difference between the relative spaces
of the dependents, spaceRelative(A ∗ T ∗ T †)(AD(T ))− spaceRelative(A ∗ T ∗
T †A)(A†(T )), decreases.
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Given a histogram-transform pair (A, T ) ∈ OU,z, it is conjectured in section
‘Likely histograms’, above, that the maximum likelihood estimate for the
integral iso-abstracts is the naturalised abstract, (A ∗ T )X ∗ T †,

{(A ∗ T )X ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X))) : D ∈ AU,V,z})

The corresponding dependent analogue is the abstract-dependent, AW(T ) ∈
AU,V,z, defined

{AW(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,T,W,z((A ∗ T )X)
) : D ∈ AU,V,z})

The naturalised abstract distributed relative multinomial space is

spaceRelative((A ∗ T )X ∗ T †)(A) :=

− ln
mpdf(U)((A ∗ T )X ∗ T †, z)(A)

mpdf(U)((A ∗ T )X ∗ T †, z)((A ∗ T )X ∗ T †)

The naturalised abstract is computable, so a rational approximation to the
naturalised abstract distributed relative multinomial space is computable.

In the case where both the histogram and naturalised abstract are integral,
A, (A∗T )X∗T † ∈ Ai, the naturalised abstract distributed relative multinomial
space is

spaceRelative((A ∗ T )X ∗ T †)(A) :=

− ln
Qm,U((A ∗ T )X ∗ T †, z)(A)

Qm,U((A ∗ T )X ∗ T †, z)((A ∗ T )X ∗ T †)

The naturalised abstract distributed relative multinomial space of the natu-
ralised abstract is zero,

spaceRelative((A ∗ T )X ∗ T †)((A ∗ T )X ∗ T †) = 0

In the case where the histogram and naturalised abstract are integral, A, (A∗
T )X ∗ T † ∈ Ai, the naturalised abstract distributed relative multinomial space
is conjectured to be greater than or equal to zero, and less than or equal to
the naturalised abstract distributed relative multinomial space of the abstract-
dependent,

0 ≤ spaceRelative((A ∗ T )X ∗ T †)(A) ≤ spaceRelative((A ∗ T )X ∗ T †)(AW(T ))
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This is consistent with the entropies,

entropy((A ∗ T )X ∗ T †) ≥ entropy(A) ≥ entropy(AW(T ))

In the case where the transform is full functional, T = Tf , the naturalised
abstract equals the independent, (A ∗ Tf)

X ∗ T †f = AX, and so the naturalised
abstract distributed relative multinomial space equals the aligment,

spaceRelative((A ∗ Tf)
X ∗ T †f )(A) = algn(A)

At the other extreme where the transform is unary, T = Tu, the naturalised
abstract equals the scaled normalised cartesian, (A∗Tu)X ∗T †u = scalar(z/v)∗
V C, and so the naturalised abstract distributed relative multinomial space
simplifies to

spaceRelative((A ∗ Tu)X ∗ T †u)(A) =
∑
S∈AS

ln Γ!AS − v ln Γ!(z/v)

Of the integral iso-abstracts, only the naturalised abstract has zero naturalised
abstract distributed relative multinomial space,

∀B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

(B 6= (A ∗ T )X ∗ T † =⇒ spaceRelative((A ∗ T )X ∗ T †)(B) > 0)

Insofar as the naturalised abstract is approximately equal to the indepen-
dent, (A ∗ T )X ∗ T † ≈ AX, then the naturalised abstract distributed relative
multinomial space approximates to

spaceRelative((A ∗ T )X ∗ T †)(A)

≈
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!((A ∗ T )X ∗ T †)S

≈ z × entropy((A ∗ T )X ∗ T †)− z × entropy(A)

The difference is the mis-naturalised abstract distributed relative multinomial
space, ∑

S∈AXS

(AS − ((A ∗ T )X ∗ T †)S) ln((A ∗ T )X ∗ T †)S

The degree to which the set of integral iso-abstracts is aligned-like is the
iso-independence,

|Y −1
U,i,T,W,z((A ∗ T )X) ∩ Y −1

U,i,V,z(A
X)|

|Y −1
U,i,T,W,z((A ∗ T )X) ∪ Y −1

U,i,V,z(A
X)|

481



As the iso-independence increases, the naturalised abstract, (A ∗ T )X ∗ T †,
tends to the independent, AX, and the relative space, spaceRelative((A∗T )X∗
T †)(A), tends to the alignment, algn(A). That is, as the integral iso-abstracts
becomes more aligned-like, the relative space becomes less dependent on the
transform, T .

The independent analogue is the naturalised abstract, (A ∗ T )X ∗ T †. The de-
rived alignment of the independent analogue is zero, algn((A∗T )X∗T †∗T ) =
algn((A∗T )X) = 0. The set of iso-abstracts is entity-like so the derived, A∗T ,
and the dependent derived, AW(T ) ∗T , are not necessarily equal to each other
and nor are they necessarily equal to the abstract, (A ∗T )X. Conjecture that
the relation between the relative spaces,

0 = spaceRelative((A ∗ T )X ∗ T †)((A ∗ T )X ∗ T †)
≤ spaceRelative((A ∗ T )X ∗ T †)(A)

≤ spaceRelative((A ∗ T )X ∗ T †)(AW(T ))

can be lifted,

0 = spaceRelative((A ∗ T )X)((A ∗ T )X)

≤ spaceRelative((A ∗ T )X)(A ∗ T )

≤ spaceRelative((A ∗ T )X)(AW(T ) ∗ T )

and so conjecture that the dependent analogue derived alignment is greater
than or equal to the derived alignment which in turn is greater than or equal
to the independent analogue derived alignment,

0 = algn((A ∗ T )X) ≤ algn(A ∗ T ) ≤ algn(AW(T ) ∗ T )

The iso-derivedence of the iso-abstracts equals the iso-abstractence of the
iso-deriveds,

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

As the iso-derivedence and iso-abstractence increases, the difference between
the relative spaces of the dependents, spaceRelative((A ∗ T )X ∗ T †)(AW(T ))−
spaceRelative(A ∗ T ∗ T †)(AD(T )), decreases.

In ‘Iso-sets’, above, in the case where the derived is independent, A ∗
T = (A ∗ T )X, the cardinality of the set of integral iso-abstracts equals the
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cardinality of the set of integral iso-deriveds,

|Y −1
U,i,T,W,z((A ∗ T )X)| = |D−1

U,i,T,z((A ∗ T )X)|

=
∏

(R,C)∈T−1

((A ∗ T )X
R + |C| − 1)!

(A ∗ T )X
R! (|C| − 1)!

and so in this case the integral iso-abstracts log-cardinality is approximately
proportional to the negative abstract size-volume scaled component size car-
dinality sum relative entropy,

ln |Y −1
U,i,T,W,z((A ∗ T )X)|
≈ (z + v) ln(z + v) − z ln z − v ln v

−
(
(z + v)× entropy((A ∗ T )X + V C ∗ T )

−z × entropy((A ∗ T )X) − v × entropy(V C ∗ T )
)

In the case where the size is less than or equal to the volume, z ≤ v, the log
iso-abstract cardinality varies against the size scaled component size cardi-
nality relative abstract entropy,

ln |Y −1
U,i,T,W,z((A ∗ T )X)| ∼ −z × entropyRelative((A ∗ T )X, V C ∗ T )

and where the size is greater than the volume, z > v, the log iso-abstract car-
dinality varies against the volume scaled component cardinality size relative
abstract entropy,

ln |Y −1
U,i,T,W,z((A ∗ T )X)| ∼ −v × entropyRelative(V C ∗ T, (A ∗ T )X)

The relative entropy is the cross entropy minus the component entropy, so
in the case where the size is less than or equal to the volume, z ≤ v, the
log iso-abstract cardinality varies against the component size cardinality cross
abstract entropy and varies with the abstract entropy,

ln |Y −1
U,i,T,W,z((A ∗ T )X)| ∼ −z × entropyCross((A ∗ T )X, V C ∗ T )

and

ln |Y −1
U,i,T,W,z((A ∗ T )X)| ∼ z × entropy((Â ∗ T )X)

In this case where the size is less than or equal to the volume, z ≤ v, the
log iso-derivedence of the iso-abstracts varies with the difference between the
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derived entropy and the abstract entropy, and so varies against the derived
alignment,

ln
|D−1

U,i,T,z(A ∗ T )|
|Y −1
U,i,T,W,z((A ∗ T )X)|

∼ z × entropy(A ∗ T )− z × entropy((Â ∗ T )X)

≈ − spaceRelative((A ∗ T )X)(A ∗ T )

= − algn(A ∗ T )

That is, the fraction of the entity-like histograms that are also law-like de-
creases as the derived alignment increases. In the case where the derived is
independent, the derived alignment is minimised, A ∗ T = (A ∗ T )X =⇒
algn(A ∗ T ), and the iso-derivedence is maximised,

|D−1
U,i,T,z((A ∗ T )X)|

|Y −1
U,i,T,W,z((A ∗ T )X)|

= 1

Given a histogram-transform pair (A, T ) ∈ OU,z, the transform-independent,
AX(T ) ∈ AU,V,z, is defined in section ‘Likely histograms’, above, as

{AX(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})

where the integral iso-transform-independents is abbreviated

AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

= {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

The corresponding dependent analogue is the transform-dependent, AY(T ) ∈
AU,V,z, defined

{AY(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)

) : D ∈ AU,V,z})

The transform-independent-distributed-relative multinomial space is

spaceRelative(AX(T ))(A) := − ln
mpdf(U)(AX(T ), z)(A)

mpdf(U)(AX(T ), z)(AX(T ))

The transform-independent is sometimes not computable, so the transform-
independent-distributed-relative multinomial space is sometimes not computable.
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In the case where both the histogram and transform-independent are in-
tegral, A,AX(T ) ∈ Ai, the transform-independent-distributed-relative multi-
nomial space is

spaceRelative(AX(T ))(A) := − ln
Qm,U(AX(T ), z)(A)

Qm,U(AX(T ), z)(AX(T ))

The transform-independent-distributed-relative multinomial space of the trans-
form independent is zero,

spaceRelative(AX(T ))(AX(T )) = 0

In the case where the histogram is integral, A ∈ Ai, and the transform-
independent is an integral iso-transform-independent, AX(T ) ∈ AU,i,y,T,z(A),
the transform-independent-distributed-relative multinomial space is conjec-
tured to be greater than or equal to zero and less than or equal to the
transform-independent-distributed-relative multinomial space of the transform-
dependent,

0 ≤ spaceRelative(AX(T ))(A) ≤ spaceRelative(AX(T ))(AY(T ))

This is consistent with the entropies,

entropy(AX(T )) ≥ entropy(A) ≥ entropy(AY(T ))

In the case where the transform is full functional, T = Tf , where Tf =
{{w}CS{}V T : w ∈ V }T ∈ TU,V , the transform-independent equals the inde-
pendent, AX(Tf) = AX, and so the transform-independent-distributed-relative
multinomial space equals the alignment,

spaceRelative(AX(Tf))(A) = algn(A)

=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

At the other extreme where the transform is unary, T = Tu, where Tu =
{V CS}T ∈ TU,V , the transform-independent equals the scaled normalised
cartesian, AX(Tu) = scalar(z/v) ∗ V C, and so the transform-independent-
distributed-relative multinomial space simplifies to

spaceRelative(AX(Tu))(A) =
∑
S∈AS

ln Γ!AS − v ln Γ!(z/v)

Conjecture that if the transform-independent is an integral iso-transform-
independent, AX(T ) ∈ AU,i,y,T,z(A), the relative space of the histogram with
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respect to the transform-independent is greater than or equal to that with
respect to the independent,

spaceRelative(AX(T ))(A) ≥ spaceRelative(AX)(A) = algn(A)

and similarly for the transform-dependent

spaceRelative(AX(T ))(AY(T )) ≥ spaceRelative(AX)(AY(T )) = algn(AY(T ))

because the transform-independent entropy is greater than or equal to the
independent entropy, entropy(AX(T )) ≥ entropy(AX).

Of the integral iso-independents, only the independent has zero alignment,

∀B ∈ Y −1
U,i,V,z(A

X) (B 6= AX =⇒ algn(B) > 0)

Similarly, of the integral iso-transform-independents, only the transform-
independent has zero transform-independent-distributed-relative multinomial
space,

∀B ∈ Y −1
U,i,T,z(((A

X∗T ), (A∗T )X)) (B 6= AX(T ) =⇒ spaceRelative(AX(T ))(B) > 0)

where the transform-independent is an integral iso-transform-independent,
AX(T ) ∈ AU,i,y,T,z(A).

Insofar as the transform approximates to full functional, T ≈ Tf , the transform-
independent approximates to the independent, AX(T ) ≈ AX, and the transform-
independent-distributed-relative multinomial space approximates to

spaceRelative(AX(T ))(A) ≈
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X(T )
S

≈ z × entropy(AX(T ))− z × entropy(A)

The difference is the mis-transform-independent-distributed-relative multino-
mial space, ∑

S∈AXS

(AS − AX(T )
S ) lnA

X(T )
S

The degree to which the set of integral iso-transform-independents is aligned-
like is the iso-independence,

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|
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As the iso-independence increases, the transform-independent, AX(T ), tends
to the independent, AX, and the relative space, spaceRelative(AX(T ))(A),
tends to the alignment, algn(A). That is, as the integral iso-transform-
independents becomes more aligned-like, the relative space becomes less de-
pendent on the transform, T .

The set of iso-transform-independents may be more law-like then the set of
iso-abstracts, depending on the iso-derivedence, but is still entity-like. So the
derived, A∗T , and the dependent derived, AY(T )∗T , are not necessarily equal
to each other and nor are they necessarily equal to the abstract, (A∗T )X. The
set of iso-transform-independents is the intersection of the set of iso-formals
and the set of iso-abstracts. The independent analogue of the iso-abstracts
is the naturalised abstract, (A ∗ T )X ∗ T †, which has zero derived alignment,
algn((A ∗ T )X ∗ T † ∗ T ) = algn((A ∗ T )X) = 0. So the derived alignment of
the independent analogue of the iso-transform-independents, algn(AX(T ) ∗T ),
is conjectured to be less than or equal to the derived alignment, algn(A ∗ T ),
which in turn is conjectured to be less than or equal to the dependent ana-
logue derived alignment, algn(AY(T ) ∗ T ). The relation between the relative
spaces,

0 = spaceRelative(AX(T ))(AX(T ))

≤ spaceRelative(AX(T ))(A)

≤ spaceRelative(AX(T ))(AY(T ))

can be lifted,

0 = spaceRelative(AX(T ) ∗ T )(AX(T ) ∗ T )

≤ spaceRelative(AX(T ) ∗ T )(A ∗ T )

≤ spaceRelative(AX(T ) ∗ T )(AY(T ) ∗ T )

so conjecture that

algn(AX(T ) ∗ T ) ≤ algn(A ∗ T ) ≤ algn(AY(T ) ∗ T )

Similarly, the independent analogue of the iso-formals is the naturalised for-
mal, AX ∗ T ∗ T †, which is formal, AX ∗ T ∗ T † ∗ T = AX ∗ T , and so the
derived alignment is equal to the formal alignment, algn(AX ∗ T ∗ T † ∗ T ) =
algn(AX∗T ). Conjecture that the formal alignment of the naturalised formal
is greater than or equal to its derived alignment, algn((AX ∗ T ∗ T †)X ∗ T ) ≥
algn(AX ∗ T ∗ T † ∗ T ). So conjecture that the formal alignment of the nat-
uralised formal is greater than or equal to the formal alignment of the his-
togram, algn((AX ∗T ∗T †)X ∗T ) ≥ algn(AX ∗T ). The transform-dependent, is
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near the histogram, AY(T ) ∼ A, only in as much as it is far from the transform-
independent, AY(T ) � AX(T ), so conjecture that the formal alignment of the
independent analogue of the iso-transform-independents, algn(AX(T )X ∗ T ),
is greater than or equal to the formal alignment, algn(AX ∗ T ), which in
turn is greater than or equal to the dependent analogue formal alignment,
algn(AY(T )X ∗ T ),

algn(AX(T )X ∗ T ) ≥ algn(AX ∗ T ) ≥ algn(AY(T )X ∗ T )

That is, the dependent analogue derived alignment is greater than or equal
to the derived alignment, algn(AY(T ) ∗ T ) ≥ algn(A ∗ T ), but the dependent
analogue formal alignment is less than or equal to the formal alignment,
algn(AY(T )X ∗ T ) ≤ algn(AX ∗ T ).

The iso-abstractence of the iso-transform-independents is

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))|
|Y −1
U,i,T,W,z((A ∗ T )X)|

≤ 1

As the iso-abstractence increases, the iso-transform-independents becomes
more entity-like and the difference between the relative spaces of the depen-
dents, spaceRelative((A ∗ T )X ∗ T †)(AW(T )) − spaceRelative(AX(T ))(AY(T )),
decreases.

The iso-derivedence of the iso-transform-independents is

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ D−1
U,i,T,z(A ∗ T )|

As the iso-derivedence increases, the iso-transform-independents becomes
more law-like and the difference between the relative spaces of the depen-
dents, spaceRelative((A∗T )X∗T †)(AY(T ))−spaceRelative(A∗T ∗T †)(AD(T )),
decreases, in the case where the formal equals the abstract, AX∗T = (A∗T )X.

Given a histogram-transform pair (A, T ) ∈ OU,z, the partition-independent,
AP(T ) ∈ AU,V,z, is defined in section ‘Likely histograms’, above, as

{AP(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isop(U)(T,A))) : D ∈ AU,V,z})

where the integral iso-partition-independents is abbreviated

isop(U)(T,A) := Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,i,T,W,z((A ∗ T )X)
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and the iso-partition-independents is such that

Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

= {B : B ∈ AU,i,V,z, (BX ∗ T )X = (AX ∗ T )X, (B ∗ T )X = (A ∗ T )X}

The corresponding dependent analogue is the partition-dependent, AR(T ) ∈
AU,V,z, defined

{AR(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isop(U)(T,A)

) : D ∈ AU,V,z})

The iso-partition-independents is intermediate between the iso-transform-
independents and the iso-abstracts,

Y −1
U,T,W,z((A ∗ T )X) ∩ Y −1

U,T,V,z(A
X ∗ T )

⊆ Y −1
U,T,W,z((A ∗ T )X) ∩ Y −1

U,T,V,x,z((A
X ∗ T )X)

⊆ Y −1
U,T,W,z((A ∗ T )X)

All three iso-sets are subsets of the iso-abstracts, Y −1
U,T,W,z((A∗T )X). The iso-

formal-independents, Y −1
U,T,V,x,z((A

X ∗ T )X), is a superset of the iso-formals,

Y −1
U,T,V,z(A

X∗T ). So the properties of the likely histograms of the iso-partition-
independents are also intermediate between the likely histograms of the iso-
transform-independents and the likely histograms of the iso-abstracts.

The partition-independent-distributed-relative multinomial space is

spaceRelative(AP(T ))(A) := − ln
mpdf(U)(AP(T ), z)(A)

mpdf(U)(AP(T ), z)(AP(T ))

The partition-independent-distributed-relative multinomial space of the par-
tition independent is zero,

spaceRelative(AP(T ))(AP(T )) = 0

In the case where the histogram is integral, A ∈ Ai, and the partition-
independent is an integral iso-partition-independent, AP(T ) ∈ isop(U)(T,A),
the partition-independent-distributed-relative multinomial space is conjectured
to be greater than or equal to zero and less than or equal to the partition-
independent-distributed-relative multinomial space of the partition-dependent,

0 ≤ spaceRelative(AP(T ))(A) ≤ spaceRelative(AP(T ))(AR(T ))
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This is consistent with the entropies,

entropy(AP(T )) ≥ entropy(A) ≥ entropy(AR(T ))

In the case where the transform is full functional, T = Tf , where Tf =
{{w}CS{}V T : w ∈ V }T ∈ TU,V , the partition-independent equals the inde-
pendent, AP(Tf) = AX, and so the partition-independent-distributed-relative
multinomial space equals the alignment,

spaceRelative(AP(Tf))(A) = algn(A)

=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

At the other extreme where the transform is unary, T = Tu, where Tu =
{V CS}T ∈ TU,V , the partition-independent equals the scaled normalised carte-
sian, AP(Tu) = scalar(z/v)∗V C, and so the partition-independent-distributed-
relative multinomial space simplifies to

spaceRelative(AP(Tu))(A) =
∑
S∈AS

ln Γ!AS − v ln Γ!(z/v)

Conjecture that if the partition-independent is integral, AP(T ) ∈ isop(U)(T,A),
the relative space of the histogram with respect to the partition-independent
is greater than or equal to that with respect to the independent,

spaceRelative(AP(T ))(A) ≥ spaceRelative(AX)(A) = algn(A)

and similarly for the partition-dependent

spaceRelative(AP(T ))(AR(T )) ≥ spaceRelative(AX)(AR(T )) = algn(AR(T ))

because the partition-independent entropy is greater than or equal to the in-
dependent entropy, entropy(AP(T )) ≥ entropy(AX).

Of the integral iso-partition-independents, only the partition-independent has
zero partition-independent-distributed-relative multinomial space,

∀B ∈ isop(U)(T,A) (B 6= AP(T ) =⇒ spaceRelative(AP(T ))(B) > 0)

where the partition-independent is integral, AP(T ) ∈ isop(U)(T,A).

490



Insofar as the transform approximates to full functional, T ≈ Tf , the partition-
independent approximates to the independent, AP(T ) ≈ AX, and the partition-
independent-distributed-relative multinomial space approximates to

spaceRelative(AP(T ))(A) ≈
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
P(T )
S

≈ z × entropy(AP(T ))− z × entropy(A)

The difference is the mis-partition-independent-distributed-relative multino-
mial space, ∑

S∈AXS

(AS − AP(T )
S ) lnA

P(T )
S

Just as for the iso-abstracts and the iso-transform-independents, above, it is
conjectured that, because the independent analogue of the iso-abstracts is the
naturalised abstract, (A∗T )X∗T †, which has zero derived alignment, algn((A∗
T )X ∗T † ∗T ) = algn((A∗T )X) = 0, the derived alignment of the independent
analogue of the iso-partition-independents, algn(AP(T ) ∗ T ), is conjectured to
be less than or equal to the derived alignment, algn(A ∗ T ), which in turn
is conjectured to be less than or equal to the dependent analogue derived
alignment, algn(AR(T ) ∗ T ). So the relation between the relative spaces,

0 = spaceRelative(AP(T ))(AP(T ))

≤ spaceRelative(AP(T ))(A)

≤ spaceRelative(AP(T ))(AR(T ))

can be lifted to derived alignment, depending on the derived iso-independence,

algn(AP(T ) ∗ T ) ≤ algn(A ∗ T ) ≤ algn(AR(T ) ∗ T )

Although the properties of the likely histograms of the iso-partition inde-
pendents with respect to derived alignment are similar to those of the likely
histograms of both the iso-abstracts and the iso-transform-independents, be-
cause all three iso-sets are subsets of the iso-abstracts, the properties with
respect to formal alignment are not similar. The set of iso-abstracts is condi-
tional on neither the formal, AX ∗ T , nor the formal independent, (AX ∗ T )X,
so the abstract dependent, AW(T ), is neutral with respect to the formal and
the formal independent, and nothing can be said of its formal alignment,
algn(AW(T )X∗T ). Indeed in some cases the abstract dependent may be purely
formal, AW(T )∗T = AW(T )X∗T =⇒ algn(AW(T )∗T ) = algn(AW(T )X∗T ). This
contrasts with the set of iso-transform-independents which is conditional on
the formal. It is conjectured above that the formal alignment of the indepen-
dent analogue of the iso-transform-independents, algn(AX(T )X ∗T ), is greater
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than or equal to the formal alignment, algn(AX ∗T ), which in turn is greater
than or equal to the dependent analogue formal alignment, algn(AY(T )X ∗T ),

algn(AX(T )X ∗ T ) ≥ algn(AX ∗ T ) ≥ algn(AY(T )X ∗ T )

Now consider the formal alignment of the likely histograms of the iso-partition-
independents. The independent analogue of the iso-partition-independents,
AP(T ), is intermediate between (i) the independent analogue of the iso-formal-
independents, which is the naturalised formal independent, (AX ∗ T )X ∗ T †,
and (ii) the independent analogue of the iso-abstracts, which is the natu-
ralised abstract, (A∗T )X ∗T †. Conjecture that the triply-independent formal
alignment of the naturalised formal independent is less than or equal to the
doubly-independent formal alignment of the naturalised abstract which in
turn is less than or equal to the singly-independent formal alignment of the
histogram,

algn(((AX ∗ T )X ∗ T †)X ∗ T ) ≤ algn(((A ∗ T )X ∗ T †)X ∗ T ) ≤ algn(AX ∗ T )

So the formal alignment of the partition-independent is less than or equal to
the formal alignment of the histogram,

algn(AP(T )X ∗ T ) ≤ algn(AX ∗ T )

The partition-dependent varies against the partition-independent, AR(T ) �
AP(T ), so conjecture that

algn(AP(T )X ∗ T ) ≤ algn(AX ∗ T ) ≤ algn(AR(T )X ∗ T )

That is, the dependent analogue derived alignment is greater than or equal
to the derived alignment, algn(AR(T ) ∗ T ) ≥ algn(A ∗ T ), and the dependent
analogue formal alignment is greater than or equal to the formal alignment,
algn(AR(T )X ∗ T ) ≥ algn(AX ∗ T ).

The direction of the formal alignment inequality is opposite to that of the
likely histograms of the iso-transform-independents. So conjecture that the
partition-dependent formal alignment is greater than or equal to the transform-
dependent formal alignment

algn(AR(T )X ∗ T ) ≥ algn(AX ∗ T ) ≥ algn(AY(T )X ∗ T )

4.16 Rolled alignment

A roll, defined above, R ∈ rolls ⊂ S → S, in variables V and system
U , is a state valued function of state, R ∈ V CS → V CS. The application
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of a roll R in variables V to a histogram A having the same variables is
roll ∈ rolls×A → A

roll(R,A) :=
∑

S∈AS\dom(R)

{(S,AS)}+
∑

S∈AS∩dom(R)

{(RS, AS)}

Define (∗) ∈ A × rolls → A as A ∗ R := roll(R,A). Define the identity roll
id(U) ∈ P(VU)→ rolls as id(U)(V ) := {(S, S) : S ∈ V CS}.

A roll R ∈ rolls having variables V can converted to a partition transform
PT ∈ TU,V on the partition P ∈ RU of the cartesian states of the vari-
ables, P ∈ B(V CS), implied by the functional inverse, P = ran(inverse(R ◦
id(U)(V ))). This transform has a single derived variable, |der(PT)| = 1, and
therefore the derived histogram is independent, A ∗ PT = (A ∗ PT)X, when
applied to some underlying histogram A in variables V . Hence, the derived
alignment is zero, alignment(A ∗ PT) = 0.

The transform of a roll is defined transform(U) ∈ rolls→ TU,f,1 as

transform(U)(R) :=

{PT : v ∈ V, P = ran(inverse({(S1, S2%{v}) : (S1, S2) ∈ R′}))}T

where V = vars(R) and R′ = R ◦ id(U)(V ) is the given roll stuffed with the
identity roll. Define RT := transform(U)(R) where the system U is implicit.

The alignment of the derived histogram in variables W = der(RT) is equal to
the alignment in variables V = vars(R) = und(RT) of the rolled histogram

alignment(A ∗RT) = alignment(A ∗R)

This is the case because (i) the sizes are equal, size(A∗RT) = size(A∗R), (ii)
there is a map between states, V CS ↔ WCS, such that the counts are equal,
∃M ∈ V CS ↔ WCS (|M | = |WCS| ∧ (∀(S, T ) ∈ M ((A ∗ R)S = (A ∗ RT)T )))
and hence ∑

S∈V CS

ln Γ!(A ∗R)S =
∑

T∈WCS

ln Γ!(A ∗RT)T

(iii) there exists a surjective mapping between the variables, V → W , such
that the reductions are equal, ∃N ∈ V → W (dom(N) = V ∧ ran(N) =
W ∧ ( ∀(v, w) ∈ N ∃Q ∈ {v}CS ↔ {w}CS (|Q| = |Uw| ∧ (∀(S, T ) ∈ Q (((A ∗
R)%{v})S = ((A ∗RT)%{w})T ))))), so∑

S∈V CS

ln Γ!(A ∗R)X
S =

∑
T∈WCS

ln Γ!(A ∗RT)X
T
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A value roll, defined above, is equivalent to a special case of a roll R ∈
V CS → V CS on variables V in system U . Define the set of value rolls
rollValues(U) ⊂ P(VU)×VU×WU×WU such that ∀(V, v, s, t) ∈ rollValues(U) (v ∈
V ∧ s, t ∈ Uv). Define roll(U) ∈ rollValues(U)→ (rolls∩ (SU → SU)). Define
(V, v, s, t)R := roll(U)((V, v, s, t)).

The independent of the application of a value roll (V, v, s, t) to a histogram
A is equal to the application of a value roll to the independent histogram

(A ∗ (V, v, s, t)R)X = AX ∗ (V, v, s, t)R

Thus the application of a value roll to an independent histogram is also inde-
pendent, AX ∗ (V, v, s, t)R = (AX ∗ (V, v, s, t)R)X. The alignment of the rolled
independent is zero, alignment(AX ∗ (V, v, s, t)R) = 0.

JU,V is defined above as the set of lists of value rolls in variables V and system
U , JU,V = {L : L ∈ L(rollValues(U)), (∀(W, v, s, t) ∈ set(L) (W = V ))}.
The list of value rolls J ∈ JU,V can be converted into a list of rolls. Define
JR := map(roll(U), J). Rolled independent histograms remain independent
AX ∗ JR = (AX ∗ JR)X.

The transform of a list of value rolls J ∈ JU,V is defined above, transform(U) ∈
L(rollValues(U))→ TU,f,1. Define JT := transform(U)(J). The value roll list
transform equals the roll list transform, JT = JRT.

The derived alignment equals the alignment of the rolled histogram

alignment(A ∗ JT) = alignment(A ∗ JRT) = alignment(A ∗ JR)

The alignment of a rolled independent histogram is zero, alignment(AX ∗
JT) = 0 because AX ∗ JT = (AX ∗ JT)X. The value roll list transform is non-
overlapping, ¬overlap(JT), so the degree of overlap is zero, alignment(V C ∗
JT) = 0.

4.17 Decomposition alignment

In section ‘Decompositions’, above, the nullable transform, DT, of a well
behaved distinct decomposition D ∈ Dw,U was defined such that the de-
rived variables, der(DT), consist of the union of (i) the root frame variables,
{{w}CS{} : w ∈ Wr}, of the derived variables Wr = der(Tr) of the root trans-
form {((∅, Tr), ·)} = D, and (ii) the nullable variables, dom(nullables(U)(D)).
The nullable transform derived variables, der(DT), originate in the transform
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derived variables, der(G), where G = transforms(D). So originals(U)(D) ∈
der(DT) → der(G). The derived alignment given histogram A ∈ A, having
vars(A) ⊇ und(D), is algn(A ∗DT).

In some cases the derived alignment, algn(A ∗ DT), may not be practi-
cably computable. The derived volume, |NC| where N = der(DT), may
be larger than the underlying volume, |V C| where V = und(D). Certainly
the volume of the nullable transform derived variables may be greater than
the volume of the transform derived variables, |NC| ≥ |WC| where W =
der(G). For example, the application to cartesian may not be completely
effective, (V C ∗ DT)F < NC, if (i) the root transform, Tr, is overlapping,
overlap(Tr), or (ii) there is more than one path, |path(D)| > 1, and no
transform symmetries, and hence overlapping contingently applied nullable
variables, nullables(U)(D) 6= ∅. However, it is conjectured that, given certain
conditions, there is a calculation of the content alignment, algn(A ∗ DT) −
algn(AX ∗ DT), that does not require the computation of the derived his-
togram, A ∗DT.

LetD ∈ Dw,U be a well behaved decomposition having no variable symmetries,
{(w, (S, T )) : (S, T ) ∈ elements(D), w ∈ der(T )} ∈ der(G) → elements(D),
where G = transforms(D). First, consider the case where the transforms
of the decomposition, D, are all contingently diagonalised with respect to
histogram A,

∀(C, T ) ∈ cont(D) (diagonal(A ∗ C ∗ T ))

where cont(D) := elements(contingents(D)). Conjecture that in the contin-
gently diagonalised decomposition case the derived alignment, algn(A ∗DT),
equals (i) the derived alignment of the skeletal contingent reduction plus
(ii) the sum of the alignments of the diagonalised derived histograms of the
decomposition transforms. Let the skeletal contingent reduction be D′ ∈
reductions(A,D) which is such that skeletal(A ∗D′T). Then

algn(A ∗DT) = algn(A ∗D′T) +
∑

(C,T )∈cont(D)

algn(A ∗ C ∗ T )

To show this, consider the fud F of children transforms of a decomposi-
tion transform T ∈ G, where G = transforms(D), F = ran(dom(E)) and
((·, T ), E) ∈ nodes(D). Let N = {flip(originals(U)(D))(w) : w ∈ der(F )}
be the set of nullable variables of the nullable transform which correspond
to the originating derived variables, because the originating map is bijec-
tive, originals(U)(D) ∈ der(DT) ↔ der(G), where there are no variable
symmetries. Then the reduced derived histogram of the nullable variables
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corresponding to F is B = A ∗DT % N , and its alignment is algn(B). This
histogram, B, has an axial reduction as defined in the section ‘Alignment
of axial reductions’, above. Let T ′ ∈ transforms(D′) be the reduced trans-
form in the contingently diagonalised decomposition, D′, that corresponds
to T in the decomposition D. The corresponding skeletal contingent reduc-
tion derived histogram is B′ = A ∗D′T % N ′ where F ′ = ran(dom(E ′)) and
((·, T ′), E ′) ∈ nodes(D′). N ′ ⊆ der(D

′T) is the set of nullable variables of
F ′ corresponding to N . B′ is an axial reduction of B. That is, there exists
a pivot state, N∗ ∈ NCS where N∗ ⊆ nullables(U)(D) and dom(N∗) = N ,
such that the implied set of slices are diagonalised, ∀(C,R) ∈ cont(D) (R ∈
F =⇒ diagonal(A ∗ C ∗ R)). It is conjectured that the alignment of the
histogram B equals (i) the alignment of the axial reduction, B′, plus (ii) the
sum of the alignments of the sliced diagonalised reductions

algn(B) = algn(B′) +
∑

(algn(A ∗ C ∗R) : (C,R) ∈ cont(D), R ∈ F )

The contingent slice diagonalisations, {A∗C∗R : (C,R) ∈ cont(D), R ∈ F},
are axially independent of eachother and axially independent of the axial re-
duction, B′, although, of course, they do not have the same variables. That
is, they are axially independent in the sense defined in the section ‘Alignment
of axial reductions’, above, where the slices partition the underlying variables.

Then conjecture that the same separation of the alignment, algn(B), of the
particular children transforms, F , of a decomposition transform T , into com-
ponents of (i) axial alignment, algn(B′), and (ii) sum diagonal alignments,∑

(algn(A∗C ∗R) : (C,R) ∈ cont(D), R ∈ F ), can be extended to the whole
decomposition, D. That is, the derived alignment, algn(A ∗ DT), may be
separated into components of (i) the skeletal contingent reduction alignment,
algn(A∗D′T), and (ii) sum diagonal alignments,

∑
(algn(A∗C ∗T ) : (C, T ) ∈

cont(D)), including the root transform diagonalised alignment, algn(A ∗ Tr),

algn(A ∗DT) = algn(A ∗D′T) +
∑

(C,T )∈cont(D)

algn(A ∗ C ∗ T )

The contingent slice diagonalisations, {A∗C ∗T : (C, T ) ∈ cont(D)}, are axi-
ally independent of eachother and axially independent of the skeleton, A∗D′T.

Second, if it so happens to be the case that contingently diagonalised decom-
position, D, is also such that contingently the formal histogram is equivalent
to the abstract histogram

∀(C, T ) ∈ cont(D) (AX ∗ C ∗ T ≡ (A ∗ C ∗ T )X)
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then the skeletal contingent reduction must also be such that contingently
the formal histogram is equivalent to the abstract histogram

∀(C, T ′) ∈ cont(D′) (AX ∗ C ∗ T ′ ≡ (A ∗ C ∗ T ′)X)

but, because each of the reduced transforms is mono-derived-variate, ∀T ′ ∈
transforms(D′) (|der(T ′)| = 1) and so

∀(C, T ′) ∈ cont(D′) (A ∗ C ∗ T ′ ≡ (A ∗ C ∗ T ′)X)

the reduced transforms are contingently formal

∀(C, T ′) ∈ cont(D′) (AX ∗ C ∗ T ′ ≡ A ∗ C ∗ T ′)

so the skeletal derived is formal, A∗D′T ≡ AX ∗D′T, and the content skeletal
alignment is zero,

algn(A ∗D′T)− algn(AX ∗D′T) = 0

Also, if contingently the formal histogram is equivalent to the abstract his-
togram, the contingent content alignment of each transform, T , with respect
to the slice, C, equals the contingent derived alignment

algn(A ∗ C ∗ T )− algn(AX ∗ C ∗ T ) = algn(A ∗ C ∗ T )− algn((A ∗ C ∗ T )X)

= algn(A ∗ C ∗ T )

Thus, given (i) contingent diagonalisation and (ii) contingent formal-abstract
equivalence, the content alignment of the nullable transform of the decompo-
sition equals the sum of the contingent derived alignments of the contingently
diagonalised transforms,

algn(A ∗DT)− algn(AX ∗DT)

= algn(A ∗D′T)− algn(AX ∗D′T) +∑
(C,T )∈cont(D)

algn(A ∗ C ∗ T )− algn(AX ∗ C ∗ T )

=
∑

(C,T )∈cont(D)

algn(A ∗ C ∗ T )

Note that a condition that the transforms are separately non-overlapping,
∀T ∈ G (¬overlap(T )), is insufficient to imply contingent formal-abstract
equivalence. A non-overlapping transform implies that (A ∗ C)X ∗ T ≡
((A ∗ C)X ∗ T )X but does not constrain AX ∗ C ∗ T to be independent nor
imply that it is equivalent to (A ∗ C ∗ T )X.
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Define the summation alignment as alignmentSum ∈ A×D → R as

alignmentSum(A,D) :=
∑

(C,T )∈cont(D)

algn(A ∗ C ∗ T )

Given (i) contingent diagonalisation and (ii) contingent formal-abstract equiv-
alence, the content alignment of a well behaved decomposition having no vari-
able symmetries equals the summation alignment

algn(A ∗DT)− algn(AX ∗DT) = alignmentSum(A,D)

In order to calculate the summation alignment, alignmentSum(A,D), only
the contingent alignments of the recursive contingents tree need be computed.
The contingents tree, contingents(D), does not depend on the nullable fud,
nullable(U)(D), so there is no need to compute any of the slice transforms
or their dependents. Thus the possibly impracticable derived volume, |NC|,
of the nullable transform, DT, need not be realised.

Let the set of summation aligned decompositions DΣ(A) ⊂ Dw,U be the sub-
set of well behaved distinct decompositions having no variable symmetries
that are subject to these two constraints with respect to histogram A,

∀A ∈ AU (DΣ(A) =

{D : D ∈ Dw,U , vars(D) ⊆ vars(A),

isfunc({(w, (C, T )) : (C, T ) ∈ cont(D), w ∈ der(T )}),
∀(C, T ) ∈ cont(D) (diagonal(A ∗ C ∗ T )),

∀(C, T ) ∈ cont(D) ((A ∗ C ∗ T )X ≡ AX ∗ C ∗ T )})

Summation aligned decompositions are such that the content alignment equals
the summation alignment,

∀D ∈ DΣ(A) (algn(A ∗DT)− algn(AX ∗DT) = algnSum(A,D))

where algnSum = alignmentSum.

Note that a summation aligned decomposition D ∈ DΣ(A) could consist
of mono-derived-variate transforms, ∀T ∈ G (|der(T )| = 1). In this case, all
of the derived histograms would be diagonalised regardless of the histogram
A, and so the decomposition would already be contingently reduced, D =
D′. The contingent derived alignments, however, would all be zero, and
hence the content alignment would be zero, algn(A ∗DT)− algn(AX ∗DT) =
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alignmentSum(A,D) = 0. That is, the summation aligned decomposition
would be formal with respect to A, A ∗ DT ≡ AX ∗ DT. Therefore, as
well as the (i) contingent diagonalisation and (ii) contingent formal-abstract
equivalence constraints, idealising summation aligned decompositions, defined
below, are also constrained (iii) such that the contingent derived histograms
are not independent,

∀(C, T ) ∈ cont(D) (¬(A ∗ C ∗ T ≡ (A ∗ C ∗ T )X))

That is, the contingent derived histogram is not equivalent to the contin-
gent abstract histogram. This constraint implies that an idealising summa-
tion aligned decomposition must be pluri-derived-variate everywhere, ∀T ∈
G (|der(T )| > 1).

In the case where the independent histogram is integral, AX ∈ Ai, and given
the minimum alignment conjecture, in section ‘Minimum alignment’ above,
this implies that the contingent derived alignment of an idealising summation
aligned decomposition is everywhere greater than zero,

∀(C, T ) ∈ cont(D) (algn(A ∗ C ∗ T ) > 0)

because (AX ∈ Ai) ∧ (AX ∗ C ∗ T ≡ (A ∗ C ∗ T )X) =⇒ (A ∗ C ∗ T )X ∈ Ai.

Furthermore, because the slices are such that contingently the formal his-
togram is equivalent to the abstract histogram, AX ∗C ∗T ≡ (A∗C ∗T )X, the
non-independent constraint, ¬(A ∗ C ∗ T ≡ (A ∗ C ∗ T )X), implies that the
slice of the histogram, A∗C, is not equivalent to the slice of the independent,
AX ∗ C,

¬(A ∗ C ∗ T ≡ AX ∗ C ∗ T ) =⇒ ¬(A ∗ C ≡ AX ∗ C)

These three constraints allow an independent slice, A∗C ≡ (A∗C)X, to have
derived alignment, algn((A ∗ C)X ∗ T ) > 0. That is, where (i) diagonal((A ∗
C)X∗T ), (ii) ((A∗C)X∗T )X ≡ AX∗C∗T and (iii) ¬((A∗C)X∗T ≡ AX∗C∗T ).
Therefore, in order to exclude this case, add a fourth constraint (iv) that the
formal slice is independent

∀(C, T ) ∈ cont(D) ((A ∗ C)X ∗ T ≡ ((A ∗ C)X ∗ T )X)

Thus the derived alignment of an independent slice is zero, algn((A ∗ C)X ∗
T ) = 0. This constraint holds in the case where the transform is non-
overlapping, ¬overlap(T ). If the transform is non-overlapping then the
formal slice must be independent, ¬overlap(T ) =⇒ (A ∗ C)X ∗ T ≡
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((A ∗ C)X ∗ T )X. The non-overlapping constraint is stricter than necessary,
but is such that any formal slice, (A ∗ C)X ∗ T , is independent regardless of
the histogram, A, or slice, A ∗ C.

Let the set of idealising summation aligned decompositions DΣ,k(A) ⊂ DΣ(A)
be the subset of summation aligned decompositions that are subject to these
two additional constraints with respect to histogram A which has integral
independent, AX ∈ Ai,

∀A ∈ AU ∩ Axi (DΣ,k(A) =

{D : D ∈ DΣ(A),

∀(C, T ) ∈ cont(D) (¬(A ∗ C ∗ T ≡ (A ∗ C ∗ T )X)),

∀(C, T ) ∈ cont(D) ((A ∗ C)X ∗ T ≡ ((A ∗ C)X ∗ T )X)})

where Axi = {A : A ∈ A, AX ∈ Ai}.

There are no idealising summation aligned decompositions of an indepen-
dent substrate histogram, DΣ,k(AX) = ∅, because the formal histogram is
independent, AX ∗ T ≡ (AX ∗ V C)X ∗ T ≡ ((AX ∗ V C)X ∗ T )X.

Idealising summation aligned decompositions are such that the content align-
ment is greater than zero,

∀D ∈ DΣ,k(A) (algn(A ∗DT)− algn(AX ∗DT) = algnSum(A,D) > 0)

The length of the contingent diagonals is at least two because of the non-
independent constraint

∀D ∈ DΣ,k(A) ∀(C, T ) ∈ cont(D) (|(A ∗ C ∗ T )F| ≥ 2)

Thus the slice sizes must also be at least two

∀D ∈ DΣ,k(A) ∀(C, T ) ∈ cont(D) (size(A ∗ C) ≥ 2)

The length of the contingent diagonals is no greater than the slice size

∀D ∈ DΣ,k(A) ∀(C, T ) ∈ cont(D) (|(A ∗ C ∗ T )F| ≤ size(A ∗ C))

The length of the contingent diagonals is no greater than the underlying
effective and hence the underlying volume

∀D ∈ DΣ,k(A) ∀(C, T ) ∈ cont(D) (|(A ∗ C ∗ T )F| ≤ |(A ∗ C ∗ T )C| ≤ |AC|)
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The content alignment of the idealising summation aligned decomposition
D ∈ DΣ,k(A) equals the summation of the derived alignments, algn(A∗DT)−
algn(AX ∗DT) =

∑
(algn(A ∗ C ∗ T ) : (C, T ) ∈ cont(D)), so the derived his-

tograms of the slices are axially independent of eachother. Therefore the
derived histogram of a slice, A∗C ∗T , is axially independent from the derived
histograms its ancestor slices. For example, consider ((C1, T1), (C2, T2)) ∈
steps(contingents(D)). The parent transform T1 has non-zero derived align-
ment when constrained to its own slice A∗C1, algn(A∗C1∗T1) > 0, but when
constrained to its child slice, A ∗ C2 ⊆ A ∗ C1, its derived alignment is zero,
algn(A ∗C2 ∗T1) = 0, because the derived histogram is an effective singleton,
|(A ∗ C2 ∗ T1)F| = 1. That is, a slice A ∗ C, where C ∈ dom(cont(D)), may
be said to contain a derived alignment R ∈ transforms(D) if the derived his-
togram is aligned, algn(A∗C∗R) > 0. In this example, the parent slice, A∗C1,
contains the parent derived alignment, T1, because the derived histogram is
a non-singleton diagonal, diagonal(A ∗C1 ∗ T1) and |(A ∗C1 ∗ T1)F| > 1, but
the child slice, A ∗ C2, does not contain the parent derived alignment, T1,
because the derived histogram is singleton, |(A ∗ C2 ∗ T1)F| = 1. Conversely,
the child slice, A ∗ C2, contains the child derived alignment, T2, because
the derived histogram is a non-singleton diagonal, diagonal(A ∗ C2 ∗ T2) and
|(A∗C2∗T2)F| > 1, and the parent slice, A∗C1, also contains the child derived
alignment, algn(A∗C1 ∗T2) > 0, although not necessarily diagonalised. Thus
a slice A ∗ C cannot contain any of the derived alignments of its ancestor
slices, but contains all of the derived alignments of its descendant slices.

∀L ∈ paths(contingents(D)) ∀(i, (Ci, Ti)), (j, (Cj, Tj)) ∈ L
(i < j =⇒ (algn(A ∗ Ci ∗ Tj) > 0) ∧ (algn(A ∗ Cj ∗ Ti) = 0))

A path of an idealising summation aligned decomposition may then be viewed
as the cumulative removal of derived alignments as the index increases, or
the cumulative addition of derived alignments as the index decreases.

Consider a slice A ∗ C that contains the derived alignment T ′ of another
slice A ∗ C ′, not necessarily a descendant slice, in an idealising summa-
tion aligned decomposition D ∈ DΣ,k(A). That is, algn(A ∗ C ∗ T ′) > 0,
where (C, T ), (C ′, T ′) ∈ cont(D). If it is the case that the derived align-
ment is diagonalised, diagonal(A ∗ C ∗ T ′), then T ′ could be a transform
symmetry of both slices, A ∗ C and A ∗ C ′, in another idealising summation
aligned decomposition D′. That is, (C, T ′), (C ′, T ′) ∈ cont(D′). However, it
may be the case that the transform symmetry does not have higher align-
ment, algn(A ∗ C ∗ T ′) < algn(A ∗ C ∗ T ). So it may be the case that
the decomposition with the transform symmetry, D′, has lower alignment,
algnSum(A,D′) < algnSum(A,D).
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Let D ∈ DΣ,k(A) be an idealising summation aligned decomposition with
respect to integral-independent histogram A ∈ Axi. The content alignment of
each of the idealising summation aligned super-decompositions of D is greater
than that of D,

∀E ∈ desctrees(A)(D) (algnSum(A,E) > algnSum(A,D))

where desctrees(A) ∈ DΣ,k(A)→ P(DΣ,k(A)) is defined as desctrees(A)(D) :=
{E : E ∈ DΣ,k(A), D ∈ subtrees(E), E 6= D}. The content alignments of
immediate children idealising summation aligned super-decompositions of D,
{E : E ∈ DΣ,k(A), D ∈ subtrees(E), |nodes(D)| = |nodes(E)| − 1}, are
greater than that of D, but less than the content alignments of their descen-
dants,

∀E ∈ childtrees(A)(D) (algnSum(A,E) > algnSum(A,D))

and

∀E ∈ childtrees(A)(D)

∀F ∈ desctrees(A)(E) (algnSum(A,F ) > algnSum(A,E))

where childtrees(A) ∈ DΣ,k(A)→ P(DΣ,k(A)) is defined as childtrees(A)(D) :=
{E : E ∈ desctrees(A)(D), |nodes(D)| = |nodes(E)| − 1}.

The non-idealisation alignment of a transform T with respect to histogram A
is defined as the difference between the alignment of histogram and the align-
ment of the idealisation, algn(A) − algn(A ∗ T ∗ T †A). The non-idealisation
alignment is conjectured to be always positive in the case of integral indepen-
dent, AX ∈ Ai. The non-idealisation alignment of an idealising summation
aligned decomposition D with respect to A is algn(A)− algn(A ∗DT ∗DT†A).
The non-idealisation alignment of an idealising summation aligned super-
decomposition E of D is algn(A)− algn(A ∗ET ∗ET†A). Conjecture that the
non-idealisation alignment of E is less than the non-idealisation alignment
of D, algn(A)−algn(A∗ET ∗ET†A) < algn(A)−algn(A∗DT ∗DT†A). Hence
the idealisation alignment of E is greater than the idealisation alignment of
D,

∀E ∈ desctrees(A)(D) (algn(A ∗ ET ∗ ET†A) > algn(A ∗DT ∗DT†A))

Conjecture that the idealisation alignments of the immediate children are
greater than that for D, but less than their descendants,

∀E ∈ childtrees(A)(D) (algn(A ∗ ET ∗ ET†A) > algn(A ∗DT ∗DT†A))
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and

∀E ∈ childtrees(A)(D)

∀F ∈ desctrees(A)(E) (algn(A ∗ FT ∗ FT†A) > algn(A ∗ ET ∗ ET†A))

If an idealising summation aligned decomposition D is ideal with respect to A,
ideal(A,DT), for example, if it is effectively sliced, ∀C ∈ DTP (|(A ∗CU)F| ≤
1) =⇒ ideal(A,DT), then there are no idealising summation aligned super-
decompositions of D,

ideal(A,DT) =⇒ desctrees(A)(D) = ∅

Thus, conjecture that the idealising summation aligned super-decompositions
of D are progressively more ideal as nodes are added.

Let X ∈ trees(DΣ,k(A)) be a tree of idealising summation aligned decom-
positions of integral-independent histogram A such that (i) the steps of the
tree are immediate super-decompositions,

∀(D,E) ∈ steps(X) (E ∈ childtrees(A)(D))

and (ii) the leaves of the tree are ideal,

∀D ∈ leaves(X) (ideal(A,DT))

The tree of idealising summation aligned decompositions, X, is said to be
fully searched.

The content alignment increases along the paths of the tree, ∀(D,E) ∈
steps(X) (algnSum(A,E) ≥ algnSum(A,D)). So the leaves of the tree,
leaves(X), have the maximum content alignment of their ancestors, ∀L ∈
paths(X) ∀D ∈ set(L) (algnSum(A,L|L|) ≥ algnSum(A,D)).

Conjecture that the idealisation alignment increases along the paths as the
idealising summation aligned super-decompositions become progressively more
ideal, ∀(D,E) ∈ steps(X) (algn(A∗ET ∗ET†A) ≥ algn(A∗DT ∗DT†A)). The
idealisation alignment of the leaves equals the alignment of the histogram,
∀D ∈ leaves(X) (algn(A ∗DT ∗DT†A) = algn(A)).

The maximally aligned set of idealising summation aligned decompositions,
M = maxd({(D, algnSum(A,D)) : D ∈ elements(X)}), is a subset of the
leaves, M ⊆ leaves(X), and so consists only of ideal decompositions, ∀D ∈
M (ideal(A,DT)).
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In section ‘Likely histograms’, it is conjectured that there exists an inter-
mediate mid substrate transform Tm ∈ TUA,VA which is neither self nor unary,
Tm /∈ {Ts, Tu}, where the formal is independent and the midisation entropy
is minimised,

Tm ∈ mind({(T, entropy(AM(T ))) : T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X})

At the mid transform the formal tends to the abstract, AX ∗Tm ≈ (A∗Tm)X,
and the mid component size cardinality relative entropy is small,

entropyRelative(A ∗ Tm, V
C
A ∗ Tm) ≈ 0

Subsequent minimisation of the idealisation entropy, where the mid idealisa-
tion is integral, A ∗ Tm ∗ T †Am ∈ Ai, tends to increase the mid component size
cardinality relative entropy,

entropyRelative(A ∗ Tm, V
C
A ∗ Tm) ∼ − entropy(A ∗ Tm ∗ T †Am )

In section ‘Transform alignment’, it is conjectured that subsequent maximi-
sation of the idealisation alignment also tends to increase the relative entropy,

entropyRelative(A ∗ Tm, V
C
A ∗ Tm) ∼ algn(A ∗ Tm ∗ T †Am )

The tree of idealising summation aligned decompositions, X ∈ trees(DΣ,k(A)),
is fully searched, so, given any path L ∈ paths(X), the last decomposition is
ideal, A ∗LT

l ∗L
T†A
l = A, where l = |L|. Consider the case where (i) the root

transform is the mid transform, L1 = {((∅, Tm), ∅)}, and (ii) the idealisations
along the path are all integral, ∀i ∈ {1 . . . l} (A ∗ LT

i ∗ L
T†A
i ∈ Ai). In this

case the idealisation alignment increases along the path,

∀i ∈ {2 . . . l} (algn(A ∗ LT
i ∗ L

T†A
i ) > algn(A ∗ LT

i−1 ∗ L
T†A
i−1 ))

and so the relative entropy also increases along the path,

∀i ∈ {2 . . . l}
(entropyRelative(A ∗ LT

i , V
C
A ∗ LT

i ) > entropyRelative(A ∗ LT
i−1, V

C
A ∗ LT

i−1))

The first decomposition, L1, which is a sub-decomposition of all subsequent,
has the least relative entropy, entropyRelative(A ∗ LT

1 , V
C
A ∗ LT

1 ) ≈ 0. The
last decomposition, Ll, which is a super-decomposition of all previous, has
the greatest relative entropy, entropyRelative(A ∗ LT

l , V
C
A ∗ LT

l ) > 0.

That is, an idealising summation aligned decomposition D that (i) is ideal,
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A∗DT∗DT†A = A, and (ii) is rooted in the mid transform, D = {((∅, Tm), ·)},
tends to increase relative entropy as the cardinality of decomposition nodes
increases,

entropyRelative(A ∗DT, V C
A ∗DT) ∼ |nodes(D)|

In the case where each transform is the mid transform for the component,

∀(C, T ) ∈ cont(D) (T ∈ mind({(T ′, entropy((A ∗ C)M(T ′))) :

T ′ ∈ TUA,VA , (A ∗ C)X ∗ T ′ = ((A ∗ C)X ∗ T ′)X}))

then each non-leaf decomposition node ((·, T ), F ) ∈ nodes(D), where F 6= ∅,
forms a child decomposition E = {((∅, T ), F )} in slice A ∗ C which is rooted
in the slice mid transform, T , so that the slice formal approximates to the
slice abstract, (A∗C)X∗T ≈ (A∗C ∗T )X, but the child decomposition relative
entropy, entropyRelative(A ∗ C ∗ ET, V C

A ∗ ET), is not necessarily small.

Conjecture that all idealising summation aligned decompositions can be
fully searched,

∀A ∈ AU ∩ Axi ∀D ∈ DΣ,k(A) ∃X ∈ trees(DΣ,k(A))

(roots(X) = {D} ∧
∀(E,F ) ∈ steps(X) (F ∈ childtrees(A)(E)) ∧
∀E ∈ leaves(X) (ideal(A,ET)))

That is, for any idealising summation aligned decomposition that is not ideal
conjecture that there can always be found an idealising summation aligned
super-decomposition,

∀A ∈ AU ∩ Axi ∀D ∈ DΣ,k(A) (¬ideal(A,DT) =⇒ desctrees(A)(D) 6= ∅)

This requires that any non-independent component of the partition, A∗CU 6=
(A∗CU)X where C ∈ DP, may be diagonalised such that the formal histogram
is equivalent to abstract histogram, the derived histogram is not independent
and the formal histogram is independent, ∃T ∈ TU,f,1 (diagonal(A ∗CU ∗T )∧
(AX∗CU∗T ≡ (A∗CU∗T )X)∧¬(A∗CU∗T ≡ (A∗CU∗T )X)∧((A∗CU)X∗T ≡
((A ∗ CU)X ∗ T )X)).

If it is the case that the derived alignments of a decomposition D ∈ D
always decrease along the paths,

∀((C1, T1), (C2, T2)) ∈ steps(contingents(D))

(algn(A ∗ C1 ∗ T1) > algn(A ∗ C2 ∗ T2))
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the decomposition, D, is said to be slowing. It is sometimes, but not necessar-
ily, the case that an idealising summation aligned decomposition D ∈ DΣ,k(A)
is slowing,

∃A ∈ AU ∩ Axi ∃D ∈ DΣ,k(A)

∀((C1, T1), (C2, T2)) ∈ steps(contingents(D))

(algn(A ∗ C1 ∗ T1) > algn(A ∗ C2 ∗ T2))

There are several reasons why this is so. Firstly, the slice sizes must decrease,

∀((C1, ·), (C2, ·)) ∈ steps(contingents(D)) (size(A ∗ C1) > size(A ∗ C2))

The contingent derived alignments are each limited to the maximum align-
ment,

algn(A ∗ C ∗ T ) ≤ alignmentMaximum(U)(der(T ), size(A ∗ C))

The maximum alignment is limited by the slice size, size(A ∗C). For regular
derived histograms of slice size z = size(A ∗C), dimension n = |der(T )| and
valency {d} = {|Uw| : w ∈ der(T )}, the maximum alignment approximates
to z(n− 1) ln d.

Secondly, it is conjectured above that idealising summation aligned super-
decompositions have higher idealisation alignment than their ancestor ideal-
ising summation aligned decompositions. That is, the super-decompositions
are more ideal. Therefore the slices are progressively more independent along
the paths of a decomposition,

∀((C1, ·), (C2, ·)) ∈ steps(contingents(D)) (algn(A ∗ C1) > algn(A ∗ C2))

If it is the case that the descendant slice is more independent because it is
partially independent, that is ∃Q ∈ B(V ) (A∗C2 ≡ ZA∗C2 ∗

∏
(A/ZA∗C2 % K :

K ∈ Q)) where V = vars(A) and ZX = scalar(size(X)), but the ancestor slice
is not partially independent according to this partition, Q, of the variables,
¬(A ∗C1 ≡ ZA∗C1 ∗

∏
(A/ZA∗C1 % K : K ∈ Q)), then there must exist fewer

transforms of the descendant slice that have non-zero derived alignment.
This is because the transform TQ constructed with self partition transforms
of the components of the variables partition, Q, has zero derived alignment,
A ∗ C2 ∗ TQ ≡ (A ∗ C2 ∗ TQ)X, where TQ = {KCS{}T : K ∈ Q}T.

Thirdly, a slice A ∗ C cannot contain any of the derived alignments of its
ancestor slices, because the derived histogram is an effective singleton,

∀L ∈ paths(contingents(D))

∀(i, (Ci, Ti)), (j, (Cj, Tj)) ∈ L (i < j =⇒ |(A ∗ Cj ∗ Ti)F| = 1))
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Exclusion of the derived alignments of the ancestor slices means that there
must exist fewer transforms of the descendant slice that have non-zero de-
rived alignment.

So, for the reasons that (i) slice sizes must decrease, (ii) slice alignments
must decrease, and (iii) slices cannot contain ancestor derived alignments, it
is sometimes the case that the idealising summation aligned decomposition is
slowing.

It is therefore the case that the additional content alignment of an immedi-
ate child slowing idealising summation aligned super-decomposition E, of a
slowing idealising summation aligned decomposition D, is less than that of
D,

algnSum(A,E)− algnSum(A,D) < algnSum(A,D)

or
algnSum(A,D) < algnSum(A,E) < 2× algnSum(A,D)

So it is sometimes, but not necessarily, the case that the content alignment
decreases in a fully searched slowing idealising summation aligned decom-
position tree X ∈ trees(DΣ,k(A)). That is, sometimes, algnSum(A,F ) −
algnSum(A,E) < algnSum(A,E) − algnSum(A,D), where (D,E), (E,F ) ∈
steps(X).

The set of idealising summation aligned decompositions, DΣ,k(A), excludes
decompositions containing variable symmetries. Consider a well behaved de-
composition D ∈ Dw,U that contains a transform symmetry, |nodes(D)| >
|transforms(D)|, which is a special case of a decomposition containing variable
symmetries. The decomposition, D, unions slices having the same transform
T by means of alternate slice transforms in the nullable fud. For example,
{C1, C2} = inverse(cont(D))(T ) implies a unioned slice, A ∗ (C1 + C2). The
alignment of the unioned slice is greater than or equal to the sum of the
alignments of the slices separately, algn(A ∗ (C1 + C2) ∗ T ) ≥ algn(A ∗ C1 ∗
T ) + algn(A∗C2 ∗T ). Therefore conjecture that decompositions that contain
variable symmetries, but are otherwise subject to the same constraints as the
idealising summation aligned decompositions, have content alignment greater
than or equal to the summation alignment, algn(A ∗DT)− algn(AX ∗DT) ≥
algnSum(A,D).

The independent formal slice constraint, ∀(C, T ) ∈ cont(D) ((A ∗ C)X ∗
T ≡ ((A ∗ C)X ∗ T )X), is not as strict as constraining each transform to
be non-overlapping, ∀T ∈ ran(cont(D)) (¬overlap(T )), and therefore not as
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strict as constraining the entire fud of transforms to be non-overlapping,
¬overlap(G) where G = transforms(D) = ran(cont(D)). In any case non-
overlapping transforms, ¬overlap(G), does not necessarily imply that the
nullable transform, DT, of an idealising summation aligned decomposition
D ∈ DΣ,k(A), is non-overlapping. In fact, it is only in the case where the
decomposition, D, contains only a root transform, |G| = 1 , that it is non-
overlapping

|transforms(D)| = 1 ⇐⇒ ¬overlap(DT)

A well behaved decomposition containing more than one transform is neces-
sarily overlapping because the nullable variables depend on the underlying
variables of their ancestor slice variables.

Similarly, the contingent formal-abstract equivalence constraint,

∀(C, T ) ∈ cont(D) (AX ∗ C ∗ T ≡ (A ∗ C ∗ T )X)

does not necessarily imply that the formal histogram equals the abstract his-
togram for the nullable transform, DT, of a summation aligned decomposition
D ∈ DΣ(A). In the case where the decomposition, D, contains only a root
transform, |G| = 1, the formal histogram is necessarily equivalent to the
abstract histogram

|transforms(D)| = 1 =⇒ AX ∗DT ≡ (A ∗DT)X

4.18 Derived alignment and conditional probability

Consider the complete integral congruent support sample histogram A ∈
AU,i,V,z drawn with replacement from distribution histogram E ∈ AU,V,zE ,
where the distribution histogram E is as effective as the independent sample,
EF ≥ AXF. Given some one functional transform T ∈ TU,f,1, where und(T ) =
V , the set of integral iso-transform-independents is

Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ⊆ AU,i,V,z

where the integral iso-transform-independent function, YU,i,T,z ∈ AU,i,V,z →
(AU,W,z ×AU,W,z), is defined

YU,i,T,z = {(B, ((BX ∗ T ), (B ∗ T )X)) : B ∈ AU,i,V,z}

whereW = der(T ). For convenience, let the integral iso-transform-independents
be abbreviated

AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

= {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}
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The generalised multinomial probability of the sample histogram, Q̂m,U(E, z)(A),
may be decomposed into (i) the iso-transform-independents multinomial prob-
ability and (ii) iso-transform-independent conditional dependent multinomial
probability

Q̂m,U(E, z)(A) =
∑

B∈AU,i,y,T,z(A)

Q̂m,U(E, z)(B)× Q̂m,U(E, z)(A)∑
B∈AU,i,y,T,z(A) Q̂m,U(E, z)(B)

Compare to the iso-independent conditional dependent case, where the
generalised multinomial probability of the sample histogram, Q̂m,U(E, z)(A),
is decomposed into (i) the iso-independents multinomial probability and (ii)
the iso-independent conditional dependent multinomial probability

Q̂m,U(E, z)(A) =
∑

B∈Y −1
U,i,V,z(AX)

Q̂m,U(E, z)(B)× Q̂m,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(E, z)(B)

where integral iso-independents is

Y −1
U,i,V,z(A

X) = {B : B ∈ AU,i,V,z, BX = AX} ⊆ AU,i,V,z

Compare to the relative dependent case, where the generalised multinomial
probability is decomposed into (i) the independent multinomial probability
and (ii) relative dependent multinomial probability

Q̂m,U(E, z)(A) = Q̂m,U(E, z)(AX)× Q̂m,U(E, z)(A)

Q̂m,U(E, z)(AX)

Unlike in the relative dependent case, where the independent histogram must
be integral, AX ∈ Ai, in the iso-transform-independent conditional depen-
dent case there is no need for the independent histogram to be integral be-
cause the integral iso-transform-independents is non-empty, AU,i,y,T,z(A) =
Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) 6= ∅.

Defined in terms of the generalised multinomial probability, the generalised
iso-transform-independent conditional multinomial probability distribution is

Q̂m,y,T,U(E, z) =

normalise({(A, Q̂m,U(E, z)(A)∑
B∈AU,i,y,T,z(A) Q̂m,U(E, z)(B)

) : A ∈ AU,i,V,z})
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So

Q̂m,y,T,U(E, z)(A) =
1

|ran(YU,i,T,z)|
Q̂m,U(E, z)(A)∑

B∈AU,i,y,T,z(A) Q̂m,U(E, z)(B)

and the generalised multinomial probability may be decomposed

Q̂m,U(E, z)(A) =
∑

B∈AU,i,y,T,z(A)

Q̂m,U(E, z)(B)× |ran(YU,i,T,z)|Q̂m,y,T,U(E, z)(A)

The cardinality of the components of the partition of AU,i,T,z is the normali-
sation factor,

|ran(YU,i,T,z)| ≤
∏
w∈V

(z + |Uw| − 1)!

z! (|Uw| − 1)!
×
∏
w∈W

(z + |Uw| − 1)!

z! (|Uw| − 1)!

where W = der(T ). The cardinality of the set of integral iso-transform-
independent sets is also such that

|ran(YU,i,T,z)| ≤ |dom(YU,i,T,z)| = |AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!

The relative dependent multinomial probability equals the iso-transform-
independent conditional dependent multinomial probability if the iso-transform-
independents set is a singleton containing the independent. In this case,
however, the sample must be independent,

Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) = {AX} =⇒ A = AX

and therefore the probability is 1,

Q̂m,U(E, z)(AX)∑
B∈{AX} Q̂m,U(E, z)(B)

=
Q̂m,U(E, z)(AX)

Q̂m,U(E, z)(AX)
= 1

In this case, the generalised iso-transform-independent conditional multino-
mial probability does not depend on AX

Q̂m,y,T,U(E, z)(AX) =
1

|ran(YU,i,T,z)|
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The iso-transform-independent conditional dependent multinomial proba-
bility is greater than 0 and less than or equal to 1

0 <
Q̂m,U(E, z)(A)∑

B∈AU,i,y,T,z(A) Q̂m,U(E, z)(B)
≤ 1

because

0 < Q̂m,U(E, z)(A) ≤
∑

B∈AU,i,y,T,z(A)

Q̂m,U(E, z)(B) ≤ 1

The iso-transform-independent conditional dependent multinomial probability
is a probability proper because the conditional probability is always between
zero and one, yielding a probability function,

{(C, Q̂m,U(E, z)(C)∑
B∈AU,i,y,T,z(A) Q̂m,U(E, z)(B)

) : C ∈ AU,i,y,T,z(A)} ∈ P

The iso-transform-independent conditional dependent multinomial proba-
bility may be generalised to a probability density. Instead of drawing an inte-
gral sample histogram from the finite integral congruent support, AU,i,V,z, the
sample histogram is drawn from the infinite complete congruent histograms,
A ∈ AU,V,z. The iso-transform-independent conditional dependent multino-
mial probability density given the infinite iso-transform-independents is

mpdf(U)(E, z)(A)∫
B∈AU,y,T,z(A)

mpdf(U)(E, z)(B) dB

which is defined if the distribution histogram E is as effective as the indepen-
dent sample, EF ≥ AXF.

The iso-transform-independent conditional dependent multinomial probability
density is greater than 0 and less than or equal to 1

0 <
mpdf(U)(E, z)(A)∫

B∈AU,y,T,z(A)
mpdf(U)(E, z)(B) dB

≤ 1

because

0 < mpdf(U)(E, z)(A) ≤
∫
B∈AU,y,T,z(A)

mpdf(U)(E, z)(B) dB ≤ 1
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The iso-transform-independent conditional dependent multinomial probability
tends to the iso-transform-independent conditional dependent multinomial
probability density as the size increases

lim
k→∞

Q̂m,U(E, kz)(Zk ∗ A)∑
B∈AU,i,y,T,kz(Zk∗A) Q̂m,U(E, kz)(B)

=
mpdf(U)(E, z)(A)∫

B∈AU,y,T,z(A)
mpdf(U)(E, z)(B) dB

where Zk = scalar(k). This is because the finite integral iso-transform-
independents becomes a larger subset of the iso-transform-independents as
the size increases,

Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ⊂ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))

If the transform is a self partition transform, for example Ts = V CS{}T ∈
TU,f,1, or it is value full functional, for example Ts = {{w}CS{}T : w ∈ V }T ∈
TU,f,1, then the set of integral iso-transform-independents equals the set of
integral iso-independents, AU,i,y,Ts,z(A) = Y −1

U,i,V,z(A
X). In this case the iso-

transform-independent conditional dependent multinomial probability equals
the iso-independent conditional dependent multinomial probability

Q̂m,U(E, z)(A)∑
B∈AU,i,y,Ts,z(A) Q̂m,U(E, z)(B)

=
Q̂m,U(E, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(E, z)(B)

If the transform is a unary partition, for example Tu = {V CS}T ∈ TU,f,1, then
the set of integral iso-transform-independents equals the integral congruent
support, AU,i,y,Tu,z(A) = AU,i,V,z. In this case the iso-transform-independent
conditional dependent multinomial probability equals the generalised multi-
nomial probability

Q̂m,U(E, z)(A)∑
B∈AU,i,y,Tu,z(A) Q̂m,U(E, z)(B)

= Q̂m,U(E, z)(A)

Thus the iso-transform-independent conditional dependent multinomial prob-
ability for the self partition transform case, Ts, is greater than or equal to
that for the unary partition transform case, Tu,

Q̂m,U(E, z)(A)∑
B∈AU,i,y,Ts,z(A) Q̂m,U(E, z)(B)

≥ Q̂m,U(E, z)(A)∑
B∈AU,i,y,Tu,z(A) Q̂m,U(E, z)(B)

That is, the conditional probability of the sample given a self partition trans-
form, Ts, is greater than or equal to the conditional probability of the sam-
ple given a unary partition transform, Tu, regardless of the distribution his-
togram, E. The larger the intersection between the integral iso-transform-
independents of the two transforms, Ts, Tu, which is the intersection between
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the integral iso-independents and the integral congruent support,AU,i,y,Ts,z(A)∩
AU,i,y,Tu,z(A) = Y −1

U,i,V,z(A
X)∩AU,i,V,z = Y −1

U,i,V,z(A
X), the smaller the difference

in conditional probabilities. So the less independent the sample, A 6= AX,
the greater the difference in iso-transform-independent conditional depen-
dent multinomial probability between these extreme cases.

In the case where (i) the sample is completely effective, AF = AC, (ii) the
distribution histogram equals the sample, E = A, and (iii) the indepen-
dent is integral, AX ∈ Ai, which implies that the idealisations are integral,
A ∗ Ts ∗ T †As = A ∈ Ai and A ∗ Tu ∗ T †Au = AX ∈ Ai, then the same inequality
holds

Q̂m,U(A, z)(A ∗ Ts ∗ T †As )∑
B∈AU,i,y,Ts,z(A) Q̂m,U(A, z)(B)

≥ Q̂m,U(A, z)(A ∗ Tu ∗ T †Au )∑
B∈AU,i,y,Tu,z(A) Q̂m,U(A, z)(B)

because Q̂m,U(A, z)(A) ≥ Q̂m,U(A, z)(AX). Note, however, that in the case
where the distribution histogram equals the independent sample, E = AX,
the inequality between the idealisations does not necessarily hold, because
Q̂m,U(AX, z)(A) ≤ Q̂m,U(AX, z)(AX), given the integral mean multinomial
probability distribution conjecture. That is, in some cases

Q̂m,U(AX, z)(A ∗ Ts ∗ T †As )∑
B∈AU,i,y,Ts,z(A) Q̂m,U(AX, z)(B)

<
Q̂m,U(AX, z)(A ∗ Tu ∗ T †Au )∑
B∈AU,i,y,Tu,z(A) Q̂m,U(AX, z)(B)

In the section ‘Alignment and conditional probability’, above, the nega-
tive logarithm independently-distributed iso-independent conditional depen-
dent multinomial probability, where the distribution histogram is (i) inde-
pendent, E = EX, and (ii) sufficiently effective, EXF ≥ AXF, was shown to
be − ln

Q̂m,U(EX, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(EX, z)(B)
: EXF ≥ AXF


=

∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

because

∀B ∈ Y −1
U,i,V,z(A

X)(∑
S∈BS

BS lnEX
S =

∑
S∈BXS

BX
S lnEX

S =
∑
S∈AXS

AX
S lnEX

S =
∑
S∈AS

AS lnEX
S

)
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However, the same reasoning cannot be applied to the negative logarithm
independently-distributed iso transform independent conditional dependent
multinomial probability even given independent distribution histogram. This
is because it is not necessarily the case that there is the common factor,∏

S∈AXS

(EX
S )A

X
S

in the numerator and denominator of the independently-distributed iso trans-
form independent conditional dependent multinomial probability,

Q̂m,U(EX, z)(A)∑
B∈AU,i,y,T,z(A) Q̂m,U(EX, z)(B)

That is, in some cases ∃B ∈ AU,i,y,T,z(A) (BX 6= AX).

However, consider the case where (i) the distribution histogram is the indepen-
dent sample histogram, E = AX, (ii) the independent is integral, AX ∈ Ai, and
(iii) formal independent histogram equals the abstract histogram which im-
plies that the independent is in the iso-transform-independents, (AX ∗T )X =
(A ∗ T )X =⇒ AX ∈ Y −1

U,T,z(((A
X ∗ T ), (A ∗ T )X)). So the independent is in

the integral iso-transform-independents

(AX ∈ Ai)∧ ((AX ∗ T )X = (A ∗ T )X) =⇒ AX ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

Note that the third constraint is weaker than the case where the formal
histogram equals the abstract histogram, AX ∗ T = (A ∗ T )X. The mean his-
togram of the generalised multinomial probability distribution is the indepen-
dent, mean(Q̂m,U(AX, z)) = AX. The integral mean multinomial probability
distribution conjecture, defined above in ‘Multinomial distributions’, states
that if the mean of the multinomial probability distribution is integral then
it is also modal

mean(Q̂m,U(E, z)) ∈ Ai =⇒ mean(Q̂m,U(E, z)) ∈ modes(Q̂m,U(E, z))

If this conjecture is true then

∀B ∈ AU,i,y,T,z(A) (Q̂m,U(AX, z)(B) ≤ Q̂m,U(AX, z)(AX))

Hence the negative logarithm independent-sample-distributed iso-transform-
independent conditional dependent multinomial probability is(

− ln
Q̂m,U(AX, z)(A)∑

B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)
: AX ∈ Ai, (AX ∗ T )X = (A ∗ T )X

)

= − ln
Q̂m,U(AX, z)(A)

Q̂m,U(AX, z)(AX)
+ ln

∑
B∈AU,i,y,T,z(A)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)
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The independent is an iso-transform-independent, AX ∈ AU,i,y,T,z(A), and
hence the summation is such that

1 ≤
∑

B∈AU,i,y,T,z(A)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)
≤ |AU,i,y,T,z(A)|

Thus the negative logarithm independent-sample-distributed iso-transform-
independent conditional dependent multinomial probability, where the inde-
pendent is an iso-transform-independent, is bounded by the alignment

algn(A)

≤

(
− ln

Q̂m,U(AX, z)(A)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

: AX ∈ Ai, (AX ∗ T )X = (A ∗ T )X

)
≤ algn(A) + ln |AU,i,y,T,z(A)|

The negative logarithm independently-distributed relative dependent multino-
mial probability of the sample, where the independent is integral, AX ∈ Ai,
which is the alignment,(

− ln
Q̂m,U(EX, z)(A)

Q̂m,U(EX, z)(AX)
: AX ∈ Ai

)
=

∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S !

= algn(A)

does not depend on the distribution histogram. Nor does the negative loga-
rithm independently-distributed iso-independent conditional dependent multi-
nomial probability, where the independent is integral, AX ∈ Ai, which is the
alignment-bounded iso-independent space,− ln

Q̂m,U(EX, z)(A)∑
B∈Y −1

U,i,V,z(AX) Q̂m,U(EX, z)(B)
: EXF ≥ AXF, AX ∈ Ai


=

∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

= algn(A) + ln
∑

B∈Y −1
U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

515



Contrast the negative logarithm independent-sample-distributed iso-transform-
independent conditional dependent multinomial probability, where the inde-
pendent is an integral iso-transform-independent, AX ∈ AU,i,y,T,z(A),(

− ln
Q̂m,U(AX, z)(A)∑

B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)
: AX ∈ Ai, (AX ∗ T )X = (A ∗ T )X

)

= algn(A) + ln
∑

B∈AU,i,y,T,z(A)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)

which does depend on the distribution histogram, AX.

Let integral congruent delta (D, I) ∈ Ai × Ai be such that its perturba-
tion, A −D + I, is (i) iso-transform-independence conserving, A −D + I ∈
AU,i,y,T,z(A), and (ii) iso-independence conserving, A−D + I ∈ Y −1

U,i,V,z(A
X),

so that (A − D + I)X = AX. That is, delta, (D, I), is iso-independent
and iso-abstract, A − D + I ∈ Y −1

U,i,V,z(A
X) ∩ Y −1

U,T,W,z((A ∗ T )X). Let (iii)

the formal independent equal the abstract, (AX ∗ T )X = (A ∗ T )X, so that
the integral independent, AX ∈ Ai, is an integral iso-transform-independent,
AX ∈ AU,i,y,T,z(A). The change in negative logarithm independent-sample-
distributed iso-transform-independent conditional dependent multinomial prob-
ability, given the integral mean multinomial probability distribution conjec-
ture, because of the application of the delta, (D, I), is the difference in align-
ments,(

− ln
Q̂m,U(AX, z)(A−D + I)

Q̂m,U(AX, z)((A−D + I)X)
+

ln
∑

B∈AU,i,y,T,z(A−D+I)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)((A−D + I)X)

)
−

− ln
Q̂m,U(AX, z)(A)

Q̂m,U(AX, z)(AX)
+ ln

∑
B∈AU,i,y,T,z(A)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)


=

− ln
Q̂m,U(AX, z)(A−D + I)

Q̂m,U(AX, z)(AX)
+ ln

∑
B∈AU,i,y,T,z(A−D+I)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)

−
− ln

Q̂m,U(AX, z)(A)

Q̂m,U(AX, z)(AX)
+ ln

∑
B∈AU,i,y,T,z(A)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)


= algn(A−D + I)− algn(A)
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So the change in conditional probability, because of the application of the
delta, (D, I), does not depend on the transform, T , under these constraints.

The integral idealisation of a histogram given an effective transform, A ∗
T ∗ T †A, is in both the integral iso-transform-independents, A ∗ T ∗ T †A ∈
AU,i,y,T,z(A), and the integral iso-independents, A∗T ∗T †A ∈ Y −1

U,i,V,z(A
X). The

integral idealisation has a corresponding iso-transform-independence and iso-
independence conserving delta, A∗T∗T †A = A−D+I. The change in negative
logarithm independent-sample-distributed iso-transform-independent condi-
tional dependent multinomial probability, given the integral mean multinomial
probability distribution conjecture, where the independent is an iso-transform-
independent, AX ∈ AU,i,y,T,z(A), because of the integral idealisation of the
sample histogram is the difference in alignments,− ln

Q̂m,U(AX, z)(A ∗ T ∗ T †A)

Q̂m,U(AX, z)(AX)
+ ln

∑
B∈AU,i,y,T,z(A∗T∗T †A)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)

−
− ln

Q̂m,U(AX, z)(A)

Q̂m,U(AX, z)(AX)
+ ln

∑
B∈AU,i,y,T,z(A)

Q̂m,U(AX, z)(B)

Q̂m,U(AX, z)(AX)


= algn(A ∗ T ∗ T †A)− algn(A)

Consider the case where distribution histogram is not necessarily equal
to the independent sample histogram. If (i) the distribution histogram is
independent, E = EX, and (ii) sufficiently effective, EXF ≥ AXF, (iii) the
independent is integral, AX ∈ Ai, and (iv) the iso-transform-independents
equals the iso-independents, Y −1

U,i,T,z(((A
X ∗T ), (A∗T )X)) = Y −1

U,i,V,z(A
X), then

the negative logarithm independently-distributed iso-transform-independent
conditional dependent multinomial probability equals the negative logarithm
independently-distributed iso-independent conditional dependent multinomial
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probability, which is the alignment-bounded iso-independent space(
− ln

Q̂m,U(EX, z)(A)∑
B∈AU,i,y,T,z(A) Q̂m,U(EX, z)(B)

:

EXF ≥ AXF, AX ∈ Ai, AU,i,y,T,z(A) = Y −1
U,i,V,z(A

X)

)

=

− ln
Q̂m,U(EX, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(EX, z)(B)

: EXF ≥ AXF, AX ∈ Ai


=

∑
S∈AS

lnAS! + ln
∑

B∈Y −1
U,i,V,z(AX)

1∏
S∈BS BS!

= algn(A) + ln
∑

B∈Y −1
U,i,V,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

This is the case, for example, if the transform is value full functional, T =
{{w}CS{}T : w ∈ V }T.

In this case, where the iso-transform-independents equals the iso-independents,
the negative logarithm independently-distributed iso-transform-independent
conditional dependent multinomial probability is bounded by the alignment

algn(A)

≤

(
− ln

Q̂m,U(EX, z)(A)∑
B∈AU,i,y,T,z(A) Q̂m,U(EX, z)(B)

:

EXF ≥ AXF, AX ∈ Ai, AU,i,y,T,z(A) = Y −1
U,i,V,z(A

X)

)
≤ algn(A) + ln |Y −1

U,i,V,z(A
X)|

Now consider the lifted case. For convenience, let the lifted integral iso-
transform-independents be abbreviated

A′U,i,y,T,z(A) = {B ∗ T : B ∈ AU,i,y,T,z(A)}
= {B ∗ T : B ∈ Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X))}

= {B ∗ T : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}
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The lifted iso-transform-independent quasi-conditional dependent multino-
mial probability is

Q̂m,U(E ∗ T, z)(A ∗ T )∑
B′∈A′U,i,y,T,z(A) Q̂m,U(E ∗ T, z)(B′)

As noted above in section ‘Iso-sets’, it is only in the subset where the formal
histogram equals the abstract histogram, AX ∗ T = (A ∗ T )X, that the lifted
iso-transform-independent relation is functional

{(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,i,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,i,W,z → (AU,W,z ×AU,W,z)

and hence the lifted integral iso-transform-independent sets do not partition
the integral congruent support in the derived variables, AU,i,W,z, except where
the formal histogram equals the abstract histogram

ran({(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) :

(A, ((AX ∗ T ), (A ∗ T )X)) ∈ YU,i,T,z, AX ∗ T = (A ∗ T )X}−1)

∈ B({B ∗ T : B ∈ AU,i,V,z, BX ∗ T = (B ∗ T )X})

For this reason the lifted iso-transform-independent quasi-conditional depen-
dent multinomial probability is only quasi-conditional. That is, conditional
for the subset of the derived integral congruent support where the formal
histogram equals the abstract histogram.

If the transform is a self partition transform, for example Ts = V CS{}T ∈
TU,f,1, or it is value full functional, for example Ts = {{w}CS{}T : w ∈ V }T ∈
TU,f,1, then the set of lifted integral iso-transform-independents equals the set
of lifted integral iso-independents, A′U,i,y,Ts,z(A) = {B ∗Ts : B ∈ Y −1

U,i,V,z(A
X)}.

The lifted iso-transform-independent quasi-conditional dependent multino-
mial probability equals the iso-transform-independent conditional dependent
multinomial probability, which in turn equals the iso-independent conditional
dependent multinomial probability

Q̂m,U(E ∗ Ts, z)(A ∗ Ts)∑
B′∈A′U,i,y,Ts,z(A) Q̂m,U(E ∗ Ts, z)(B′)

=
Q̂m,U(E, z)(A)∑

B∈AU,i,y,Ts,z(A) Q̂m,U(E, z)(B)

=
Q̂m,U(E, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(E, z)(B)
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If the transform is a unary partition, for example Tu = {V CS}T ∈ TU,f,1,
then the set of lifted integral iso-transform-independents equals the singleton
lifted integral congruent support, A′U,i,y,Tu,z(A) = {B ∗ Tu : B ∈ AU,i,V,z} =
{A ∗ Tu}. The lifted generalised multinomial probability is equal to one,
Q̂m,U(E ∗ Tu, z)(A ∗ Tu) = 1. So the lifted iso-transform-independent quasi-
conditional dependent multinomial probability equals 1,

Q̂m,U(E ∗ Tu, z)(A ∗ Tu)∑
B′∈A′U,i,y,Tu,z(A) Q̂m,U(E ∗ Tu, z)(B′)

= 1

In the case of unary partition transform, the lifted iso-transform-independent
quasi-conditional dependent multinomial probability is not necessarily equal
to the corresponding iso-transform-independent conditional dependent multi-
nomial probability. The iso-transform-independent conditional dependent multi-
nomial probability equals the generalised multinomial probability, Q̂m,U(E, z)(A),
which may be less than one,

Q̂m,U(E, z)(A)∑
B∈AU,i,y,Tu,z(A) Q̂m,U(E, z)(B)

= Q̂m,U(E, z)(A) ≤ 1

Whereas the iso-transform-independent conditional dependent multinomial
probability for the self partition transform case is greater than or equal to
that for the unary partition transform case,

Q̂m,U(E, z)(A)∑
B∈AU,i,y,Ts,z(A) Q̂m,U(E, z)(B)

≥ Q̂m,U(E, z)(A)∑
B∈AU,i,y,Tu,z(A) Q̂m,U(E, z)(B)

the lifted iso-transform-independent quasi-conditional dependent multinomial
probability for the self partition transform case is less than or equal to that
for the unary partition transform case

Q̂m,U(E ∗ Ts, z)(A ∗ Ts)∑
B′∈A′U,i,y,Ts,z(A) Q̂m,U(E ∗ Ts, z)(B′)

≤ Q̂m,U(E ∗ Tu, z)(A ∗ Tu)∑
B′∈A′U,i,y,Tu,z(A) Q̂m,U(E ∗ Tu, z)(B′)

That is, the lifted quasi-conditional probability of the sample given a self
partition transform, Ts, is less than or equal to the lifted quasi-conditional
probability of the sample given a unary partition transform, Tu, regardless of
the distribution histogram, E.

If the distribution histogram equals the independent sample, E = AX, how-
ever, it is sometimes the case that the direction of the non-lifted condi-
tional probability inequality is the same as the lifted case for the corre-
sponding idealisations, A ∗ Ts ∗ T †As = A and A ∗ Tu ∗ T †Au = AX, because
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Q̂m,U(AX, z)(A) ≤ Q̂m,U(AX, z)(AX), given the integral mean multinomial
probability distribution conjecture. So it is sometimes the case that

Q̂m,U(AX, z)(A ∗ Ts ∗ T †As )∑
B∈AU,i,y,Ts,z(A) Q̂m,U(AX, z)(B)

<
Q̂m,U(AX, z)(A ∗ Tu ∗ T †Au )∑
B∈AU,i,y,Tu,z(A) Q̂m,U(AX, z)(B)

In the case where (i) the independent is integral, AX ∈ Ai, and (ii) the
formal histogram equals the abstract histogram, AX ∗ T = (A ∗ T )X, then the
independent is an integral iso-transform-independent, (AX ∗ T )X = (A ∗ T )X,

((AX∗T )X = AX∗T )∧(AX∗T = (A∗T )X) =⇒ AX ∈ Y −1
U,i,T,z(((A

X∗T ), (A∗T )X))

and the lifted integral iso-transform-independents contains the abstract his-
togram

(A ∗ T )X = AX ∗ T ∈ {B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}

That is, (A ∗ T )X ∈ A′U,i,y,T,z(A).

The lifted integral iso-abstracts is a superset of the lifted integral iso-transform-
independents

A′U,i,y,T,z(A) ⊆ {B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}

So the lifted integral iso-transform-independents is a subset of the derived
integral iso-independents

A′U,i,y,T,z(A) ⊆ Y −1
U,i,W,z((A ∗ T )X)

Thus the independent derived, (A∗T )X, is the independent for all of the lifted
integral iso-transform-independents, ∀B′ ∈ A′U,i,y,T,z(A) (B′X = (A ∗ T )X).

The abstract histogram, (A ∗ T )X, is integral because the independent is in-
tegral, AX ∈ Ai, and the formal histogram equals the abstract histogram,
AX ∗ T = (A ∗ T )X,

(AX ∈ Ai) ∧ (AX ∗ T = (A ∗ T )X) =⇒ (A ∗ T )X ∈ Ai

If, additionally, (iii) the distribution histogram is independent, E = EX, and
(iv) formal distribution histogram is independent, EX ∗ T = (EX ∗ T )X, the
independent distribution histogram, EX, is lifted to an independent derived
distribution histogram, EX ∗ T = (E ∗ T )X. That is, the formal distribution
histogram equals the abstract distribution histogram.

521



Lastly, if (v) the distribution histogram is sufficiently effective, EXF ≥ AXF,
then the negative logarithm lifted independently-distributed iso-transform-
independent quasi-conditional dependent multinomial probability can be re-
arranged in terms of derived multinomial coefficients and thence in terms of
the derived alignment,(

− ln
Q̂m,U(EX ∗ T, z)(A ∗ T )∑

B′∈A′U,i,y,T,z(A) Q̂m,U(EX ∗ T, z)(B′)
:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
=

∑
R∈(A∗T )S

ln(A ∗ T )R! + ln
∑

B′∈A′U,i,y,T,z(A)

1∏
R∈B′S B

′
R!

= algn(A ∗ T ) + ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

Now because ∀B′ ∈ A′U,i,y,T,z(A) (B′X = (A ∗ T )X) and given the minimum
alignment conjecture,

∀B′ ∈ A′U,i,y,T,z(A)

(∏
S∈(A∗T )XS(A ∗ T )X

S !∏
S∈B′S B

′
S!

≤ 1

)

and because (A ∗ T )X ∈ A′U,i,y,T,z(A),

1 ≤
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

≤ |A′U,i,y,T,z(A)|

then

algn(A ∗ T )

≤
∑

R∈(A∗T )S

ln(A ∗ T )R! + ln
∑

B′∈A′U,i,y,T,z(A)

1∏
R∈B′S B

′
R!

≤ algn(A ∗ T ) + ln |A′U,i,y,T,z(A)|

In other words in this case, where (i) AX ∈ Ai, (ii) AX ∗ T = (A ∗ T )X, (iii)
E = EX, (iv) EX∗T = (EX∗T )X, and (v) EXF ≥ AXF, the negative logarithm
lifted independently-distributed iso-transform-independent quasi-conditional
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dependent multinomial probability is such that

algn(A ∗ T )

≤

(
− ln

Q̂m,U(EX ∗ T, z)(A ∗ T )∑
B′∈A′U,i,y,T,z(A) Q̂m,U(EX ∗ T, z)(B′)

:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
≤ algn(A ∗ T ) + ln |A′U,i,y,T,z(A)|

That is, given these conditions, the derived alignment, algn(A ∗ T ), is a
bounded underestimate of the negative logarithm lifted independently-distributed
iso-transform-independent quasi-conditional dependent multinomial probabil-
ity.

The cardinality of the lifted integral iso-transform-independents must be less
than or equal to the cardinality of the derived integral congruent support,

|A′U,i,y,T,z(A)| ≤ |AU,i,W,z| =
(z + w − 1)!

z! (w − 1)!

where w = |WC|. Thus ln |A′U,i,y,T,z(A)| < w ln z if z > w. So∑
R∈(A∗T )S

ln(A ∗ T )R! + ln
∑

B′∈A′U,i,y,T,z(A)

1∏
R∈B′S B

′
R!
< algn(A ∗ T ) + w ln z

Compare this to derived maximum alignment, alignmentMaximum(U)(W, z),
which for large size, z � w, approximates to z(n − 1) ln d for a regular his-
togram of dimension n = |W | and valency {d} = {|Uu| : u ∈ V }. There-
fore, in some cases the difference between the derived alignment and the
negative logarithm lifted independently-distributed iso-transform-independent
quasi-conditional dependent multinomial probability is less than the derived
alignment, ln |A′U,i,y,T,z(A)| < w ln z < alignment(A ∗ T ). That is, in some
cases

algn(A ∗ T )

≤
∑

R∈(A∗T )S

ln(A ∗ T )R! + ln
∑

B′∈A′U,i,y,T,z(A)

1∏
R∈B′S B

′
R!

≤ 2× algn(A ∗ T )
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In the case of the conditions given above, the negative logarithm lifted
independently-distributed iso-transform-independent quasi-conditional depen-
dent multinomial probability,(

− ln
Q̂m,U(EX ∗ T, z)(A ∗ T )∑

B′∈A′U,i,y,T,z(A) Q̂m,U(EX ∗ T, z)(B′)
:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)

=

algn(A ∗ T ) + ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

 ∈ ln Q>0

may be abbreviated to the alignment-bounded lifted iso-transform space.

The corresponding negative logarithm independently-distributed iso-transform-
independent conditional dependent multinomial probability,(

− ln
Q̂m,U(EX, z)(A)∑

B∈AU,i,y,T,z(A) Q̂m,U(EX, z)(B)
:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
∈ ln Q>0

may be abbreviated to the alignment-bounded iso-transform space. Strictly
speaking, it is only the lifted space that is bounded by the alignment. How-
ever, the formal histogram equals the abstract histogram, AX ∗T = (A ∗T )X,
and so the lifted iso-transform-independent relation is functional,

{(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,i,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,i,W,z → (AU,W,z ×AU,W,z)

which implies that each derived histogram maps to exactly one set of iso-
transform-independents,

{(A ∗ T, Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)))) : A ∈ AU,i,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,i,W,z → P(AU,i,V,z)

Thus the alignment-bounded lifted iso-transform space is correlated with the
alignment-bounded iso-transform space.
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The difference between the alignment-bounded lifted iso-transform space and
the derived alignment is the alignment-bounded lifted iso-transform error

ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

The negative logarithm independently-derived-distributed relative depen-
dent derived multinomial probability of the sample, where the abstract his-
togram is integral, (A ∗ T )X ∈ Ai, which is the derived alignment,(

− ln
Q̂m,U((E ∗ T )X, z)(A ∗ T )

Q̂m,U((E ∗ T )X, z)((A ∗ T )X)
: (A ∗ T )X ∈ Ai

)
=

∑
R∈(A∗T )S

ln(A ∗ T )R!−
∑

R∈(A∗T )XS

ln(A ∗ T )X
R!

= algn(A ∗ T )

does not depend on the derived distribution histogram. Nor does the nega-
tive logarithm independently-derived-distributed iso-independent conditional
dependent derived multinomial probability, where the abstract histogram is in-
tegral, (A∗T )X ∈ Ai, which is the derived-alignment-bounded iso-independent
space, (

− ln
Q̂m,U((E ∗ T )X, z)(A ∗ T )∑

B′∈Y −1
U,i,W,z((A∗T )X) Q̂m,U((E ∗ T )X, z)(B′)

:

(E ∗ T )XF ≥ (A ∗ T )XF, (A ∗ T )X ∈ Ai

)
=

∑
R∈(A∗T )S

ln(A ∗ T )R! + ln
∑

B′∈Y −1
U,i,W,z((A∗T )X)

1∏
R∈B′S B

′
R!

= algn(A ∗ T ) + ln
∑

B′∈Y −1
U,i,W,z((A∗T )X)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

In the case of the conditions above, the negative logarithm lifted independently-
distributed iso-transform-independent quasi-conditional dependent multino-
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mial probability, which is the alignment-bounded lifted iso-transform space,(
− ln

Q̂m,U(EX ∗ T, z)(A ∗ T )∑
B′∈A′U,i,y,T,z(A) Q̂m,U(EX ∗ T, z)(B′)

:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
=

∑
R∈(A∗T )S

ln(A ∗ T )R! + ln
∑

B′∈A′U,i,y,T,z(A)

1∏
R∈B′S B

′
R!

= algn(A ∗ T ) + ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

does not depend on the distribution histogram.

In the case where the distribution histogram is independent, E = EX,
the alignment-bounded lifted iso-transform space is less than or equal to the
derived-alignment-bounded iso-independent space(

− ln
Q̂m,U(EX ∗ T, z)(A ∗ T )∑

B′∈A′U,i,y,T,z(A) Q̂m,U(EX ∗ T, z)(B′)
:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)

≤

(
− ln

Q̂m,U((EX ∗ T )X, z)(A ∗ T )∑
B′∈Y −1

U,i,W,z((A∗T )X) Q̂m,U((EX ∗ T )X, z)(B′)
:

(EX ∗ T )XF ≥ (A ∗ T )XF, (A ∗ T )X ∈ Ai

)

because A′U,i,y,T,z(A) ⊆ Y −1
U,i,W,z((A ∗T )X). Thus the alignment-bounded lifted

iso-transform error is less than or equal to the derived-alignment-bounded
iso-independent error where E = EX,

ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

≤ ln
∑

B′∈Y −1
U,i,W,z((A∗T )X)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

The numerator in the alignment-bounded lifted iso-transform error ex-
pression is derived from the independent term of the derived alignment,
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∑
R∈(A∗T )XS ln(A ∗ T )X

R!, which varies against the entropy of the abstract his-

togram, entropy((A ∗ T )X). In the case of uniform abstract histogram of
size z and derived volume w where z/w ∈ N>0, the independent term is
w ln(z/w)! ≈ z ln(z/w). So the alignment-bounded lifted iso-transform error
with respect to the numerator varies with the size, z, and varies against the
logarithm of the derived volume, lnw. The abstract histogram, (A ∗ T )X,
tends to be more uniform at higher derived alignments.

The alignment-bounded lifted iso-transform error also varies with the cardi-
nality of the lifted integral iso-transform-independents, |A′U,i,y,T,z(A)|, which
in turn varies with the cardinality of the integral derived iso-independents,
|Y −1
U,i,W,z((A ∗ T )X)|. As shown above, the average cardinality of the integral

derived iso-independents is

|AU,i,W,z|
|ran(YU,i,W,z)|

=
(z + w − 1)!

z! (w − 1)!
/
∏
u∈W

(z + |Uu| − 1)!

z! (|Uu| − 1)!

The average cardinality of the integral derived iso-independents varies with
both size, z, and derived volume, w.

In the case where the size is greater than the derived volume, z > w, the
logarithm of the average cardinality is less than w ln z. In this case the nega-
tive contribution to the variation between the error and the derived volume
from the numerator, lnw, is outweighed by the positive contribution from
the summation, w. Hence, in the case where z > w, the error varies with
both size, z, and derived volume, w.

For a given derived volume, w, the average cardinality of the integral de-
rived iso-independents, |Y −1

U,i,W,z((A ∗ T )X)|, varies with the entropy of the
valencies, entropy({(u, |Uu|) : u ∈ W}). Hence the error also varies with de-
rived valency entropy. The error tends to increase with derived dimension,
n = |W |. Regular derived histograms tend to have higher error than irregular.

It is conjectured above that the cardinality of the set of integral derived
iso-independents, |Y −1

U,i,W,z((A ∗ T )X)|, corresponding to (A ∗ T )X varies with

the entropy of the abstract histogram, (A ∗ T )X. The cardinality of the sub-
set lifted integral iso-transform-independents, |A′U,i,y,T,z(A)|, also varies with
the entropy of the abstract histogram. Therefore the alignment-bounded lifted
iso-transform error varies with the entropy of the abstract histogram. The
formal histogram equals the abstract histogram, AX ∗ T = (A ∗ T )X, so the
entropy of the abstract histogram equals the entropy of the formal indepen-
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dent histogram, entropy((A∗T )X) = entropy((AX ∗T )X). The entropy of the
abstract histogram equals the sum of the entropies of the reductions

entropy((A∗T )X) =
∑
w∈W

entropy(A∗T % {w}) =
∑
w∈W

entropy(AX∗T % {w})

That is, the more uniform the perimeters, the larger the cardinality of the
set of integral derived iso-independents, and the higher the error with respect
to the cardinality.

The ratio of the alignment-bounded lifted iso-transform error to the derived
alignment isln

∑
B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

 /algn(A ∗ T )

where the derived histogram is not independent, A ∗ T 6= (A ∗ T )X =⇒
algn(A ∗ T ) > 0.

As mentioned above, as the derived alignment increases to maximum de-
rived alignment, alignmentMaximum(U)(W, z) ≈ z lnw where z � w, the
ratio decreases, w ln z/z lnw.

On the other hand, as noted above, the derived alignment approximates
to the difference in entropy between the abstract histogram and the derived
histogram, algn(A ∗ T ) ≈ z× entropy((A ∗ T )X)− z× entropy(A ∗ T ). Hence
increases in derived alignment imply increases in the entropy of the abstract
histogram to some degree. So there is a tendency to increase the ratio of
the alignment-bounded lifted iso-transform error to the alignment at higher
derived alignments due to the abstract histogram entropy which partly coun-
teracts the tendency to decrease the ratio at higher derived alignments due
to the size.

In the case where the derived alignment is approximately equal to the ex-
pected derived alignment, it is conjectured above (‘Minimum alignment’) that
the expected alignment varies as the volume, w, for constant size, z, greater
than the volume, z > w. So in the case of expected derived alignment the
alignment-bounded lifted iso-transform error tends to be greater than the
derived alignment and the ratio is greater than one, (w ln z)/w > 1.

If the transform is a self partition transform, for example Ts = V CS{}T ∈
TU,f,1, or it is value full functional, for example Ts = {{w}CS{}T : w ∈
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V }T ∈ TU,f,1, then the set of lifted integral iso-transform-independents equals
the set of lifted integral iso-independents, A′U,i,y,Ts,z(A) = {B ∗ Ts : B ∈
Y −1
U,i,V,z(A

X)}, and the set of integral iso-transform-independents equals the set

of integral iso-independents, AU,i,y,Ts,z(A) = Y −1
U,i,V,z(A

X). So the alignment-
bounded iso-transform-independent space equals the alignment-bounded lifted
iso-transform space, which in turn equals the alignment-bounded iso-independent
space

− ln
Q̂m,U(EX, z)(A)∑

B∈AU,i,y,Ts,z(A) Q̂m,U(EX, z)(B)

= − ln
Q̂m,U(EX ∗ Ts, z)(A ∗ Ts)∑

B′∈A′U,i,y,Ts,z(A) Q̂m,U(EX ∗ Ts, z)(B′)

= − ln
Q̂m,U(EX, z)(A)∑

B∈Y −1
U,i,V,z(AX) Q̂m,U(EX, z)(B)

Therefore, in this case, Ts, the alignment-bounded iso-transform space is
bounded by the derived alignment,

algn(A ∗ Ts)

= algn(A)

≤

(
− ln

Q̂m,U(EX, z)(A)∑
B∈AU,i,y,Ts,z(A) Q̂m,U(EX, z)(B)

: EXF ≥ AXF, AX ∈ Ai

)
≤ algn(A) + ln |Y −1

U,i,V,z(A
X)|

= algn(A ∗ Ts) + ln |A′U,i,y,Ts,z(A)|

If the transform is a unary partition, for example Tu = {V CS}T ∈ TU,f,1,
then the set of integral iso-transform-independents equals the singleton lifted
integral congruent support, A′U,i,y,Tu,z(A) = {B ∗ Tu : B ∈ AU,i,V,z} = {A ∗
Tu}. The lifted generalised multinomial probability is equal to one, Q̂m,U(E ∗
Tu, z)(A ∗ Tu) = 1. So the alignment-bounded lifted iso-transform space is
equal to zero,

− ln
Q̂m,U(EX ∗ Tu, z)(A ∗ Tu)∑

B′∈A′U,i,y,Tu,z(A) Q̂m,U(EX ∗ Tu, z)(B′)
= 0

The lower bound is zero

algn(A ∗ Tu) = 0

529



because A ∗ Tu = (A ∗ Tu)X. The upper bound is also zero

algn(A ∗ Tu) + ln |A′U,i,y,Tu,z(A)| = algn(A ∗ Tu) + ln |{A ∗ Tu}| = 0

The set of integral iso-transform-independents equals the integral congru-
ent support, AU,i,y,Tu,z(A) = AU,i,V,z, so the alignment-bounded iso-transform
space equals the generalised multinomial space, which is greater than zero(

− ln
Q̂m,U(EX, z)(A)∑

B∈AU,i,y,Tu,z(A) Q̂m,U(EX, z)(B)
: EXF ≥ AXF

)
= − ln Q̂m,U(EX, z)(A)

> 0

where the distribution histogram is pluri-valent, |EXF| > 1. In fact, it is
greater than or equal to the self partition case(

− ln
Q̂m,U(EX, z)(A)∑

B∈AU,i,y,Tu,z(A) Q̂m,U(EX, z)(B)
: EXF ≥ AXF

)

≥

(
− ln

Q̂m,U(EX, z)(A)∑
B∈AU,i,y,Ts,z(A) Q̂m,U(EX, z)(B)

: EXF ≥ AXF, AX ∈ Ai

)

Therefore, in this case, Tu, the alignment-bounded iso-transform space is not
bounded by the derived alignment.

In other words, although the alignment-bounded iso-transform space is func-
tionally related to the alignment-bounded lifted iso-transform space, it is not
always the case that the alignment-bounded iso-transform space is bounded
by the derived alignment, algn(A ∗T ), and so the prefix ‘alignment-bounded ’
of alignment-bounded iso-transform space is sometimes a misnomer with re-
spect to derived alignment at least.

Let integral congruent delta (D, I) ∈ Ai×Ai be such that its perturbation,
A−D+I, is iso-transform-independence conserving, A−D+I ∈ AU,i,y,T,z(A).
So the delta, (D, I), is iso-abstract, A−D+I ∈ Y −1

U,T,W,z((A∗T )X). The change
in alignment-bounded lifted iso-transform space due to the application of the
iso-transform-independence conserving delta, (D, I), is equal to the change
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in derived alignment(
algn((A−D + I) ∗ T ) +

ln
∑

B′∈A′U,i,y,T,z(A−D+I)

∏
R∈((A−D+I)∗T )XS((A−D + I) ∗ T )X

R!∏
R∈B′S B

′
R!

)
−

algn(A ∗ T ) + ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!


= algn((A−D + I) ∗ T )− algn(A ∗ T )

because ((A−D+ I) ∗ T )X = (A ∗ T )X and therefore the alignment-bounded
lifted iso-transform error is the same for both the histogram, A, and its iso-
transform-independent perturbation, A−D + I.

A special case of an iso-transform-independence conserving perturbation is
the integral idealisation, A ∗ T ∗ T †A ∈ Y −1

U,i,V,z(A
X), where the change in

alignment-bounded lifted iso-transform space because of the integral idealisa-
tion of the sample histogram is zero,(

algn((A ∗ T ∗ T †A) ∗ T ) +

ln
∑

B′∈A′U,i,y,T,z(A∗T∗T †A)

∏
R∈((A∗T∗T †A)∗T )XS((A ∗ T ∗ T †A) ∗ T )X

R!∏
R∈B′S B

′
R!

)
−

algn(A ∗ T ) + ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!


= algn(A ∗ T ∗ T †A ∗ T )− algn(A ∗ T )

= 0

because A ∗ T ∗ T †A ∗ T = A ∗ T . That is, the alignment-bounded lifted
iso-transform space is the same for a sample histogram, A, and its integral
idealisation, A ∗ T ∗ T †A.

Consider the case where (i) the independent distribution histogram equals
the independent, EX = AX, and (ii) idealisation is integral, A ∗ T ∗ T †A ∈ Ai.
The integral idealisation is in the integral iso-idealisations which is a subset
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of the integral iso-transform-independents,

A ∗ T ∗ T †A ∈ Y −1
U,i,T,†,z(A ∗ T ∗ T

†A) ⊆ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

where the integral iso-idealisations is defined YU,i,T,†,z = {(A,A ∗ T ∗ T †A) :
A ∈ AU,i,V,z}. The integral iso-idealisations is also the subset of the subset of
the integral iso-transform-independents that have given alignment-bounded
lifted iso-transform space, (A−D+ I) ∗ T = A ∗ T , which is the intersection
between the integral iso-transform-independents and the integral iso-deriveds,
or the integral iso-liftisations,

Y −1
U,i,T,†,z(A ∗ T ∗ T

†A)

⊆ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩D−1
U,i,T,z(A ∗ T )

= Y −1
U,i,T,V,z(A

X ∗ T ) ∩D−1
U i,T,z(A ∗ T )

The idealisation perturbation conjecture states that of all the integral iso-
idealisations, A−D + I ∈ Y −1

U,i,T,†,z(A ∗ T ∗ T †A), that have given alignment-
bounded lifted iso-transform space, (A − D + I) ∗ T = A ∗ T , the integral
sample idealisation, A ∗ T ∗ T †A, has the greatest multinomial probability

A ∗ T ∗ T †A ∈ maxd({(A−D + I, Q̂m,U(AX, z)(A−D + I)) :

A−D + I ∈ Y −1
U,i,T,†,z(A ∗ T ∗ T

†A)})

and hence the least alignment-bounded iso-transform space

A ∗ T ∗ T †A ∈ mind({(A−D + I, − ln
Q̂m,U(AX, z)(A−D + I)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

) :

A−D + I ∈ Y −1
U,i,T,†,z(A ∗ T ∗ T

†A)})

or

∀A−D + I ∈ Y −1
U,i,T,†,z(A ∗ T ∗ T

†A)(
− ln

Q̂m,U(AX, z)(A−D + I)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

≥ − ln
Q̂m,U(AX, z)(A ∗ T ∗ T †A)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

)

In other words, conjecture that the idealisation, A ∗ T ∗ T †A, is the most
conservative choice of iso-idealisations of the sample histogram given the
alignment-bounded lifted iso-transform space of the lifted sample. Depending
on the degree to which the transform is formal, A∗T ≈ AX ∗T , the indepen-
dent approximates to the neutralisation, AX = AX∗T ∗T�AX ≈ A∗T ∗T�AX

,
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and thence to the idealisation, A ∗ T ∗ T�AX ≈ A ∗ T ∗ T †A. That is, the
idealisation approximates most closely to the independent which is the mean
of the distribution, A ∗ T ∗ T †A ≈ AX = mean(Q̂m,U(AX, z)) and is therefore
the most probable of the integral iso-idealisations.

The subset of the integral iso-transform-independents given A ∗ T is the
intersection between the integral iso-transform-independents and the inte-
gral iso-deriveds, Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X)) ∩D−1

U,i,T,z(A ∗ T ), which is the

integral iso-liftisations, Y −1
U,i,T,V,z(A

X ∗T )∩D−1
U,i,T,z(A ∗T ). Note that the ide-

alisation, A ∗ T ∗ T †A, does not necessarily have the least space of all of the
iso-liftisations. The integral iso-liftisations with the least space is in

mind({(A−D + I, − ln
Q̂m,U(AX, z)(A−D + I)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

) :

A−D + I ∈ Y −1
U,i,T,V,z(A

X ∗ T ) ∩D−1
U i,T,z(A ∗ T )})

For example, if the liftisation-independent is integral it is conjectured to be
in the integral iso-liftisations, AK(T ) ∈ Ai =⇒ AK(T ) ∈ Y −1

U,i,T,V,z(A
X ∗ T ) ∩

D−1
U i,T,z(A ∗ T ), but in some cases it is not computable.

Given the conditions (i) AX ∈ Ai, (ii) AX∗T = (A∗T )X, and (iii) A∗T ∗T †A ∈
Ai, let the negative logarithm independent-sample-distributed iso-transform-
independent conditional dependent multinomial probability of the idealisation,(

− ln
Q̂m,U(AX, z)(A ∗ T ∗ T †A)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

:

AX ∈ Ai, A
X ∗ T = (A ∗ T )X, A ∗ T ∗ T †A ∈ Ai

)
∈ ln Q>0

be abbreviated to the alignment-bounded iso-transform idealisation space.
The alignment-bounded iso-transform idealisation space is a special case of
the alignment-bounded iso-transform space where EX = AX and A = A ∗
T ∗ T †A. The alignment-bounded iso-transform idealisation space and the
alignment-bounded iso-transform space both lift to the same alignment-bounded
lifted iso-transform space.

Formal equals abstract implies formal independent equals abstract, AX ∗T =
(A∗T )X =⇒ (AX ∗T )X = (A∗T )X, so the independent is an iso-transform-
independent, AX ∈ AU,i,y,T,z(A), and therefore the alignment-bounded iso-
transform idealisation space is bounded by the idealisation alignment, given
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the integral mean multinomial probability distribution conjecture,

algn(A ∗ T ∗ T †A)

≤

(
− ln

Q̂m,U(AX, z)(A ∗ T ∗ T †A)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

:

AX ∈ Ai, A
X ∗ T = (A ∗ T )X, A ∗ T ∗ T †A ∈ Ai

)
≤ algn(A ∗ T ∗ T †A) + ln |AU,i,y,T,z(A)|

Note also that the set of integral iso-transform-independents given A ∗ T ,
Y −1
U,i,T,z(((A

X ∗T ), (A∗T )X))∩D−1
U,i,T,z(A∗T ), is partitioned by sets of integral

iso-idealisations. This is because the equivalence classes corresponding to the
intersection between the integral iso-transform-independents and the integral
iso-deriveds is a parent partition of the equivalence classes of the integral iso-
idealisation function, parent({{B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, B ∗ T =
A ∗ T} : A ∈ AU,i,V,z}, {{B : B ∈ AU,i,V,z, B ∗ T ∗ T †B = A ∗ T ∗ T †A} :
A ∈ AU,i,V,z}). That is, Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X)) ∩ D−1

U,i,T,z(A ∗ T ) ∈
P(ran(Y −1

U,i,T,†,z)). However, only one of these sets of integral iso-transform-

independents corresponds to the sample histogram, Y −1
U,i,T,†,z(A∗T ∗T †A). This

is the only set of integral iso-idealisations which is such that the indepen-
dent of the idealisation equals the distribution histogram, (A∗T ∗T †A)X = AX.

If the transform is a self partition transform, for example Ts = V CS{}T ∈
TU,f,1, or it is value full functional, for example Ts = {{w}CS{}T : w ∈ V }T ∈
TU,f,1, then the transform is ideal, A∗Ts∗T †As = A, and the alignment-bounded
iso-transform idealisation space equals the alignment-bounded iso-transform-
independent space. Therefore, in this case, Ts, the alignment-bounded iso-
transform idealisation space is bounded by the derived alignment.

If the transform is a unary partition, for example Tu = {V CS}T ∈ TU,f,1, then
the idealisation equals the independent, A ∗ Tu ∗ T †Au = AX. The alignment-
bounded lifted iso-transform space is still equal to zero,

− ln
Q̂m,U(AX ∗ Tu, z)(A

X ∗ Tu)∑
B′∈A′U,i,y,Tu,z(A) Q̂m,U(AX ∗ Tu, z)(B′)

= 0

The lower bound is still zero

algn(AX ∗ Tu) = 0
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because AX ∗ Tu = (AX ∗ Tu)X. The upper bound is also zero

algn(AX ∗ Tu) + ln |A′U,i,y,Tu,z(A)| = 0

The alignment-bounded iso-transform idealised space is greater than zero

− ln
Q̂m,U(AX, z)(AX)∑

B∈AU,i,y,Tu,z(A) Q̂m,U(AX, z)(B)

= − ln Q̂m,U(AX, z)(AX)

> 0

However, given the integral mean multinomial probability distribution con-
jecture, the alignment-bounded iso-transform idealised space is less than or
equal to the alignment-bounded iso-transform space

− ln
Q̂m,U(AX, z)(AX)∑

B∈AU,i,y,Tu,z(A) Q̂m,U(AX, z)(B)
≤ − ln

Q̂m,U(AX, z)(A)∑
B∈AU,i,y,Tu,z(A) Q̂m,U(AX, z)(B)

So the alignment-bounded iso-transform idealised space is less out of bounds
than the alignment-bounded iso-transform space.

Given the complete integral congruent support sample histogram A ∈ AU,i,V,z,
consider the comparison of two transforms T1, T2 ∈ TU,f,1, where und(T1) =
und(T2) = V . The sets of iso-transform-independents for each transform,
AU,i,y,T1,z(A) and AU,i,y,T2,z(A), may or may not be equal,

T1 = T2 =⇒
Y −1
U,i,T1,z

(((AX ∗ T1), (A ∗ T1)X)) = Y −1
U,i,T2,z

(((AX ∗ T2), (A ∗ T2)X))

Note that in the case that the derived variables are equal, W1 = W2 where
W1 = der(T1) and W2 = der(T2), but the transforms are not equal, T1 6= T2,
it is not necessarily the case that the deriveds are not equal, T1 6= T2 ⇐=
A∗T1 6= A∗T2, the formals are not equal, T1 6= T2 ⇐= AX ∗T1 6= AX ∗T2, or
the abstracts are not equal, (A∗T1)X 6= (A∗T2)X. Conversely, even if the for-
mals are equal and the abstracts are equal, (AX ∗T1 = AX ∗T2)∧((A∗T1)X =
(A ∗ T2)X), it is not necessarily the case that the iso-transform-independents
are equal, AU,i,y,T1,z(A) = AU,i,y,T2,z(A).

In the case where the iso-transform-independents are not equal,AU,i,y,T1,z(A) 6=
AU,i,y,T2,z(A), the difference in negative logarithm iso-transform-independent
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conditional dependent multinomial probability is non-zero(
− ln

Q̂m,U(E, z)(A)∑
B2∈AU,i,y,T2,z

(A) Q̂m,U(E, z)(B2)

)
−(

− ln
Q̂m,U(E, z)(A)∑

B1∈AU,i,y,T1,z
(A) Q̂m,U(E, z)(B1)

)
6= 0

unless it so happens that denominators are equal∑
B1∈AU,i,y,T1,z

(A)

Q̂m,U(E, z)(B1) =
∑

B2∈AU,i,y,T2,z
(A)

Q̂m,U(E, z)(B2)

In the case that the denominators are not equal, conjecture that in general the
larger the intersection, |AU,i,y,T1,z(A)∩AU,i,y,T2,z(A)|, the less the difference in
the iso-transform-independent conditional dependent multinomial probability
because the denominators are more nearly equal. For example, consider the
case where the derived variables are equal, W1 = W2. Even if the transforms
are not equal, T1 6= T2, the formals may sometimes be equal, AX ∗T1 = AX ∗
T2. If that is the case, then the intersection of the iso-formals, |Y −1

U,i,T1,V,z
(AX∗

T1)∩ Y −1
U,i,T2,V,z

(AX ∗ T2)|, tends to be larger because it is more often the case

that iso-formal histograms B1 ∈ Y −1
U,i,T1,V,z

(AX ∗ T1) and B2 ∈ Y −1
U,i,T2,V,z

(AX ∗
T2) are equal, B1 = B2, because BX

1 ∗ T1 = AX ∗ T1 = AX ∗ T2 = BX
2 ∗ T2.

Similarly, the abstracts may sometimes be equal, (A∗T1)X = (A∗T2)X. If that
is the case, then the intersection of the iso-abstracts, |Y −1

U,i,T1,W,z((A ∗ T1)X)∩
Y −1
U,i,T2,W,z((A∗T2)X)|, tends to be larger because it is more often the case that

iso-abstract histograms B1 ∈ Y −1
U,i,T1,W,z((A ∗ T1)X) and B2 ∈ Y −1

U,i,T2,W,z((A ∗
T2)X) are equal, B1 = B2, because (B1 ∗ T1)X = (A ∗ T1)X = (A ∗ T2)X =
(B2 ∗ T2)X. If either the iso-formals intersect or the iso-abstracts intersect,
then it is sometimes the case that the iso-transform-independents intersect,
because the iso-transform-independents is the intersection between the iso-
formals and iso-abstracts, AU,i,y,T,z(A) = Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X)) =

Y −1
U,i,T,V,z(A

X ∗ T ) ∩ Y −1
U,i,T,W,z((A ∗ T )X).

Now consider the case where (i) the independent is integral, AX ∈ Ai, (ii)
the idealisations are integral, A∗T1 ∗T †A1 , A∗T2 ∗T †A2 ∈ Ai, and so are in the
same set of integral iso-independents, A∗T1 ∗T †A1 , A∗T2 ∗T †A2 ∈ Y −1

U,i,V,z(A
X).

The difference in negative logarithm iso-transform-independent conditional
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dependent multinomial idealisation probability is(
− ln

Q̂m,U(E, z)(A ∗ T2 ∗ T †A2 )∑
B2∈AU,i,y,T2,z

(A) Q̂m,U(E, z)(B2)

)
−

(
− ln

Q̂m,U(E, z)(A ∗ T1 ∗ T †A1 )∑
B1∈AU,i,y,T1,z

(A) Q̂m,U(E, z)(B1)

)

which is not necessarily zero even if the iso-transform-independents are equal,
AU,i,y,T1,z(A) = AU,i,y,T2,z(A), unless it so happens that the numerators are

also equal, Q̂m,U(E, z)(A ∗ T1 ∗ T †A1 ) = Q̂m,U(E, z)(A ∗ T2 ∗ T †A2 ).

If it is the case that (iii) the iso-transform-independents are not equal,
AU,i,y,T1,z(A) 6= AU,i,y,T2,z(A), but (iv) the derived variables are equal, W1 =
W2, (v) the formals are equal, AX ∗ T1 = AX ∗ T2, and (vi) the abstracts
are equal, (A ∗ T1)X = (A ∗ T2)X, then the intersection of the iso-transform-
independents includes both idealisations, {A ∗ T1 ∗ T †A1 , A ∗ T2 ∗ T †A2 } ⊂
AU,i,y,T1,z(A) ∩ AU,i,y,T2,z(A). That is, the iso-transform-independents of the

first transform includes the idealisation of the second transform, A∗T2∗T †A2 ∈
AU,i,y,T1,z(A), and vice-versa, A ∗ T1 ∗ T †A1 ∈ AU,i,y,T2,z(A).

If it is the case instead that the derived variables are not necessarily equal,
(iii) the distribution histogram is the independent sample, E = AX, and
(iv) the formal independent equals the abstract of both transforms, (AX ∗
T1)X = (A ∗ T1)X and (AX ∗ T2)X = (A ∗ T2)X, so that the integral indepen-
dent, AX ∈ Ai, is an integral iso-transform-independent for both transforms,
AX ∈ AU,i,y,T1,z(A) and AX ∈ AU,i,y,T2,z(A), then the change in negative loga-
rithm independent-sample-distributed iso-transform-independent conditional
dependent multinomial idealisation probability, given the integral mean multi-
nomial probability distribution conjecture, is the difference in the alignments
of the idealisations plus a difference in terms that do not depend on the
idealisations but only on the iso-transform-independents− ln

Q̂m,U(AX, z)(A ∗ T2 ∗ T †A2 )

Q̂m,U(AX, z)(AX)
+ ln

∑
B2∈AU,i,y,T2,z

(A)

Q̂m,U(AX, z)(B2)

Q̂m,U(AX, z)(AX)

−
− ln

Q̂m,U(AX, z)(A ∗ T1 ∗ T †A1 )

Q̂m,U(AX, z)(AX)
+ ln

∑
B1∈AU,i,y,T1,z

(A)

Q̂m,U(AX, z)(B1)

Q̂m,U(AX, z)(AX)


= algn(A ∗ T2 ∗ T †A2 )− algn(A ∗ T1 ∗ T †A1 ) +ln

∑
B2∈AU,i,y,T2,z

(A)

Q̂m,U(AX, z)(B2)

Q̂m,U(AX, z)(AX)
− ln

∑
B1∈AU,i,y,T1,z

(A)

Q̂m,U(AX, z)(B1)

Q̂m,U(AX, z)(AX)


537



In the case where the iso-transform-independents are equal, AU,i,y,T1,z(A) =
AU,i,y,T2,z(A), then the difference is just the difference in alignments, algn(A∗
T2 ∗ T †A2 )− algn(A ∗ T1 ∗ T †A1 ).

If it is the case instead that (iii) the distribution histogram is the indepen-
dent sample, E = AX, and more strictly (iv) the formal equals the abstract
of both transforms, AX ∗ T1 = (A ∗ T1)X and AX ∗ T2 = (A ∗ T2)X, then the
change in negative logarithm independent-sample-distributed iso-transform-
independent conditional dependent multinomial idealisation probability is the
change in alignment-bounded iso-transform idealisation space(
− ln

Q̂m,U(AX, z)(A ∗ T2 ∗ T †A2 )∑
B2∈AU,i,y,T2,z

(A) Q̂m,U(AX, z)(B2)

)
−

(
− ln

Q̂m,U(AX, z)(A ∗ T1 ∗ T †A1 )∑
B1∈AU,i,y,T1,z

(A) Q̂m,U(AX, z)(B1)

)

and the difference in alignment-bounded lifted iso-transform space is differ-
ence in derived alignments plus the difference in alignment-bounded lifted
iso-transform errors(

− ln
Q̂m,U(AX ∗ T2, z)(A ∗ T2)∑

B′2∈A′U,i,y,T2,z
(A) Q̂m,U(AX ∗ T2, z)(B′2)

)
−(

− ln
Q̂m,U(AX ∗ T1, z)(A ∗ T1)∑

B′1∈A′U,i,y,T1,z
(A) Q̂m,U(AX ∗ T1, z)(B′1)

)
= algn(A ∗ T2)− algn(A ∗ T1) +(

ln
∑

B′2∈A′U,i,y,T2,z
(A)

∏
R∈(A∗T2)XS(A ∗ T2)X

R!∏
R∈B′S2

(B′2)R!
−

ln
∑

B′1∈A′U,i,y,T1,z
(A)

∏
R∈(A∗T1)XS(A ∗ T1)X

R!∏
R∈B′S1

(B′1)R!

)

The difference in alignment-bounded lifted iso-transform errors is bounded

− ln |A′U,i,y,T1,z(A)|

≤

(
ln

∑
B′2∈A′U,i,y,T2,z

(A)

∏
R∈(A∗T2)XS(A ∗ T2)X

R!∏
R∈B′S2

(B′2)R!
−

ln
∑

B′1∈A′U,i,y,T1,z
(A)

∏
R∈(A∗T1)XS(A ∗ T1)X

R!∏
R∈B′S1

(B′1)R!

)
≤ ln |A′U,i,y,T2,z(A)|
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In the case where the derived variables are equal, W1 = W2, and the abstracts
are equal, (A ∗ T1)X = (A ∗ T2)X, then the numerators of the alignment-
bounded lifted iso-transform errors are equal and so the difference in errors
tends to be smaller. Conjecture that in the case where the derived vari-
ables are equal, W1 = W2, in general the larger the intersection between
the lifted iso-transform-independents, |A′U,i,y,T1,z(A)∩A′U,i,y,T2,z(A)|, the less
the difference in alignment-bounded lifted iso-transform errors and the more
nearly the difference in alignment-bounded lifted iso-transform space equals
the difference in derived alignments, algn(A ∗ T2)− algn(A ∗ T1). Conjecture
also that in the case where the derived variables are not equal, W1 6= W2, in
general the larger the intersection between the iso-transform-independents,
|AU,i,y,T1,z(A)∩AU,i,y,T2,z(A)|, the smaller the difference in alignment-bounded
lifted iso-transform errors. As conjectured above, the alignment-bounded iso-
transform idealisation space is functionally related to the alignment-bounded
lifted iso-transform space, so conjecture that in general the smaller the dif-
ference in alignment-bounded lifted iso-transform errors the more nearly the
difference in alignment-bounded iso-transform idealisation space equals the
difference in derived alignments, algn(A ∗ T2 ∗ T †A2 )− algn(A ∗ T1 ∗ T †A1 ).

For convenience, define ln! ∈ Ai → ln Q>0 as

ln!(A) :=
∑
S∈AS

lnAS! = ln
∏
S∈AS

AS!

ln! is undefined where A = ∅. The alignment of an integral-independent
histogram, AX ∈ Ai, may be expressed in terms of the non-independent term
and the independent term as

algn(A) = ln!(A)− ln!(AX)

Define lnhar! ∈ P(Ai)→ ln Q>0 as

lnhar!(X) := ln
∑
B∈X

1∏
R∈BS BR!

539



lnhar! is undefined where X = ∅ or ∅ ∈ X. The alignment-bounded lifted
iso-transform space may be expressed(

− ln
Q̂m,U(EX ∗ T, z)(A ∗ T )∑

B′∈A′U,i,y,T,z(A) Q̂m,U(EX ∗ T, z)(B′)
:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)

= algn(A ∗ T ) + ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

= algn(A ∗ T ) + ln!((A ∗ T )X) + lnhar!(A′U,i,y,T,z(A))

= ln!(A ∗ T ) + lnhar!(A′U,i,y,T,z(A))

The alignment-bounded lifted iso-transform space error may be expressed as
ln!((A ∗ T )X) + lnhar!(A′U,i,y,T,z(A)) which is such that

0 ≤ ln!((A ∗ T )X) + lnhar!(A′U,i,y,T,z(A)) ≤ ln |A′U,i,y,T,z(A)|

A value roll (V, v, s, t) ∈ rollValues(U) is such that the independent of the
application of the value roll, (V, v, s, t), to a histogram A is equal to the appli-
cation of the value roll to the independent histogram, (A∗(V, v, s, t)R)X = AX∗
(V, v, s, t)R. The transform of the value roll, T = (V, v, s, t)T, is therefore such
that the formal histogram equals the abstract histogram, AX ∗ (V, v, s, t)T =
(A ∗ (V, v, s, t)T)X. The iso-transform-independents, AU,i,y,T,z(A), are the set
of complete congruent histograms having the same perimeters as the value
rolled histogram, AU,i,y,T,z(A) = {B : B ∈ AU,i,V,z, (B ∗ (V, v, s, t)R)X =
(A ∗ (V, v, s, t)R)X}.

The derived alignment in variables der(T ) is equal to the alignment in vari-
ables V of the rolled histogram, algn(A∗T ) = algn(A∗(V, v, s, t)R). If the in-
dependent is integral, AX ∈ Ai, then the value roll transform, T , satisfies the
constraints required so that the negative logarithm lifted independent-sample-
distributed iso-transform-independent quasi-conditional dependent multino-
mial probability is bounded by the derived alignment, algn(A ∗ (V, v, s, t)T).
That is, the alignment-bounded lifted iso-transform space of the value roll,
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(V, v, s, t), is bounded by the value rolled histogram alignment

algn(A ∗ (V, v, s, t)R)

≤

(
− ln

Q̂m,U(AX ∗ T, z)(A ∗ T )∑
B′∈A′U,i,y,T,z(A) Q̂m,U(AX ∗ T, z)(B′)

: AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
≤ algn(A ∗ (V, v, s, t)R) + ln |A′U,i,y,T,z(A)|

The value roll transform, T = (V, v, s, t)T, is ideal, A = A ∗ T ∗ T †A, if the
source and target values, s and t, are independent, A ∗ ({v} × {s, t})U =
AX ∗ ({v} × {s, t})U.

As shown above in section ‘Deltas and Perturbations’, the application of a
value roll (V, v, s, t) ∈ rollValues(U) cannot be iso-independence conserving,
A ∗ (V, v, s, t)R /∈ Y −1

U,i,V,z(A
X), but it is iso-transform-independence conserv-

ing, A ∗ (V, v, s, t)R ∈ AU,i,y,T,z(A), where T = (V, v, s, t)T.

A pair of non-circular value rolls (V, v1, s1, t1), (V, v2, s2, t2) ∈ rollValues(U)
cannot be in the same set of iso-transform-independents, AU,i,y,T1,z(A) 6=
AU,i,y,T2,z(A) where T1 = (V, v1, s1, t1)T and T2 = (V, v2, s2, t2)T, unless it
so happens that (A ∗ (V, v1, s1, t1)R)X = (A ∗ (V, v2, s2, t2)R)X, for example
where v1 = v2, t1 = t2 and A%{v1}({(v1, s1)}) = A%{v1}({(v1, s2)}). The
alignment-bounded lifted iso-transform error varies with the derived volume.
So the errors are more comparable if the derived volumes are equal, |WC

1 | =
|WC

2 | where W1 = der(T1) and W2 = der(T2). That is, if the histogram is
effectively regular in variables v1 and v2, |(A%{v1})F| = |(A%{v2})F|.

Consider a pair of value rolls applied in sequence, A∗(V, v1, s1, t1)R∗(V, v2, s2, t2)R

where T1 = (V, v1, s1, t1)T and T2 = (V, v2, s2, t2)T. The first value rolled
histogram, A ∗ (V, v1, s1, t1)R, is a member of both sets of iso-transform-
independents, A∗(V, v1, s1, t1)R ∈ AU,i,y,T1,z(A)∩AU,i,y,T2,z(A∗(V, v1, s1, t1)R).

The iso-transform-independents of the pair of value rolls applied in sequence,
A ∗ (V, v1, s1, t1)R ∗ (V, v2, s2, t2)R is AU,i,y,T,z(A) where T = ((V, v2, s2, t2)R ◦
(V, v1, s1, t1)R)T. This set is the union

AU,i,y,T,z(A) =

{B : B ∈ AU,i,y,T1,z(A), B ∗ (V, v1, s1, t1)R ∈ AU,i,y,T2,z(A ∗ (V, v1, s1, t1)R)} ∪
AU,i,y,T2,z(A ∗ (V, v1, s1, t1)R)

The sets of iso-transform-independents intersect, A∗(V, v1, s1, t1)R ∈ AU,i,y,T1,z(A)∩
AU,i,y,T2,z(A ∗ (V, v1, s1, t1)R). Therefore the cardinality of the sequence iso-
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transform-independents is less than or equal to the sum of the cardinalities
of the value rolls cumulatively or separately applied,

|AU,i,y,T,z(A)| ≤ |AU,i,y,T1,z(A)}|+ |AU,i,y,T2,z(A ∗ (V, v1, s1, t1)R)|
≤ |AU,i,y,T1,z(A)|+ |AU,i,y,T2,z(A)|

The cardinality of the sequence lifted iso-transform-independents is also less
than or equal to the sum of the cardinalities of the lifted iso-transform-
independents of the value rolls cumulatively or separately applied,

|A′U,i,y,T,z(A)| ≤ |A′U,i,y,T1,z(A)}|+ |A′U,i,y,T2,z(A ∗ (V, v1, s1, t1)R)|
≤ |A′U,i,y,T1,z(A)|+ |A′U,i,y,T2,z(A)|

The alignment-bounded lifted iso-transform error depends on the set of lifted
iso-transform-independents, A′U,i,y,T,z(A), and so the alignment-bounded lifted
iso-transform error of a pair of value rolls in sequence is conjectured to be
less than or equal to the sum of the alignment-bounded lifted iso-transform
errors of the value rolls cumulatively applied

ln!((A ∗ T )X) + lnhar!(A′U,i,y,T,z(A))

≤ ln!((A ∗ T1)X) + lnhar!(A′U,i,y,T1,z(A)) +

ln!((A ∗ (V, v1, s1, t1)R ∗ T2)X) + lnhar!(A′U,i,y,T2,z(A ∗ (V, v1, s1, t1)R))

or separately applied

ln!((A ∗ T )X) + lnhar!(A′U,i,y,T,z(A))

≤ ln!((A ∗ T1)X) + lnhar!(A′U,i,y,T1,z(A)) +

ln!((A ∗ T2)X) + lnhar!(A′U,i,y,T2,z(A))

Let JU,V be the set of lists of value rolls in variables V and system U , JU,V =
{L : L ∈ L(rollValues(U)), (∀(W, ·, ·, ·) ∈ set(L) (W = V ))}. The transform
of a non-circular value roll list J ∈ JU,V is also formal abstract equivalent,
AX ∗ JT = (A ∗ JT)X, so the alignment-bounded lifted iso-transform space of
the value roll list, J , is also bounded by the derived alignment, algn(A ∗ JT).
That is, because the alignment-bounded lifted iso-transform space of each of
the successive formal abstract equivalent applications of the value rolls in
the value roll list, A ∗ JR

{1...i−1} ∗ JR
i , is bounded, the application of the entire

value roll list at once, A ∗ JR, must also be bounded. The change in derived
alignment of the application value roll list equals the sum of the changes
in derived alignment, algn(A ∗ JR) − algn(A) = (algn(A ∗ JR

1 ) − algn(A)) +∑
i∈2...|J |(algn(A ∗ JR

{1...i−1} ∗ JR
i )− algn(A ∗ JR

{1...i−2} ∗ JR
i−1)). The alignment-

bounded lifted iso-transform error of the value roll list is conjectured to be
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less than or equal to the sum of the alignment-bounded lifted iso-transform
errors of the value rolls cumulatively applied,

ln!((A ∗ JR)X) + lnhar!(A′U,i,y,JT,z(A))

≤
∑

i∈1...|J |

(ln!((A ∗ JR
{1...i})

X) + lnhar!(A′U,i,y,JT
{1...i},z

(A))

or individually applied

ln!((A ∗ JR)X) + lnhar!(A′U,i,y,JT,z(A))

≤
∑

i∈1...|J |

(ln!((A ∗ JR
i )X) + lnhar!(A′U,i,y,JT

i ,z
(A))

This is the case regardless of the order of the value roll list.

A reduction A%K of the histogram, A, to variables K ⊂ V can be viewed as
a set of value roll lists for each of the reduced variables, V \K, such that the
values are rolled to a single value. For example, in the case of a reduction by
a single variable, let {v} = V \ K, M ∈ enums(Uv), L = flip(M), d = |Uv|
and J = {(i, (V, v, Li, Ld)) : i ∈ {1 . . . d − 1}} ∈ JU,V . Then algn(A ∗ JR) =
algn(A % (V \ {v})) = algn(A%K). Therefore the alignment-bounded lifted
iso-transform space of a reduction transform, T = {wCSV T : w ∈ K}T, is also
bounded by the derived alignment, algn(A ∗ T ) = algn(A%K).

As noted above, two value rolls (V, v1, s1, t1), (V, v2, s2, t2) ∈ rollValues(U)
cannot be in the same set of iso-transform-independents, AU,i,y,T1,z(A) 6=
AU,i,y,T2,z(A) where T1 = (V, v1, s1, t1)T and T2 = (V, v2, s2, t2)T, if the ab-
stract histograms are not equal, (A ∗ (V, v1, s1, t1)R)X 6= (A ∗ (V, v2, s2, t2)R)X.
Thus the difference in alignment-bounded lifted iso-transform errors, (ln!((A∗
T2)X) + lnhar!(A′U,i,y,T2,z(A))) − (ln!((A ∗ T1)X) + lnhar!(A′U,i,y,T1,z(A))), is
sometimes non-zero. However, the intersection of the iso-transform inde-
pendents includes both the sample, A, and the integral independent sample,
AX ∈ Ai. That is, A,AX ∈ AU,i,y,T1,z(A) ∩ AU,i,y,T2,z(A). In fact, although
the abstract histograms are different, parts of the rolled histograms are com-
mon in each case, A ∗ (V, v1, s1, t1)R ∗ X = A ∗ (V, v2, s2, t2)R ∗ X where
X = ({v1}CS \ ({v1} × {s1, t1}))U ∗ ({v2}CS \ ({v2} × {s2, t2}))U. That is,
the perimeters of A are unchanged except at four values, ∀w ∈ V (A ∗
(V, v1, s1, t1)R % {w} ∗X = A ∗ (V, v2, s2, t2)R % {w} ∗X). The differences
are fewer if v1 = v2 and |{s1, s2, t1, t2}| < 4. The difference in alignment-
bounded lifted iso-transform errors is therefore sometimes smaller than would
be the case if the value rolls were applied to different sample histograms,
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A ∗ (V, v1, s1, t1)R and B ∗ (V, v2, s2, t2)R where B ∈ AU,i,V,z \ AU,i,y,T2,z(A).
That is, in some cases |(ln!((A ∗ T2)X) + lnhar!(A′U,i,y,T2,z(A))) − (ln!((A ∗
T1)X) + lnhar!(A′U,i,y,T1,z(A)))| ≤ |(ln!((B ∗ T2)X) + lnhar!(A′U,i,y,T2,z(B))) −
(ln!((A ∗ T1)X) + lnhar!(A′U,i,y,T1,z(A)))|. Similarly, two non-circular value
roll lists Jx, Jy ∈ JU,V applied to the same sample, A ∗ JR

x and A ∗ JR
y , will

sometimes have a smaller difference in the sum of alignment-bounded lifted
iso-transform errors if they intersect, set(Jx) ∩ set(Jy) 6= ∅.

In section ‘Substrate structures’, above, it is shown that the non-overlapping
substrate transforms set, TU,V,n, can be constructed from linear fuds where
the first transform is a non-overlapping substrate self-cartesian transform,
TU,V,c ∩ TU,V,n, and the subsequent transforms are self substrate decremented
transforms, TU,W,− ∩ TU,W,n,s. In turn, the linear fuds of self substrate decre-
mented transforms correspond bijectively to the non-circular unique-source
value roll lists, JU,V,− ⊂ JU,V .

A non-overlapping transform T ∈ TU,f,1, where und(T ) = V and ¬overlap(T ),
is such that the formal histogram is independent, AX ∗ T = (AX ∗ T )X, but
does not necessarily imply that the formal is abstract, AX∗T = (AX∗T )X ⇐=
AX ∗ T = (A ∗ T )X. Therefore, even if the independent is integral, AX ∈ Ai,
the transform, T , does not necessarily satisfy the constraint required so that
the negative logarithm lifted independent-sample-distributed iso-transform-
independent quasi-conditional dependent multinomial probability is bounded
by the derived alignment, algn(A ∗ T ).

Even where the non-overlapping transform is a non-overlapping substrate
self-cartesian transform, T ∈ TU,V,c∩TU,V,n, it is not necessarily the case that
the formal is abstract. However, in the special case where the transform is
the singleton self substrate self-cartesian transform, {T} = TU,V,c ∩ TU,V,n,s,
it is then a value full functional transform, T = {{v}CS{}V T : v ∈ V }T, and
hence the formal equals the abstract, AX ∗ T = (A ∗ T )X.

In the case where a non-overlapping transform, ¬overlap(T ), is mono-derived-
variate, |der(T )| = 1, then the derived histogram is necessarily indepen-
dent, A ∗ T = (A ∗ T )X. In the case where the formal also equals the
abstract, AX ∗ T = (A ∗ T )X, the derived histogram must be purely formal,
A ∗ T = (A ∗ T )X = AX ∗ T . In any case both the derived and formal have
zero alignment, algn(A ∗ T ) = algn(AX ∗ T ) = 0.

As shown above, value roll transforms, which correspond to self substrate
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decremented transforms, are such that the formal equals the abstract. So
a non-overlapping transform that can be constructed from a linear fud of
the value full functional transform, TU,V,c ∩ TU,V,n,s, followed by sequence of
self substrate decremented transforms, TU,W,− ∩ TU,W,n,s, must also be such
that the formal equals the abstract. This is because in this case the non-
overlapping transform is a self non-overlapping substrate transform, ∀T ∈
TU,V,n,s (AX ∗ T = (A ∗ T )X).

4.19 Substrate structures alignment

Some of the conjectures of approximations and relations between variables
stated in the previous discussion of alignment may be formalised in terms of
the statistics of real-valued functions on a support of distinct geometry sized
cardinal substrate histograms. The set of sized cardinal substrate histograms
Az, defined above in section ‘Distinct geometry sized cardinal substrate his-
tograms’, is the set of complete integral cardinal substrate histograms of size
z and dimension less than or equal to the size such that the independent is
completely effective

Az = {A : A ∈ Ac ∩ Ai, size(A) = z, |VA| ≤ z, AU = AXF = AC}

Each substrate histogram A ∈ Az has |VA|!
∏

w∈VA |UA(w)|! cardinal sub-
strate permutations. These frame mappings partition the substrate histograms
into equivalence classes having the same geometry. Let Pz be the partition,
Pz ∈ B(Az), such that the components of Pz are the equivalence classes by
cardinal substrate permutation, ∀C ∈ Pz ∀A ∈ C (|C| = |VA|!

∏
w∈VA |UA(w)|).

Each of the substrate histograms in a component of Pz, that are equivalent by
cardinal substrate permutation, have the same alignment, ∀C ∈ Pz ∀A,B ∈
C (algn(A) = algn(B)) where algn = alignment.

If the substrate histograms are partitioned, for example to analyse corre-
lations grouped by low or high alignment, then the partition should be a
parent partition of Pz. That is, the substrate histograms partition should be
independent of cardinal substrate permutation.

The central moment functions of the renormalised geometry-weighted prob-
ability function, R̂z, that operate on real-valued functions of the sized cardinal
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substrate histograms, Az → R, are defined

ex(z)(F ) := expected(R̂z)(F )

var(z)(F ) := variance(R̂z)(F )

cov(z)(F,G) := covariance(R̂z)(F,G)

corr(z)(F,G) := correlation(R̂z)(F,G)

where

R̂z = normalise({(A, 1

|VA|!
∏

w∈VA |UA(w)|!
) : A ∈ dom(F )}) ∈ P

4.19.1 Iso-independent conditional

Define the subset of the sized cardinal substrate histograms, Az, for which
the independent, AX, is integral, and therefore also a substrate histogram, as
the integral-independent substrate histograms,

Az,xi = {A : A ∈ Az, AX ∈ Ai} = {A : A,AX ∈ Az} ⊂ Az

Define the alignment substrate function for some size z, Xz,a ∈ Az → R,
as

Xz,a = {(A, algn(A)) : A ∈ Az}

This may be equally be expressed as the negative logarithm independent-
sample-distributed relative dependent multinomial probability density substrate
function

Xz,a = {(A,− ln
mpdf(UA)(AX, z)(A)

mpdf(UA)(AX, z)(AX)
) : A ∈ Az}

where for some (E, z) ∈ AU ×Q≥0 the multinomial probability density func-
tion, mpdf(U)(E, z) ∈ AU,V,z → R≥0, is defined

mpdf(U)(E, z)(A) :=
Γ!z∏

S∈AS Γ!AS

∏
S∈AS

(
ES
zE

)AS

Let the subset of the alignment substrate function for which the independent
is integral, AX ∈ Ai, be defined the alignment integral-independent substrate
function, Xz,xi,a ∈ Az,xi → ln Q>0, as

Xz,xi,a = filter(Az,xi, Xz,a) = {(A, algn(A)) : A ∈ Az, AX ∈ Ai} ⊂ Xz,a
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which may be be expressed in terms of the generalised multinomial prob-
ability distribution as the independent-sample-distributed relative dependent
multinomial space substrate function

Xz,xi,a = {(A,− ln
Q̂m,UA

(AX, z)(A)

Q̂m,UA
(AX, z)(AX)

) : A ∈ Az,xi}

where for some (E, z) ∈ AU × N the generalised multinomial probability
distribution Q̂m,U(E, z) ∈ (AU,i,V,z → Q≥0) ∩ P is defined

Q̂m,U(E, z)(A) :=
z!∏

S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

Define the independent-sample-distributed iso-independent conditional de-
pendent multinomial space substrate function for some size z, Xz,y ∈ Az →
ln Q>0, as

Xz,y = {(A,− ln
Q̂m,UA

(AX, z)(A)∑
B∈Y −1

UA,i,VA,z(AX) Q̂m,UA
(AX, z)(B)

) : A ∈ Az}

where the integral iso-independent function, YU,i,V,z ∈ AU,i,V,z → AU,V,z, is
defined

YU,i,V,z = {(A,AX) : A ∈ AU,i,V,z} ⊂ YU,V,z ⊂ independent

In the case where the independent is integral, AX ∈ Ai, the independent-
sample-distributed iso-independent conditional dependent multinomial space,
Xz,y(A), is the alignment-bounded iso-independent space,(

Xz,y(A) : AX ∈ Ai

)
=

− ln
Q̂m,UA

(AX, z)(A)∑
B∈Y −1

UA,i,VA,z(AX) Q̂m,UA
(AX, z)(B)

: AX ∈ Ai


= algn(A) + ln

∑
B∈Y −1

UA,i,VA,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

As shown above, in ‘Alignment and conditional probability’, given the min-
imum alignment conjecture, the alignment-bounded iso-independent space is
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bounded

algn(A)

≤ algn(A) + ln
∑

B∈Y −1
UA,i,VA,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

≤ algn(A) + ln |Y −1
UA,i,VA,z

(AX)|

Therefore the independent-sample-distributed iso-independent conditional de-
pendent multinomial space integral-independent substrate function, defined
Xz,xi,y = filter(Az,xi, Xz,y) ⊂ Xz,y, also known as the alignment-bounded
iso-independent space substrate function, is correlated with the alignment
integral-independent substrate function, Xz,xi,a,

∀z ∈ N>0 (cov(z)(Xz,xi,y, Xz,xi,a) ≥ 0)

The alignment is an underestimate of the alignment-bounded iso-independent
space and hence the expected alignment must be less than or equal to the
expected alignment-bounded iso-independent space for all sizes of substrate
histograms

∀z ∈ N>0 (ex(z)(Xz,xi,y) ≥ ex(z)(Xz,xi,a))

This is derived from the expected alignment-bounded iso-independent error

∀z ∈ N>0 (ex(z)(Xz,xi,y −Xz,xi,a) ≥ 0)

where the alignment-bounded iso-independent error is

Xz,xi,y(A)−Xz,xi,a(A) = ln
∑

B∈Y −1
UA,i,VA,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

The alignment-bounded iso-independent error increases with size

∀z1, z2 ∈ N>0 (z2 > z1 =⇒ ex(z2)(Xz2,xi,y−Xz2,xi,a) ≥ ex(z1)(Xz1,xi,y−Xz1,xi,a))

The alignment-bounded iso-independent error varies with volume

∀z ∈ N>0 (cov(z)(Xz,xi,y −Xz,xi,a, {(A, |AC|) : A ∈ Az}) ≥ 0)

The alignment-bounded iso-independent error varies with valency entropy for
given volume

∀z ∈ N>0 (cov(z)(Xz,xi,y −Xz,xi,a, Xz,h,U) ≥ 0)
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where Xz,h,U = {(A, entropy({(w, |UA(w)|) : w ∈ VA})/|AC|) : A ∈ Az}.

Conjecture that the alignment-bounded iso-independent error varies with the
entropy of the independent

∀z ∈ N>0 (cov(z)(Xz,xi,y −Xz,xi,a, Xz,h,x) ≥ 0)

where Xz,h,x = {(A, entropy(AX)) : A ∈ Az}.

Therefore conjecture that the alignment-bounded iso-independent error varies
with the alignment

∀z ∈ N>0 (cov(z)(Xz,xi,y −Xz,xi,a, Xz,xi,a) ≥ 0)

but that overall the alignment-bounded iso-independent error ratio varies
against the alignment

∀z ∈ N>0 (cov(z)((Xz,xi,y −Xz,xi,a)/Xz,xi,a, Xz,xi,a) ≤ 0)

where the alignment-bounded iso-independent error ratio is

Xz,xi,y(A)−Xz,xi,a(A)

Xz,xi,a(A)
=

ln
∑

B∈Y −1
UA,i,VA,z(AX)

∏
S∈AXS AX

S !∏
S∈BS BS!

 /algn(A)

which is defined for non-independent sample, A 6= AX.

Conjecture that the correlation between the alignment-bounded iso inde-
pendent space substrate function, Xz,xi,y, and the alignment integral indepen-
dent substrate function, Xz,xi,a, can be extended from the integral-independent
substrate histograms, Az,xi, to all substrate histograms, Az. That is, con-
jecture that the independent-sample-distributed iso-independent conditional
dependent multinomial space substrate function, Xz,y, and the alignment sub-
strate function, Xz,a, are also correlated,

∀z ∈ N>0 (cov(z)(Xz,y, Xz,a) ≥ 0)

Further, conjecture that the independent-sample-distributed iso-independent
conditional dependent multinomial space error, Xz,y(A)−Xz,a(A), increases
with size,

∀z1, z2 ∈ N>0 (z2 > z1 =⇒ ex(z2)(Xz2,y −Xz2,a) ≥ ex(z1)(Xz1,y −Xz1,a))
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varies with volume,

∀z ∈ N>0 (cov(z)(Xz,y −Xz,a, {(A, |AC|) : A ∈ Az}) ≥ 0)

varies with valency entropy for given volume,

∀z ∈ N>0 (cov(z)(Xz,y −Xz,a, Xz,h,U) ≥ 0)

varies with the entropy of the independent,

∀z ∈ N>0 (cov(z)(Xz,y −Xz,a, Xz,h,x) ≥ 0)

and varies with the alignment,

∀z ∈ N>0 (cov(z)(Xz,y −Xz,a, Xz,a) ≥ 0)

Conjecture that the independent-sample-distributed iso-independent condi-
tional dependent multinomial space error ratio, (Xz,y(A)−Xz,a(A))/Xz,a(A),
varies against the alignment

∀z ∈ N>0 (cov(z)((Xz,y −Xz,a)/Xz,a, Xz,a) ≤ 0)

However, although there is a correlation between the independent-sample-
distributed iso-independent conditional dependent multinomial space substrate
function, Xz,y, and the alignment substrate function, Xz,a, the correlation is
less than for the subset where the independent is integral,

∀z ∈ N≥t (corr(z)(Xz,xi,y, Xz,xi,a) ≥ corr(z)(Xz,y, Xz,a))

where threshold t ∈ N>0 is the minimum size such that the variances are non-
zero, ∀z ∈ N≥t (var(z)(Xz,xi,y) > 0 ∧ var(z)(Xz,xi,a) > 0). The correlation is
lower because the independent-sample-distributed iso-independent conditional
dependent multinomial space,

Xz,y(A) = − ln
Q̂m,UA

(AX, z)(A)∑
B∈Y −1

UA,i,VA,z(AX) Q̂m,UA
(AX, z)(B)

is not bounded by the alignment, Xz,a(A) = algn(A). First, the upper bound,
algn(A) + ln |Y −1

UA,i,VA,z
(AX)|, of the alignment-bounded iso-independent space,

Xz,xi,y(A) = (Xz,y(A) : AX ∈ Ai), may be exceeded because non-integral
independents are excluded from the minimum alignment conjecture. So, in
some cases the alignment of an iso-independent histogram B ∈ Y −1

UA,i,VA,z
(AX)

may be negative

algn(B) < 0 =⇒
∏

S∈AXS Γ!A
X
S∏

S∈BS BS!
> 1
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and thus in some cases

ln
∑

B∈Y −1
UA,i,VA,z(AX)

∏
S∈AXS Γ!A

X
S∏

S∈BS BS!
> ln |Y −1

UA,i,VA,z
(AX)|

Second, the lower bound, algn(A), of the alignment-bounded iso-independent
space, Xz,xi,y(A), may not be reached in some other cases because the non-
integral independent is not an iso-independent, AX /∈ Y −1

UA,i,VA,z
(AX), and

hence there does not necessarily exist a term in

∑
B∈Y −1

UA,i,VA,z(AX)

∏
S∈AXS Γ!A

X
S∏

S∈BS BS!

which is equal to 1. Thus in some cases

ln
∑

B∈Y −1
UA,i,VA,z(AX)

∏
S∈AXS Γ!A

X
S∏

S∈BS BS!
< 0

4.19.2 Iso-transform-independent conditional

Define the independent-sample-distributed iso-transform-independent con-
ditional dependent multinomial space substrate transform search set, for some
size z, Xz,T,y ∈ Az → (Tf → ln Q>0), and for some A ∈ Az define Xz,T,y(A) ∈
TUA,VA → ln Q>0 as

Xz,T,y(A) = {(T,− ln
Q̂m,UA

(AX, z)(A)∑
B∈AUA,i,y,T,z(A) Q̂m,UA

(AX, z)(B)
) : T ∈ TUA,VA}

where the integral iso-transform-independents is abbreviated

AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

= {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

and the substrate transforms set is defined

TU,V = {FT : F ⊆ {PT : P ∈ B(V CS)}}

In the case where (i) the independent is integral, AX ∈ Ai, and (ii) the
formal independent histogram equals the abstract histogram, (AX ∗ T )X =
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(A ∗ T )X, which together imply that the independent is in the integral iso-
transform-independents,

(AX ∈ Ai) ∧ ((AX ∗ T )X = (A ∗ T )X) =⇒ AX ∈ AUA,i,y,T,z(A)

the independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space can be expressed in terms of the alignment,

(Xz,T,y(A)(T ) : AX ∈ Ai, (AX ∗ T )X = (A ∗ T )X)

=

(
− ln

Q̂m,UA
(AX, z)(A)∑

B∈AUA,i,y,T,z(A) Q̂m,UA
(AX, z)(B)

: AX ∈ Ai, (AX ∗ T )X = (A ∗ T )X

)

= algn(A) + ln
∑

B∈AUA,i,y,T,z(A)

Q̂m,UA
(AX, z)(B)

Q̂m,UA
(AX, z)(AX)

As conjectured above, in ‘Derived alignment and conditional probability’,
given the integral mean multinomial probability distribution conjecture, the
independent-sample-distributed iso-transform-independent conditional depen-
dent multinomial space is bounded,

algn(A)

≤ algn(A) + ln
∑

B∈AUA,i,y,T,z(A)

Q̂m,UA
(AX, z)(B)

Q̂m,UA
(AX, z)(AX)

≤ algn(A) + ln |AUA,i,y,T,z(A)|

Let the independent-sample-distributed iso-transform-independent conditional
dependent multinomial space integral-independent substrate independent-formal-
abstract transform search set, which is constrained such that (i) AX ∈ Ai and
(ii) (AX ∗ T )X = (A ∗ T )X, be defined Xz,xi,T,y,xfa ∈ Az,xi → (Tf → ln Q>0),
and for some A ∈ Az,xi define Xz,xi,T,y,xfa(A) ∈ TUA,VA → ln Q>0 as

Xz,xi,T,y,xfa(A) = {(T, y) : (T, y) ∈ Xz,T,y(A), AX ∈ Ai, (AX ∗ T )X = (A ∗ T )X}

Conjecture that, given these constraints, the independent-sample-distributed
iso-transform-independent conditional dependent multinomial space integral-
independent substrate independent-formal-abstract transform minimum func-
tion, minr ◦Xz,xi,T,y,xfa, is correlated with the alignment integral-independent
substrate function, Xz,xi,a,

∀z ∈ N>0 (cov(z)(minr ◦Xz,xi,T,y,xfa, Xz,xi,a) ≥ 0)

As shown in section ‘Derived alignment and conditional probability’, above,
the iso-transform-independent conditional dependent multinomial probability
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for the self partition transform case, for example Ts = V
CS{}T
A ∈ TUA,VA ,

or the value full functional transform case, for example Ts = {{w}CS{}T :
w ∈ VA}T ∈ TUA,VA , is greater than or equal to that for the unary partition
transform case, Tu = {V CS

A }T ∈ TUA,VA ,

Q̂m,U(AX, z)(A)∑
B∈AU,i,y,Ts,z(A) Q̂m,U(AX, z)(B)

≥ Q̂m,U(AX, z)(A)∑
B∈AU,i,y,Tu,z(A) Q̂m,U(AX, z)(B)

and hence the independent-sample-distributed iso-transform-independent con-
ditional dependent multinomial space of the self partition case, Ts, is less than
or equal to that of the unary partition transform case, Tu,

− ln
Q̂m,U(AX, z)(A)∑

B∈AU,i,y,Ts,z(A) Q̂m,U(AX, z)(B)
≤ − ln

Q̂m,U(AX, z)(A)∑
B∈AU,i,y,Tu,z(A) Q̂m,U(AX, z)(B)

So, to the degree that the minimum transforms, mind(Xz,xi,T,y,xfa(A)) ⊂
TUA,VA , tend to be closer to self partition transforms, Ts, rather than to
the unary partition transforms, Tu, the correlation between minr◦Xz,xi,T,y,xfa

and Xz,xi,a is similar to that between Xz,xi,y and Xz,xi,a. In the special case
that the self partition is a minimum transform, Ts ∈ mind(Xz,xi,T,y,xfa(A)),
the set of integral iso-transform-independents equals the set of integral iso-
independents, AUA,i,y,Ts,z(A) = Y −1

UA,i,VA,z
(AX) and hence

Ts ∈ mind(Xz,xi,T,y,xfa(A)) =⇒
minr(Xz,xi,T,y,xfa(A)) = Xz,xi,T,y,xfa(A)(Ts) = Xz,xi,y(A)

Consider, in contrast, the transform maximum function. The independent-
sample-distributed iso-transform-independent conditional dependent multino-
mial probability

Q̂m,UA
(AX, z)(A)∑

B∈AUA,i,y,T,z(A) Q̂m,UA
(AX, z)(B)

is always least where the transform is a unary partition, Tu = {V CS
A }T ∈

TUA,VA , because the set of integral iso-transform-independents equals the in-
tegral congruent support, AUA,i,y,Tu,z(A) = AUA,i,VA,z. The maximum coun-
terpart, the independent-sample-distributed iso-transform-independent condi-
tional dependent multinomial space integral-independent substrate independent-
formal-abstract transform maximum function, maxr◦Xz,xi,T,y,xfa, is such that
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Tu ∈ maxd(Xz,xi,T,y,xfa(A)). The maximum function simply equals the gen-
eralised multinomial space,

maxr(Xz,xi,T,y,xfa(A)) = − ln Q̂m,UA
(AX, z)(A)

= − ln
z!∏

S∈AS AS!

∏
S∈AS

(
AX
S

z

)AS

=
∑
S∈AS

lnAS!−
∑
S∈AS

AS lnAX
S + z ln z − ln z!

= algn(A)−
∑
S∈AS

AS lnAX
S +

∑
S∈AXS

lnAX
S ! + z ln z − ln z!

Therefore it is correlated with the alignment integral-independent substrate
function

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,xfa, Xz,xi,a) ≥ 0)

but the correlation is lower

∀z ∈ N≥t (corr(z)(minr◦Xz,xi,T,y,xfa, Xz,xi,a) ≥ corr(z)(maxr◦Xz,xi,T,y,xfa, Xz,xi,a))

where the threshold t ∈ N>0 is the minimum size such that the variances are
non-zero, ∀z ∈ N≥t ∀F ∈ {minr◦Xz,xi,T,y,xfa,maxr◦Xz,xi,T,y,xfa, Xz,xi,a} (var(z)(F ) >
0).

Conjecture that the transform minimum function correlation between the
independent-sample-distributed iso-transform-independent conditional depen-
dent multinomial space integral-independent substrate independent-formal-
abstract transform minimum function, minr ◦Xz,xi,T,y,xfa, and the alignment
integral-independent substrate function, Xz,xi,a, is less than the corresponding
correlation between the alignment-bounded iso-independent space substrate
function, Xz,xi,y, and the alignment integral-independent substrate function,
Xz,xi,a

∀z ∈ N≥t (corr(z)(Xz,xi,y, Xz,xi,a) ≥ corr(z)(minr ◦Xz,xi,T,y,xfa, Xz,xi,a))

where the threshold t ∈ N>0 is the minimum size such that the variances are
non-zero, ∀z ∈ N≥t ∀F ∈ {minr◦Xz,xi,T,y,xfa, Xz,xi,y, Xz,xi,a} (var(z)(F ) > 0).

Extending the transform minimum function correlation to the cases where
the independent is not necessarily integral and hence not in the integral iso-
transform-independents, conjecture that the independent-sample-distributed
iso-transform-independent conditional dependent multinomial space substrate
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transform minimum function, minr ◦Xz,T,y, is correlated with the alignment
substrate function,

∀z ∈ N>0 (cov(z)(minr ◦Xz,T,y, Xz,a) ≥ 0)

but conjecture that this correlation is less than the corresponding constrained
correlation

∀z ∈ N≥t (corr(z)(minr ◦Xz,xi,T,y,xfa, Xz,xi,a) ≥ corr(z)(minr ◦Xz,T,y, Xz,a))

above the variance threshold size t.

Also conjecture that this correlation is less than the corresponding correla-
tion between the independent-sample-distributed iso-independent conditional
dependent multinomial space substrate function, Xz,y, and the alignment sub-
strate function, Xz,a

∀z ∈ N≥t (corr(z)(Xz,y, Xz,a) ≥ corr(z)(minr ◦Xz,T,y, Xz,a))

above the variance threshold size t.

Consider a stricter case of the independent-sample-distributed iso-transform-
independent conditional dependent multinomial space integral-independent
substrate independent-formal-abstract transform search set, Xz,xi,T,y,xfa, which
is also constrained such that the transforms are ideal. That is, given con-
straints (i) AX ∈ Ai, (ii) (AX ∗ T )X = (A ∗ T )X, and (iii) A = A ∗ T ∗ T †A,
define the independent-sample-distributed iso-transform-independent condi-
tional dependent multinomial space integral-independent substrate ideal inde-
pendent formal-abstract transform search set Xz,xi,T,y,xfa,j ∈ Az,xi → (Tf →
ln Q>0), and for some A ∈ Az,xi define Xz,xi,T,y,xfa,j(A) ∈ TUA,VA → ln Q>0 as

Xz,xi,T,y,xfa,j(A) = {(T, y) : (T, y) ∈ Xz,xi,T,y,xfa(A), A = A ∗ T ∗ T †A}

Conjecture that the independent-sample-distributed iso-transform-independent
conditional dependent multinomial space integral-independent substrate ideal
independent-formal-abstract transform maximum function, maxr◦Xz,xi,T,y,xfa,j,
is better correlated with the alignment integral-independent substrate func-
tion, Xz,xi,a, than the case where non-ideal transforms are allowed

∀z ∈ N≥t (corr(z)(maxr◦Xz,xi,T,y,xfa,j, Xz,xi,a) ≥ corr(z)(maxr◦Xz,xi,T,y,xfa, Xz,xi,a))

above the variance threshold size t. Here it is no longer the case that the
unary partition transform, Tu = {V CS

A }T, necessarily has the minimum prob-
ability and hence the maximum space. It is only for the independent sample,
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A = AX, that the unary partition transform is ideal, ideal(AX, Tu).

Extending the ideal transform search set to the cases where the indepen-
dent is not necessarily integral and hence not in the integral iso-transform-
independents, define the independent-sample-distributed iso-transform inde-
pendent conditional dependent multinomial space substrate ideal transform
search set Xz,T,y,j ∈ Az → (Tf → ln Q>0), and for some A ∈ Az define
Xz,T,y,j(A) ∈ TUA,VA → ln Q>0 as

Xz,T,y,j(A) = {(T, y) : (T, y) ∈ Xz,T,y(A), A = A ∗ T ∗ T †A}

= {(T,− ln
Q̂m,UA

(AX, z)(A)∑
B∈AUA,i,y,T,z(A) Q̂m,UA

(AX, z)(B)
) :

T ∈ TUA,VA , A = A ∗ T ∗ T †A}

Conjecture that the independent-sample-distributed iso-transform-independent
conditional dependent multinomial space substrate ideal transform maximum
function, maxr ◦Xz,T,y,j, is correlated with the alignment substrate function,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,T,y,j, Xz,a) ≥ 0)

Certainly it is still the case that where the maximum transform is a self par-
tition transform or a value full functional, the set of integral iso-transform-
independents equals the set of integral iso-independents, AUA,i,y,Ts,z(A) =
Y −1
UA,i,VA,z

(AX), and so Xz,T,y,j(A)(Ts) = Xz,y(A). Even so, conjecture that this
correlation is less than the corresponding correlation between the independent-
sample-distributed iso-independent conditional dependent multinomial space
substrate function, Xz,y, and the alignment substrate function, Xz,a

∀z ∈ N≥t (corr(z)(Xz,y, Xz,a) ≥ corr(z)(maxr ◦Xz,T,y,j, Xz,a))

above the variance threshold size t.

Alignment, Xz,a, by itself is a weaker proxy for the iso-transform indepen-
dent case, maxr ◦ Xz,T,y,j, than for the iso-independent case, Xz,y, because
the alignment expression does not depend on transform. To obtain a better
correlated expression in terms of derived alignment, idealised alignment and
actualised alignment, consider the lifted case.

Define the derived alignment substrate transform search set, for some size
z, X ′z,T,a ∈ Az → (Tf → R), and for some A ∈ Az define X ′z,T,a(A) ∈
TUA,VA → R as

X ′z,T,a(A) = {(T, algn(A ∗ T )) : T ∈ TUA,VA}
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In terms of the multinomial probability density function, mpdf(U)(E, z) ∈
AU,V,z → R≥0, the derived alignment substrate transform search set is

X ′z,T,a(A) = {(T,− ln
mpdf(UA)((A ∗ T )X, z)(A ∗ T )

mpdf(UA)((A ∗ T )X, z)((A ∗ T )X)
) : T ∈ TUA,VA}

Define the derived alignment integral-independent substrate transform search
set as X ′z,xi,T,a = filter(Az,xi, X

′
z,T,a) ⊂ X ′z,T,a, which is such that X ′z,xi,T,a ∈

Az,xi → (Tf → R).

Define the derived alignment integral-independent substrate formal-abstract
transform search set, which is constrained such that (i) the independent is
integral, AX ∈ Ai and (ii) the formal histogram equals the abstract histogram,
AX ∗ T = (A ∗ T )X, for some size z, X ′z,xi,T,a,fa ∈ Az,xi → (Tf → ln Q>0), and
for some A ∈ Az,xi define X ′z,xi,T,a,fa(A) ∈ TUA,VA → ln Q>0 as

X ′z,xi,T,a,fa(A) = {(T, algn(A ∗ T )) : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X}

= {(T, a) : (T, a) ∈ X ′z,T,a(A), AX ∗ T = (A ∗ T )X}

The independent is integral and the formal histogram equals the abstract
histogram, so the independent derived histogram, or abstract histogram, must
be integral, (AX ∈ Ai) ∧ (AX ∗ T = (A ∗ T )X) =⇒ (A ∗ T )X ∈ Ai. Thus the
derived alignment integral-independent substrate formal-abstract transform
search set can be defined in terms of the rational generalised multinomial
probability distribution Q̂m,U(E, z) ∈ (AU,i,V,z → Q≥0) ∩ P

X ′z,xi,T,a,fa(A) =

{(T,− ln
Q̂m,UA

((A ∗ T )X, z)(A ∗ T )

Q̂m,UA
((A ∗ T )X, z)((A ∗ T )X)

) : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X}

The derived alignment integral-independent substrate formal-abstract trans-
form search set can also be defined as the lifted alignment integral-independent
substrate formal-abstract transform search set

X ′z,xi,T,a,fa(A) =

{(T,− ln
Q̂m,UA

(AX ∗ T, z)(A ∗ T )

Q̂m,UA
(AX ∗ T, z)(AX ∗ T )

) : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X}

because lifted equals derived when the formal histogram equals the abstract
histogram, AX ∗ T = (A ∗ T )X =⇒ (A ∗ T = (A ∗ T ))∧ (AX ∗ T = (A ∗ T )X).
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Define the derived alignment integral-independent substrate ideal formal-abstract
transform search set, which is additionally constrained such that (iii) the
transform is ideal, A = A ∗ T ∗ T †A, for some size z, X ′z,xi,T,a,fa,j ∈ Az,xi →
(Tf → ln Q>0), and for some A ∈ Az,xi define X ′z,xi,T,a,fa,j(A) ∈ TUA,VA →
ln Q>0 as

X ′z,xi,T,a,fa,j(A) = {(T, a) : (T, a) ∈ X ′z,xi,T,a,fa(A), A = A ∗ T ∗ T †A}

Define the independent-sample-distributed iso-transform-independent con-
ditional dependent multinomial space integral-independent substrate formal-
abstract transform search set, which is constrained such that (i) the indepen-
dent is integral, AX ∈ Ai, and (ii) the formal histogram equals the abstract
histogram, AX ∗ T = (A ∗ T )X, for some size z, Xz,xi,T,y,fa ∈ Az,xi → (Tf →
ln Q>0), and for some A ∈ Az,xi define Xz,xi,T,y,fa(A) ∈ TUA,VA → ln Q>0 as

Xz,xi,T,y,fa(A) = {(T,Xz,T,y(A)(T )) : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X}

= {(T, y) : (T, y) ∈ Xz,T,y(A), AX ∗ T = (A ∗ T )X}

The independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space integral-independent substrate formal-abstract trans-
form search set, Xz,xi,T,y,fa(A), is a subset of the independent-sample-distributed
iso-transform-independent conditional dependent multinomial space integral-
independent substrate independent-formal-abstract transform search set,

Xz,xi,T,y,fa(A) ⊆ Xz,xi,T,y,xfa(A)

because the constraints of (i) integral independent, AX ∈ Ai and (ii) for-
mal histogram equals the abstract histogram, AX ∗ T = (A ∗ T )X, imply
that the formal independent histogram equals the abstract histogram, (AX ∗
T )X = (A ∗ T )X, and the independent is an iso-transform-independent, AX ∈
AUA,i,y,T,z(A).

The independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space integral-independent substrate formal-abstract trans-
form search set, Xz,xi,T,y,fa, can be abbreviated to the alignment-bounded iso-
transform space transform search set,

Xz,xi,T,y,fa(A)(T )

= (Xz,T,y(A)(T ) : AX ∈ Ai, A
X ∗ T = (A ∗ T )X)

=

(
− ln

Q̂m,UA
(AX, z)(A)∑

B∈AUA,i,y,T,z(A) Q̂m,UA
(AX, z)(B)

: AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
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Note that ‘alignment-bounded ’ is a misnomer. That is, the alignment-bounded
iso-transform space, Xz,xi,T,y,fa(A)(T ), is not strictly bounded by alignment or
derived alignment. However, its lifted counterpart, X ′z,xi,T,y,fa(A)(T ), below,
is bounded by derived alignment under the same constraints.

Define the independent-sample-distributed iso-transform-independent con-
ditional dependent multinomial space integral-independent substrate ideal formal-
abstract transform search set, which is additionally constrained such that (iii)
the transform is ideal, A = A∗T ∗T †A, for some size z, Xz,xi,T,y,fa,j ∈ Az,xi →
(Tf → ln Q>0), and for some A ∈ Az,xi define Xz,xi,T,y,fa,j(A) ∈ TUA,VA →
ln Q>0 as

Xz,xi,T,y,fa,j(A) = {(T, y) : (T, y) ∈ Xz,xi,T,y,fa(A), A = A ∗ T ∗ T †A}

As for the ideal-agnostic case, Xz,xi,T,y,fa(A), the independent-sample-distributed
iso-transform-independent conditional dependent multinomial space integral-
independent substrate ideal formal-abstract transform search set, Xz,xi,T,y,fa,j(A),
is a subset of the corresponding ideal independent-formal-abstract transform
search set, Xz,xi,T,y,fa,j(A) ⊆ Xz,xi,T,y,xfa,j(A).

The independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space integral-independent substrate ideal formal-abstract
transform search set, Xz,xi,T,y,fa,j, can be abbreviated to the alignment-bounded
iso-transform space ideal transform search set,

Xz,xi,T,y,fa,j(A)(T )

= (Xz,T,y(A)(T ) : AX ∈ Ai, A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A ∈ Ai)

=

(
− ln

Q̂m,UA
(AX, z)(A ∗ T ∗ T †A)∑

B∈AUA,i,y,T,z(A) Q̂m,UA
(AX, z)(B)

:

AX ∈ Ai, A
X ∗ T = (A ∗ T )X, A ∗ T ∗ T †A ∈ Ai

)

Again, this is a misnomer. That is, the alignment-bounded iso-transform
idealisation space, Xz,xi,T,y,fa,j(A)(T ), is not strictly bounded by alignment or
derived alignment. However, its lifted counterpart, X ′z,xi,T,y,fa,j(A)(T ), below,
is bounded by derived alignment under the same constraints.

Define the lifted independent-sample-distributed iso-transform-independent
quasi-conditional dependent multinomial space substrate transform search set,
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for some size z, X ′z,T,y ∈ Az → (Tf → ln Q>0), and for some A ∈ Az define
X ′z,T,y(A) ∈ TUA,VA → ln Q>0 as

X ′z,T,y(A) = {(T,− ln
Q̂m,UA

(AX ∗ T, z)(A ∗ T )∑
B′∈A′UA,i,y,T,z(A) Q̂m,UA

(AX ∗ T, z)(B′)
) : T ∈ TUA,VA}

where the lifted integral iso-transform-independents is abbreviated

A′U,i,y,T,z(A) = {B ∗ T : B ∈ AU,i,y,T,z(A)}
= {B ∗ T : B ∈ Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X))}

= {B ∗ T : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

In the case where (i) the independent is integral, AX ∈ Ai, and (ii) the
formal histogram equals the abstract histogram, AX ∗T = (A ∗T )X, the lifted
independent-sample-distributed iso-transform-independent quasi-conditional
dependent multinomial space, X ′z,T,y(A)(T ), is the alignment-bounded lifted
iso-transform space

(X ′z,T,y(A)(T ) : AX ∈ Ai, A
X ∗ T = (A ∗ T )X)

=

(
− ln

Q̂m,UA
(AX ∗ T, z)(A ∗ T )∑

B′∈A′UA,i,y,T,z(A) Q̂m,UA
(AX ∗ T, z)(B′)

:

AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)

=

algn(A ∗ T ) + ln
∑

B′∈A′UA,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!


As shown above, in ‘Derived alignment and conditional probability’, given the
minimum alignment conjecture, the alignment-bounded lifted iso-transform
space is bounded

algn(A ∗ T )

≤

(
− ln

Q̂m,UA
(AX ∗ T, z)(A ∗ T )∑

B′∈A′UA,i,y,T,z(A) Q̂m,UA
(AX ∗ T, z)(B′)

:

AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
≤ algn(A ∗ T ) + ln |A′UA,i,y,T,z(A)|
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So conjecture that the lifted independent-sample-distributed iso-transform-
independent quasi-conditional dependent multinomial space substrate trans-
form maximum function, maxr ◦X ′z,T,y, is correlated with the derived align-
ment substrate transform maximum function, maxr◦X ′z,T,a, when constrained
such that (i) AX ∈ Ai, (ii) AX ∗ T = (A ∗ T )X.

Define the lifted independent-sample-distributed iso-transform-independent
quasi-conditional dependent multinomial space integral-independent substrate
formal-abstract transform search set, also known as the alignment-bounded
lifted iso-transform space transform search set, for some size z, X ′z,xi,T,y,fa ∈
Az,xi → (Tf → ln Q>0), and for some A ∈ Az,xi define X ′z,xi,T,y,fa(A) ∈
TUA,VA → ln Q>0 as

X ′z,xi,T,y,fa(A) = {(T,X ′z,T,y(A)(T )) : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X}

That is,

X ′z,xi,T,y,fa(A)(T ) = (X ′z,T,y(A)(T ) : AX ∈ Ai, A
X ∗ T = (A ∗ T )X)

Then the correlation between the alignment-bounded lifted iso-transform space
transform maximum function, maxr ◦ X ′z,xi,T,y,fa, and the derived alignment
integral-independent substrate formal-abstract transform maximum function,
maxr ◦X ′z,xi,T,a,fa, is such that

∀z ∈ N>0 (cov(z)(maxr ◦X ′z,xi,T,y,fa,maxr ◦X ′z,xi,T,a,fa) ≥ 0)

The derived alignment is an underestimate of the alignment-bounded lifted
iso-transform space and hence the expected maximum derived alignment
must be less than or equal to the expected maximum alignment-bounded
lifted iso-transform space for all sizes of substrate histograms

∀z ∈ N>0 (ex(z)(maxr ◦X ′z,xi,T,y,fa) ≥ ex(z)(maxr ◦X ′z,xi,T,a,fa))

This is derived from the expected maximum alignment-bounded lifted iso-
transform error

∀z ∈ N>0 (ex(z)(maxr ◦X ′z,xi,T,y,fa −maxr ◦X ′z,xi,T,a,fa) ≥ 0)

which is related to the expected average alignment-bounded lifted iso-transform
error

∀z ∈ N>0 (ex(z)(average ◦X ′z,xi,T,y,fa − average ◦X ′z,xi,T,a,fa) ≥ 0)

where the alignment-bounded lifted iso-transform error for substrate trans-
form T ∈ TUA,VA is

X ′z,xi,T,y,fa(A)(T )−X ′z,xi,T,a,fa(A)(T ) = ln
∑

B′∈A′UA,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!
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Now consider the correlation relationship between the alignment-bounded
iso-transform space and its lifted counterpart, the alignment-bounded lifted
iso-transform space. Conjecture that the alignment-bounded lifted iso-transform
space transform maximum function, maxr ◦X ′z,xi,T,y,fa, is correlated with the
corresponding alignment-bounded iso-transform space transform maximum
function, maxr ◦Xz,xi,T,y,fa

∀z ∈ N>0 (cov(z)(maxr ◦X ′z,xi,T,y,fa,maxr ◦Xz,xi,T,y,fa) ≥ 0)

Further, conjecture that the alignment-bounded lifted iso-transform space
transform average function, average ◦X ′z,xi,T,y,fa, is correlated with the corre-
sponding alignment-bounded iso-transform space transform average function,
average ◦Xz,xi,T,y,fa

∀z ∈ N>0 (cov(z)(average ◦X ′z,xi,T,y,fa, average ◦Xz,xi,T,y,fa) ≥ 0)

and that the average function correlation is greater than the maximum func-
tion correlation

∀z ∈ N≥t

(corr(z)(average ◦X ′z,xi,T,y,fa, average ◦Xz,xi,T,y,fa)

≥ corr(z)(maxr ◦X ′z,xi,T,y,fa,maxr ◦Xz,xi,T,y,fa))

above the variance threshold size t.

Noting that the domains of the transform functions are equal,

dom(X ′z,xi,T,y,fa(A)) = dom(Xz,xi,T,y,fa(A))

consider a transform T ∈ dom(Xz,xi,T,y,fa(A)).

If the transform T approximates more closely to the self partition trans-
form, Ts = V

CS{}T
A ∈ TUA,VA , or the value full functional transform, Ts =

{{w}CS{}T : w ∈ VA}T ∈ TUA,VA , than it does to the unary partition trans-
form, Tu = {V CS

A }T ∈ TUA,VA , then the alignment-bounded iso-transform
space is approximately equal to the alignment-bounded lifted iso-transform
space, Xz,xi,T,y,fa(A)(T ) ≈ X ′z,xi,T,y,fa(A)(T ). In the self partition case, Ts, the
set of integral iso-transform-independents is bijective to the set of lifted inte-
gral iso-transform-independents, and so the alignment-bounded iso-transform
space equals the alignment-bounded lifted iso-transform space,

− ln
Q̂m,UA

(AX, z)(A)∑
B∈AUA,i,y,Ts,z(A) Q̂m,UA

(AX, z)(B)

= − ln
Q̂m,UA

(AX ∗ Ts, z)(A ∗ Ts)∑
B′∈A′UA,i,y,Ts,z(A) Q̂m,U(AX ∗ Ts, z)(B′)
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That is, Xz,xi,T,y,fa(A)(Ts) = X ′z,xi,T,y,fa(A)(Ts).

If the transform T approximates more closely to the unary partition trans-
form, Tu, then the relationship between the alignment-bounded lifted iso-
transform space, X ′z,xi,T,y,fa(A)(T ), and the alignment-bounded iso-transform
space, Xz,xi,T,y,fa(A)(T ), is weaker. The unary partition transform, Tu ∈
maxd(Xz,xi,T,y,fa(A)), has the largest alignment-bounded iso-transform space,

Xz,xi,T,y,fa(A)(Tu) = − ln Q̂m,UA
(AX, z)(A), but the alignment-bounded lifted

iso-transform space is zero, X ′z,xi,T,y,fa(A)(Tu) = 0. Thus the maximum func-
tion correlation is lower than the average function correlation. In pluri-valent
cases, the maximum transforms do not intersect,

maxd(Xz,xi,T,y,fa(A)) ∩maxd(X ′z,xi,T,y,fa(A)) = ∅

because Tu /∈ maxd(X ′z,xi,T,y,fa(A)).

In spite of the relatively weak correlation between the alignment-bounded
iso-transform space transform maximum function, maxr ◦Xz,xi,T,y,fa, and its
lifted counterpart, maxr ◦X ′z,xi,T,y,fa, conjecture that the alignment-bounded
iso-transform space transform maximum function, maxr ◦Xz,xi,T,y,fa, is tran-
sitively correlated with the derived alignment integral-independent substrate
formal-abstract transform maximum function, maxr ◦X ′z,xi,T,a,fa,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,maxr ◦X ′z,xi,T,a,fa) ≥ 0)

Define the lifted independent-sample-distributed iso-transform-independent
quasi-conditional dependent multinomial space integral-independent substrate
ideal formal-abstract transform search set, also known as the alignment-
bounded lifted iso-transform space ideal transform search set, which is ad-
ditionally constrained such that (iii) the transform is ideal, A = A ∗ T ∗ T †A,
for some size z, X ′z,xi,T,y,fa,j ∈ Az,xi → (Tf → ln Q>0), and for some A ∈ Az,xi

as X ′z,xi,T,y,fa,j(A) ∈ TUA,VA → ln Q>0 as

X ′z,xi,T,y,fa,j(A) = {(T, y) : (T, y) ∈ X ′z,xi,T,y,fa(A), A = A ∗ T ∗ T †A}

Just as for the ideal-agnostic case, X ′z,xi,T,y,fa, above, there is a correlation
between the alignment-bounded lifted iso-transform space ideal transform
maximum function, maxr ◦ X ′z,xi,T,y,fa,j, and the derived alignment integral-
independent substrate ideal formal-abstract transform maximum function,
maxr ◦X ′z,xi,T,a,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦X ′z,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥ 0)
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But in this ideal case the correlation between the alignment-bounded lifted
iso-transform space ideal transform maximum function, maxr ◦ X ′z,xi,T,y,fa,j,
and the alignment-bounded iso-transform space ideal transform maximum
function, maxr ◦Xz,xi,T,y,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦X ′z,xi,T,y,fa,j,maxr ◦Xz,xi,T,y,fa,j) ≥ 0)

is stronger than for the ideal-agnostic case

∀z ∈ N≥t

(corr(z)(maxr ◦X ′z,xi,T,y,fa,j,maxr ◦Xz,xi,T,y,fa,j)

≥ corr(z)(maxr ◦X ′z,xi,T,y,fa,maxr ◦Xz,xi,T,y,fa))

The reason is that now a transform T ∈ dom(Xz,xi,T,y,fa,j(A)) that approxi-
mates more closely to the unary partition transform, Tu, must be ideal which
is the case only for the subset of substrate histograms that are nearly inde-
pendent, A ≈ AX. So the variance of maxr ◦Xz,xi,T,y,fa,j is less than that for
maxr ◦Xz,xi,T,y,fa

∀z ∈ N>0 (var(z)(maxr ◦Xz,xi,T,y,fa) ≥ var(z)(maxr ◦Xz,xi,T,y,fa,j))

The variance is also conjectured to be lower as a consequence of the ideali-
sation perturbation conjecture. Let integral-independent substrate histogram
A ∈ Az,xi have alignment-bounded iso-transform space ideal maximum trans-
form, Ty ∈ maxd(Xz,xi,T,y,fa,j(A)) ⊂ TUA,VA , which is such that

maxr(Xz,xi,T,y,fa,j(A)) = Xz,T,y(A)(Ty) = Xz,T,y(A ∗ Ty ∗ T †Ay )(Ty)

The idealisation perturbation conjecture states that of all the integral iso-
idealisations, B ∈ Y −1

UA,i,Ty,†,z(A ∗ Ty ∗ T †Ay ), which have the given alignment-
bounded lifted iso-transform space,

B ∗ Ty = A ∗ Ty =⇒ X ′z,T,y(B)(Ty) = X ′z,T,y(A)(Ty)

the integral sample idealisation, B = A∗Ty∗T †Ay = A, has the least alignment-
bounded iso-transform space. The integral iso-idealisations are a subset of the
integral-independent substrate histograms, Y −1

UA,i,Ty,†,z(A ∗ Ty ∗ T †Ay ) ⊂ Az,xi.
According to the idealisation perturbation conjecture, this subset is such that

∀B ∈ Y −1
UA,i,Ty,†,z(A ∗ Ty ∗ T †Ay ) (Xz,T,y(B)(Ty) ≥ Xz,T,y(A)(Ty))

But the iso-independents cannot have the same maximum ideal transform,
B 6= A =⇒ Ty /∈ maxd(Xz,xi,T,y,fa,j(B)). Let the maximum ideal transform
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of the iso-independent B be Tn ∈ maxd(Xz,xi,T,y,fa,j(B)) ⊂ TUB ,VB = TUA,VA .
The set of transforms of B which are such that the alignment-bounded iso-
transform space is greater than the alignment-bounded iso-transform maxi-
mum space of A is

{T : T ∈ dom(Xz,xi,T,y,fa(B)), Xz,T,y(B)(T ) ≥ Xz,T,y(A)(Ty)}

But in order for the maximum transform of B to have greater alignment-
bounded iso-transform space than the alignment-bounded iso-transform max-
imum space of A, Xz,T,y(B)(Tn) ≥ Xz,T,y(A)(Ty), it must be a member of a
subset of these which has cardinality of one less,

Xz,T,y(B)(Tn) ≥ Xz,T,y(A)(Ty) =⇒
Tn ∈ {T : T ∈ dom(Xz,xi,T,y,fa(B)), Xz,T,y(B)(T ) ≥ Xz,T,y(A)(Ty)} \ {Ty}

Thus the maximum transform, Tn, of the iso-independent, B, is weakly con-
strained by the idealisation perturbation conjecture. In the ideal-agnostic
case, by contrast, the maximum transform for iso-independents subset of
the integral-independent substrate histograms is always the unary partition
transform, Tu ∈ maxd(Xz,xi,T,y,fa(B)), and so the ideal-agnostic transform
maximum space correlation is sometimes lower.

Therefore, conjecture that the independent-sample-distributed iso-transform-
independent conditional dependent multinomial space integral-independent
substrate ideal formal-abstract transform maximum function, also known as
the alignment-bounded iso-transform space ideal transform maximum func-
tion, maxr ◦ Xz,xi,T,y,fa,j, is transitively correlated with the derived align-
ment integral-independent substrate ideal formal-abstract transform maxi-
mum function, maxr ◦X ′z,xi,T,a,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥ 0)

Conjecture, further, that this correlation is greater than the ideal-agnostic
correlation

∀z ∈ N≥t

(corr(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j)

≥ corr(z)(maxr ◦Xz,xi,T,y,fa,maxr ◦X ′z,xi,T,a,fa))

above the variance threshold size t.
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4.20 Computation of alignment

4.20.1 Alignmenter

Given a histogram A ∈ A consider the computation time to calculate its
alignment alignment(A). Let Ia = alignmenter ∈ computers, domain(Ia) =
A, range(Ia) = Q, and apply(Ia)(A) ≈ alignment(A). The alignmenter re-
lies on independenter IX to calculate exactly the independent histogram AX.
The alignmenter also delegates the calculation of the logarithm of the gamma
function. In order for the alignmenter to have finite time, It

a(A) < ∞, the
real log gamma function must be approximated to some rational, for exam-
ple by means of the Stirling’s approximation or the Lanczos approximation.
Let I≈ln! = logfactorialer ∈ computers be some implementation such that
domain(I≈ln!) = Q≥0, range(I≈ln!) = Q, and apply(I≈ln!)(x) ≈ ln Γ!x and
such that apply(I≈ln!)(0) = apply(I≈ln!)(1) = 0. Then

It
a(A) >

It
X(A) +

∑
S∈AFS

It
≈ln!(AS) +

∑
S∈AXFS

It
≈ln!(A

X
S ) + (|AF|+ |AXF|+ 1)It

+(0, 0)

where I+ = adder. Reducing the independenter to its underlying adder and
multiplier

It
a(A) >

(|AF|n+ |AXF|+ 1)It
+(0, 0) + |AXF|nIt

×(1, 1) + (|AF|+ |AXF|)It
≈ln!(1)

where V = vars(A), n = |V | and I× = multiplier. If it is the case that the
log factorialer has constant time, ∃m ∈ N>0 (It

≈ln! ∈ O(Q × {1},m)), and
if the histograms are implemented in an array histogram representation on
ordered list state representations

∃m ∈ N>0 (It
a ∈ O({(A, ny) : A ∈ A, y = |AXF|, n = |vars(A)}|,m))

If A is a regular histogram in a system U of dimension n = |V | and valency
{d} = {|Uw| : w ∈ V } for which the independent is completely effective,
AXF = AC, then the alignmenter time is of the same complexity as the inde-
pendenter time, ndn.

If the independent is completely effective, AXF = AC, then the space complex-
ity of an array histogram representation, v, is less than the space complexity
of a binary map histogram representation, v ln v, where volume v = |AC|.

566



4.20.2 Single state roll computers

Define the set of single state rolls rollStateSingles ⊂ rolls as the subset of
rolls that are singletons, rollStateSingles = {R : R ∈ rolls, |R| = 1}.

Consider the application of a single state roll R ∈ rollStateSingles to a
histogram A and the computation time of the pair of the rolled histogram
and independent rolled histogram (A ∗ R, (A ∗ R)X) given the pair of the
histogram and independent histogram (A,AX) prior to rolling. All four his-
tograms are implemented in array histogram representations on ordered list
state representations. Let I = rollStateSingler(U) ∈ computers in system U
such that range(I) = {(A,AX) : A ∈ AU} ⊂ AU × AU , and domain(I) =
{(R, (A,AX)) : A ∈ AU , R ∈ ACS → ACS, |R| = 1} ⊂ rollStateSingles ×
range(I) such that apply(I)((R, (A,AX))) = (A∗R, (A∗R)X). Let {(S, T )} =
R. The rolled pair can be separated into mutable and immutable parts. Thus
for the first of the pair

A ∗R = {(S, 0), (T,AS + AT )}+ (A \ {(S,AS), (T,AT )})

To calculate the mutable parts of the independent only those states that
are incident on either of the source or target states need be considered.
Let B =

⋃
{incidence(A, S, i)∪ incidence(A, T, i) : i ∈ {1 . . . |V |}} and BX =⋃

{incidence(AX, S, i)∪incidence(AX, T, i) : i ∈ {1 . . . |V |}}. Then separating
into mutable and immutable

(A ∗R)X = (BF
X \ (B ∗R)XF)Z + (B ∗R)X + (AX \BX)

In the special case where A is a regular histogram of dimension n = |V | and
valency d, where {d} = {|Uv| : v ∈ V }, and where AX is completely effective,
AXF = AC, and where the source state S and target state T have no degree of
incidence, {T}U ∈ incidence(V C, S, 0), then the subset BX forms a cartesian
sub-volume of cardinality dn − (d − 2)n where d ≥ 2. Compare this to the
independenter IX ∈ computers that calculates the independent histogram,
domain(IX) = range(IX) = A and apply(IX)(A) = AX, also implemented
in the array histogram representation. As conjectured above, IX has time
complexity of ny where n = |vars(A)| and y is the effective independent
cartesian sub-volume y = |AXF|. If A ∈ dom(OU,z) then AX is completely
effective and hence y = |V C| = dn in the case of the regular histogram. In this
case the part of the computation time It((R, (A,AX))) for the independent
rolled histogram is a fraction (dn − (d − 2)n)/dn = 1 − (1 − 2/d)n of the
time of the independenter It

X(A ∗ R). In other words, the roll only needs
time It

X(B ∗ R) to calculate the independent rolled histogram as though A
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was equal to its subset B which corresponds to the cartesian sub-volume BX

of the independent AX incident on the source or target states. This subset
requires time complexity ndn − n(d− 2)n. Given that the calculation of the
rolled histogram requires only one addition and one reset then

It((R, (A,AX))) > It
0(1) + It

+(0, 0) + |BF
X \ (B ∗R)XF|It

0(1) + It
X(B ∗R)

where I0 = resetter ∈ computers and I+ = adder ∈ computers. Conjecture
that the overall time complexity is ndn − n(d− 2)n.

Note that the roll computers are here defined such that the operations are
in-place mutations to the array histogram representation. That is, the roll
computers conclude the computations with list setter IL,s operations on the
array representation. The implicit update to array has time complexity of
the ordered list indexer, n, so the overall complexity is unchanged. Thus the
domain of the roll computers is the roll crossed with the range. Contrast
this to other computers, such as the independenter, which are defined here
such that time of the implementation implies an instantiation of the array.
Roll computers compute the roll by resetting and adding regardless of the
effectiveness of the argument, whereas the independenter need only compute
where effective. On the other hand, the independenter requires time for the
cost of instantiation.

4.20.3 Value roll computers

Consider the application of a value roll (V, v, s, t) ∈ rollValues(U) in system
U to a histogram A ∈ AU having variables V = vars(A), and the computa-
tion time of the pair of (i) the rolled histogram A ∗ (V, v, s, t)R, and the (ii)
the independent rolled histogram (A ∗ (V, v, s, t)R)X, given the corresponding
pair prior to rolling, (A,AX), where all histograms are implemented in array
histogram representations on ordered list state representations.

Let IR = rollValuer ∈ computers such that range(IR) ⊂ A × A is defined
range(IR) = {(A,AX) : A ∈ A} and domain(IR) ⊂

⋃
{rollValues(U) : U ∈

U} × range(IR) is defined domain(IR) = {((V, v, s, t), (A,AX) : U ∈ U , A ∈
AU , (V, v, s, t) ∈ rollValues(U), V = vars(A)}, such that

apply(IR)(((V, v, s, t), (A,AX))) = (A ∗ (V, v, s, t)R, (A ∗ (V, v, s, t)R)X)

The independent rolled histogram equals the rolled independent histogram
(A∗(V, v, s, t)R)X = AX∗(V, v, s, t)R, so only those states that reduce to either
of the source or target states, {(v, s)} or {(v, t)}, are changed by the value
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roll, states(A ∗ {{(v, s)}, {(v, t)}}U) and states(AX ∗ {{(v, s)}, {(v, t)}}U). In
the case where the source and target values differ, s 6= t, the mutable and
immutable parts of the application of the value roll (V, v, s, t) to the histogram
A can be separated out

A ∗ (V, v, s, t)R = (A ∗ {{(v, s)}}U)Z +

A ∗ {{(v, t)}}U +

{(S \ {(v, s)} ∪ {(v, t)}, c) : (S, c) ∈ A ∗ {{(v, s)}}U}+

(A \ (A ∗ {{(v, s)}, {(v, t)}}U))

Similarly the mutable and immutable parts of the application of the value
roll (V, v, s, t) to the independent AX can be separated out where s 6= t

AX ∗ (V, v, s, t)R = (AX ∗ {{(v, s)}}U)Z +

AX ∗ {{(v, t)}}U +

{(S \ {(v, s)} ∪ {(v, t)}, c) : (S, c) ∈ AX ∗ {{(v, s)}}U}+

(AX \ (AX ∗ {{(v, s)}, {(v, t)}}U))

The time is thus constrained to have a lower bound

It
R(((V, v, s, t), (A,AX))) > 4x(It

S,o(·) + It
L,g(·)) + 2xIt

+(·) + 4x(J t
S,o(·) + It

L,s(·))
> 4xIt

L,g(·) + 8nxIt
×(·) + 2x(4n+ 1)It

+(·) + 4xIt
L,s(·)

where x = |V C|/|Uv| = |V C ∗ {{(v, s)}}U| = |V C ∗ {{(v, t)}}U| is the cardi-
nality of the volumes incident on {(v, s)} and on {(v, t)}, and IL,g and IL,s

are the list getter and setter, and IS,o and JS,o are the state ordered indexer
and its inverse.

In the special case where A is a regular histogram of dimension n = |V |
and valency d, where {d} = {|Uw| : w ∈ V }, then the incident sub-volume
has cardinality x = |incidence(V C, {(v, t)}, 1)| = dn−1, so the complexity is
ndn−1. This complexity of time is less than or equal to that for the single
state roller and for the independenter, ndn−1 ≤ n(dn − (d− 2)n) ≤ ndn.

Consider the application of a value roll (V, v, s, t) ∈ rollValues(U) in sys-
tem U to a histogram A ∈ AU , having variables V = vars(A), and the
computation time of a triple of (i) an approximation to the rolled alignment
algn(A ∗ (V, v, s, t)R), (ii) the rolled histogram A ∗ (V, v, s, t)R, and (iii) the
independent rolled histogram (A ∗ (V, v, s, t)R)X, given (a) the reductions by
variable of the difference in log factorial approximations between A and AX,
and (b) the triple prior to rolling, (algn(A), A,AX).
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Let rals ∈ A → (V → (S → Q)) be defined as

rals(A) :=

{(w, {(S,
∑

(I∗≈ln!(AT ) : T ∈ AS, T ⊇ S)−
∑

(I∗≈ln!(A
X
T ) : T ∈ AXS, T ⊇ S)) :

S ∈ (A%{w})S}) : w ∈ V }

where I≈ln! = logfactorialer ∈ computers and I∗ := apply(I).

Let IR,a = rollValueAlignmenter ∈ computers be such that range(IR,a) ⊂
Q×A×A defined as

range(IR,a) = {(I∗a (A), A,AX) : A ∈ A}

and such that domain(IR,a) ⊂
⋃
{rollValues(U) : U ∈ U} × (V → (S →

Q))× range(IR,a) is defined as

domain(IR,a) = {((V, v, s, t), rals(A), (a,A,AX)) : (a,A,AX) ∈ range(IR,a),

U ∈ U , (V, v, s, t) ∈ rollValues(U), V = vars(A)}

and such that

apply(IR,a)(((V, v, s, t), Y, (a,A,AX))) =

(I∗a (A ∗ (V, v, s, t)R), A ∗ (V, v, s, t)R, (A ∗ (V, v, s, t)R)X)

where Y = rals(A).

The computation of both the rolled histogram A ∗ (V, v, s, t)R and the in-
dependet rolled histogram (A ∗ (V, v, s, t)R)X is the same in the value rolled
alignmenter IR,a as it is in the value roller IR. That is,

A ∗ (V, v, s, t)R =

(A ∗ {Qs}U)Z + A ∗ {Qt}U + {(S \Qs ∪Qt, c) : (S, c) ∈ A ∗ {Qs}U}+

(A \ (A ∗ {Qs, Qt}U))

where s 6= t, and Q = {(u, {(v, u)}) : u ∈ Uv} ∈ WU → SU . Similarly

(A ∗ (V, v, s, t)R)X =

(AX ∗ {Qs}U)Z + AX ∗ {Qt}U + {(S \Qs ∪Qt, c) : (S, c) ∈ AX ∗ {Qs}U}+

(AX \ (AX ∗ {Qs, Qt}U))
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Then, given the approximate alignment prior to rolling, a = I∗a (A) ∈ Q, the
approximate rolled alignment can be calculated

I∗a (A ∗ (V, v, s, t)R) = a− Yv(Qs)− Yv(Qt) +∑
(I∗≈ln!(c) : (S, c) ∈ A ∗ (V, v, s, t)R ∗ {Qt}U)−∑
(I∗≈ln!(c) : (S, c) ∈ (A ∗ (V, v, s, t)R)X ∗ {Qt}U)

The time is thus constrained to have a lower bound

It
R,a(((V, v, s, t), Y, (a,A,AX))) > It

R(((V, v, s, t), (A,AX))) +

(2x+ 1)It
+(·) + 2xIt

≈ln!(·)

where x = |V C|/|Uv| = |V C∗{Qt}U| is the cardinality of the volumes incident
on Qs and on Qt.

Therefore the value rolled alignmenter has time of the same complexity as the
value roller, which is ndn−1 in the case of the regular histogram of dimension
n and valency d.

4.21 Tractable alignment-bounding

Let the set of inducers be the subset of computers parameterised by inte-
gral size, inducers(z) ⊂ computers, such that (i) the domain is a subset of
the substrate histograms and a superset of the integral-independent substrate
histograms, ∀Iz ∈ inducers(z) (Az,xi ⊆ domain(Iz) ⊆ Az), (ii) the range is a
non-empty rational-valued function, ∀Iz ∈ inducers(z) (I∗z ∈ domain(Iz) →
((X → Q) \ {∅})), such that application to a domain substrate histogram,
A ∈ domain(Iz), returns a rational-valued function of the substrate models
set, I∗z (A) ∈ MUA,VA → Q, (iii) both the inducer time and space are finite,
It
z(A) < ∞ and Is

z(A) < ∞, and (iv) the maximum of the inducer appli-
cation, maxr ◦ I∗z , is positively correlated with the finite alignment-bounded
iso-transform space ideal transform maximum function, maxr ◦Xz,xi,T,y,fa,j,

∀z ∈ N>0 ∀Iz ∈ inducers(z) (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I∗z ) ≥ 0)

The correlation, cov(z)(maxr◦Xz,xi,T,y,fa,j,maxr◦I∗z ), is called the inducer cor-
relation for size z. The substrate models of the substrate histogram,MUA,VA ,
each map to a substrate transform, transform(U, V ) ∈MU,V → TU,V , so that
the maximum induced transforms of inducer Iz applied to substrate histogram
A are {transform(UA, VA)(M) : M ∈ maxd(I∗z (A))} ⊂ TUA,VA .
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Given an integral-independent substrate histogram A ∈ Az,xi, let the do-
main of the alignment-bounded iso-transform space ideal transform search
set, dom(Xz,xi,T,y,fa,j(A)) ⊂ TUA,VA , which consists of substrate transforms
subject to the constraints of (i) formal-abstract equality, and (ii) ideality, be
abbreviated to the literal substrate transforms

Tfa,j(A) = dom(Xz,xi,T,y,fa,j(A))

= {T : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

The domain of the derived alignment integral-independent substrate ideal
formal-abstract transform search set, dom(X ′z,xi,T,a,fa,j(A)), equals the do-
main of the alignment-bounded iso-transform space ideal transform search
set, dom(X ′z,xi,T,a,fa,j(A)) = dom(Xz,xi,T,y,fa,j(A)), and may also be abbrevi-
ated, Tfa,j(A) = dom(X ′z,xi,T,a,fa,j(A)).

Let the literal substrate decompositions Dfa,j(A) ⊂ DUA,VA , which are sub-
strate decompositions subject to the constraints of (i) formal-abstract equal-
ity, and (ii) ideality, be defined

Dfa,j(A) = {D : D ∈ DUA,VA , A
X ∗DT = (A ∗DT)X, A = A ∗DT ∗DT†A}

The literal substrate decompositions map to the literal substrate transforms,
{DTVA : D ∈ Dfa,j(A)} = Tfa,j(A). The cardinality of the literal substrate
decompositions is greater than or equal to the literal substrate transforms,
|Dfa,j(A)| ≥ |Tfa,j(A)|, because the literal substrate decompositions includes
those decompositions which consist solely of a literal substrate transform,
{{((∅, T ), ∅)} : T ∈ Tfa,j(A)} ⊂ Dfa,j(A).

Note that if a substrate decomposition D ∈ DUA,VA contains more than a
root transform, |transforms(D)| > 1, then the expanded nullable transform,
DTVA , is not necessarily in the literal substrate transforms, Tfa,j(A). This
is because the nullable transform of a multiple decomposition is overlap-
ping, |transforms(D)| > 1 =⇒ overlap(DT), even if it so happens that the
transforms of the decomposition are each individually non-overlapping, ∀T ∈
transforms(D) (¬overlap(T )). A non-overlapping transform implies that the
formal histogram is independent, ¬overlap(T ) =⇒ AX ∗ T = (AX ∗ T )X, so
it is sometimes the case that an overlapping transform, overlap(T ), has non-
independent formal histogram, AX ∗ T 6= (AX ∗ T )X. If it is indeed the case
that an overlapping nullable transform, overlap(DT), has non-independent
formal histogram, AX ∗DT 6= (AX ∗DT)X, then the formal histogram cannot
be equal to the abstract histogram, AX ∗ DT 6= (A ∗ DT)X. So, in this case
of non-independent formal histogram, the substrate decomposition, D, is not
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a literal substrate decomposition, D /∈ Dfa,j(A). The multiple literal substrate
decompositions, {D : D ∈ Dfa,j(A), transforms(D) > 1} ⊂ Dfa,j(A), all have
overlapping nullable transform, but nonetheless all have independent formal
histogram.

Similarly, let the literal substrate fuds Ffa,j(A) ⊂ FUA,VA , which are sub-
strate fuds subject to the constraints of (i) formal-abstract equality, and (ii)
ideality, be defined

Ffa,j(A) = {F : F ∈ FUA,VA , A
X ∗ FT = (A ∗ FT)X, A = A ∗ FT ∗ FT†A}

The literal substrate fuds map to the literal substrate transforms, {FTVA : F ∈
Ffa,j(A)} = Tfa,j(A). The cardinality of the literal substrate fuds is greater
than or equal to the literal substrate transforms, |Ffa,j(A)| ≥ |Tfa,j(A)|, be-
cause the literal substrate fuds includes those fuds which consist solely of a
literal substrate transform, {{T} : T ∈ Tfa,j(A)} ⊂ Ffa,j(A).

Finally, let the literal substrate fud decompositions DF,fa,j(A) ⊂ DF,UA,VA ,
which are substrate fud decompositions subject to the constraints of (i) formal-
abstract equality, and (ii) ideality, be defined

DF,fa,j(A) = {D : D ∈ DF,UA,VA , A
X ∗DT = (A ∗DT)X, A = A ∗DT ∗DT†A}

The substrate fud decompositions, DF,UA,VA , is finite because the substrate fuds
are constrained to appear no more than once in any path, ∀L ∈ paths(D) ({(i, F ) :
(i, (·, F )) ∈ L} ∈ N↔ FUA,VA). The literal substrate fud decompositions map
to the literal substrate transforms, {DTVA : D ∈ DF,fa,j(A)} = Tfa,j(A). The
cardinality of the literal substrate fud decompositions is greater than or equal
to the literal substrate fuds, |DF,fa,j(A)| ≥ |Ffa,j(A)|, because the literal sub-
strate fud decompositions includes those decompositions which consist solely
of a literal substrate fud, {{((∅, F ), ∅)} : F ∈ Ffa,j(A)} ⊂ DF,fa,j(A). The
cardinality of the literal substrate fud decompositions is therefore also greater
than or equal to the literal substrate transforms, |DF,fa,j(A)| ≥ |Tfa,j(A)|.

The set of transforms of the substrate models searched by the inducer for a
given substrate histogram A, {transform(UA, VA)(M) : M ∈ dom(I∗z (A))} ⊂
TUA,VA , need not intersect with the literal substrate transforms, Tfa,j(A). So
in some cases {transform(UA, VA)(M) : M ∈ dom(I∗z (A))}∩Tfa,j(A) = ∅. All
that is required of inducers is that there is a positive correlation between
the maximum functions, not that the domains of the search sets intersect.
This allows definitions of inducers that search substrate models which are
overlapping, formal-abstract-inequivalent or non-ideal.
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In addition, the definition of an inducer may be such that its domain is
a proper superset of the integral-independent substrate histograms, Az,xi ⊂
domain(Iz), and thus is a proper superset of the domain of the alignment-
bounded iso-transform space ideal transform maximum function, dom(maxr◦
Xz,xi,T,y,fa,j) = dom(Xz,xi,T,y,fa,j) = Az,xi ⊂ domain(Iz). The correlation,
cov(z)(maxr◦Xz,xi,T,y,fa,j,maxr◦I∗z ), is restricted to the intersection of the do-
mains of the argument functions, which is Az,xi. Thus no constraint is made
by the correlation on the definition of the inducer for the part of its domain
which is the disjoint set of non-integral-independent substrate histograms,
Az \ Az,xi. For example, the definition of an inducer could be extended into
non-integral-independent substrate histograms by the use of approximations
to the multinomial probability density function, mpdf(U)(E, z) ∈ AU,V,z →
R≥0, to interpolate, via the unit-translated gamma function, Γ!, from the

generalised multinomial probability distribution Q̂m,U(E, z) ∈ AU,i,V,z → Q≥0,
but the correlation would not imply this interpolation.

The tractable inducers subset of inducers is such that neither the computa-
tional time complexity nor the representational encoding space complexity of
the application, I∗z , is greater than polynomial. The complexities are always
with respect to some underlying variable, for example valency or dimension.
So the application of an intractable inducer may still be practicable. That
is, its parameters may be such that the values of the underlying variables
are small enough that the computation time and representation space are
practicable. Conversely, a tractable inducer is not necessarily practicable.
Practicability implies absolute limits on the time and space of the compu-
tation of the inducer, whereas tractable inducers may exceed these limits so
long as the complexities are not exponential or higher.

Let the log-rational approxer I≈lnQ ∈ computers be a computer that finitely
approximates, to some degree of accuracy, between the log-positive-rational
numbers, ln Q>0, and the rational numbers, Q. The domain is domain(I≈lnQ) =
ln Q>0. The range is range(I≈lnQ) = Q. The application is such that,
∀x ∈ ln Q>0 (I∗≈lnQ(x) ≈ x).

Let the real approxer I≈R ∈ computers be a computer that finitely ap-
proximates, to some degree of accuracy, between the real numbers, R, and
the rational numbers, Q. The domain is domain(I≈R) = R. The range is
range(I≈R) = Q. The application is such that, ∀x ∈ R (I∗≈R(x) ≈ x). The
application of the real approxer, I≈R, is a superset of the application of the
log-rational approxer, I≈lnQ. That is, I∗≈lnQ ⊂ I∗≈R.
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4.21.1 Literal inducers

Let the literal alignment-bounded iso-transform space ideal transform in-
ducer Iz,y,l ∈ inducers(z) be a literal implementation of the alignment-
bounded iso-transform space ideal transform search set, Xz,xi,T,y,fa,j ∈ Az,xi →
(Tf → ln Q>0), except that the finite approximation of the log-rational ap-
proxer, I≈lnQ, is made between the log-positive-rational, ln Q>0, valued range
of the search set to the rational, Q, valued range of the inducer application,
I∗z,y,l ∈ Az,xi → (Tf → Q). That is,

domain(Iz,y,l) = dom(Xz,xi,T,y,fa,j) = Az,xi

and

∀A ∈ Az,xi (I∗z,y,l(A) = {(T, I∗≈lnQ(y)) : (T, y) ∈ Xz,xi,T,y,fa,j(A)})

The domain of the application of the literal alignment-bounded inducer, Iz,y,l,
to integral-independent substrate histogram A ∈ Az,xi is the literal substrate
transforms, dom(I∗z,y,l(A)) = dom(Xz,xi,T,y,fa,j(A)) = Tfa,j(A).

The correlation between its maximum function and the alignment-bounded
iso-transform space ideal transform maximum function is almost, but not ex-
actly, one, because of the approximation made by the log-rational approxer,
I≈lnQ,

∀z ∈ N>0

(var(z)(maxr ◦Xz,xi,T,y,fa,j) > 0 ∧ var(z)(maxr ◦ I∗z,y,l) > 0 =⇒
corr(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I∗z,y,l) ≈ 1)

Similarly, let the literal derived alignment integral-independent substrate
ideal formal-abstract transform inducer I

′

z,a,l ∈ inducers(z) be a literal im-
plementation of the derived alignment integral-independent substrate ideal
formal-abstract transform search set, X ′z,xi,T,a,fa,j ∈ Az,xi → (Tf → ln Q>0),
except that the finite approximation of the log-rational approxer, I≈lnQ, is
made between the log-positive-rational, ln Q>0, valued range of the search set
to the rational, Q, valued range of the inducer application, I

′∗
z,a,l ∈ Az,xi →

(Tf → Q). That is,

domain(I
′

z,a,l) = dom(X ′z,xi,T,a,fa,j) = Az,xi

and

∀A ∈ Az,xi (I
′∗
z,a,l(A) = {(T, I∗≈lnQ(a)) : (T, a) ∈ X ′z,xi,T,a,fa,j(A)})
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The domain of the application of the literal derived alignment inducer, I
′

z,a,l,
to integral-independent substrate histogram A ∈ Az,xi is the literal substrate
transforms, dom(I

′∗
z,a,l(A)) = dom(X ′z,xi,T,a,fa,j(A)) = Tfa,j(A). The application

can therefore be expressed

∀A ∈ Az,xi (I
′∗
z,a,l(A) = {(T, I∗≈lnQ(algn(A ∗ T ))) : T ∈ Tfa,j(A)})

In order to allow the comparison of space and time complexities between
them, the two literal inducers, Iz,y,l and I

′

z,a,l, are defined with (i) the same de-
gree of accuracy of the log-positive-rational approximation of the log-rational
approxer, I≈lnQ, and (ii) the same representations of histograms and trans-
forms.

It is conjectured, in section ‘Substrate structures alignment’ above, that
the alignment-bounded iso-transform space ideal transform maximum func-
tion, maxr ◦ Xz,xi,T,y,fa,j, is correlated with the derived alignment integral-
independent substrate ideal formal-abstract transform maximum function,
maxr ◦X ′z,xi,T,a,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥ 0)

Hence conjecture that the maximum transform function of the literal derived
alignment integral-independent substrate ideal formal-abstract transform in-
ducer, I

′

z,a,l, is positively correlated with that of the alignment-bounded iso-
transform space ideal transform search set, Xz,xi,T,y,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,l) ≥ 0)

but because of the introduction of log-positive-rational approximations, the
correlation is lower

∀z ∈ N>0

(cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥
cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,l))

Although it is conjectured that the alignment-bounded iso-transform space
ideal transform maximum function, maxr ◦Xz,xi,T,y,fa,j, is correlated with the
derived alignment integral-independent substrate ideal formal-abstract trans-
form maximum function, maxr◦X ′z,xi,T,a,fa,j, it is not necessarily the case that
the sets of maximum transforms intersect for any given integral-independent
substrate histogram A ∈ Az,xi. That is, it is sometimes the case that

maxd(Xz,xi,T,y,fa,j(A)) ∩maxd(X ′z,xi,T,a,fa,j(A)) = ∅
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and so the correlation is not perfect,

∃z ∈ N>0 (corr(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j) < 1)

This is also true for the correlation between the literal inducers,

∃z ∈ N>0 (corr(z)(maxr ◦ I∗z,y,l,maxr ◦ I ′∗z,a,l) < 1)

The compromise of the less than perfect correlation may be required by
a practicable computation, however, because the computation time of the
literal derived alignment integral-independent substrate ideal formal-abstract
transform inducer, I

′t
z,a,l(A), is less than that of the literal alignment-bounded

iso-transform space ideal transform inducer, It
z,y,l(A).

For given integral-independent substrate histogram A ∈ Az,xi the domains of
the space functions are the literal substrate transforms, dom(X ′z,xi,T,a,fa,j(A)) =
dom(Xz,xi,T,y,fa,j(A)) = Tfa,j(A). Consider the difference in computation of lit-
eral substrate transform T ∈ Tfa,j(A) in a literal implementation of expression

Xz,xi,T,y,fa,j(A)(T ) = Xz,T,y(A)(T )

= − ln
Q̂m,UA

(AX, z)(A)∑
B∈AUA,i,y,T,z(A) Q̂m,UA

(AX, z)(B)

and of expression

X ′z,xi,T,a,fa,j(A)(T ) = X ′z,T,a(A)(T )

= algn(A ∗ T )

= − ln
Q̂m,UA

((A ∗ T )X, z)(A ∗ T )

Q̂m,UA
((A ∗ T )X, z)((A ∗ T )X)

= − ln
Q̂m,UA

(AX ∗ T, z)(A ∗ T )

Q̂m,UA
(AX ∗ T, z)(AX ∗ T )

Define the independent-sample-distributed iso-transform-independent condi-
tional dependent multinomial space computer IU,V,z,T,y ∈ computers such that
domain(IU,V,z,T,y) = AU,i,V,z × TU,V and

I∗U,V,z,T,y((A, T )) ≈ − ln
Q̂m,U(AX, z)(A)∑

B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

The independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space computer, IU,V,z,T,y, is, in turn, defined in terms
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of the multinomial space computer Im ∈ computers. The multinomial space
computer is such that I∗m ∈ {(E,A) : E ∈ A, A ∈ Ai, E

F ≥ AF, zE > 0} →
Q,

I∗m((E,A)) ≈ − ln Q̂m,U(E, zA)(A) = − ln
zA!∏

S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

It is in the multinomial space computer, Im, that the approximation between
log-positive-rational, ln Q>0, and rational, Q, is made by means of the log-
rational approxer, I≈lnQ. Note that there is no need yet for an implementation
of the unit-translated gamma function, Γ!, such as in the log factorialer, I≈ln!,
because the factorial computations are integral.

The independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space computer, IU,V,z,T,y, also requires an independen-
ter, I∗X(A) = AX, where IX = independenter. Thus the computation time
of the independent-sample-distributed iso-transform-independent conditional
dependent multinomial space computer, It

U,V,z,T,y((A, T )), is such that

It
U,V,z,T,y((A, T )) > It

X(A) + It
m((AX, A)) +

∑
It

m((AX, B)) : B ∈ AU,i,y,T,z(A)

Let the literal alignment-bounded iso-transform space ideal transform inducer,
Iz,y,l, be implemented in terms of an independent-sample-distributed iso-
transform-independent conditional dependent multinomial space computer,
IU,V,z,T,y, so that for integral-independent substrate histogram A ∈ Az,xi and
literal substrate transform T ∈ Tfa,j(A)

I∗z,y,l(A)(T ) = I∗UA,VA,z,T,y
((A, T )) ≈ Xz,xi,T,y,fa,j(A)(T )

The computation time of histogram A ∈ Az,xi of the alignment-bounded in-
ducer is therefore

It
z,y,l(A) >

∑
It
UA,VA,z,T,y

((A, T )) : T ∈ Tfa,j(A)

Define the independent-sample-distributed relative dependent multinomial space
computer IU,V,z,a ∈ computers such that domain(IU,V,z,a) = {A : A ∈ AU,i,V,z, AX ∈
Ai} and

I∗U,V,z,a(A) ≈ − ln
Q̂m,U(AX, z)(A)

Q̂m,U(AX, z)(AX)

The independent-sample-distributed relative dependent multinomial space com-
puter, IU,V,z,a, is also defined in terms of an independenter, IX, and a multi-
nomial space computer, Im. Thus the computation time of the independent-
sample-distributed relative dependent multinomial space computer, It

U,V,z,a(A),
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is such that

It
U,V,z,a(A) > It

X(A) + It
m((AX, A)) + It

m((AX, AX))

Consider a variation of the literal derived alignment inducer, I
′

z,a,l, which
is the relative literal derived alignment integral-independent substrate ideal
formal-abstract transform inducer I

′

z,a,l,r ∈ inducers(z). The relative lit-

eral derived alignment inducer, I
′

z,a,l,r, is implemented with a transformer,
I∗T = transformer, followed by an independent-sample-distributed relative de-
pendent multinomial space computer, IU,V,z,a, so that for integral-independent
substrate histogram A ∈ Az,xi and literal substrate transform T ∈ Tfa,j(A)

I
′∗
z,a,l,r(A)(T ) = I∗UA,W,z,a

(I∗∗T((T,A))) ≈ X ′z,xi,T,a,fa,j(A)(T )

where W = der(T ). In this case the computation time of histogram A ∈ Az,xi

of the relative literal derived alignment inducer is therefore

I
′t
z,a,l,r(A) >

∑
It
∗T((T,A)) + It

UA,W,z,a
(A ∗ T ) : T ∈ Tfa,j(A), W = der(T )

In this case, for the sake of comparison, the derived alignment, algn(A∗T ), is
computed in the independent-sample-distributed relative dependent multino-
mial space computer, I∗UA,W,z,a

(A∗T ), as though it is derived relative dependent
multinomial space.

Note that if the representation of the independent histogram, AX, has previ-
ously been computed, then a faster implementation of I

′∗
z,a,l,r(A)(T ) might be

to lift rather than derive. That is, instead of the computation I∗X(A ∗ T ) =
(A ∗ T )X only the computation I∗∗T((T,AX)) = AX ∗ T = (A ∗ T )X would
be needed. The representation of the independent histogram, AX, might be
known, for example, if computed for a previous transform.

Consider the numerators of the derived computation, Q̂m,UA
(AX, z)(A) and

Q̂m,UA
((A∗T )X, z)(A∗T ). The computation times of the numerators, at least

It
X(A)+It

m((AX, A)) and at least It
∗T((T,A))+It

X(A∗T )+It
m(((A∗T )X, A∗T )),

are similar, because the time to compute the derived histogram, A∗T , in the
transformer, It

∗T((T,A)), is sometimes offset by the time to calculate the
generalised multinomial probability, Q̂m,UA

((A ∗ T )X, z)(A ∗ T ), in the multi-
nomial space computer, It

m(((A∗T )X, A∗T )), because of the possibly smaller
effective derived volume, |(A ∗ T )F| ≤ |AF|.

Consider the denominators of the derived computation,
∑
Q̂m,UA

(AX, z)(B) :
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B ∈ AUA,i,y,T,z(A) and Q̂m,UA
((A ∗T )X, z)((A ∗T )X). In contrast to the com-

putation times of the numerators, the computation time of the relative depen-
dent denominator, at least It

m(((A ∗ T )X, (A ∗ T )X)), in I
′∗
z,a,l,r(A) is less than

the computation time of the iso-transform-independent conditional dependent
denominator, at least

∑
It

m((AX, B)) : B ∈ AUA,i,y,T,z(A), in I∗z,y,l(A), if the
set of iso-transform-independents is not singleton, |AUA,i,y,T,z(A)| > 1. There-
fore, summing over all of the literal substrate transforms, Tfa,j(A), the compu-
tation time of the relative literal derived alignment integral-independent sub-
strate ideal formal-abstract transform inducer, I

′t
z,a,l,r(A), must be less than

that of the literal alignment-bounded iso-transform space ideal transform in-
ducer, It

z,y,l(A). That is,

∀A ∈ Az,xi (I
′t
z,a,l,r(A) < It

z,y,l(A))

The computation time of the iso-transform-independent conditional de-
pendent denominator varies as the cardinality of the integral iso-transform-
independents, |AUA,i,y,T,z(A)|. For comparison, the average cardinality of the
integral iso-independents is

|AUA,i,VA,z|
|ran(YUA,i,VA,z)|

=
(z + v − 1)!

z! (v − 1)!
/
∏
w∈VA

(z + |UA(w)| − 1)!

z! (|UA(w)| − 1)!

where volume v = |V C|. The cardinality of the integral iso-transform-
independents, |AUA,i,y,T,z(A)|, is less than or equal to the cardinality of the
integal congruent support

|AUA,i,y,T,z(A)| ≤ |AUA,i,VA,z| =
(z + v − 1)!

z! (v − 1)!
=
v

z

zv

vv
=
vz

zz

If the independent-sample-distributed iso-transform-independent conditional
dependent multinomial space computer, IU,V,z,T,y, is implemented such that
the computations {I∗m((AX, B)) : B ∈ AUA,i,y,T,z(A)} are performed seri-
ally, the computation time complexity of IU,V,z,T,y is at least exponential,
maximum(zv, vz). If the computations are performed in parallel, then it is the
computation space complexity which is at least exponential, maximum(zv, vz).
The corresponding computation time/space complexity of the alignment-
bounded iso-transform space ideal transform inducer, Iz,y,l, which computes
{I∗UA,VA,z,T,y

((A, T )) : T ∈ Tfa,j(A)}, is therefore also at least exponential in
size, z, or substrate volume, v. The alignment-bounded iso-transform space
ideal transform inducer, Iz,y,l, is therefore an intractable inducer.
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The derived alignment, algn(A ∗ T ), is implemented above in the rela-
tive literal derived alignment inducer, I

′

z,a,l,r, as though it were relative de-
pendent multinomial space for purposes of comparison. That is, by means
of the independent-sample-distributed relative dependent multinomial space
computer, IU,V,z,a, which in turn is implemented with the multinomial space
computer, Im. However, the derived alignment does not in fact depend on the
independent distribution histogram, (A∗T )X, and so a faster implementation
is by means of an alignmenter instead. As shown in sections ‘Computation
of the application of a transform’ and ‘Computation of alignment’, above,
the computation of the derived alignment can be performed by the appli-
cation of a transformer, I∗T, followed by the application of an alignmenter,
Ia = alignmenter, I∗a (I∗∗T ((T,A))) ≈ algn(A ∗ T ). The calculation of align-
ment in the alignmenter internally computes the independent derived in an
independenter, I∗X(A ∗ T ) = (A ∗ T )X. In the alignmenter implementation
the computation time of histogram A ∈ Az,xi of the literal derived alignment
inducer, I

′

z,a,l, is simplified to

I
′t
z,a,l(A) >

∑
It
∗T((T,A)) + It

a(A ∗ T ) : T ∈ Tfa,j(A)

Thus the computation time of literal derived alignment inducer, I
′

z,a,l, is less
than the computation time of the relative literal derived alignment inducer,
I
′

z,a,l,r,

∀A ∈ Az,xi (I
′t
z,a,l(A) < It

z,a,l,r(A))

Therefore the computation time of the literal derived alignment integral-
independent substrate ideal formal-abstract transform inducer, I

′t
z,a,l(A), must

be less than that of the literal alignment-bounded iso-transform space ideal
transform inducer, It

z,y,l(A). That is,

∀A ∈ Az,xi (I
′t
z,a,l(A) < It

z,y,l(A))

The time of the alignment computation, It
∗T((T,A)) + It

a(A ∗ T ), depends
on the representations of the histogram and transform, as well as the imple-
mentation of the log factorialer, I≈ln! = logfactorialer. If the histogram, A,
is implemented in an array histogram representation and the transform, T ,
is implemented in a binary map histogram representation, both on ordered
list state representations, then the time complexity is maximum(v ln v,mw),
where the underlying dimension n = |V |, the underlying volume v = |V C|,
the derived dimension m = |W |, the derived volume w = |WC| and the de-
rived variables W = der(T ). If the histogram, A, is implemented in a binary
map histogram representation, then the time complexity is maximum(b ln v,mw),
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where the effective volume b = |AF|. The time complexity of the indepen-
denter is mw.

Given that (i) the independent substrate histogram is completely effective,
AXF = V C, and (ii) literal substrate transforms, Tfa,j(A), are such that the
formal histogram is independent, AX∗T ≡ (A∗T )X =⇒ AX∗T ≡ (AX∗T )X,
then the effective formal histogram is a cartesian sub-volume, (AX ∗ T )F =
(V C∗T )F = (V C∗T )XF. The derived variables of the transform, T , are parti-
tion variables, der(T ) ⊆ B(V CS), so the cartesian sub-volume must equal the
cartesian derived, (V C ∗ T )XF = WC. Therefore the effective formal equals
the cartesian derived, (AX ∗T )F = WC. The transform is functional, T ∈ Tf ,
so the derived volume is no greater than the underlying volume, w ≤ v. Thus
the computation time complexity of the alignmenter implementation of the
literal derived alignment integral-independent substrate ideal formal-abstract
transform inducer, I

′

z,a,l(A), for a literal substrate transform, T ∈ Tfa,j(A), is
maximum(v ln v,mv).

In the stricter case that the transform is non-overlapping, ¬overlap(T ) =⇒
AX ∗ T ≡ (AX ∗ T )X, then the derived dimension is no greater than the un-
derlying dimension, m ≤ n. In this case, the computation time complexity
of the alignmenter implementation of the literal derived alignment integral-
independent substrate ideal formal-abstract transform inducer, I

′

z,a,l(A), for a
non-overlapping literal substrate transform, T ∈ Tfa,j(A)∩TUA,VA,n, is at most
log-linear in v, maximum(v ln v, nv) = v ln v

∀z ∈ N>0 ∃c ∈ N>0

({((A, T ), It
∗T((T,A)) + It

a(A ∗ T )) : A ∈ Az,xi, T ∈ TUA,VA,n}
∈ O({((A, T ), v ln v) : A ∈ Az,xi, T ∈ TUA,VA,n, v = |V C

A |}, c))

The overall non-overlapping computation time complexity, v ln v, is not lim-
ited by the computation time complexity of the independenter, mw. How-
ever, if the independent histogram, AX, has previously been computed, then
a faster implementation of I

′∗
z,a,l(A)(T ) might be to lift rather than derive. In

this case the alignmenter would not need to compute I∗X(A ∗ T ) = (A ∗ T )X

but merely apply the log factorialer to I∗∗T((T,AX)) = AX ∗ T .

Contrast the non-overlapping computation time complexity, v ln v, of the
alignmenter implementation, in the literal derived alignment inducer, I

′

z,a,l,
to the serially implemented independent-sample-distributed iso-transform-
independent conditional dependent multinomial space computer, IU,V,z,T,y, in
the literal alignment-bounded inducer, Iz,y,l, which has at least exponential
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computation time complexity in both v and z, maximum(zv, vz). Note that
the time complexity of the alignmenter implementation in the literal derived
alignment inducer, I

′

z,a,l, whether overlapping or not, does not depend on z
at all.

Consider a literal derived alignment integral-independent substrate ideal
formal-abstract fud inducer I

′

z,a,F,l ∈ inducers(z) which has, as its subset of
the substrate models, the literal substrate fuds,

∀A ∈ Az,xi (dom(I
′∗
z,a,F,l(A)) = Ffa,j(A) ⊂MUA,VA)

where the literal substrate fuds is defined Ffa,j(A) = {F : F ∈ FUA,VA , A
X ∗

FT = (A∗FT)X, A = A∗FT∗FT†A} ⊂ FUA,VA . The application of the literal
derived alignment fud inducer, I

′

z,a,F,l, makes the same finite approximation
of the log-rational approxer, I≈lnQ, as is made in the literal transform inducer,
I
′

z,a,l,

∀A ∈ Az,xi (I
′∗
z,a,F,l(A) = {(F, I∗≈lnQ(algn(A ∗ FT))) : F ∈ Ffa,j(A)})

So the maximum transform function of the literal derived alignment fud in-
ducer, I

′

z,a,F,l, equals the maximum transform of the literal derived alignment

transform inducer, I
′

z,a,l, maxr ◦ I ′∗z,a,F,l = maxr ◦ I ′∗z,a,l. Therefore the correla-
tion of the maximum transform function of the literal derived alignment fud
inducer, I

′

z,a,F,l, with that of the alignment-bounded iso-transform space ideal
transform search set, Xz,xi,T,y,fa,j, equals the correlation of the literal derived
alignment transform inducer, I

′

z,a,l,

∀z ∈ N>0

(cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,l) =

cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,F,l))

The literal substrate fuds includes those fuds which consist solely of a literal
substrate transform, {{T} : T ∈ Tfa,j(A)} ⊂ Ffa,j(A). Therefore both the
time and space of the literal fud inducer, I

′

z,a,F,l, are greater than the corre-

sponding time and space of the literal transform inducer, I
′

z,a,l, whether the

implementation is serial or parallel, ∀A ∈ Az,xi (I
′t
z,a,F,l(A) > I

′t
z,a,l(A)) and

∀A ∈ Az,xi (I
′s
z,a,F,l(A) > I

′s
z,a,l(A)).

Similarly, consider a literal derived alignment integral-independent sub-
strate ideal formal-abstract decomposition inducer I

′

z,a,D,l ∈ inducers(z) which
has, as its subset of the substrate models, the literal substrate decompositions,

∀A ∈ Az,xi (dom(I
′∗
z,a,D,l(A)) = Dfa,j(A) ⊂MUA,VA)
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where the literal substrate decompositions is defined Dfa,j(A) = {D : D ∈
DUA,VA , A

X ∗ DT = (A ∗ DT)X, A = A ∗ DT ∗ DT†A} ⊂ DUA,VA . The
application of the literal derived alignment decomposition inducer, I

′

z,a,D,l,
makes the same finite approximation of the log-rational approxer, I≈lnQ, as
is made in the literal transform inducer, I

′

z,a,l,

∀A ∈ Az,xi (I
′∗
z,a,D,l(A) = {(D, I∗≈lnQ(algn(A ∗DT))) : D ∈ Dfa,j(A)})

So the maximum transform function of the literal derived alignment decom-
position inducer, I

′

z,a,D,l, equals the maximum transform of the literal derived

alignment transform inducer, I
′

z,a,l, maxr ◦ I ′∗z,a,D,l = maxr ◦ I ′∗z,a,l.

The literal substrate decompositions includes those decompositions which con-
sist solely of a literal substrate transform, {{((∅, T ), ∅)} : T ∈ Tfa,j(A)} ⊂
Dfa,j(A). Therefore both the time and space of the literal decomposition
inducer, I

′

z,a,D,l, are greater than the corresponding time and space of the lit-

eral transform inducer, I
′

z,a,l, whether the implementation is serial or parallel,

∀A ∈ Az,xi (I
′t
z,a,D,l(A) > I

′t
z,a,l(A)) and ∀A ∈ Az,xi (I

′s
z,a,D,l(A) > I

′s
z,a,l(A)).

Finally, consider a literal derived alignment integral-independent substrate
ideal formal-abstract fud decomposition inducer I

′

z,a,D,F,l ∈ inducers(z) which
has, as its subset of the substrate models, the literal substrate fud decomposi-
tions,

∀A ∈ Az,xi (dom(I
′∗
z,a,D,F,l(A)) = DF,fa,j(A) ⊂MUA,VA)

where the literal substrate fud decompositions is defined DF,fa,j(A) = {D :
D ∈ DF,UA,VA , A

X ∗ DT = (A ∗ DT)X, A = A ∗ DT ∗ DT†A} ⊂ DF,UA,VA .
The application of the literal derived alignment fud decomposition inducer,
I
′

z,a,D,F,l, makes the same finite approximation of the log-rational approxer,

I≈lnQ, as is made in the literal transform inducer, I
′

z,a,l,

∀A ∈ Az,xi (I
′∗
z,a,D,F,l(A) = {(D, I∗≈lnQ(algn(A ∗DT))) : D ∈ DF,fa,j(A)})

So the maximum transform function of the literal derived alignment fud de-
composition inducer, I

′

z,a,D,F,l, equals the maximum transform of the literal

derived alignment transform inducer, I
′

z,a,l, maxr ◦ I ′∗z,a,D,F,l = maxr ◦ I ′∗z,a,l.

The literal substrate fud decompositions includes those decompositions which
consist solely of a literal substrate fud, {{(∅, F )} : F ∈ Ffa,j(A)} ⊂ DF,fa,j(A).
Therefore both the time and space of the literal fud decomposition inducer,
I
′

z,a,D,F,l, are greater than the corresponding time and space of the literal

fud inducer, I
′

z,a,F,l, whether the implementation is serial or parallel, ∀A ∈
Az,xi (I

′t
z,a,D,F,l(A) > I

′t
z,a,F,l(A)) and ∀A ∈ Az,xi (I

′s
z,a,D,F,l(A) > I

′s
z,a,F,l(A)).
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4.21.2 Summation aligned decomposition inducers

Consider non-literal inducers which have, as their subset of the substrate
models, the subset of the substrate decompositions, DUA,VA , that are also
summation aligned decompositions, DΣ(A), where A ∈ Az,xi. The summa-
tion aligned decompositions, DΣ(A), are defined in section ‘Decomposition
alignment’ above. Summation aligned decompositions (a) are well behaved
distinct decompositions, DΣ(A) ⊂ Dw,UA

, (b) have no variable symmetries,
{(w, (C, T )) : (C, T ) ∈ cont(D), w ∈ der(T )} ∈ der(G) → cont(D), and
(c) are subject to the constraints of (i) contingent diagonalisation, ∀(C, T ) ∈
cont(D) (diagonal(A∗C∗T )), and (ii) contingent formal-abstract equivalence,
∀(C, T ) ∈ cont(D) ((A∗C ∗T )X = AX∗C ∗T ), with respect to the histogram,
A, where G = transforms(D) and cont = elements ◦ contingents. Summa-
tion aligned decompositions are such that the content alignment equals the
summation alignment,

∀D ∈ DΣ(A) (algn(A ∗DT)− algn(AX ∗DT) = alignmentSum(A,D))

where DT is the nullable transform, and the summation alignment is defined
alignmentSum ∈ A×D → R as

alignmentSum(A,D) :=
∑

(C,T )∈cont(D)

algn(A ∗ C ∗ T )

In order to calculate the summation alignment, alignmentSum(A,D), only
the contingent alignments, algn(A ∗C ∗ T ), of the recursive contingents tree,
contingents(D) ∈ trees(A × Tf), need be computed. The contingents tree,
contingents(D), does not depend on the nullable fud, nullable(UA)(D), so
there is no need to compute any of the slice transforms or their dependents.
Thus the nullable transform, DT, need not be computed by the inducer.
However, first consider an inducer where the nullable transform, DT, is com-
puted.

Define the derived alignment integral independent substrate summation
aligned decomposition inducer I

′
z,a,D,Σ ∈ inducers(z) such that the application

to a substrate histogram A ∈ Az,xi is the nullable transform derived alignment
approximation function of the substrate summation aligned decompositions,

I
′∗
z,a,D,Σ(A) = {(D, I∗≈R(algn(A ∗DT))) : D ∈ DUA,VA ∩ DΣ(A)}

The derived alignment summation aligned inducer, I
′
z,a,D,Σ, is defined with

the real approxer, I≈R, rather than the log-rational approxer, I≈lnQ, because
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in some cases the abstract alignment is not integral, (A∗DT)X /∈ Ai. In these
cases, the derived alignment, algn(A ∗DT), must be computed in the align-
menter, Ia, by means of an implementation of the unit-translated gamma
function, Γ!, such as in the log factorialer, I≈ln!, because the factorial com-
putations are not always integral.

However, the application of the real approxer is a superset of the appli-
cation of the log-rational approxer, I∗≈lnQ ⊂ I∗≈R, and so there may exist
an intersection between the application of the derived alignment summation
aligned inducer, I

′
z,a,D,Σ, and the application of the literal derived alignment

decomposition inducer, I
′

z,a,D,l. That is, |I ′∗z,a,D,Σ(A) ∩ I ′∗z,a,D,l(A)| ≥ 0.

In order to consider this intersection, compare the substrate summation
aligned decompositions, DUA,VA ∩ DΣ(A), to the literal substrate decomposi-
tions, Dfa,j(A) = {D : D ∈ DUA,VA , A

X∗DT = (A∗DT)X, A = A∗DT∗DT†A}.
The substrate summation aligned decompositions, DUA,VA ∩DΣ(A), are inter-
esting because inducers having them as their set of substrate models are able
to avoid the computation of the nullable transform, DT. The literal sub-
strate decompositions, Dfa,j(A), are interesting because inducers having them
as their set of substrate models have a maximum transform function of the
derived alignment that is correlated with that of the alignment-bounded iso-
transform space ideal transform search set, Xz,xi,T,y,fa,j.

Intersecting decompositions D ∈ DΣ(A)∩Dfa,j(A), are such that they are (i)
contingently diagonalised, ∀(C, T ) ∈ cont(D) (diagonal(A ∗C ∗ T )), (ii) con-
tingently formal-abstract equal, ∀(C, T ) ∈ cont(D) (AX∗C∗T = (A∗C∗T )X),
(iii) formal-abstract equal, AX ∗ DT = (A ∗ DT)X, and (iv) ideal, A =
A ∗ DT ∗ DT†A. For example, a decomposition consisting solely of a root
transform D = {((∅, Tr), ∅)} such that the root transform, Tr, is both diago-
nal, diagonal(A∗Tr), and ideal, A = A∗Tr ∗T †Ar . In this case, the contingent
formal-abstract equality and formal-abstract equality constraints are equiv-
alent, AX ∗ V C

A ∗ Tr = (A ∗ V C
A ∗ Tr)

X ⇐⇒ AX ∗ Tr = (A ∗ Tr)
X, because

cont(D) = {(V C
A , T )}, so {((∅, Tr), ∅)} ∈ DΣ(A) ∩ Dfa,j(A).

As noted above, the set of transforms of the substrate models searched by
an inducer need not intersect with the literal substrate transforms. All that
is required of the derived alignment summation aligned inducer, I

′
z,a,D,Σ, is

that there is a positive correlation between the maximum function and the
alignment-bounded iso-transform space ideal transform maximum function,
cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,D,Σ) ≥ 0. Conjecture that this is indeed
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the case because of the positive, but not perfect, transitive correlation with
the literal derived alignment decomposition inducer, I

′

z,a,D,l

∀z ∈ N>0

(var(z)(maxr ◦ I ′∗z,a,D,l) > 0 ∧ var(z)(maxr ◦ I ′∗z,a,D,Σ) > 0 =⇒
1 > corr(z)(maxr ◦ I ′∗z,a,D,l,maxr ◦ I ′∗z,a,D,Σ) ≥ 0)

As noted in section ‘Tractable alignment-bounding’, above, a substrate de-
composition D ∈ DUA,VA containing more than a root transform, |G| >
1 where G = transforms(D), is necessarily overlapping, |G| > 1 =⇒
overlap(DT), and so in some cases has non-independent formal histogram,
AX ∗DT 6= (AX ∗DT)X. If this is the case, the formal histogram cannot be
equal to the abstract histogram, AX ∗DT 6= (A ∗DT)X, and so the substrate
decomposition, D, cannot be a literal substrate decomposition, D /∈ Dfa,j(A).

If the decomposition is also a summation aligned decomposition, D ∈ DUA,VA∩
DΣ(A), then the formal histogram is necessarily non-independent, (D ∈
DΣ(A))∧ (|G| > 1) =⇒ AX ∗DT 6= (AX ∗DT)X, because the skeletal contin-
gent reduction D′ ∈ reductions(A,D) has formal alignment, algn(AX∗D′T) >
0. The derived alignment of the skeletal contingent reduction, D′, is purely
formal, A∗D′T = AX ∗D′T. The derived alignment of the summation aligned
decomposition, D, equals that of the skeletal contingent reduction and the
sum of the contingent derived alignments,

algn(A ∗DT) = algn(A ∗D′T) +
∑

(C,T )∈cont(D)

algn(A ∗ C ∗ T )

The summation alignment must be positive, alignmentSum(A,D) =
∑

(algn(A∗
C ∗T ) : (C, T ) ∈ cont(D)) ≥ 0, because of contingent diagonalisation. Hence
the derived alignment of a multiple transform summation aligned decompo-
sition must be at least the formal alignment of the corresponding skeletal
contingent reduction, algn(A∗DT) ≥ algn(AX ∗D′T) > 0. This is true even if
the summation alignment is zero,

∑
(algn(A∗C ∗T ) : (C, T ) ∈ cont(D)) = 0.

This constraint tends to reduce the correlation of the derived alignment sum-
mation aligned inducer, I

′
z,a,D,Σ, with the literal derived alignment decompo-

sition inducer, I
′

z,a,D,l.

Although the slices are contingently formal-abstract equal, AX ∗ C ∗ T =
(A ∗ C ∗ T )X, and therefore contingently independent-formal, AX ∗ C ∗ T =
(AX∗C∗T )X, they are not necessarily independent-formal slices, (A∗C)X∗T =
((A ∗ C)X ∗ T )X, and so the formal alignment, algn(AX ∗ DT), may be
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higher than would otherwise be the case. That is, an independent slice,
(A ∗ C) = (A ∗ C)X, may have a transform T where the derived alignment
is purely formal, algn(A ∗ C ∗ T ) = algn((A ∗ C)X ∗ T ) > 0. The overall
formal alignment, algn(AX ∗DT), is higher in the cases where the slices have
formal alignment, not just where the skeletal contingent reduction has formal
alignment.

Furthermore, given a substrate summation aligned decomposition D ∈ DUA,VA∩
DΣ(A) that is ideal, A = A∗DT∗DT†A, there may exist a super substrate sum-
mation aligned decomposition E ∈ DUA,VA ∩DΣ(A), where D ∈ subtrees(E),
having higher derived alignment, algn(A ∗ ET) > algn(A ∗DT). This is be-
cause the independent components of the partition, DP, are allowed purely
formal transforms, algn(A∗C ∗T ) = algn((A∗C)X ∗T ) > 0, where CS ∈ DP.

Conversely, given a substrate summation aligned decomposition D ∈ DUA,VA∩
DΣ(A) that is ideal, A = A ∗ DT ∗ DT†A, there may exist a super sub-
strate summation aligned decomposition E ∈ DUA,VA ∩ DΣ(A), where D ∈
subtrees(E), having the same summation alignment, alignmentSum(A,E) =
alignmentSum(A,D), but higher derived alignment, algn(A∗ET) > algn(A∗
DT), because of higher skeletal formal alignment, algn(AX∗E ′T) > algn(AX∗
D
′T). For example, if the super-decomposition, E, is an immediate super-

decomposition having additional slice {(C, T )} = cont(E) \ cont(D) which is
such that algn(A ∗ C ∗ T ) = 0. Therefore these cases also reduce the corre-
lation of the derived alignment summation aligned inducer, I

′
z,a,D,Σ, with the

literal derived alignment decomposition inducer, I
′

z,a,D,l.

Therefore consider the set of idealising summation aligned decompositions,
DΣ,k(A) ⊂ DΣ(A), which are summation aligned decompositions that are sub-
ject to two additional constraints, (iii) non-independent contingent derived
histograms, ∀(C, T ) ∈ cont(D) (A ∗ C ∗ T 6= (A ∗ C ∗ T )X) and (iv) inde-
pendent formal slice, ∀(C, T ) ∈ cont(D) ((A ∗ C)X ∗ T = ((A ∗ C)X ∗ T )X).
Define the derived alignment integral-independent substrate idealising sum-
mation aligned decomposition inducer I

′

z,a,D,Σ,k ∈ inducers(z) such that the
application to a non-independent substrate histogram A ∈ Az,xi \ {AX} is the
nullable transform alignment approximation function of the substrate ideal-
ising summation aligned decompositions,

I
′∗
z,a,D,Σ,k(A) = {(D, I∗≈R(algn(A ∗DT))) : D ∈ DUA,VA ∩ DΣ,k(A)}

There are no idealising summation aligned decompositions of an independent
substrate histogram, DΣ,k(AX) = ∅, but the definition of an inducer requires
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a domain of at least the integral-independent substrate histograms, Az,xi, so
define

I
′∗
z,a,D,Σ,k(AX) = {(Du, 0)}

where Du = {((∅, Tu), ∅)} and Tu = {V CS
A }T.

An idealising substrate summation aligned decomposition D ∈ DUA,VA ∩
DΣ,k(A) that is ideal, A = A ∗DT ∗DT†A, has no super idealising substrate
summation aligned decomposition, ∀E ∈ DUA,VA∩DΣ,k(A) (D /∈ subtrees(E)).
Conjecture that the derived alignment idealising summation aligned inducer,
I
′

z,a,D,Σ,k, is positively, but not perfectly, correlated with the literal derived

alignment decomposition inducer, I
′

z,a,D,l

∀z ∈ N>0

(var(z)(maxr ◦ I ′∗z,a,D,l) > 0 ∧ var(z)(maxr ◦ I ′∗z,a,D,Σ,k) > 0 =⇒
1 > corr(z)(maxr ◦ I ′∗z,a,D,l,maxr ◦ I ′∗z,a,D,Σ,k) ≥ 0)

and that the correlation is greater than that for the derived alignment sum-
mation aligned inducer, I

′
z,a,D,Σ,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,D,l,maxr ◦ I ′∗z,a,D,Σ) ≤
cov(z)(maxr ◦ I ′∗z,a,D,l,maxr ◦ I ′∗z,a,D,Σ,k))

The correlation is increased by the additional idealising constraints which,
while they do not increase the cardinality of the literal intersection, |DΣ,k(A)∩
Dfa,j(A)| ≤ |DΣ(A)∩Dfa,j(A)|, remove decompositions from the maximum set,
maxd(I

′∗
z,a,D,Σ(A)) ⊂ DUA,VA ∩ DΣ(A), that are there because of unnecessary

formal alignment. That is, maxr(I
′∗
z,a,D,Σ,k(A)) ≤ maxr(I

′∗
z,a,D,Σ(A)).

Now define the content alignment integral-independent substrate idealising
summation aligned decomposition inducer I

′

z,c,D,Σ,k ∈ inducers(z) such that
the application to a non-independent substrate histogram A ∈ Az,xi \ {AX} is
the summation alignment approximation function of the substrate idealising
summation aligned decompositions,

I
′∗
z,c,D,Σ,k(A) = {(D, I∗≈lnQ(algnSum(A,D))) : D ∈ DUA,VA ∩ DΣ,k(A)}

where algnSum = alignmentSum. Define I
′∗
z,c,D,Σ,k(AX) = {(Du, 0)}. Note

that the computation of summation alignment, algnSum(A,D), does not
require the computation of non-integral factorials because the abstract his-
togram of the slices is integral, (AX ∈ Ai)∧ (AX ∗C ∗T = (A ∗C ∗T )X) =⇒
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(A ∗ C ∗ T )X ∈ Ai. Therefore the alignmenter, Ia, need not be implemented
by means of an implementation of the unit-translated gamma function, Γ!,
such as in the log factorialer, I≈ln!. The log-rational approxer, I≈lnQ, can
therefore be used in preference to the real approxer, I≈R.

The content alignment idealising summation aligned inducer, I
′

z,c,D,Σ,k, avoids
the computation of the nullable transform, DT, but compromises by comput-
ing only the content alignment, algn(A∗DT)−algn(AX∗DT) = algnSum(A,D),
instead of the derived alignment, algn(A ∗ DT). Of course, the literal sub-
strate decompositions, Dfa,j(A), of the literal derived alignment decomposition
inducer, I

′

z,a,D,l, have no formal alignment, ∀E ∈ Dfa,j(A) (algn(AX∗ET) = 0),
because formal-abstract equality implies independent formal, AX ∗ ET =
(A ∗ ET)X =⇒ AX ∗ ET = (AX ∗ ET)X. Thus the intersecting summation
aligned decompositions, DΣ(A) ∩ Dfa,j(A), are such that content alignment
equals derived alignment. So the reduction in correlation is not necessarily
as great as would otherwise be the case. Conjecture that the content align-
ment idealising summation aligned inducer, I

′

z,c,D,Σ,k, is positively correlated

with the literal derived alignment decomposition inducer, I
′

z,a,D,l

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,D,l,maxr ◦ I ′∗z,c,D,Σ,k) ≥ 0)

but that the correlation is lower than that for the derived alignment idealising
summation aligned inducer, I

′

z,a,D,Σ,k,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,D,l,maxr ◦ I ′∗z,a,D,Σ,k) ≥
cov(z)(maxr ◦ I ′∗z,a,D,l,maxr ◦ I ′∗z,c,D,Σ,k))

An idealising substrate summation aligned decomposition D ∈ DUA,VA ∩
DΣ,k(A) that is ideal, A = A ∗DT ∗DT†A, has no super idealising substrate
summation aligned decomposition, ∀E ∈ DUA,VA∩DΣ,k(A) (D /∈ subtrees(E)).
All of its sub idealising substrate summation aligned decompositions have
lower content alignment, ∀E ∈ DUA,VA ∩ DΣ,k(A) (E ∈ subtrees(D) =⇒
algnSum(A,E) < algnSum(A,D)). Therefore, the maximum idealising sub-
strate summation aligned decompositions in the content idealising inducer,
I
′

z,c,D,Σ,k, are all ideal, ∀D ∈ maxd(I
′∗
z,c,D,Σ,k(A)) (ideal(A,DT)). Thus the

content idealising inducer, I
′

z,c,D,Σ,k, is positively correlated with the literal

derived alignment decomposition inducer, I
′

z,a,D,l, because the maximum ide-
alising substrate summation aligned decompositions are all ideal even if not
formal-abstract equivalent.
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Define the content alignment integral-independent substrate idealising sum-
mation aligned fud decomposition inducer I

′

z,c,D,F,Σ,k ∈ inducers(z) such that
the application to a non-independent substrate histogram A ∈ Az,xi \ {AX} is
the summation alignment approximation function of the substrate idealising
summation aligned fud decompositions,

I
′∗
z,c,D,F,Σ,k(A) =

{(D, I∗≈lnQ(algnSum(A,D))) : D ∈ DF,UA,VA , D
DVA ∈ DΣ,k(A)}

where DDV := map(expand(U, V ) ◦ transform, D). Define I
′∗
z,c,D,F,Σ,k(AX) =

{(DF,u, 0)} where DF,u = {((∅, {Tu}), ∅)} and Tu = {V CS
A }T.

The maximum transform function of the content alignment fud decomposition
inducer I

′

z,c,D,F,Σ,k, equals the maximum transform function of the content

alignment decomposition inducer I
′

z,c,D,Σ,k, maxr◦I ′∗z,c,D,F,Σ,k = maxr◦I ′∗z,c,D,Σ,k,
because the applications of the inducers can be mapped, {(DDVA , c) : (D, c) ∈
I
′∗
z,c,D,F,Σ,k(A)} = I

′∗
z,c,D,Σ,k(A).

4.21.3 Intractabilities

Although the computation time of the literal derived alignment integral-
independent substrate ideal formal-abstract transform inducer, I

′

z,a,l, is lower
than that of the intractable literal alignment-bounded iso-transform space
ideal transform inducer, Iz,y,l, ∀A ∈ Az,xi (I

′t
z,a,l(A) < It

z,y,l(A)), the literal de-

rived alignment inducer, I
′

z,a,l, is also an intractable inducer. That is, either
or both of (a) the computational time complexity, or (b) the representational
encoding space complexity, is greater than polynomial with respect to some
parameter. There are several reasons why this is the case, (i) intractable
substrate volume, (ii) intractable derived volume, (iii) intractable search set
domain, (iv) intractable partition variables, and (v) intractable literal sub-
strate model inclusion.

4.21.4 Intractable substrate volume

The literal substrate transforms Tfa,j(A) ⊂ TUA,VA of integral-independent
substrate histogram A ∈ Az,xi, are not tractably computable. The applica-
tion of the transformer I∗T, in the literal derived alignment inducer, I

′

z,a,l, to
the substrate histogram, A, and any literal substrate transform, T ∈ Tfa,j(A),
is I∗∗T((T,A)) = A ∗ T . The representation encoding space complexity of
the one functional transform, T , in the transformer, I∗T, varies as the un-
derlying volume v = |V C

A |. This is because the histogram, his(T ) ∈ Ai, of
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a one functional transform, T ∈ TUA,f,1, has cardinality equal to the under-
lying volume, |his(T )| = v. Hence the representation space of the trans-
form in the transformer must be at least as large as the underlying volume,
Is
∗T((T,A)) > v. All substrate transforms have the same underlying volume,
∀T ∈ TUA,VA (|his(T )| = v). The volume grows exponentially with underlying
dimension n = |VA|, and so the space complexity of the transformer, I∗T, is
exponential with respect to underlying dimension, n. For example, a regular
substrate of valency d has volume v = dn.

Although the space complexity of substrate transforms in the transformer
is intractable, the time complexity of the application of the transformer,
I∗∗T((T,A)), is tractable. If the transforms are implemented in a binary map
histogram representation, a lookup implemented by a binary map getter, IB,g,
has time complexity of only ln v. The overall time complexity of the appli-
cation is then b ln v where b = |AF|, assuming that the substrate histogram,
A, representation excludes ineffective states, for example in a binary map
histogram representation.

Overall, intractable substrate volume, v, implies intractable transformer,
I∗T. To implement an inducer with tractable substrate models, consider sub-
sets of the substrate, P(VA). The cardinality of each of the substrate subsets
can then be limited. For example, a maximum underlying volume limit of
xmax ∈ N≥4 could constrain substrate subsetK ⊆ V such that |KC| ≤ xmax.
Another example is a maximum underlying dimension limit of kmax ∈ N≥2

applied such that |K| ≤ kmax.

A limited-underlying subset of the functional definition sets Fu ⊂ F can
be defined such that a fud F ∈ Fu is such that its transforms, F ⊂ T , are
each tractably computable. Given integral-independent substrate histogram
A ∈ Az,xi, a limited-underlying substrate fud F ∈ FUA,VA ∩ Fu has possibly
complete coverage of the substrate, |und(F )| ≤ n where n = |VA|, but is
such that its transforms, F ⊂ TUA,f,1, are each tractably computable. This
is achieved by limiting the underlying variables of each transform. For ex-
ample, a maximum underlying volume limit of xmax would constrain the
fud ∀T ∈ F ♦K = und(T ) (|KC| ≤ xmax). If the fud is non-overlapping,
¬overlap(F ), and the fud has a single layer, ∀T ∈ F ♦K = und(T ) (K ⊆ VA),
then the components of the partition of the substrate each obey the limit.
For example, ∀u ∈ der(F ) ♦K = und(dep(F, {u})) (|KC| ≤ xmax). The
limited-underlying fuds, Fu, represents the class of subsets of the functional
definition sets such that the application of the fud is tractable. That is,
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the limited-underlying fuds, Fu, here stands for one of the limiting methods,
for example, maximum underlying volume, xmax, or maximum underlying
dimension, kmax.

The literal derived alignment integral-independent substrate ideal formal-
abstract fud inducer, I

′

z,a,F,l, has, as its subset of the substrate models, the
literal substrate fuds,

∀A ∈ Az,xi (dom(I
′∗
z,a,F,l(A)) = Ffa,j(A) ⊂MUA,VA)

As in the case of the literal derived alignment transform inducer, I
′

z,a,l, the

serial time computation of the literal derived alignment fud inducer, I
′

z,a,F,l,
is intractable with respect to underlying volume.

Consider a limited-underlying derived alignment integral-independent sub-
strate ideal formal-abstract fud inducer I

′

z,a,F,l,u ∈ inducers(z) which has, as
its subset of the substrate models, a limited-underlying subset of the literal
substrate fuds,

∀A ∈ Az,xi (dom(I
′∗
z,a,F,l,u(A)) = Ffa,j(A) ∩ Fu ⊂MUA,VA)

The application of the limited-underlying derived alignment fud inducer, I
′

z,a,F,l,u,
is a subset of the application of the literal derived alignment fud inducer,
I
′

z,a,F,l. That is, I
′∗
z,a,F,l,u(A) ⊆ I

′∗
z,a,F,l(A). The expanded transforms of the

domain of a limited-underlying derived alignment fud inducer is a subset of
the literal substrate transforms, ∀A ∈ Az,xi ({FTVA : F ∈ Ffa,j(A) ∩ Fu} ⊆
Tfa,j(A)). The application is implemented in a fuder, see below, but is oth-
erwise equal to that of the derived alignment inducer, ∀A ∈ Az,xi ∀F ∈
dom(I

′∗
z,a,F,l,u(A)) (I

′∗
z,a,F,l,u(A)(F ) = I

′∗
z,a,l(A)(FTVA)). Conjecture that the

maximum transform function of the limited-underlying derived alignment fud
inducer, I

′

z,a,F,l,u, is positively correlated with that of the literal derived align-

ment transform inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,l,u) ≥ 0)

The application of the fud F ∈ Ffa,j(A) ∩ Fu consists of the tractable se-
quential application of its transforms, A ∗ FT = apply(F,A), where apply ∈
F × A → A is described in the section ‘Functional Definition Sets’. This
application is implemented in a fuder I∗F = fuder ∈ computers, described
in the section ‘Computation of functional definition sets’ above. The appli-
cation of the fuder is I∗∗F((F,A)) = apply(F,A). The representation space
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of the substrate fud, F , in the fuder, I∗F, is tractable, because each of the
transformers in the application is tractable. The time complexity is at most
ry ln y where r = |vars(F )| and y = |AF|. Therefore both the space and
time complexity of the fuder are tractable. There is no need to represent
the intractable expanded transform of the fud, FTVA ∈ TUA,f,1, in order to
compute the application.

Thus the computation of the transformed histogram in a limited-underlying
derived alignment fud inducer is tractable despite intractable substrate vol-
ume, but at the cost of searching only the subset of the literal substrate trans-
forms for which corresponding tractable fuds exist. The excluded intractable
part of the literal substrate transforms is Tfa,j(A)\{FTVA : F ∈ FUA,VA ∩Fu}.
The exact composition of the subset of literal substrate transforms, {FTVA :
F ∈ Ffa,j(A) ∩ Fu}, of a particular implementation of a limited-underlying
derived alignment fud inducer depends on its definition of the limitations
on the underlying variables in Fu. Thus there are multiple implementations
of limited-underlying derived alignment fud inducers, I

′

z,a,F,l,u, for any given

implementation of the literal derived alignment transform inducer, I
′

z,a,l.

4.21.5 Intractable derived volume

Given integral-independent substrate histogram A ∈ Az,xi and literal sub-
strate transform T ∈ Tfa,j(A), both the computation time and computa-
tion space of the alignmenter applied to the transformed sample histogram,
I∗a (A ∗ T ) ≈ algn(A ∗ T ), in the literal derived alignment inducer, I

′

z,a,l,
vary with the derived volume, w = |WC|, where W = der(T ). That is,
It

a(A ∗ T ) > w and Is
a(A ∗ T ) > w. This is because the calculation of

alignment requires that the independent derived be computed by an inde-
pendenter, I∗X(A ∗ T ) = (A ∗ T )X, which has time and space complexities
of at least w. Although the formal histogram is independent, AX ∗ T =
(AX ∗ T )X, and so the derived volume is no greater than the underlying vol-
ume, w ≤ v, the substrate histogram, A ∈ Az,xi, has a completely effective
independent, AXF = AC, and the formal histogram equals the abstract his-
togram, AX ∗T = (A ∗T )X. Hence the independent derived is also completely
effective, (AF ∗ T )XF = (AXF ∗ T )XF = (AC ∗ T )XF = WC, and so both the
computation time and space of the alignmenter, Ia, must be at least w. The
derived volume, w, grows exponentially with derived dimension m = |W | and
so the time and space complexities are exponential, and therefore intractable,
with respect to derived dimension, m. In the case of the value full functional
transform, Ts = {{w}CS{}T : w ∈ VA}T ∈ Tfa,j(A), the derived dimension
equals the underlying dimension, m = n. In this case both complexities of

594



the alignmenter, Ia, are also intractable with respect to underlying dimen-
sion, n.

So an implementation of the literal derived alignment integral-independent
substrate ideal formal-abstract transform inducer, I

′

z,a,l, that uses the align-
menter, Ia, or any other computer that applies the independenter, IX, to
the derived histogram, I∗X(A ∗ T ), must be intractable with respect to de-
rived dimension, m. The value full functional transform, Ts, is a literal sub-
strate transform, Ts ∈ Tfa,j(A), and so the literal derived alignment integral-
independent substrate ideal formal-abstract transform inducer, I

′

z,a,l, is also
intractable with respect to underlying dimension, n.

This is also the case for an implementation of a limited-underlying derived
alignment fud inducer, I

′

z,a,F,l,u. Although the fuder, I∗F, in the limited-
underlying derived alignment fud inducer is tractable despite intractable sub-
strate volume, because of the use of a tractable fud, F ∈ FUA,VA ∩ Fu, which
allows tractable application, A ∗ FT, the limited-underlying derived align-
ment fud inducer, I

′

z,a,F,l,u, must still compute (A∗FT)X in an independenter,
IX, in order to compute derived alignment, algn(A ∗ FT). Thus limited-
underlying derived alignment fud inducer, I

′

z,a,F,l,u, is intractable with respect
to derived dimension, m. The value full functional fud is in the substrate
models of the limited-underlying derived alignment fud inducer application,
Fs = {{w}CS{}T : w ∈ VA} ∈ dom(I

′∗
z,a,F,l,u(A)) = Ffa,j(A) ∩ Fu, because it is

practicable in the fuder. Hence the limited-underlying derived alignment fud
inducer, I

′

z,a,F,l,u, is also intractable with respect to underlying dimension, n.

One possibility is to consider a further subset of the literal substrate trans-
forms, Tfa,j(A), which limits the derived dimension, m. For example, a max-
imum derived volume limit of wmax ∈ N≥4 could constrain the subset to
{T : T ∈ Tfa,j(A), W = der(T ), |WC| ≤ wmax}. Another example is a
maximum derived dimension limit of jmax ∈ N≥2 which could constrain the
subset to {T : T ∈ Tfa,j(A), W = der(T ), |W | ≤ jmax}. Such a limit would
exclude the value full functional transform, Ts, if, for example, jmax < n.

A limited-derived subset of the functional definition sets Fd ⊆ F can be
defined such that a fud F ∈ Fd has tractably computable independent de-
rived. Given integral-independent substrate histogram A ∈ Az,xi, a limited-
derived substrate fud F ∈ FUA,VA ∩Fd has tractably computable independent
derived. This is achieved by limiting the derived variables of the fud. For
example, a maximum derived volume limit of wmax would constrain the fud
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|WC| ≤ wmax where W = der(F ). The limited-derived fuds, Fd, represents
the class of subsets of the fuds such that the independent derived of the fud
is tractable. That is, the limited-derived fuds here stands for one of the lim-
iting methods, for example, maximum derived volume, wmax, or maximum
derived dimension, jmax.

Consider a limited-variables derived alignment integral-independent sub-
strate ideal formal-abstract fud inducer I

′

z,a,F,l,u,d ∈ inducers(z), which has,
as its subset of the substrate models, a limited-underlying and limited-derived
subset of the literal substrate fuds,

∀A ∈ Az,xi (dom(I
′∗
z,a,F,l,u,d(A)) = Ffa,j(A) ∩ Fu ∩ Fd ⊂MUA,VA)

Then (i) the fud, F , in the fuder, I∗F, is tractable because of the limited
underlying variables of the transforms of the fud, and (ii) the independent
transformed histogram, (A ∗ FT)X, in the independenter, IX, is tractable be-
cause of the limited derived variables of the fud.

The application of the limited-variables derived alignment fud inducer, I
′

z,a,F,l,u,d,
is a subset of the application of the literal derived alignment fud inducer,
I
′

z,a,F,l. That is, I
′∗
z,a,F,l,u,d(A) ⊆ I

′∗
z,a,F,l(A). The excluded intractable part of

the literal substrate transforms is Tfa,j(A) \ {FTVA : F ∈ FUA,VA ∩ Fu ∩ Fd}.
The excluded set is a superset of the less limited limited-underlying derived
alignment fud inducer, I

′

z,a,F,l,u. Conjecture that the maximum transform

function of the limited-variables derived alignment fud inducer, I
′

z,a,F,l,u,d, is
positively correlated with that of the literal derived alignment transform in-
ducer, I

′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,l,u,d) ≥ 0)

but that the correlation is lower than that for the limited-underlying derived
alignment fud inducer, I

′

z,a,F,l,u,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,l,u) ≥ cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,l,u,d))

The exact composition of the subset of literal substrate transforms, {FTVA :
F ∈ Ffa,j(A)∩Fu∩Fd}, of a particular implementation of a limited-variables
derived alignment fud inducer depends on its definition of the limitations on
the underlying variables, Fu, and the limitations on the derived variables,
Fd. Thus there are multiple implementations of limited-variables derived
alignment fud inducers, I

′

z,a,F,l,u,d, for any given implementation of the literal
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derived alignment transform inducer, I
′

z,a,l.

The computation of alignment in such a limited-variables derived alignment
fud inducer, I

′

z,a,F,l,u,d, is therefore tractable despite both intractable substrate
volume and intractable derived volume, because of tractable fuder, I∗F, and
independenter, IX, respectively. However, although the coverage of the in-
ducer, und(F ) ⊆ VA, where F ∈ Ffa,j(A) ∩ Fu ∩ Fd, is not constrained, and
hence the underlying volume, v = |V C

A |, is not constrained, the derived vol-
ume, w = |WC| where W = der(F ), must be less than the underlying volume,
w < v, if the underlying volume is impracticable. That is, the underlying
freedoms are unlimited, but the derived freedoms are limited.

Another approach to the problem of intractable derived volume is to con-
sider an inducer which has, as its subset of the substrate models, the set
of substrate summation aligned decompositions, DUA,VA ∩ DΣ(A), where A ∈
Az,xi. Summation aligned decompositions are well behaved distinct decom-
positions having no variable symmetries that are subject to the constraints
of (i) contingent diagonalisation and (ii) contingent formal-abstract equiva-
lence, with respect to the histogram, A. As described in section ‘Summa-
tion aligned decomposition inducers’, above, the computation of the content
alignment, algn(A ∗ DT) − algn(AX ∗ DT) where D ∈ DΣ(A), does not re-
quire the computation of the nullable transform, DT, because the content
alignment equals the summation alignment, algn(A∗DT)−algn(AX ∗DT) =
alignmentSum(A,D), where alignmentSum(A,D) =

∑
algn(A ∗ C ∗ T ) :

(C, T ) ∈ cont(D) and cont = elements ◦ contingents. Thus the intractable
derived volume, w = |NC| where N = der(DT), need not be computed.

Define the content alignment integral-independent substrate summation aligned
decomposition inducer I

′
z,c,D,Σ ∈ inducers(z) such that the application to a

substrate histogram A ∈ Az,xi is the summation alignment approximation
function of the substrate summation aligned decompositions,

I
′∗
z,c,D,Σ(A) = {(D, I∗≈lnQ(algnSum(A,D))) : D ∈ DUA,VA ∩ DΣ(A)}

where algnSum = alignmentSum.

The computation of summation alignment in the content summation aligned
decomposition inducer, I

′
z,c,D,Σ, is not tractable because there is no con-

straint that the contingent slice sizes decrease. For example, a summation
aligned decomposition D ∈ dom(I

′∗
z,c,D,Σ(A)) could consist of mono-derived-

variate transforms, ∀T ∈ transforms(D) (|der(T )| = 1). The computation of
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the summation alignment requires the contingent application of the trans-
former and alignmenter to each of the transforms requiring time of at least∑
It
∗T((T,A ∗ C)) + It

a(A ∗ C ∗ T ) : (C, T ) ∈ cont(D).

If the contingent slice size is constrained to decrease, then the longest path of
the decomposition must be less or equal to the size, ∀L ∈ paths(D) (|L| ≤ z),
and the cardinality of the leaves must be less than the size, leaves(D) < z.
The cardinality of the transforms is, in this case, less than the square of the
size, |transforms(D)| < z2, which has polynomial complexity.

Therefore consider the set of idealising summation aligned decompositions,
DΣ,k(A) ⊂ DΣ(A), which are summation aligned decompositions that are
subject to two additional constraints, (iii) non-independent contingent de-
rived histograms, and (iv) independent formal slice. The content alignment
integral-independent substrate idealising summation aligned decomposition
inducer I

′

z,c,D,Σ,k ∈ inducers(z) is defined above such that the application
to a non-independent substrate histogram A ∈ Az,xi \ {AX} is the summa-
tion alignment approximation function of the substrate idealising summation
aligned decompositions,

I
′∗
z,c,D,Σ,k(A) = {(D, I∗≈lnQ(algnSum(A,D))) : D ∈ DUA,VA ∩ DΣ,k(A)}

The content alignment idealising summation aligned inducer, I
′

z,c,D,Σ,k, is con-
jectured to be positively correlated with the literal derived alignment inducer,
I
′

z,a,l

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,Σ,k) ≥ 0)

The subset of substrate models, MUA,VA , of an implementation of an ideal-
ising summation aligned decomposition inducer cannot be substrate decom-
positions of substrate transforms, DUA,VA ⊂ trees(S × TUA,VA), because the
substrate volume, v, is still intractable even if the derived volume, w, is (in-
directly) tractable. To be tractable with limited-variables methods the sub-
set of substrate models must at least be a subset of substrate fud decompo-
sitions, DF,UA,VA . Define the limited-variables content alignment integral-
independent substrate idealising summation aligned fud decomposition in-
ducer I

′

z,c,D,F,Σ,k,u,d ∈ inducers(z) such that the application to a non-independent
substrate histogram A ∈ Az,xi \ {AX} is the summation alignment function
of the limited-variables substrate idealising summation aligned fud decompo-
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sitions,

I
′∗
z,c,D,F,Σ,k,u,d(A) =

{(D, I∗≈lnQ(algnSum(A,D))) :

D ∈ DF,UA,VA ∩ trees(S × (Fu ∩ Fd)), DDVA ∈ DΣ,k(A)}

Define I
′∗
z,c,D,F,Σ,k,u,d(AX) = {(DF,u, 0)} where DF,u = {((∅, {Tu}), ∅)} and

unary partition transform Tu = {V VC
A }T. Note that in the special case of

independent substrate histogram, A = AX, the dummy unary decomposition,
DF,u, is intractable because of intractable substrate volume, but, of course,
the given independent substrate histogram, A = AX, is itself intractably com-
putable for the same reason.

Here the DF,UA,VA ∩ trees(S × (Fu ∩ Fd)) stands for the class of subsets of
the substrate fuds, the definitions of which depend in turn on the definitions
of the limited-underlying substrate fuds, Fu, and the limited-derived substrate
fuds, Fd.

Conjecture that the limited-variables content alignment fud decomposition
inducer, I

′

z,c,D,F,Σ,k,u,d, is positively correlated with the literal derived align-

ment inducer, I
′

z,a,l

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,F,Σ,k,u,d) ≥ 0)

but that the correlation is lower than that for the content content alignment
fud decomposition inducer, I

′

z,c,D,F,Σ,k, defined in section ‘Summation aligned
decomposition inducers’, above,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,F,Σ,k) ≥
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,F,Σ,k,u,d))

The idealising summation aligned decomposition D ∈ dom(I
′∗
z,c,D,F,Σ,k,u,d(A))

may have multiple fuds, so the derived volume, w = |NC| where N =
der(DT), is not limited by the derived dimension of a fud such as is the
case in the limited-variables derived alignment fud inducer, I

′

z,a,F,l,u,d. How-
ever, because the correlation of the unlimited content content alignment
fud decomposition inducer, I

′

z,c,D,F,Σ,k, with the literal derived alignment in-

ducer, I
′

z,a,l, is not perfect, for the reasons described in section ‘Summa-
tion aligned decomposition inducers’, above, it is not obvious whether or
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not the correlation of the limited-variables content alignment fud decomposi-
tion inducer, I

′

z,c,D,F,Σ,k,u,d, cov(z)(maxr◦I ′∗z,a,l,maxr◦I ′∗z,c,D,F,Σ,k,u,d), is greater

than that for the limited-variables derived alignment fud inducer, I
′

z,a,F,l,u,d,

cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,l,u,d).

4.21.6 Intractable search set elements

Given an integral-independent substrate histogram A ∈ Az,xi, the literal
substrate transforms,

Tfa,j(A) = dom(Xz,xi,T,y,fa,j(A)) = dom(X ′z,xi,T,a,fa,j(A))

is defined

Tfa,j(A) = {T : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

The computation time of the literal derived alignment integral-independent
substrate ideal formal-abstract transform inducer, I

′

z,a,l, must be at least

as great as the cardinality of the literal substrate transforms, I
′t
z,a,l(A) >

|Tfa,j(A)|, if the computation of each transform is performed serially. If the
computation is parallel, then it is the computation space which is at least
as great as the cardinality of the literal substrate transforms, I

′s
z,a,l(A) >

|Tfa,j(A)|. Consider the serial computation. In the alignmenter implementa-
tion of the literal derived alignment inducer, the computation time is such
that

I
′t
z,a,l(A) >

∑
(It
∗T((T,A)) + It

a(A ∗ T ) : T ∈ Tfa,j(A)) > |Tfa,j(A)|

However, to compute the literal substrate transforms, Tfa,j(A), it is necessary
to compute the entire superset of substrate transforms, TUA,VA ⊃ Tfa,j(A),
where TUA,VA = {FT : F ⊆ {PT : P ∈ B(V CS

A )}}. This is because tests of (i)
formal-abstract equality, AX ∗T = (A ∗T )X, and (ii) ideality, ideal(A, T ), de-
pend on the application of a transform, T , to the substrate histogram, A, and
so all of the substrate transforms, TUA,VA , must be constructed before testing.
Conjecture that there is no subset of the multi-partition transforms, TU,P∗ ,
that may be excluded for all substrate histograms, ¬(∃Q ∈ P(TU,P∗)\{∅} ∀A ∈
Az,xi ∀T ∈ Q∩TUA,VA ((AX ∗T = (A ∗T )X)∧ (A = A ∗T ∗T †A))). Therefore
the computation time of the literal derived alignment inducer, I

′

z,a,l, must be

at least as great as the cardinality of the substrate histograms, I
′t
z,a,l(A) >

|TUA,VA|. The cardinality of the substrate transforms is |TUA,VA| = 2bell(v)

where v = |V C
A |. Thus I

′t
z,a,l(A) > 2bell(v). So the serial computation time

complexity of the literal derived alignment inducer, I
′

z,a,l, is intractable with
respect to underlying volume, v.
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Consider the derived alignment integral-independent substrate ideal formal-
abstract non-overlapping transform inducer I

′

z,a,l,n ∈ inducers(z) which is de-
fined such that its application to an integral-independent substrate histogram
A ∈ Az,xi is a subset of the application of the literal derived alignment in-
ducer, I

′∗
z,a,l,n(A) = {(T, a) : (T, a) ∈ I ′∗z,a,l(A), ¬overlap(T )} ⊂ I

′∗
z,a,l(A). Thus

the domain of the application is the non-overlapping subset of the literal sub-
strate transforms, dom(I

′∗
z,a,l,n(A)) = Tfa,j(A) ∩ TUA,VA,n where TU,V,n = {T :

T ∈ TU,V , ¬overlap(T )}. A non-overlapping transform implies that the for-
mal histogram is independent, ¬overlap(T ) =⇒ AX ∗ T = (AX ∗ T )X, which
is also implied by formal-abstract equality, AX ∗T = (A ∗T )X =⇒ AX ∗T =
(AX∗T )X, so the domain of the application is not empty, dom(I

′∗
z,a,l,n(A)) 6= ∅.

The non-overlapping transform limitation means that only the non-overlapping
substrate transforms set, TUA,VA,n ⊂ TUA,VA need be constructed. This sub-
set is independent of the substrate histogram, A. The serial computation
time of the non-overlapping derived alignment inducer, I

′

z,a,l,n, is constrained

I
′t
z,a,l,n(A) > |TUA,VA,n|. The non-overlapping substrate transforms set can be

constructed explicitly,

TUA,VA,n = {NTVA : Y ∈ B′(VA), N ∈
∏
K∈Y

B(KCS)} ∪ {(∅, ∅)}

As shown above, in section ‘Substrate structures’, the cardinality of this set is
conjectured to be constrained bell(v) ≤ |TUA,VA,n| ≤ 2× bell(n)× bell(v) + 1,
where n = |VA| and v = |V C

A |. The complexity of the cardinality of the
non-overlapping substrate transforms set, TUA,VA,n, is therefore factorial on
the underlying volume, bell ∈ O(!). The serial computation time complexity
of the non-overlapping derived alignment inducer, I

′

z,a,l,n, is still intractable
with respect to underlying volume, v. Note that the non-overlapping derived
alignment inducer, I

′

z,a,l,n, not only limits the search set, but also limits the
derived dimension, ¬overlap(T ) =⇒ m ≤ n, where m = |der(T )|.

Consider the literal derived alignment integral-independent substrate ideal
formal-abstract fud inducer, I

′

z,a,F,l, which has, as its subset of the substrate

models, the literal substrate fuds, dom(I
′∗
z,a,F,l(A)) = Ffa,j(A) where A ∈ Az,xi.

The serial time computation of the literal derived alignment fud inducer,
I
′

z,a,F,l, is intractable with respect to underlying volume. Similarly to the case

of the literal derived alignment inducer, I
′

z,a,l, above, the entire set of sub-
strate fuds, FUA,VA , must be constructed before testing for (i) formal-abstract
equality, AX ∗ FT = (A ∗ FT)X, and (ii) ideality, ideal(A,FT). The cardi-
nality of the substrate fuds is greater than that of the substrate transforms,
|FUA,VA| > |TUA,VA|, so I

′t
z,a,F,l(A) > 2bell(v) where v = |V C

A |.
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Compare (i) the literal derived alignment integral-independent substrate
ideal formal-abstract fud inducer, I

′

z,a,F,l, which has, as its subset of the sub-

strate models, the literal substrate fuds, dom(I
′∗
z,a,F,l(A)) = Ffa,j(A), to (ii)

the limited-variables derived alignment integral-independent substrate ideal
formal-abstract fud inducer, I

′

z,a,F,l,u,d, which has, as its subset of the substrate
models, a limited-underlying and limited-derived subset of the literal substrate
fuds, dom(I

′∗
z,a,F,l,u,d(A)) = Ffa,j(A) ∩ Fu ∩ Fd. In the limited-variables case

the definitions of the limited-underlying, Fu, and limited-derived, Fd, allow an
explicit construction of a subset of substrate fuds, FUA,VA ∩Fu ∩Fd, because
they are independent of the substrate histogram, A. Thus the complexity of
the cardinality of the inducer’s search models is reduced by the limits, in a
similar fashion to the reduction in complexity of the non-overlapping trans-
form limitation, above. However, the limited-variables derived alignment fud
inducer, I

′

z,a,F,l,u,d, is still intractable with respect to underlying dimension,
n, where n = |VA|. This is for two reasons, (i) fud flattening, and (ii) layer
variables cardinality.

The definition of the substrate fud set, FUA,VA , described in section ‘Sub-
strate structures’, above, explicitly excludes duplicate nested partitions within
the fud, ∀F ∈ FUA,VA ∀u ∈ vars(F ) \ VA ♦G = depends(F, {u}) ∀w ∈
vars(G) \ VA \ {u} ♦H = depends(F, {w}) (GTPVA 6= HTPVA). The substrate
fud set is a set of subsets of the power fud, FUA,VA ⊂ P(power(UA)(VA)) ⊂
FUA,P. The power fud is constructed recursively from the bottom substrate
layer upwards by adding layer partition transforms which do not flatten to
an existing partition. Without flattening, the power fud recursion would not
terminate and so the power fud would have infinite layers and hence infi-
nite cardinality. The substrate fud set, FUA,VA , is the set of subsets of the
power fud such that the fuds have the same underlying substrate variables,
FUA,VA = {F : F ⊆ power(UA)(VA), und(F ) ⊆ VA}, so the cardinality of the
substrate fud set FUA,VA , would also be infinite without flattening. The ex-
plicit construction of the substrate fud set, FUA,VA , in an inducer application,
such as in the literal derived alignment fud inducer, I

′

z,a,F,l, above, requires the
computation of the power fud, and thus the flattened partition of each new
variable must be computed. However this would imply intractable underlying
volume. That is, the space of a flattened partition transform in substrate fud
F would be at least equal to the underlying volume, |his(GTVA)| = v where
G = depends(F, {u}), u ∈ vars(F ) \VA and v = |V C

A |, even in the serial case.
So, for example, I

′s
z,a,F,l(A) > v. The space complexity is therefore intractable

because it is exponential with respect to underlying dimension, n. Even an
inducer that has, as its subset of the substrate models, the limited-underlying
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subset of the substrate fuds, FUA,VA ∩ Fu, such as the limited-variables de-
rived alignment fud inducer, I

′

z,a,F,l,u,d, above, must compute the flattened
partition transform, GTVA , and so must still have intractable space complex-
ity, I

′s
z,a,F,l,u,d(A) > v. If the definition of the search set is relaxed to allow fuds

containing duplicate flattened partitions, and thus doing away with the need
to compute the flattened partition transform, some other method of limiting
the cardinality of layers in the fud is required to prevent intractable infinite
recursion.

Define the infinite-layer substrate fud set F∞,U,V ⊂ FU,P as

F∞,U,V = {F : F ⊆ powinf(U)(V, ∅), und(F ) ⊆ V }

where U is the infinite implied system, U = implied(filter(V, U)), and the
infinite power fud powinf(U) ∈ P(VU) × FU,P → FU,P is defined without
termination

powinf(U)(V, F ) := F ∪G ∪ powinf(U)(V, F ∪G) :

G = {T : K ⊆ vars(F ) ∪ V, T ∈ FU,K}

or explicitly,

powinf(U)(V, F ) := F ∪G ∪ powinf(U)(V, F ∪G) :

G = {PT : K ⊆ vars(F ) ∪ V, P ∈ B(KCS)}

The cardinality of the infinite-layer substrate fud set is infinite, |F∞,U,V | =∞.
To implement an inducer with a tractable finite subset of the infinite-layer
substrate fud set, F∞,UA,VA , where A ∈ Az,xi, consider a limit on the cardinal-
ity of the layers l, where l = layer(F, der(F )) and F ∈ F∞,UA,VA . For exam-
ple, a maximum layer limit of lmax ∈ N>0 applied such that l ≤ lmax. Define
a limited-layer subset of the functional definition sets Fh ⊂ F which repre-
sents the class of subsets of the functional definition sets such that the layer
of the fud is limited. The cardinality of limited-layer substrate fud set is finite,
|F∞,UA,VA∩Fh| <∞. The limited-layer substrate fud set allows fuds contain-
ing duplicate flattened partitions and so is a superset of the intersection of
the substrate fud set and the limited-layer fuds, F∞,UA,VA∩Fh ⊇ FUA,VA∩Fh.

Let the literal substrate histogram search infinite-layer fuds F∞,fa,j(A) ⊂
F∞,UA,VA be defined

F∞,fa,j(A) = {F : F ∈ F∞,UA,VA , A
X ∗ FT = (A ∗ FT)X, A = A ∗ FT ∗ FT†A}
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The cardinality of the literal substrate histogram search infinite-layer fuds
is infinite, |F∞,fa,j(A)| = ∞. The literal substrate histogram search infinite-
layer fuds map to the literal substrate transforms, {FTVA : F ∈ F∞,fa,j(A)} =
Tfa,j(A), and so is a subset of the substrate models, F∞,fa,j(A) ⊂MUA,VA .

Define the limited-layer limited-variables derived alignment integral-independent
substrate ideal formal-abstract infinite-layer fud inducer I

′

z,a,F,∞,l,u,d,h ∈ inducers(z),
which has, as its subset of the substrate models, a limited-layer, limited-
underlying and limited-derived subset of the literal substrate histogram search
infinite-layer fuds,

∀A ∈ Az,xi (dom(I
′∗
z,a,F,∞,l,u,d,h(A)) = F∞,fa,j(A) ∩ Fu,d,h ⊂MUA,VA)

where Fu,d,h = Fu ∩ Fd ∩ Fh. The domain of the limited-layer limited-
variables derived alignment fud inducer is finite, |dom(I

′∗
z,a,F,∞,l,u,d,h(A))| =

|F∞,fa,j(A) ∩ Fu,d,h| < ∞. The space complexity of the serially computed
limited-layer limited-variables derived alignment fud inducer, I

′

z,a,F,∞,l,u,d,h, is
tractable with respect to flattening because the flattened partition transforms
are not computed.

The space required to construct a substrate fud depends on the sequence of
the computation. If the computation is from the top layer downwards and
definitions of (i) the limited-derived, Fd, is a maximum derived dimension
limit of jmax ∈ N≥2, (ii) the limited-underlying, Fu, is a maximum underlying
dimension limit of kmax ∈ N≥2, and (iii) the limited-layer, Fh, is a maximum
layer limit of lmax ∈ N>0, then there exists a fud F ∈ F∞,UA,VA ∩ Fu,d,h

having lmax layers, layer(F, der(F )) = lmax, and such that the cardinality
of the i-th layer from the top is

|{u : u ∈ vars(F ), layer(F, {u}) = lmax− i}| = jmax× kmaxi

where 0 ≤ i < lmax. If the partition transforms of the i-th layer of the fud
are such that the volume equals the maximum underlying volume limit of
xmax ∈ N≥4, then the space of the limited-variables derived alignment fud
inducer is such that,

I
′s
z,a,F,∞,l,u,d,h(A) >

∑
(xmax× jmax× kmaxi : i ∈ {0 . . . lmax− 1})

which is tractable.

Similarly, if the implementation of the computation of the fud is from the
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bottom layer upwards with the same definitions of limited-layer and limited-
variables, there exists a fud F ∈ F∞,UA,VA ∩ Fu,d,h such that the cardinality
of the i-th layer from the bottom is

|{u : u ∈ vars(F ), layer(F, {u}) = i}| = nkmaxi

where n = |VA| and 0 ≤ i < lmax. The space of the limited-layer limited-
variables derived alignment fud inducer in the upwards sequence computation
is such that,

I
′s
z,a,F,∞,l,u,d,h(A) >

∑
(xmax× nkmaxi

: i ∈ {1 . . . lmax})

which is tractable because it is only polynomial in underlying dimension, n.
In the non-overlapping case where the underlying variables are partitioned,
there exists a fud F such that the cardinality of the i-th layer from the
bottom is, with a certain abuse of notation,

|{u : u ∈ vars(F ), layer(F, {u}) = i}| < nkmaxi

Although in this implementation of the inducer, I
′

z,a,F,∞,l,u,d,h, the space com-
plexity is tractable, the time complexity remains intractable with respect to
underlying dimension, n. The cardinality of fuds having space as defined in
the upwards computation above, and such that the partition transforms of
the i-th layer each have underlying volume of xmax is

(bell(xmax))n
kmaxi

Thus the time complexity is at least exponential in underlying dimension, n,

|F∞,UA,VA ∩ Fu,d,h| > (bell(xmax))n =⇒ I
′t
z,a,F,∞,l,u,d,h(A) > (bell(xmax))n

To implement an inducer with tractable time complexity, consider limits
on the cardinality of the variables in the layers. For example, a maxi-
mum layer breadth limit of bmax ∈ N>0 could constrain a fud such that
∀i ∈ {1 . . . l} (|{u : u ∈ vars(F ), layer(F, {u}) = i}| ≤ bmax) where
l = layer(F, der(F )). Define a limited-breadth subset of the functional def-
inition sets Fb ⊂ F which represents the class of subsets of the functional
definition sets such that the cardinality of the variables in any layer is lim-
ited.

Then define the limited-models derived alignment integral-independent sub-
strate ideal formal-abstract infinite-layer fud inducer I

′

z,a,F,∞,l,q ∈ inducers(z),
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which has, as its subset of the substrate models, a limited-breadth, limited-
layer, limited-underlying and limited-derived subset of the literal substrate
histogram search infinite-layer fuds,

∀A ∈ Az,xi (dom(I
′∗
z,a,F,∞,l,q(A)) = F∞,fa,j(A) ∩ Fq ⊂MUA,VA)

where Fq = Fu ∩ Fd ∩ Fh ∩ Fb. The substrate models of the limited-models
derived alignment fud inducer, I

′

z,a,F,∞,l,q, are a subset of the literal substrate

histogram search infinite-layer fuds, dom(I
′∗
z,a,F,∞,l,q(A)) ⊂ F∞,fa,j(A), but are

not necessarily a subset of the literal substrate fuds, |dom(I
′∗
z,a,F,∞,l,q(A)) \

Ffa,j(A)| ≥ 0. This is because an infinite-layer fud F ∈ dom(I
′∗
z,a,F,∞,l,q(A))

may contain duplicate expanded partitions. However, the corresponding sub-
state transforms are all in the literal substrate transforms, {FTVA : F ∈
dom(I

′∗
z,a,F,∞,l,q(A))} ⊂ Tfa,j(A).

Conjecture that the limited-models derived alignment fud inducer, I
′

z,a,F,∞,l,q,
is positively correlated with the literal derived alignment transform inducer,
I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,l,q) ≥ 0)

but that the correlation is lower than that for the limited-variables derived
alignment fud inducer, I

′

z,a,F,l,u,d,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,l,u,d) ≥
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,l,q))

The limited-models derived alignment fud inducer, I
′

z,a,F,∞,l,q, has tractable
time and space complexity with respect to the search set elements.

Similarly, a tractable inducer, with respect to the search set domain, may
be defined for idealising summation aligned decompositions. The substrate
infinite-layer fud decompositions DF,∞,U,V is defined, similarly to the substrate
fud decompositions DF,U,V , in section ‘Substrate structures’, above, as

DF,∞,U,V = {D : D ∈ DF,d, fuds(D) ⊆ F∞,U,V ,
∀L ∈ paths(D) (maxr(count({(F, i) : (i, (·, F )) ∈ L})) = 1)}

Now define the limited-models content alignment integral-independent sub-
strate idealising summation aligned infinite-layer fud decomposition inducer

606



I
′

z,c,D,F,∞,Σ,k,q ∈ inducers(z) such that the application to a non-independent
substrate histogram A ∈ Az,xi \{AX} is the summation alignment function of
the limited-models substrate idealising summation aligned fud decompositions,

I
′∗
z,c,D,F,∞,Σ,k,q(A) =

{(D, I∗≈lnQ(algnSum(A,D))) :

D ∈ DF,∞,UA,VA ∩ trees(S × Fq), DDVA ∈ DΣ,k(A)}

Define I
′∗
z,c,D,F,∞,Σ,k,q(AX) = {(DF,u, 0)} where DF,u = {((∅, {Tu}), ∅)} and

unary partition transform Tu = {V VC
A }T.

Conjecture that the limited-models content alignment infinite-layer fud de-
composition inducer, I

′

z,c,D,F,∞,Σ,k,q, is positively correlated with the literal

derived alignment inducer, I
′

z,a,l

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,F,∞,Σ,k,q) ≥ 0)

but that the correlation is lower than that for the limited-variables content
alignment fud decomposition inducer, I

′

z,c,D,F,Σ,k,u,d,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,F,Σ,k,u,d) ≥
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,F,∞,Σ,k,q))

The limited-models content alignment integral-independent substrate idealis-
ing summation aligned infinite-layer fud decomposition inducer I

′

z,c,D,F,∞,Σ,k,q,
has tractable time and space complexity with respect to the search set ele-
ments.

4.21.7 Intractable partition variables

Given integral-independent substrate histogram A ∈ Az,xi, the literal sub-
strate transforms, Tfa,j(A), are the substrate models of the literal derived
alignment inducer, I

′

z,a,l. The literal substrate transforms are a subset of
the substrate transforms, Tfa,j(A) ⊂ TUA,VA . The substrate transforms are
defined in terms of partition variables of the substrate, TU,V = {FT : F ⊆
{PT : P ∈ B(V CS)}}. The encoding space of a substrate transform partition
variable is at least maximum(ln bell(v), v) where v = |V C

A |. Other ways of
encoding the partition variable must require greater space. For example, a
nested binary map representation of sets of sets would have space complexity
of at least v ln v.
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Furthermore, the values of partition variables are components of the par-
tition, (P, P ) ∈ UA where P ∈ B(V CS

A ), and so have space complexities equal
to the variables. Of course, the values could be encoded as an index i of the
cardinality of the partition variable, 1 ≤ i ≤ |P |, which would have space
of ln |P |, but some order M ∈ enums(P ) would then be required to list the
components, flip(M) ∈ L(P ), and so either the time or space complexity to
compute the index would be just as large.

Similarly, the literal substrate fuds, Ffa,j(A), which are the substrate mod-
els of the literal derived alignment fud inducer, I

′

z,a,F,l, are a subset of the
substrate fuds, Ffa,j(A) ⊂ FUA,VA . The substrate fud set is a set of sub-
sets of the power fud, FUA,VA ⊂ P(power(UA)(VA)) ⊂ FUA,P, and so the
substrate fuds consist of partition transforms. The substrate fud set con-
tains the base partition functional definition set, FUA,VA ∈ FUA,VA where
FU,V = {PT : P ∈ B(V CS)} ∈ FU,P. The space complexity of the partitions of
the partition functional definition set, FUA,VA , is, like the space complexity of
the substrate transform partition variables, at least ln bell(v). The partition
variables in layers higher than the first are partitions of states of partition
variables. For example, a bivariate partition variable R ∈ B({P,Q}CS) where
P,Q ∈ B(V CS), or a partition of the self partition, R ∈ B({V CS{}}CS). The
space of partition variables therefore increases exponentially with layer.

Therefore both the literal derived alignment inducer, I
′

z,a,l and the literal

derived alignment fud inducer, I
′

z,a,F,l, are intractable because of exponential
space complexity with respect to dimension n, where n = |VA|. In addi-
tion, an unlimited infinite-layer fud inducer would be intractable because
of exponential space complexity with respect to fud layer. However, the
limited-models infinite-layer fud inducer, I

′

z,a,F,∞,l,q, which has, as its subset
of the substrate models, a limited-breadth, limited-layer, limited-underlying
and limited-derived subset of the literal substrate histogram search infinite-
layer fuds, F∞,fa,j(A) ∩ Fq, is tractable with respect to partition variables.
That is, the partition variables of limited-models fuds, Fq, must have no
more than polynomial complexity for either time or space. This is because,
as shown in section ‘Intractable search set elements’, above, (i) the space and
time complexities of a fud F , considered separately from its partition vari-
ables, in the limited-models substrate fuds, F ∈ F∞,fa,j(A)∩Fq, are tractable,
and (ii) the complexity of the cardinality of limited-models substrate fuds,
|F∞,fa,j(A) ∩ Fq| is tractable and therefore the time complexity of the serial
limited-models fud inducer, I

′

z,a,F,∞,l,q, is also tractable. Tractable fuds imply
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tractable partition variables because the partition variables depend only on
the fuds.

Note that a first layer partition variable space of at least xmax ln xmax,
where the maximum underlying volume limit is xmax ∈ N≥4, while tractable,
may be impracticable. See section ‘Practicable partition variables’, below, for
consideration of the cardinal number representation of variables in monadic
system inducers.

4.21.8 Intractable literal substrate model inclusion

The computation of the set of limited-models substrate infinite-layer fuds,
F∞,U,V ∩Fq, in the limited-models derived alignment integral-independent sub-
strate ideal formal-abstract infinite-layer fud inducer, I

′

z,a,F,∞,l,q, has tractable
time and space complexity. Given an integral-independent substrate his-
togram A ∈ Az,xi, the computation of the derived alignment for each of the
fuds, {(F, algn(A∗FT)) : F ∈ F∞,UA,VA∩Fq}, would also be tractable. In fact,
only the derived alignments of the literal subset of the limited-models sub-
strate infinite-layer fuds, F∞,fa,j(A)∩Fq ⊂ F∞,UA,VA ∩Fq, need be computed
in the inducer, after testing for inclusion under the constraints of (i) formal-
abstract equality, AX ∗ FT = (A ∗ FT)X, and (ii) ideality, ideal(A,FT). That
is, if the computation is parallel, the process is (i) the limited-models sub-
strate infinite-layer fuds, F∞,UA,VA∩Fq, are computed, (ii) the inclusion tests
are applied to construct the limited-models literal substrate histogram search
infinite-layer fuds, F∞,fa,j(A) ∩ Fq = {F : F ∈ F∞,UA,VA ∩ Fq, A

X ∗ FT =
(A ∗FT)X, A = A ∗FT ∗FT†A}, and (iii) the derived alignment is computed
for each, I

′∗
z,a,F,∞,l,q(A) = {(F, algn(A ∗ FT)) : F ∈ F∞,fa,j(A) ∩ Fq}. If the

computation is serial, the process of (i) construction, (ii) inclusion testing,
and (iii) derived alignment computation of each fud is performed one fud at
a time.

However, both of these inclusion tests are intractable because of intractable
substrate volume. The computation of the independent histogram, AX, by an
independenter, I∗X(A) = AX, requires time and space of at least v, where
v = |V CS

A |, because the substrate histogram, A, has completely effective
independent, AXF = V C

A . Thus the computation of the independent his-
togram, AX, in the computation of the formal histogram, AX ∗ FT, in the
formal-abstract equality inclusion test, AX ∗ FT = (A ∗ FT)X, is intractable
with respect to underlying dimension, n, where n = |VA|. Similarly, in
the case where the fud, F , is equivalent to the unary partition transform,
FTVA = Tu, where Tu = {V CS

A }T, then the idealisation equals the indepen-
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dent, A ∗ FT ∗ FT†A = A ∗ Tu ∗ T †Au = AX, and so the computation time and
space of the idealisation in an idealiser I† ∈ computers must be at least as
great as that of the independent in the independenter, Is

†((A, Tu)) > Is
X(A)

and It
†((A, Tu)) > It

X(A). Of course, the limits of the limited-models fuds, Fq,
may exclude the unary partition transform, Tu /∈ {FTVA : F ∈ Fq, und(F ) ⊆
VA}, and so the computation of the space and time required by the ideality
inclusion test depends on the definition of the limits.

Consider the formal-abstract equality inclusion test in the literal derived
alignment integral-independent substrate ideal formal-abstract transform in-
ducer, I

′

z,a,l. Given an integral-independent substrate histogram A ∈ Az,xi, the
application of the inducer is defined

I
′∗
z,a,l(A) =

{(T, I∗≈lnQ(algn(A ∗ T ))) : T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

Now replace the formal-abstract equality inclusion test, AX ∗ T = (A ∗ T )X,
with the less strict independent-formal constraint, AX∗T = (AX∗T )X, which
is implied by formal-abstract equality, AX ∗ T = (A ∗ T )X =⇒ AX ∗ T =
(AX ∗T )X, to define the derived alignment substrate ideal independent-formal
transform inducer I

′

z,a,fx,j ∈ inducers(z), given substrate histogram A ∈ Az,
as

I
′∗
z,a,fx,j(A) =

{(T, I∗≈R(algn(A ∗ T ))) : T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X, A = A ∗ T ∗ T †A}

The independent-formal inducer, I
′

z,a,fx,j, is defined with the real approxer,
I≈R, rather than the log-rational approxer, I≈lnQ, because in some cases
the abstract alignment is not integral, (A ∗ T )X /∈ Ai. Also, there is no
longer any need to constrain the domain of the inducer to the subset integral-
independent substrate histograms, Az,xi ⊂ Az.

The weaker constraint means that the application of the independent-formal
inducer, I

′

z,a,fx,j, is a superset of that of the formal-abstract inducer, I
′

z,a,l,

I
′∗
z,a,fx,j(A) ⊇ I

′∗
z,a,l(A), in the case where the substrate histogram has in-

tegral independent, A ∈ Az,xi. The substrate models are no longer con-
strained to be a subset of the literal substrate models, so that in some cases
dom(I

′∗
z,a,fx,j(A))\Tfa,j(A) 6= ∅. Conjecture that the maximum transform func-

tion of the independent-formal inducer, I
′

z,a,fx,j, is positively correlated with

that of the literal derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,fx,j) ≥ 0)
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The independent-formal inclusion test, AX∗T = (AX∗T )X, may be dropped
altogether by altering the range of the application to be content alignment,
algn(A ∗ T ) − algn(AX ∗ T ), instead of derived alignment. Define the con-
tent alignment substrate ideal transform inducer I

′
z,c,j ∈ inducers(z), given

substrate histogram A ∈ Az, as

I
′∗
z,c,j(A) =

{(T, I∗≈R(algn(A ∗ T )− algn(AX ∗ T ))) : T ∈ TUA,VA , A = A ∗ T ∗ T †A}

This still weaker constraint means that the set of substrate models of the
content inducer, I

′
z,c,j, is a superset of that of those of the independent-formal

inducer, I
′

z,a,fx,j. That is, dom(I
′∗
z,c,j(A)) ⊇ dom(I

′∗
z,a,fx,j(A)) ⊇ dom(I

′∗
z,a,l(A)).

So the subset that is disjoint with the literal substrate models, dom(I
′∗
z,c,j(A))\

Tfa,j(A), has possibly greater cardinality.

The formal alignment, algn(AX ∗ T ), is zero when the formal histogram is
independent, AX ∗ T = (AX ∗ T )X =⇒ algn(AX ∗ T ) = 0. The formal align-
ment is always greater than or equal zero, where the independent is integral,
AX ∈ Ai =⇒ AX ∗ T ∈ Ai =⇒ algn(AX ∗ T ) ≥ 0. Conjecture that
the content alignment inducer, I

′
z,c,j, is positively correlated with the literal

derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,j) ≥ 0)

but that the correlation is lower than that for the independent-formal inducer,
I
′

z,a,fx,j,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,fx,j) ≥ cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,j))

This is because in some cases the maximum transforms, maxd(I
′
z,c,j(A)) ⊂

TUA,VA , are such that the formal histogram is not independent. That is,
AX ∗ Tc 6= (AX ∗ Tc)

X, where Tc ∈ maxd(I
′
z,c,j(A)).

However, both (i) the independent-formal inclusion test, AX ∗ T = (AX ∗
T )X, in the independent-formal inducer, I

′

z,a,fx,j, and (ii) the formal alignment,

algn(AX ∗ T ), in the content alignment inducer, I
′
z,c,j, remain intractable

because of intractable substrate volume. The independent histogram, AX,
must still be computed by the independenter, I∗X(A) = AX, requiring time
and space of at least v, where v = |V CS|. The independent-formal con-
straint in the derived alignment independent-formal inducer, I

′

z,a,fx,j, may be
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made more tractable by constraining the domain of the application more
strictly to the non-overlapping transforms, TUA,VA,n, where TU,V,n = {T : T ∈
TU,V , ¬overlap(T )}. A non-overlapping transform implies that the formal
histogram is independent, ¬overlap(T ) =⇒ AX ∗ T = (AX ∗ T )X. De-
fine the derived alignment substrate ideal non-overlapping transform inducer
I
′
z,a,n,j ∈ inducers(z), given substrate histogram A ∈ Az, as

I
′∗
z,a,n,j(A) =

{(T, I∗≈R(algn(A ∗ T ))) : T ∈ TUA,VA,n, A = A ∗ T ∗ T †A}

The set of substrate models of the derived alignment non-overlapping in-
ducer, I

′
z,a,n,j, is a subset of that of the derived alignment independent-formal

inducer, dom(I
′∗
z,a,n,j(A)) = dom(I

′∗
z,a,fx,j(A)) ∩ TUA,VA,n. The set of substrate

models is neither a superset nor a subset of the set of the literal substrate mod-
els, |dom(I

′∗
z,a,n,j(A))\Tfa,j(A)| ≥ 0 and |Tfa,j(A)\dom(I

′∗
z,a,n,j(A))| ≥ 0. This is

because independent-formal transforms are not necessarily non-overlapping,
AX ∗T = (AX ∗T )X ⇐= ¬overlap(T ), and therefore transforms that are sub-
ject to formal-abstract equality, AX ∗T = (A∗T )X =⇒ AX ∗T = (AX ∗T )X,
are not necessarily non-overlapping. However, the intersection with the lit-
eral substrate models is not empty, dom(I

′∗
z,a,n,j(A)) ∩ Tfa,j(A) 6= ∅.

Conjecture that the derived alignment non-overlapping inducer, I
′
z,a,n,j, is

positively correlated with the literal derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,n,j) ≥ 0)

but that the correlation is lower than that for the derived alignment independent-
formal inducer, I

′

z,a,fx,j,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,fx,j) ≥ cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,n,j))

because the intersection with the literal substrate models is sometimes smaller,
dom(I

′∗
z,a,n,j(A)) ∩ Tfa,j(A) ⊆ dom(I

′∗
z,a,fx,j(A)) ∩ Tfa,j(A).

In the derived alignment non-overlapping inducer, I
′
z,a,n,j, the inclusion

test for independent-formal, AX ∗ T = (AX ∗ T )X, is replaced by a test for
non-overlapping transform, ¬overlap(T ). However, determining whether a
substrate transform is non-overlapping or not requires contracting each of
the derived variables, and then checking to see if the contracted partition
transforms are disjoint, {vars(P%) : w ∈ der(T ), P = (his(T )%(und(T ) ∪
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{w}), {w})P} ∈ B(und(T )). The representation space of the transform, T , in
the inducer must be at least as large as the underlying volume, I

′s
z,a,n,j(A) > v,

and is therefore intractable. In section ‘Intractable substrate volume’, above,
a similar intractability is addressed in the application of the transform to the
histogram by the transformer, Is

∗T((T,A)) > v. Define the derived alignment
substrate ideal non-overlapping fud inducer I

′
z,a,F,n,j ∈ inducers(z), given sub-

strate histogram A ∈ Az, as

I
′∗
z,a,F,n,j(A) =

{(F, I∗≈R(algn(A ∗ FT))) : F ∈ FUA,VA ∩ Fn, A = A ∗ FT ∗ FT†A}

where Fn := {F : F ∈ F , ¬overlap(F )}.

A fud can be tractably tested for overlap by following the depends tree of
the partition transforms, ¬overlap(F ) ⇐⇒ {und(depends(F, {w})) : w ∈
der(F )} ∈ B(und(F )).

The application of the derived alignment ideal non-overlapping fud inducer,
I
′
z,a,F,n,j, maps to that of the derived alignment ideal non-overlapping inducer,

I
′
z,a,n,j, above, {(FTVA , a) : (F, a) ∈ I ′∗z,a,F,n,j(A)} = I

′∗
z,a,n,j(A), so the correla-

tions to the literal derived alignment inducer, I
′

z,a,l, are equal

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,n,j) = cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,n,j))

Now constrain the fud inducer by limited models. Define the limited-models
derived alignment substrate ideal non-overlapping infinite-layer fud inducer
I
′
z,a,F,∞,n,q,j ∈ inducers(z), given substrate histogram A ∈ Az, as

I
′∗
z,a,F,∞,n,q,j(A) =

{(F, I∗≈R(algn(A ∗ FT))) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq, A = A ∗ FT ∗ FT†A}

Similarly to the derived alignment ideal non-overlapping inducer, I
′
z,a,n,j, above,

the set of substrate transforms corresponding to the substrate models of the
limited-models derived alignment ideal non-overlapping fud inducer, I

′
z,a,F,∞,n,q,j,

is neither a superset nor a subset of the set of the literal substrate transforms,
|{FTVA : F ∈ dom(I

′∗
z,a,F,∞,n,q,j(A))}\Tfa,j(A)| ≥ 0 and |Tfa,j(A)\{FTVA : F ∈

dom(I
′∗
z,a,F,∞,n,q,j(A))}| ≥ 0. Therefore conjecture that the limited-models de-

rived alignment ideal non-overlapping fud inducer, I
′
z,a,F,∞,n,q,j, is positively

correlated with the literal derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,n,q,j) ≥ 0)
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but that the correlation is lower than that for the limited-models derived
alignment ideal formal-abstract fud inducer, I

′

z,a,F,∞,l,q,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,l,q) ≥
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,n,q,j))

As shown in section ‘Transform alignment’, above, in the case of a histogram-
transform pair (A, T ) ∈ OU,z+y, where the histogram, A, is the sum of a diag-
onal histogram of size z and a cartesian histogram of size y, the idealisation
alignment is approximately equal to the derived alignment, algn(A∗T∗T †A) ≈
algn(A ∗ T ). It is also conjectured that the idealisation alignment is always
less than or equal to the alignment of the histogram, where the independent
is integral, AX ∈ Ai =⇒ algn(A ∗ T ∗ T †A) ≤ algn(A). The histogram align-
ment, algn(A), is constant, so at the maximum idealisation alignment the
transform is ideal, algn(A∗T ∗T †A) = algn(A) =⇒ A ≡ A∗T ∗T †A. There-
fore conjecture that the maximisation of the derived alignment, algn(A ∗ T ),
weakly maximises the idealisation alignment, algn(A∗T ∗T †A), idealising the
transform, ideal(A, T ). In order to make an inducer computation tractable,
the ideality inclusion test must be removed. Dropping the ideality inclu-
sion test, A = A ∗ FT ∗ FT†A, define the limited-models derived alignment
substrate non-overlapping infinite-layer fud inducer I

′
z,a,F,∞,n,q ∈ inducers(z),

given substrate histogram A ∈ Az, as

I
′∗
z,a,F,∞,n,q(A) =

{(F, I∗≈R(algn(A ∗ FT))) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

Conjecture that the derived alignment non-overlapping fud inducer, I
′
z,a,F,∞,n,q,

is positively correlated with the literal derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,n,q) ≥ 0)

but that the correlation is lower than that for the derived alignment ideal
non-overlapping fud inducer, I

′
z,a,F,∞,n,q,j,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,n,q,j) ≥
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,a,F,∞,n,q))

because the intersection of the set of substrate transforms corresponding to
the substrate models of the limited-models derived alignment non-overlapping
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fud inducer, I
′
z,a,F,∞,n,q, with the literal substrate transforms, {FTVA : F ∈

dom(I
′∗
z,a,F,∞,n,q(A))} ∩ Tfa,j, equals that of the derived alignment ideal non-

overlapping fud inducer, I
′
z,a,F,∞,n,q,j, but the set of substrate models is a su-

perset, I
′∗
z,a,F,∞,n,q(A) ⊇ I

′∗
z,a,F,∞,n,q,j(A). That is, the cardinality of the set of

non-literal substrate models, {F : F ∈ dom(I
′∗
z,a,F,∞,n,q(A)), FTVA /∈ Tfa,j(A)},

is at least that of the ideal inducer.

The derived alignment non-overlapping fud inducer, I
′
z,a,F,∞,n,q, is tractable

in all respects.

Although the derived alignment non-overlapping fud inducer, I
′
z,a,F,∞,n,q,

is tractable, the non-overlapping constraint, ¬overlap(F ), is weaker than a
formal-abstract equality inclusion test of the fud, AX∗FT = (A∗FT)X. To see
how the formal-abstract equality condition might be adhered to more strictly,
consider the abstract-non-formal entropy substrate ideal independent-formal
transform inducer I

′

z,e,fx,j ∈ inducers(z). Given a substrate histogram A ∈ Az,
the abstract-non-formal entropy inducer is defined as

I
′∗
z,e,fx,j(A) =

{(T, I∗≈lnQ(entropy((A ∗ T )X)− entropy((AX ∗ T )X))) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X, A = A ∗ T ∗ T †A}

The abstract-non-formal entropy inducer, I
′

z,e,fx,j, relaxes the formal-abstract
equality inclusion test to constrain the search transforms to those that are
such that the formal histogram is independent, AX ∗ T = (AX ∗ T )X, which
is implied by formal-abstract equality, AX ∗ T = (A ∗ T )X =⇒ AX ∗ T =
(AX∗T )X. The set of substrate models of the abstract-non-formal entropy in-
ducer, I

′

z,e,fx,j, is the same as those of the independent-formal inducer, I
′

z,a,fx,j,
and therefore a superset of the literal substrate models, Tfa,j(A). That is,
dom(I

′∗
z,e,fx,j(A)) = dom(I

′∗
z,a,fx,j(A)) ⊇ dom(I

′∗
z,a,l(A)). To compensate, the

range of the application is the difference in the entropy of the abstract
histogram and the entropy of the formal histogram, entropy((A ∗ T )X) −
entropy((AX∗T )X). Although both the formal histogram, AX∗T = (AX∗T )X,
and the abstract histogram, (A ∗ T )X, are independent, it is conjectured that
the abstract histogram tends to have lower entropy than the doubly indepen-
dent formal histogram

average({(T, entropy((AX ∗ T )X)− entropy((A ∗ T )X)) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X}) ≥ 0

In particular, the formal histogram is completely effective, (AXF ∗ T )XF =
(V C

A ∗T )XF = WC, where W = der(T ), whereas the abstract histogram is not
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necessarily completely effective, (A ∗ T )XF ≤ WC. For example, the abstract
histogram, (A ∗ T )X, may be a cartesian sub-volume.

Overall, the maximisation, maxr ◦ I ′∗z,e,fx,j ∈ Az → Q, tends to equalise the
formal histogram, AX ∗ T and the abstract histogram, (A ∗ T )X.

The abstract-non-formal entropy inducer, I
′

z,e,fx,j, is properly considered to
be an inducer because it is conjectured to obey the constraint on inducers
that the maximum of the inducer application, maxr◦I ′∗z,e,fx,j, is positively cor-
related with the finite alignment-bounded iso-transform space ideal transform
maximum function, maxr ◦Xz,xi,T,y,fa,j. That is,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,e,fx,j) ≥ 0)

The abstract-non-formal entropy inducer, I
′

z,e,fx,j, is positively correlated with

the literal derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,e,fx,j) ≥ 0)

because, as shown in section ‘Minimum alignment’, above, the derived align-
ment approximates to the scaled difference between the entropy of the ab-
stract histogram and the entropy of the derived histogram,

algn(A ∗ T ) ≈ z × entropy((A ∗ T )X)− z × entropy(A ∗ T )

The abstract-non-formal entropy inducer, I
′

z,e,fx,j, tends to maximise the first
term, entropy((A ∗ T )X), relative, at least, to the formal independent his-
togram entropy, entropy((AX ∗ T )X), thereby weakly maximising the derived
alignment, algn(A∗T ). The positive correlation with the literal derived align-
ment inducer maximum function, maxr◦I ′∗z,a,l, implies, transitively, a positive
correlation with the alignment-bounded iso-transform space ideal transform
maximum function, maxr ◦Xz,xi,T,y,fa,j.

A variation that more directly maximises the derived alignment is to replace
the sized abstract entropy with the derived alignment,

algn(A ∗ T )− z × entropy((AX ∗ T )X)

≈ algn(A ∗ T )− algn(AX ∗ T ) + z × entropy(AX ∗ T )

That is, the maximisation of the content alignment, algn(A∗T )−algn(AX∗T ),
plus the sized formal entropy, z × entropy(AX ∗ T ).
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This attempt to strengthen the formal-abstract equality may be taken a
step further by considering the actualisations. If the formal histogram equals
the abstract histogram, AX ∗ T = (A ∗ T )X, and the derived histogram is
completely effective, (A ∗ T )F = WC, then the contentisation equals the
surrealisation, AX∗T ∗T�A = (A∗T )X∗T�A. Conjecture that if the inclusion
tests are relaxed to constrain the search transforms to those that are such
that the formal histogram is independent, AX∗T = (AX∗T )X, which is implied
by formal-abstract equality, AX ∗ T = (A ∗ T )X =⇒ AX ∗ T = (AX ∗ T )X,
then the expected difference in the alignments of the contentisation and the
surrealisation is negative,

average({(T, algn((AX ∗ T )X ∗ T�A)− algn((A ∗ T )X ∗ T�A)) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X}) ≤ 0

This is because the abstract histogram, (A ∗T )X, tends to have lower entropy
than the doubly independent formal histogram, AX ∗T = (AX ∗T )X, as noted
above. The lower entropy of the abstract histogram in general means higher
alignment of the actualisation. Thus the surrealisation alignment tends to
be higher than the contentisation alignment.

Now weaken the inclusion testing by replacing the formal-abstract equality
inclusion test, AX ∗ T = (A ∗ T )X, with the less strict independent-formal
constraint, AX ∗ T = (AX ∗ T )X, but compensate by altering the range of
the application to be the difference in the alignments of the contentisation
and the surrealisation, algn(AX ∗ T ∗ T�A)− algn((A ∗ T )X ∗ T�A), to define
the contentised non-surrealised alignment substrate ideal independent-formal
transform inducer Iz,g,fx,j ∈ inducers(z), given substrate histogram A ∈ Az,
as

I∗z,g,fx,j(A) =

{(T, I∗≈R(algn(AX ∗ T ∗ T�A)− algn((A ∗ T )X ∗ T�A))) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X, A = A ∗ T ∗ T †A}

Note that the contentisation is not necessarily size-conserving. It is only
size-conserving if the derived histogram is as effective as the formal his-
togram, (A ∗ T )F ≥ (AX ∗ T )F, which requires that the derived histogram
be completely effective, (A ∗ T )F = WC. The formal histogram is com-
pletely effective because the independent is completely effective and for-
mal histogram is independent, (AXF = V C

A ) ∧ (AX ∗ T = (AX ∗ T )X) =⇒
(AX ∗ T )F = (AXF ∗ T )XF = (V C

A ∗ T )XF = WC. That is, the contentisation
is size-conserving if the derived histogram is completely effective, (A ∗ T )F =
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WC =⇒ size(AX ∗ T ∗ T�A) = z. Similarly, the surrealisation is only
size-conserving if the derived histogram is as effective as the abstract his-
togram, (A ∗ T )F ≥ (A ∗ T )XF =⇒ size((A ∗ T )X ∗ T�A) = z. How-
ever, the formal histogram is at least as effective as the abstract histogram,
(AX ∗T )F = WC ≥ (A∗T )XF. So in the cases where the abstract histogram is
not completely effective, the contentisation alignment is sometimes less than
the surrealisation alignment because the contentisation size is less than the
surrealisation size.

Note, also, that the range of the application, ran(I∗z,g,fx,j(A)), is not derived
or lifted, unlike that, for example, of the abstract-non-formal entropy inducer,
I
′

z,e,fx,j, so the contentised non-surrealised derived alignment inducer, Iz,g,fx,j,
is denoted without the prime embellishment.

As in the case of substrate models of the abstract-non-formal entropy inducer,
I
′

z,e,fx,j, above, the set of substrate models of the contentised non-surrealised
derived alignment inducer, Iz,g,fx,j, is the same as those of the independent-
formal inducer, I

′

z,a,fx,j, and therefore a superset of the literal substrate mod-

els, Tfa,j(A). That is, dom(I∗z,g,fx,j(A)) = dom(I
′∗
z,a,fx,j(A)) ⊇ dom(I

′∗
z,a,l(A)).

Conjecture that the maximum transform function of the contentised non-
surrealised derived alignment inducer, Iz,g,fx,j, is positively correlated with
that of the literal derived alignment inducer, I

′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I∗z,g,fx,j) ≥ 0)

Overall, the maximisation, maxr ◦ I∗z,g,fx,j ∈ Az → Q, tends to equalise the
formal histogram, AX ∗ T and the abstract histogram, (A ∗ T )X, while still
weakly maximising the derived alignment, algn(A ∗ T ), as in the abstract-
non-formal entropy inducer, I

′

z,e,fx,j, above.

In section ‘Transform alignment’, above, it is conjectured that the midi-
sation alignment varies with (a) the difference between the alignments of
the contentisation and the surrealisation, and (b) the midisation pseudo-
alignment,

algn(AM(T )) ∼ algn(AX ∗ T ∗ T�A)− algn((A ∗ T )X ∗ T�A)

∼ algn(A)− algn(A ∗ T ∗ T�A†A)− algn((A ∗ T )X ∗ T�A)

Define the midisation pseudo-alignment substrate ideal independent-formal
transform inducer Iz,m,fx,j ∈ inducers(z), given substrate histogram A ∈ Az,
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as

I∗z,m,fx,j(A) =

{(T, I∗≈R(algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A))) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X, A = A ∗ T ∗ T †A}

Note that the midisation pseudo-alignment inducer, Iz,m,fx,j, need not com-
pute the histogram alignment, algn(A), because it is constant with regard to
maximisation.

As in the case of substrate models of the abstract-non-formal entropy in-
ducer, Iz,e,fx,j, and the contentised non-surrealised derived alignment inducer,
Iz,g,fx,j, above, the set of substrate models of the midisation pseudo-alignment
ideal inducer, Iz,m,fx,j, is the same as those of the independent-formal inducer,
I
′

z,a,fx,j, and therefore a superset of the literal substrate models, Tfa,j(A). That

is, dom(I∗z,m,fx,j(A)) = dom(I
′∗
z,a,fx,j(A)) ⊇ dom(I

′∗
z,a,l(A)). Conjecture that

the maximum transform function of the midisation ideal alignment inducer,
Iz,m,fx,j, is positively correlated with that of the literal derived alignment in-
ducer, I

′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I∗z,m,fx,j) ≥ 0)

However, the ideality inclusion test, A = A∗T ∗T †A, implies that the idealisa-
tion alignment equals the histogram alignment, algn(A ∗T ∗T †A) = algn(A),
so in the case of ideal transform, the midisation pseudo-alignment equals the
negative surrealisation alignment, −algn((A ∗ T )X ∗ T�A). In order to (i)
improve the degree to which maximisation of midisation pseudo-alignment
corresponds to the formal-abstract equality constraint and (ii) make the com-
putation tractable, drop the ideality inclusion test, which constrains the midi-
sation pseudo-alignment, defining the midisation pseudo-alignment substrate
independent-formal transform inducer Iz,m,fx ∈ inducers(z), given substrate
histogram A ∈ Az, as

I∗z,m,fx(A) =

{(T, I∗≈R(algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A))) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X}

This weaker constraint means that the set of substrate models of the midis-
ation pseudo-alignment inducer, Iz,m,fx, is a superset of those of the midi-
sation pseudo-alignment ideal inducer, Iz,m,fx,j, which equals those of the
independent-formal inducer, I

′

z,a,fx,j. That is, dom(I∗z,m,fx(A)) ⊇ dom(I∗z,m,fx,j(A)) =
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dom(I
′∗
z,a,fx,j(A)) ⊇ dom(I

′∗
z,a,l(A)). So the subset that is disjoint with the

literal substrate models, dom(I∗z,m,fx(A)) \ Tfa,j(A), has possibly greater cardi-
nality. Conjecture that the maximum transform function of the midisation
pseudo-alignment inducer, Iz,m,fx, is positively correlated with that of the
literal derived alignment inducer, I

′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I∗z,m,fx) ≥ 0)

Although the non-literal substrate models, dom(I∗z,m,fx(A))\Tfa,j(A), may have
greater cardinality, it is not obvious whether or not the midisation pseudo-
alignment inducer, Iz,m,fx, has a lower correlation with the literal derived
alignment inducer, I

′

z,a,l, than the midisation ideal alignment inducer, Iz,m,fx,j.
The cost of dropping the ideality inclusion test may be outweighed by the
closer approximation to the formal-abstract equality inclusion test, in some
cases.

In section ‘Likely histograms’, it is conjectured that there exists an interme-
diate mid substrate transform Tm ∈ TUA,VA which is neither self nor unary,
Tm /∈ {Ts, Tu}, where the formal is independent and the midisation entropy
is minimised,

Tm ∈ mind({(T, entropy(AM(T ))) : T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X})

Section ‘Transform alignment’, goes on to conjecture that an approxima-
tion to the mid transform may also be obtained by a maximisation of the
midisation pseudo-alignment,

Tm ∈ maxd({(T, algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A)) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X})

With the removal of the ideality inclusion test, the maximum transform func-
tion of the midisation pseudo-alignment inducer, Iz,m,fx, is the mid transform,
Tm ∈ maxd(I∗z,m,fx(A)). At the mid transform the formal tends to the ab-
stract, AX ∗ Tm ≈ (A ∗ Tm)X, and the mid component size cardinality relative
entropy is small,

entropyRelative(A ∗ Tm, V
C
A ∗ Tm) ≈ 0

The computation of the midisation pseudo-alignment, algn(A)− algn((A ∗
T )X ∗ T�A) − algn(A ∗ T ∗ T †A), requires at least the computation of the
idealisation, A∗T ∗T †A, and the surrealisation, (A∗T )X∗T�A, at least one of
which is intractable. Consider replacing midisation pseudo-alignment with
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derived alignment valency density. Section ‘Transform alignment’, above,
describes the properties of midisation. Maximisation of midisation tends to
move component alignments from off-diagonal states to on-diagonal states,
balancing the high derived alignment of longer diagonals with the high on-
diagonal component alignments of shorter diagonals. Thus the midisation
pseudo-alignment varies with the derived alignment valency density,

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A) ∼
algn(A ∗ T )/capacityValency(U)((A ∗ T )FS)

where the valency capacity, capacityValency(U) ∈ capacities, is defined in
terms of geometry as capacityValency(U)((A ∗ T )FS) = w1/m, and m = |W |,
w = |WC| and W = der(T ).

Define the derived alignment valency-density substrate independent-formal
transform inducer I

′

z,ad,fx ∈ inducers(z), given substrate histogram A ∈ Az,
as

I
′∗
z,ad,fx(A) =

{(T, I∗≈R(algn(A ∗ T )/w1/m)) : T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X}

where m = |W |, w = |WC| and W = der(T ).

The set of substrate models of the derived alignment valency-density inducer,
I
′

z,ad,fx, equals those of the midisation pseudo-alignment inducer, Iz,m,fx. That

is, dom(I
′∗
z,ad,fx(A)) = dom(I∗z,m,fx(A)) ⊇ dom(I

′∗
z,a,fx,j(A)) ⊇ dom(I

′∗
z,a,l(A)).

Conjecture that the maximum transform function of the derived alignment
valency-density inducer, I

′

z,ad,fx, is positively correlated with that of the literal

derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,fx) ≥ 0)

In section ‘Derived alignment and conditional probability’, above, the
alignment-bounded lifted iso-transform error is defined as the difference be-
tween the alignment-bounded lifted iso-transform space and the derived align-
ment

ln
∑

B′∈A′U,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

The alignment-bounded lifted iso-transform error ratio is the error per de-
rived alignment. Given substrate histogram A ∈ Az, let erra(A) ∈ P(TUA,VA)→
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(TUA,VA → R) be defined as the alignment-bounded lifted iso-transform error
ratios of a set of substrate transforms,

erra(A)(Q) :=

{(T,

ln
∑

B′∈A′UA,i,y,T,z(A)

∏
R∈(A∗T )XS(A ∗ T )X

R!∏
R∈B′S B

′
R!

 /algn(A ∗ T )) :

T ∈ Q, algn(A ∗ T ) 6= 0} ∪
{(T, 0) : T ∈ Q, algn(A ∗ T ) = 0}

In that section it was shown that the error ratio varies as w ln z/algn(A ∗ T )
where the size is greater than the derived volume, z > w. This may be com-
pared to the derived alignment valency-density, algn(A ∗ T )/w1/m. Thus the
error ratio varies against the derived alignment valency-density. Higher ca-
pacities such as volume capacity, capacityVolume(U)((A∗T )FS) := w, would
vary inversely even more closely. In that case, the derived alignment volume-
density would be algn(A ∗ T )/w. Therefore conjecture that the expected
error ratio of the derived alignment valency-density inducer, I

′

z,ad,fx, is less

than that of the literal derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (ex(z)(maxr ◦ erra ◦maxd ◦ I ′∗z,a,l) ≥
ex(z)(maxr ◦ erra ◦maxd ◦ I ′∗z,ad,fx))

Therefore conjecture that the valency capacity tends to increase the correla-
tion of the maximum function of the derived alignment valency-density in-
ducer, maxr◦I ′∗z,ad,fx, to the alignment-bounded lifted iso-transform space ideal

transform maximum function, maxr ◦X ′z,xi,T,y,fa,j, and thence transitively to
the alignment-bounded iso-transform space ideal transform maximum func-
tion, maxr◦Xz,xi,T,y,fa,j. In other words, the derived alignment valency-density
inducer, I

′

z,ad,fx, has a higher inducer correlation, cov(z)(maxr◦Xz,xi,T,y,fa,j,maxr◦
I
′∗
z,ad,fx), than might be expected, because maximisation of the derived align-

ment valency-density, algn(A∗T )/w1/m, tends to shorten the diagonals, w1/m,
and reduce the derived volume, w, minimising the alignment-bounded lifted
iso-transform error ratio. Note that the correlation is improved even though
the overall derived alignments of the valency-density inducer are lower than
the literal inducer. The correlation increases as the size exceeds the derived
volume, z > w, because of the decreasing error ratio between the expected
alignment, w ln z/w ≈ 1, and the maximum alignment, w ln z/z lnw < 1.

As is the case for the derived alignment independent-formal inducer, I
′

z,a,fx,j,
above, the independent-formal inclusion test, AX ∗ T = (AX ∗ T )X, in the
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valency-density inducer, I
′

z,ad,fx, is intractable because of intractable substrate
volume. Therefore replace the independent-formal inclusion test with the
non-overlapping transform constraint, ¬overlap(T ) =⇒ AX ∗ T = (AX ∗
T )X. Define the derived alignment valency-density substrate non-overlapping
transform inducer I

′

z,ad,n ∈ inducers(z), given substrate histogram A ∈ Az,
as

I
′∗
z,ad,n(A) =

{(T, I∗≈R(algn(A ∗ T )/w1/m)) : T ∈ TUA,VA,n}

where m = |W |, w = |WC| and W = der(T ).

Conjecture that the maximum transform function of the derived alignment
non-overlapping valency-density inducer, I

′

z,ad,n, is positively correlated with

that of the literal derived alignment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,n) ≥ 0)

but that the correlation is lower than that for the derived alignment independent-
formal valency-density inducer, I

′

z,ad,fx,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,fx) ≥ cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,n))

because the intersection with the literal substrate models is sometimes smaller,
dom(I

′∗
z,ad,n(A)) ∩ Tfa,j(A) ⊆ dom(I

′∗
z,ad,fx(A)) ∩ Tfa,j(A).

Again, as is the case for the derived alignment non-overlapping inducer,
I
′
z,a,n,j, above, determining whether a substrate transform is non-overlapping

or not remains intractable. Also, the limited-models constraints are re-
quired for tractability. Define the limited-models derived alignment valency-
density substrate non-overlapping infinite-layer fud inducer I

′

z,ad,F,∞,n,q ∈
inducers(z), given substrate histogram A ∈ Az, as

I
′∗
z,ad,F,∞,n,q(A) =

{(F, I∗≈R(algn(A ∗ FT)/w1/m)) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

where m = |W |, w = |WC| and W = der(F ).

Conjecture that the derived alignment valency-density non-overlapping fud
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inducer, I
′

z,ad,F,∞,n,q, is positively correlated with the literal derived alignment

inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,F,∞,n,q) ≥ 0)

but that the correlation is lower than that for the derived alignment non-
overlapping valency-density inducer, I

′

z,ad,n,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,n) ≥
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,F,∞,n,q))

because of the additional limited-models constraints, Fq.

It is not obvious whether or not the derived alignment valency-density non-
overlapping fud inducer, I

′

z,ad,F,∞,n,q, has a lower correlation, cov(z)(maxr ◦
I
′∗
z,a,l,maxr◦I ′∗z,ad,F,∞,n,q), with the literal derived alignment inducer, I

′

z,a,l, than

the derived alignment non-overlapping fud inducer, I
′
z,a,F,∞,n,q, cov(z)(maxr◦

I
′∗
z,a,l,maxr ◦ I ′∗z,a,F,∞,n,q).

More importantly, it is not obvious whether or not the derived alignment
valency-density non-overlapping fud inducer, I

′

z,ad,F,∞,n,q, has a lower in-

ducer correlation, cov(z)(maxr ◦ Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,ad,F,∞,n,q), than the

derived alignment non-overlapping fud inducer, I
′
z,a,F,∞,n,q, cov(z)(maxr ◦

Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,F,∞,n,q).

Like the derived alignment non-overlapping fud inducer, I
′
z,a,F,∞,n,q, the de-

rived alignment valency-density non-overlapping fud inducer, I
′

z,ad,F,∞,n,q, is
tractable in all respects.

4.21.9 Tractable decomposition inducers

Both the derived alignment non-overlapping fud inducer, I
′
z,a,F,∞,n,q, and

the derived alignment valency-density non-overlapping fud inducer, I
′

z,ad,F,∞,n,q,

are tractable. The derived alignment inducer, I
′
z,a,F,∞,n,q, tends to be more

ideal, A ≈ A ∗ T ∗ T †A, than the derived alignment valency-density inducer,
I
′

z,ad,F,∞,n,q, which tends to be more formal-abstract equivalent, AX ∗ T ≈
(A ∗ T )X. However, the lost ideality of the valency-density fud inducer,
I
′

z,ad,F,∞,n,q, can be partly recovered in a valency-density decomposition in-
ducer. The search set of the valency-density decomposition inducer consists
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of substrate fud decompositions similar to idealising summation aligned de-
compositions, DΣ,k(A), but without the idealising summation aligned decom-
position constraints in order to avoid intractable inclusion tests.

In section ‘Intractable search set elements’, above, the limited-models con-
tent alignment integral-independent substrate idealising summation aligned
infinite-layer fud decomposition inducer, I

′

z,c,D,F,∞,Σ,k,q, is defined such that
the application to a non-independent integral-independent substrate histogram
A ∈ Az,xi \ {AX} is the summation alignment function of the limited-models
substrate idealising summation aligned fud decompositions,

I
′∗
z,c,D,F,∞,Σ,k,q(A) =

{(D, I∗≈lnQ(algnSum(A,D))) :

D ∈ DF,∞,UA,VA ∩ trees(S × Fq), DDVA ∈ DΣ,k(A)}

Define I
′∗
z,c,D,F,∞,Σ,k,q(AX) = {(DF,u, 0)} where DF,u = {((∅, {Tu}), ∅)} and

unary partition transform Tu = {V CS
A }T.

The limited-models idealising fud decomposition inducer, I
′

z,c,D,F,∞,Σ,k,q, has
tractable time and space complexity with respect to the search set elements.
The non-unary idealising summation aligned substrate infinite-layer fud de-
composition D ∈ dom(I

′∗
z,c,D,F,∞,Σ,k,q(A)) \ {DF,u} is constrained (a) to be

well behaved, D ∈ DF,w,UA
, (b) such that the infinite-layer substrate fuds ap-

pear no more than once in any path, ∀L ∈ paths(D) ({(i, F ) : (i, (·, F )) ∈
L} ∈ N ↔ F∞,UA,VA), (c) to have no variable symmetries, {(w, (C,F )) :
(C,F ) ∈ cont(D), w ∈ der(F )} ∈ der(

⋃
G) → cont(D), which implies (b),

and (d) such that the fuds have (i) contingent diagonalisation, ∀(C,F ) ∈
cont(D) (diagonal(A ∗ C ∗ FT)), (ii) contingent formal-abstract equivalence,
∀(C,F ) ∈ cont(D) (AX ∗C ∗FT = (A∗C ∗FT)X), (iii) non-independent con-
tingent derived histograms, ∀(C,F ) ∈ cont(D) (A ∗C ∗FT 6= (A ∗C ∗FT)X),
and (iv) independent formal slices, ∀(C,F ) ∈ cont(D) ((A ∗ C)X ∗ FT =
((A ∗ C)X ∗ FT)X), where G = fuds(D) and cont = elements ◦ contingents.

The contingent formal-abstract equality inclusion test, AX ∗ C ∗ FT = (A ∗
C ∗ FT)X, is intractable because of intractable substrate volume. This is for
the same reason that the formal-abstract equality inclusion test, AX ∗ FT =
(A ∗ FT)X, is intractable, as described in section ‘Intractable literal sub-
strate model inclusion’, above. That is, the computation of the independent
histogram, AX, by an independenter, I∗X(A) = AX, requires time and space
of at least v, where v = |V CS

A |, because the substrate histogram, A, has
completely effective independent, AXF = V C

A . Thus the computation of the
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independent histogram, AX, in the computation of the contingent formal his-
togram, AX ∗C ∗FT, in the contingent formal-abstract equality inclusion test,
AX ∗ C ∗ FT = (A ∗ C ∗ FT)X, is intractable with respect to underlying di-
mension, n, where n = |VA|.

The independent formal slice inclusion test, (A∗C)X∗FT = ((A∗C)X∗FT)X,
also requires the computation of the independent slice histogram, (A ∗ C)X,
by an independenter, I∗X(A ∗ C) = (A ∗ C)X, in the same substrate variables,
VA, and hence is subject to the same intractability in the root slice at least.

Just as in the case of the derived alignment valency-density non-overlapping
fud inducer, I

′

z,ad,F,∞,n,q, above, the intractability of the formal-abstract equal-
ity inclusion test and independent formal slice inclusion test in the limited-
models idealising summation aligned infinite-layer fud decomposition inducer,
I
′

z,c,D,F,∞,Σ,k,q, can be addressed by replacing them with (i) a non-overlapping
fud constraint, ¬overlap(F ), and (ii) the computation of the summed derived
alignment valency density. Define the summed derived alignment valency
density as algnValDensSum(U) ∈ A×D → R as

algnValDensSum(U)(A,D) :=∑
(C,T )∈cont(D)

algn(A ∗ C ∗ T )/capacityValency(U)((A ∗ C ∗ T )FS)

where the valency capacity, capacityValency(U) ∈ capacities, is defined in
terms of geometry as capacityValency(U)((A ∗ C ∗ T )FS) = w1/m, and m =
|W |, w = |WC| and W = der(T ). Then define the limited-models summed
alignment valency-density substrate aligned non-overlapping infinite-layer fud
decomposition inducer, given non-independent substrate histogram A ∈ Az \
{AX},

I
′∗
z,Sd,D,F,∞,n,q(A) =

{(D, I∗≈R(algnValDensSum(UA)(A,DD))) :

D ∈ DF,∞,UA,VA ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(A ∗ C ∗ FT) > 0)}

Define I
′∗
z,Sd,D,F,∞,n,q(AX) = {(DF,u, 0)}.

The summed alignment valency-density aligned fud decomposition inducer,
I
′

z,Sd,D,F,∞,n,q, constrains each of the slices (C,F ) ∈ cont(D) such that the
application of the fud, A∗C∗FT, has derived alignment, algn(A∗C∗FT) > 0,
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where A 6= AX. Thus the slice derived histogram, A ∗ C ∗ FT, cannot
be independent and the idealising summation aligned decomposition non-
independent contingent derived histograms constraint, ∀(C,F ) ∈ cont(D) (A∗
C ∗ FT 6= (A ∗ C ∗ FT)X), is satisfied by the inducer. In addition, fuds
are prevented from appearing more than once in any path of the decom-
position, ∀L ∈ paths(D) ({(i, F ) : (i, (·, F )) ∈ L} ∈ N ↔ G) where
G = fuds(D), because a fud has zero derived alignment when constrained to
its child slice. For example, if (C1, F ), (C2, F ) ∈ steps(contingents(D)) then
algn(A ∗ C2 ∗ FT) = 0.

Variable symmetries are avoided only so far as the fuds are not repeated
in a path, so in this respect the definition of the substate models of the
summed alignment valency-density non-overlapping fud decomposition in-
ducer, I

′

z,Sd,D,F,∞,n,q, is less strict than the definition of the substrate idealising

fud decompositions, |dom(I
′∗
z,Sd,D,F,∞,n,q(A)) \ dom(I

′∗
z,c,D,F,∞,Σ,k,q(A))| ≥ 0.

The valency-density decomposition inducer, I
′

z,Sd,D,F,∞,n,q, does not test ex-
plicitly for well behaved decomposition, DF,w,UA

. Each of the slices has de-
rived alignment, algn(A∗C ∗FT) > 0, and must therefore have non-zero size,
size(A∗C) > 0 and so correspond to a non-empty component, ran(cont(D))↔
elements(components(U)(D)) \ partition(U)(D). That is, the decomposi-
tion, D, does not contain any contradictions and is therefore well behaved,
D ∈ DF,w,UA

.

The valency-density decomposition inducer, I
′

z,Sd,D,F,∞,n,q, does not test ex-
plicitly for contingent diagonalisation, ∀(C,F ) ∈ cont(D) (diagonal(A ∗ C ∗
FT)). The maximum transform function, maxr ◦ I ′∗z,Sd,D,F,∞,n,q, optimises
the summed alignment valency density, algnValDensSum(UA)(A,D), which
varies as the derived alignments of the slices, algn(A∗C∗FT). As described in
section ‘Maximum alignment’, above, maximum alignment is conjectured to
occur when the derived histogram is fully diagonalised, diagonalFull(UA)(A ∗
C∗FT). Therefore higher derived alignment tends to diagonalise the slice de-
rived histogram, A ∗C ∗FT, approximately satisfying the summation aligned
decomposition contingent diagonalisation constraint.

In addition, valency-density tends to shorten diagonals and therefore the de-
rived slice has fewer ineffective states, |(A∗C∗FT)C−(A∗C∗FT)F| ≈ (d−1)m

where d = w1/m. Although the cardinality of strong compositions of the di-
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agonal times the cardinality of subsets of the volume that are diagonalised,

(z − 1)!

(d− 1)! (z − d)!
(d!)m−1 = dzd(dd)m−2/z

which is dominated by zd, increases with the diagonal, d, given size z, the ra-
tio of this cardinality of the diagonals to the cardinality of weak compositions
of the volume, w = dm,

(z − 1)!

(d− 1)! (z − d)!
(d!)m−1 (w − 1)! z!

(z + w − 1)!
= dzd(dd)m−2ww/wzw

which is dominated by 1/zw, decreases with the diagonal, d, where d < w < z.
That is, the fraction of derived histograms of a given derived geometry that
are diagonalised increases as the diagonals shorten.

This is in line with the maximisation of midisation of a slice, algn(A ∗ C)−
algn((A ∗ C ∗ FT)X ∗ FT�A∗C) − algn(A ∗ C ∗ FT ∗ FT†A∗C), for which slice
derived valency-density, algn(A ∗C ∗ FT)/w1/m, is a proxy. Maximisation of
midisation tends to move component alignments within the slice, A∗C, from
off-diagonal states, (A ∗ C ∗ FT)CS \ (A ∗ C ∗ FT)FS, to on-diagonal states,
(A ∗ C ∗ FT)FS, balancing the high derived alignment of longer diagonals
with the high on-diagonal component alignments of shorter diagonals. The
lower component alignments of the off-diagonal states tend to make them less
effective, while conversely the higher component alignments of on-diagonal
states tend to make them more effective.

The fuds G = fuds(D) of the decomposition D are non-overlapping, G ⊂
Fn. So all slices have independent formal, ∀(C,F ) ∈ cont(D) (¬overlap(F ) =⇒
(A∗C)X∗FT = ((A∗C)X∗FT)X), satisfying the idealising summation aligned
decomposition independent formal slices constraint. However, as noted for
the derived alignment non-overlapping inducer, I

′
z,a,n,j, in section ‘Intractable

literal substrate model inclusion’, above, independent-formal transforms are
not necessarily non-overlapping, AX∗T = (AX∗T )X ⇐= ¬overlap(T ), and so
the strict non-overlapping constraint sometimes excludes some independent-
formal overlapping fuds. The set of substrate models of the valency-density
decomposition inducer, I

′

z,Sd,D,F,∞,n,q, is therefore neither a superset nor a
subset of the set of the substrate idealising summation aligned infinite-layer
fud decompositions, |dom(I

′∗
z,Sd,D,F,∞,n,q(A))\dom(I

′∗
z,c,D,F,∞,Σ,k,q(A))| ≥ 0 and

|dom(I
′∗
z,c,D,F,∞,Σ,k,q(A)) \ dom(I

′∗
z,Sd,D,F,∞,n,q(A))| ≥ 0.

Although both the (i) non-overlapping fud constraint, ¬overlap(F ), and the
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(ii) the summed derived alignment valency density, algnValDensSum(UA)(A,DD),
maximisation, in the valency-density decomposition inducer maximum trans-
form function, maxr ◦ I ′∗z,Sd,D,F,∞,n,q, tend to increase the adherence to the
formal-abstract equality of individual slices, (A ∗ C)X ∗ FT ≈ (A ∗ C ∗ FT)X

where (C,F ) ∈ cont(D), in a decomposition D, it is not necessarily the case
that the contingent formal-abstract equality of the slice increases, AX ∗ C ∗
FT ≈ (A ∗ C ∗ FT)X, or that the formal-abstract equality of the nullable
transform increases, AX ∗DT ≈ (A ∗DT)X. It is only in the case where the
independent slice equals the sliced independent, (A ∗ C)X = AX ∗ C, that
the slice formal-abstract equality and the contingent formal-abstract equal-
ity constraints are identical. This is always the case for the root fud of the
decomposition, where C = V C =⇒ A ∗ C = A =⇒ (A ∗ C)X = (AX ∗ C).

Note that the purpose of the (i) contingent diagonalisation and (ii) contin-
gent formal-abstract equivalence constraints in the summation aligned decom-
positions, DΣ(A), is merely to allow the nullable transform content alignment
to be computed without instantiating the intractable nullable transform. In
section ‘Decomposition alignment’, above, it is shown that

algn(A ∗DT)− algn(AX ∗DT) = alignmentSum(A,D)

where these conditions are met. Contrast that to the purpose of the maximi-
sation of derived alignment valency density in the derived alignment valency-
density non-overlapping fud inducer, I

′

z,ad,F,∞,n,q, which is to maximise the
formal-abstract equality and hence increase the correlation, cov(z)(maxr ◦
I
′∗
z,a,l,maxr ◦ I ′∗z,ad,F,∞,n,q), to the literal derived alignment inducer, I

′

z,a,l, and
thence transitively to the increase the inducer correlation to the alignment-
bounded iso-transform space ideal transform maximum function, cov(z)(maxr◦
Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,ad,F,∞,n,q).

However, the goals of (a) computing the content alignment of the intractable
nullable transform, DT, by means of contingent formal-abstract equivalence,
and (b) increasing the correlation of summed alignment valency-density de-
composition inducer, cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,Sd,D,F,∞,n,q), attributable
to formal-abstract equivalent slices, can be made to converge by (i) choosing
components, C, with high cardinality, and (ii) minimising the formal align-
ment of the decomposition, algn(AX ∗DT).

In the first case, high cardinality components, C, tend to approximate better
to the cartesian volume, C ≈ V CS

A , and hence AX ∗ C ≈ AX which implies
AX ∗ C ≈ (A ∗ C)X because (A ∗ C)X ≈ AX. That is, shorter diagonals are
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preferable because the component sizes are larger. Maximisation of derived
alignment valency-density, algn(A ∗C ∗ T )/w1/m, tends to shorter diagonals,
and therefore higher component cardinality of child slices.

In the second case, lower formal alignment of the decomposition, algn(AX ∗
DT), implies lower contingent formal alignment of the slices, algn(AX ∗ C ∗
FT), and hence contingent independent-formal equality, AX ∗ C ∗ FT ≈
(AX ∗ C ∗ FT)X, which is implied by contingent formal-abstract equality,
AX ∗ C ∗ FT ≈ (A ∗ C ∗ FT)X. Minimisation of the formal alignment of
the decomposition, algn(AX ∗ DT), is desirable in any case because then
the summed derived alignment valency density, algnValDensSum(UA)(A,D),
most approximates to the nullable transform derived alignment valency den-
sity rather than the nullable transform content alignment valency density

(algn(A ∗DT)− algn(AX ∗DT))/y1/p ≈ algnValDensSum(UA)(A,D)

where p = |Y |, u = |Y C| and Y = der(DT). That is, algn(AX ∗ DT) =
0 =⇒ algn(A ∗ DT)/y1/p ≈ algnValDensSum(UA)(A,D). Note that if the
decomposition, D, contains more than one fud, |G| > 1, then the volume
of the derived variables of the nullable transform, DT, is greater than the
volume of the derived variables of the fuds, |der(DT)C| > |der(

⋃
G)C|. This

is because the nullable variables that do not originate in the root transform,
nullables(U)(D), have an additional null value with respect to their corre-
sponding originating variable, ∃(u, x) ∈ originals(U)(D) (|Uu| = |Ux| + 1).
So the incremented valencies lengthen the geometric average diagonal of the
nullable transform, y1/p.

As described in section ‘Summation aligned decomposition inducers’, above,
part of the formal alignment of the decomposition, algn(AX ∗ DT), consists
of the pure formal alignment of the skeletal reduction, algn(AX ∗ DT) ≥
algn(AX∗D′T) > 0 whereD′ ∈ reductions(A,D), which is such that skeletal(A∗
D
′T). In section ‘Skeletal alignment’, above, it is shown that the alignment

of a uniform full regular skeleton histogram is minimised for a given size,
such that the counts are at least one, when the regular skeleton tree is a
binary tree. That is, the pure formal alignment of the skeletal reduction,
algn(AX ∗ D′T), is least when bi-valent, d = 2. Thus the shorter diagonals,
d = w1/m, of the maximisation of summed derived alignment valency density,
tends to reduce the pure formal alignment of the skeletal reduction, if not
the contingent formal alignment of the slices.

The fuds G = fuds(D) of a decomposition D are individually non-overlapping,
G ⊂ Fn or ∀F ∈ G (¬overlap(F )), but there is nothing to prevent fuds from
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overlapping with eachother, overlap(F1 ∪F2) where F1, F2 ∈ G. However, as
was noted above, a fud cannot appear more than once in any path of the
decomposition because it has zero derived alignment when constrained to its
child slice. Similarly, if a pair of highly overlapping fuds, F1, F2, are in the
same path, then the latter derived alignment, algn(A ∗C2 ∗ FT

2 ), tends to be
lower than if it were not constrained to be in a descendant slice of the former,
A∗C2 ⊂ A∗C1, for example where (C1, F1), (C2, F2) ∈ steps(contingents(D)).
Therefore, maximisation of derived alignment tends to reduce overlapping be-
tween fuds on the same path, and so reduces the overall formal alignment,
algn(AX ∗ DT). In the case of fuds in separate paths of the decomposition,
overlap merely allows the representation of symmetries without increasing
formal alignment, albeit with creation of duplicate or highly similar fuds. For
example, algn(A ∗ C1 ∗ FT) + algn(A ∗ C2 ∗ FT) ≈ algn(A ∗ (C1 + C2) ∗ FT)
where (C1, F ), (C2, F ) ∈ cont(D).

Insofar as the limited-models summed alignment valency-density fud de-
composition inducer, I

′

z,Sd,D,F,∞,n,q, adheres to the constraints of the limited-

models idealising summation aligned fud decomposition inducer, I
′

z,c,D,F,∞,Σ,k,q,
the search set consists of substrate fud decompositions similar to idealising
summation aligned decompositions, DΣ,k(A). The limited-models idealising
summation aligned fud decomposition inducer, I

′

z,c,D,F,∞,Σ,k,q, is derived from

the content alignment idealising summation aligned inducer, I
′

z,c,D,Σ,k, de-
scribed in section ‘Summation aligned decomposition inducers’, above. An
idealising substrate summation aligned decomposition D ∈ DUA,VA ∩DΣ,k(A)
that is ideal, A = A∗DT ∗DT†A, has no super idealising substrate summation
aligned decomposition, ∀E ∈ DUA,VA ∩ DΣ,k(A) (D /∈ subtrees(E)). All of its
sub idealising substrate summation aligned decompositions have lower content
alignment, ∀E ∈ DUA,VA ∩DΣ,k(A) (E ∈ subtrees(D) =⇒ algnSum(A,E) <
algnSum(A,D)). Therefore, the maximum idealising substrate summation
aligned decompositions in the content idealising inducer, I

′

z,c,D,Σ,k, are all

ideal, ∀D ∈ maxd(I
′∗
z,c,D,Σ,k(A)) (ideal(A,DT)). The same reasoning ap-

plies to summed alignment valency-density, ∀E ∈ DUA,VA ∩ DΣ,k(A) (E ∈
subtrees(D) =⇒ algnValDensSum(UA)(A,E) < algnValDensSum(UA)(A,D)).
Thus the substrate fud decompositions of the maximum function of the summed
alignment valency-density fud decomposition inducer, maxd(I

′∗
z,Sd,D,F,∞,n,q(A)) ⊂

DF,∞,UA,VA , tend to be ideal, even though the non-leaf fuds of the decompo-
sitions are not themselves ideal with respect to their slices. This is the
case even though the summed alignment valency-density fud decomposition
inducer, I

′

z,Sd,D,F,∞,n,q, is not subject to the intractabilities of the idealising
inducers. In this way, the lost ideality of the tractable derived alignment
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valency-density fud inducer, I
′

z,ad,F,∞,n,q, compared to the tractable derived

alignment fud inducer, I
′
z,a,F,∞,n,q, can be restored to some extent.

This restoration of the ideality in the limited-models summed alignment
valency-density fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q, tends to increase the
component size cardinality relative entropy, entropyRelative(A∗DT, V C

A ∗DT)
where D ∈ maxd(I

′∗
z,Sd,D,F,∞,n,q(A)), in the case of non-singleton decomposi-

tions, |nodes(D)| > 1.

In section ‘Likely histograms’, it is conjectured that there exists an interme-
diate mid substrate transform Tm ∈ TUA,VA which is neither self nor unary,
Tm /∈ {Ts, Tu}, where the formal is independent and the midisation entropy
is minimised,

Tm ∈ mind({(T, entropy(AM(T ))) : T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X})

At the mid transform the formal tends to the abstract, AX ∗Tm ≈ (A∗Tm)X,
and the mid component size cardinality relative entropy is small,

entropyRelative(A ∗ Tm, V
C
A ∗ Tm) ≈ 0

Section ‘Transform alignment’, goes on to conjecture that an approxima-
tion to the mid transform may also be obtained by a maximisation of the
midisation pseudo-alignment,

Tm ∈ maxd({(T, algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A)) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X})

Then it is shown that the midisation pseudo-alignment varies with the derived
alignment valency-density,

algn(A)− algn((A ∗ T )X ∗ T�A)− algn(A ∗ T ∗ T †A) ∼ algn(A ∗ T )/w1/m

where m = |W |, w = |WC| and W = der(T ). So the maximisation of the de-
rived alignment valency-density in the derived alignment valency-density in-
ducer, I

′

z,ad,fx, tends to formal-abstract equality, AX∗Tm ≈ (A∗Tm)X, allowing
lifting and increasing the inducer correlation. Similarly, the maximisation of
the summed derived alignment valency density, algnValDensSum(UA)(A,DD),
in the limited-models summed alignment valency-density fud decomposition
inducer, I

′

z,Sd,D,F,∞,n,q, tends to formal-abstract equality in each slice, (A ∗
C)X ∗ FT ≈ (A ∗ C ∗ FT)X where (C,F ) ∈ cont(D).
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Section ‘Likely histograms’ goes on to show that the subsequent minimi-
sation of the idealisation entropy, where the mid idealisation is integral,
A ∗ Tm ∗ T †Am ∈ Ai, tends to increase the mid component size cardinality
relative entropy,

entropyRelative(A ∗ Tm, V
C
A ∗ Tm) ∼ − entropy(A ∗ Tm ∗ T †Am )

In section ‘Transform alignment’, it is conjectured that subsequent maximi-
sation of the idealisation alignment also tends to increase the relative entropy,

entropyRelative(A ∗ Tm, V
C
A ∗ Tm) ∼ algn(A ∗ Tm ∗ T †Am )

Let L ∈ paths(DΣ,k(A)) be a path of idealising summation aligned decom-
positions of histogram A such that (i) each decomposition is an immediate
super-decomposition of the previous decomposition, ∀i ∈ {2 . . . l} (Li−1 ∈
subtrees(Li) ∧ |nodes(Li−1)| = |nodes(Li)| − 1), where l = |L|, and (ii) the
last decomposition is ideal, A ∗ LT

l ∗ L
T†A
l = A. In section ‘Decomposition

alignment’, above, it is shown that the idealisation alignment increases along
the path,

∀i ∈ {2 . . . l} (algn(A ∗ LT
i ∗ L

T†A
i ) > algn(A ∗ LT

i−1 ∗ L
T†A
i−1 ))

Consider the case where (i) the root transform is the mid transform, L1 =
{((∅, Tm), ∅)}, and (ii) the idealisations along the path are all integral, ∀i ∈
{1 . . . l} (A ∗LT

i ∗L
T†A
i ∈ Ai). In this case the relative entropy also increases

along the path,

∀i ∈ {2 . . . l}
(entropyRelative(A ∗ LT

i , V
C
A ∗ LT

i ) > entropyRelative(A ∗ LT
i−1, V

C
A ∗ LT

i−1))

The first decomposition, L1, which is a sub-decomposition of all subsequent,
has the least relative entropy, entropyRelative(A ∗ LT

1 , V
C
A ∗ LT

1 ) ≈ 0. The
last decomposition, Ll, which is a super-decomposition of all previous, has
the greatest relative entropy, entropyRelative(A ∗ LT

l , V
C
A ∗ LT

l ) > 0.

That is, an idealising summation aligned decomposition D ∈ DΣ,k(A) that
(i) is ideal, A ∗ DT ∗ DT†A = A, and (ii) is rooted in the mid transform,
D = {((∅, Tm), ·)}, tends to increase relative entropy as the cardinality of
decomposition nodes increases,

entropyRelative(A ∗DT, V C
A ∗DT) ∼ |nodes(D)|

In the case where each transform is the mid transform for the component,

∀(C, T ) ∈ cont(D) (T ∈ mind({(T ′, entropy((A ∗ C)M(T ′))) :

T ′ ∈ TUA,VA , (A ∗ C)X ∗ T ′ = ((A ∗ C)X ∗ T ′)X}))
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then each non-leaf decomposition node ((·, T ), F ) ∈ nodes(D), where F 6= ∅,
forms a child decomposition E = {((∅, T ), F )} in slice A ∗ C which is rooted
in the slice mid transform, T , so that the slice formal approximates to the
slice abstract, (A∗C)X∗T ≈ (A∗C ∗T )X, but the child decomposition relative
entropy, entropyRelative(A ∗ C ∗ ET, V C

A ∗ ET), is not necessarily small.

Therefore, insofar as the search set of the tractable limited-models summed
alignment valency-density fud decomposition inducer,

dom(I
′∗
z,Sd,D,F,∞,n,q(A)) ⊂ DF,∞,UA,VA ∩ trees(S × (Fn ∩ Fq))

consists of substrate fud decompositions similar to idealising summation aligned
decompositions, DΣ,k(A), the component size cardinality relative entropy of
a maximal model may be expected to be (a) greater than that of the cor-
responding model in the tractable derived alignment valency-density fud in-
ducer, I

′

z,ad,F,∞,n,q,

entropyRelative(A ∗DT, V C
A ∗DT) > entropyRelative(A ∗ FT

ad, V
C
A ∗ FT

ad)

where D ∈ maxd(I
′∗
z,Sd,D,F,∞,n,q(A)) and Fad ∈ maxd(I

′∗
z,ad,F,∞,n,q(A)), and

(b) comparable to that of the corresponding model in the tractable derived
alignment fud inducer, I

′
z,a,F,∞,n,q,

entropyRelative(A ∗DT, V C
A ∗DT) ≈ entropyRelative(A ∗ FT

a , V
C
A ∗ FT

a )

where Fa ∈ maxd(I
′∗
z,a,F,∞,n,q(A)).

Note that, while the idealisations of the sub-decompositions are not necessar-
ily integral, at least the decomposition itself is generally ideal, and therefore
integral, A ∗DT ∗DT†A = A ∈ Ai.

That is, the relative entropy lost by maximisation of midisation alignment
in the fuds can be restored to some extent by subsequent maximisation of
idealisation alignment in the decomposition.

Insofar as the limited-models summed alignment valency-density fud de-
composition inducer, I

′

z,Sd,D,F,∞,n,q, adheres to the constraints of the limited-

models derived alignment valency-density fud inducer, I
′

z,ad,F,∞,n,q, the align-
ment bounded lifted iso-transform error of the fuds of the search set sub-
strate fud decompositions is reduced. The limited-models derived alignment
valency-density fud inducer, I

′

z,ad,F,∞,n,q, is derived from the derived align-

ment valency-density inducer, I
′

z,ad,fx, described in section ‘Intractable lit-
eral substrate model inclusion’, above. There it is conjectured that the
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valency capacity tends to increase the correlation of the maximum func-
tion of the derived alignment valency-density inducer, maxr ◦ I ′∗z,ad,fx, to the
alignment-bounded lifted iso-transform space ideal transform maximum func-
tion, maxr◦X ′z,xi,T,y,fa,j, and thence transitively to increase the inducer corre-
lation with the alignment-bounded iso-transform space ideal transform max-
imum function, maxr ◦ Xz,xi,T,y,fa,j. Although the sizes and derived align-
ments of the slices decrease along the paths of the substrate fud decompo-
sitions of the maximum function of the summed alignment valency-density
decomposition inducer, maxd(I

′∗
z,Sd,D,F,∞,n,q(A)) ⊂ DF,∞,UA,VA , the alignment-

bounded lifted iso-transform error of the slice fuds may be conjectured to
be reduced nonetheless. Therefore the nullable transform, DT where D ∈
maxd(I

′∗
z,Sd,D,F,∞,n,q(A)), may also have lower alignment-bounded lifted iso-

transform error. Thus conjecture that the valency capacity tends to increase
the inducer correlation of the summed alignment valency-density fud de-
composition inducer, I

′

z,Sd,D,F,∞,n,q, with the alignment-bounded iso-transform
space ideal transform maximum function, maxr ◦Xz,xi,T,y,fa,j.

The limited-models summed alignment valency-density substrate aligned
non overlapping infinite-layer fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q, is
tractable in all respects.

Conjecture that the summed alignment valency-density decomposition in-
ducer, I

′

z,Sd,D,F,∞,n,q, is positively correlated with the literal derived alignment

inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,Sd,D,F,∞,n,q) ≥ 0)

but that the correlation is lower than that for the limited-models idealising
fud decomposition inducer, I

′

z,c,D,F,∞,Σ,k,q,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,c,D,F,∞,Σ,k,q) ≥
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,Sd,D,F,∞,n,q))

However, the correlation is higher than that for the derived alignment valency-
density fud inducer, I

′

z,ad,F,∞,n,q,

∀z ∈ N>0

(cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,ad,F,∞,n,q) ≤
cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,Sd,D,F,∞,n,q))
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This is because (i) the application of the fud decomposition inducer is a super-
set of that of the fud inducer, {({((∅, F ), ∅)}, a) : (F, a) ∈ I ′∗z,ad,F,∞,n,q(A)} ⊂
I
′∗
z,Sd,D,F,∞,n,q(A), and (ii) super-decompositions must have higher summed

alignment valency-density, ∀E ∈ dom(I
′∗
z,Sd,D,F,∞,n,q(A)) (D ∈ subtrees(E) =⇒

I
′∗
z,Sd,D,F,∞,n,q(A)(E) > I

′∗
z,Sd,D,F,∞,n,q(A)(D)) where D = {((∅, F ), ∅)} and

F ∈ dom(I
′∗
z,ad,F,∞,n,q(A)). Therefore, in practice it is only necessary con-

sider two tractable inducers, (i) the derived alignment fud inducer, I
′
z,a,F,∞,n,q,

and (ii) the summed alignment valency-density fud decomposition inducer,
I
′

z,Sd,D,F,∞,n,q.

It is not obvious whether the summed alignment valency-density decom-
position inducer, I

′

z,Sd,D,F,∞,n,q, has a higher or lower inducer correlation,

cov(z)(maxr ◦ Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,Sd,D,F,∞,n,q), than the derived alignment

fud inducer, I
′
z,a,F,∞,n,q, cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,F,∞,n,q).

4.22 Practicable alignment-bounding

As it is defined above the summed alignment valency-density aligned fud
decomposition inducer, I

′

z,Sd,D,F,∞,n,q, is a computer that lacks explicit defini-
tion of (i) the limited-models constraints, Fq, (ii) the finite representations
of the substrate models and their traversal, or (iii) the alignmenter, Ia, or
real approxer, I≈R. The following section, ‘Substrate models computation’,
considers explicit definitions so that it can be determined whether an im-
plementation of the tractable inducer can be shown to be practicable given
particular computation time and space resources.

If it is the case that the computation resources are insufficient, section ‘Op-
timisation’ then goes on to consider practicable inducers and the constraints
necessary to implement them. Consideration is given to the effects of the
additional constraints on the correlation of the maximum function between
the practicable inducer and its corresponding tractable inducer.

The theoretic optimisation definitions are then given an explicit example im-
plementation in the next section, ‘Implementation’. There the computation
definition is less elegant, but more practical, because of (i) explicit recursion,
(ii) defined ordering, (iii) caching of temporary values and structures, and
(iv) the assignment of variable references or identifiers to replace partition
variables.
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4.22.1 Substrate models computation

The summed alignment valency-density aligned fud decomposition inducer,
I
′

z,Sd,D,F,∞,n,q, is defined in section ‘Tractable decomposition inducers’, above,
given non-independent substrate histogram A ∈ Az \ {AX}, as

I
′∗
z,Sd,D,F,∞,n,q(A) =

{(D, I∗≈R(algnValDensSum(UA)(A,D))) :

D ∈ DF,∞,UA,VA ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(A ∗ C ∗ FT) > 0)}

where cont(D) := elements(contingents(D)) and the summed derived align-
ment valency density, algnValDensSum(U) ∈ A×DF → R, is defined

algnValDensSum(U)(A,D) :=∑
(algn(A ∗ C ∗ FT)/cvl(F ) : (C,F ) ∈ cont(D))

where the derived valency capacity is cvl(F ) := (w1/m : W = der(F ), w =
|WC|, m = |W |). The cardinality of the substrate models, DF,∞,UA,VA ∩
trees(S × (Fn∩Fq)), has tractable time and space complexities, but may yet
be impracticable.

The derived alignment valency-density non-overlapping fud inducer, I
′

z,ad,F,∞,n,q,
is defined above as

I
′∗
z,ad,F,∞,n,q(A) =

{(F, I∗≈R(algn(A ∗ FT)/cvl(F ))) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

The fuds of the decompositions of the fud decomposition inducer, I
′

z,Sd,D,F,∞,n,q,
are the substrate fuds of the derived alignment valency-density non-overlapping
fud inducer, I

′

z,ad,F,∞,n,q,
⋃
{fuds(D) : D ∈ DF,∞,UA,VA∩trees(S×(Fn∩Fq))} =

F∞,UA,VA ∩ Fn ∩ Fq.

Consider various ways in which the limited-models non-overlapping infinite-
layer substrate fuds, F∞,UA,VA ∩ Fn ∩ Fq, may be constructed. The infinite-
layer substrate fud set F∞,U,V ⊂ FU,P is defined as

F∞,U,V = {F : F ⊆ powinf(U)(V, ∅), und(F ) ⊆ V }

where U is the infinite implied system, U = implied(filter(V, U)), and the
infinite power fud powinf(U) ∈ P(VU) × FU,P → FU,P is defined without
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termination

powinf(U)(V, F ) := F ∪G ∪ powinf(U)(V, F ∪G) :

G = {PT : K ⊆ vars(F ) ∪ V, P ∈ B(KCS)}

A tree of non-empty infinite-layer substrate fuds may be constructed such
that successive fuds in a path have incremented layer cardinality. That
is, the fuds are constructed from bottom-up. Define the infinite partition
infinite-layer fud tree tfi(U) ∈ P(VU)×FU,P → trees(FU,P) as

tfi(U)(V, F ) :=

{(F ∪G, tfi(U)(V, F ∪G)) :

G ⊆ {PT : K ⊆ vars(F ) ∪ V, (der(F ) 6= ∅ =⇒ K ∩ der(F ) 6= ∅),
P ∈ B(KCS)},

G 6= ∅}

Let tfi(U) ∈ P(VU)→ trees(FU,P) be defined tfi(U)(V ) = tfi(U)(V, ∅).

The fuds of the tree are the infinite-layer substrate fuds

F∞,U,V = elements(tfi(U)(V )) ∪ {∅}

In this construction the fuds are cumulative along the paths. That is, suc-
cessive fuds are proper supersets,

∀M ∈ subpaths(tfi(U)(V )) ∀i ∈ {2 . . . |M |} (Mi−1 ⊂Mi)

Moreover, the new partition transforms, P ∈ B(KCS) where K ⊆ vars(F )∪V ,
that are added to the next fud of a step, are constrained such that at least
one underlying variable is in the highest layer of the previous fud, ∃x ∈
K (x ∈ der(F )). Thus

∀M ∈ subpaths(tfi(U)(V )) ∀i ∈ {1 . . . |M |} (layer(Mi, der(Mi)) = i)

A fud, F ∈ elements(tfi(U)(V )), may appear more than once in the tree if
there are multiple paths to its construction,

|{M : M ∈ subpaths(tfi(U)(V )), M|M | = F}| ≥ 1

For convenience, define the sets of partition variables in the next layer tuples ∈
P(VU)×FU,P∗ → P(P(VU)) as

tuples(V, F ) := {K : K ⊆ vars(F ) ∪ V, (der(F ) 6= ∅ =⇒ K ∩ der(F ) 6= ∅)}
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The sets of partition variables, K ∈ tuples(V, F ), will be called tuples in the
context of practicable inducers. Note that here a tuple is not an ordered list,
although (i) in some implementations tuples have limited cardinalities, and
(ii) when ordered they may be used to index an array histogram representa-
tion.

The partition infinite-layer fud tree may then be defined more succinctly
in terms of tuples as

tfi(U)(V, F ) :=

{(F ∪G, tfi(U)(V, F ∪G)) :

G ⊆ {PT : K ∈ tuples(V, F ), P ∈ B(KCS)},
G 6= ∅}

The set of next layer fuds, {G : G ⊆ {PT : K ∈ tuples(V, F ), P ∈
B(KCS)}, G 6= ∅} ⊂ FU,P may be defined in terms of a set of partition-
sets, P(

⋃
{B(KCS) : K ∈ tuples(V, F )}) \ {∅}. For the first layer, F = ∅,

the set of next layer fuds is the set of fuds of partition transforms of the
non-empty partition-sets of the substrate partition-sets set,

{{PT : P ∈ N} : N ∈ NU,V , N 6= ∅} ⊂ FU,P

which has cardinality |NU,V | − 1. The substrate partition-sets set is defined

NU,V = P({P : K ⊆ V, P ∈ B(KCS)})

The cardinality of the substrate partition-sets set is

|NU,V | = 2c : c =
∑
K⊆V

bell(|KCS|)

In the case of regular variables V , having valency {d} = {|Uw| : w ∈ V } and
dimension n = |V |, the cardinality is

|NU,V | = 2c : c =
∑

k∈{0...n}

(
n

k

)
bell(dk)

For higher layers, F 6= ∅, the set of next layer fuds corresponds to the
intersecting substrate partition-sets set,

{{PT : P ∈ N} : N ∈ NU,W,X} ⊂ FU,P
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where W = vars(F ) ∪ V and X = der(F ). Note that the partition infinite-
layer fud tree, tfi(U)(V ), cannot contain non-empty fuds having empty de-
rived variables, F 6= ∅ =⇒ der(F ) 6= ∅. The cardinality of the set of higher
layer fuds is |NU,W,X |. The intersecting substrate partition-sets set, NU,V,X ,
is defined,

NU,V,X = P({P : K ⊆ V, K ∩X 6= ∅, P ∈ B(KCS)})

The cardinality of the intersecting substrate partition-sets set is

|NU,W,X | = 2c : c =
∑

(bell(|KCS|) : K ⊆ W, K ∩X 6= ∅)

In the case of regular substrate variables V and regular fud variables vars(F )\
V , having valency d, dimension q = |W | and intersecting dimension x = |X|,
the cardinality is

|NU,W,X | = 2c : c =
∑

k∈{1...q}

((
q

k

)
−
(
q − x
k

))
bell(dk)

where the binomial coefficient is defined such that ∀a, b ∈ N (b > a =⇒(
a
b

)
= 0).

The infinite non-overlapping infinite-layer substrate fuds, F∞,UA,VA ∩ Fn,
may be similarly constructed by selecting only those fuds which are non-
overlapping,

F∞,U,V ∩ Fn = {F : F ∈ elements(tfi(U)(V )), ¬overlap(F )}

Now consider the construction of the finite limited-models non-overlapping
infinite-layer substrate fuds, F∞,UA,VA∩Fn∩Fq, with particular definitions of
the limited-models constraints. The limited-models subset of the functional
definition sets Fq = Fu ∩Fd ∩Fh ∩Fb ⊂ F represents the class of subsets of
the functional definition sets that are (i) limited-underlying, Fu, (ii) limited-
derived, Fd, (iii) limited-layer, Fh and (iv) limited-breadth, Fb. Here the
limited-models constraints are defined explicitly.

In order to be computable, the infinite partition infinite-layer fud tree,
tfi(U)(V ) ∈ trees(FU,P), may be made finite by limiting the path length. De-
fine the maximum layer limit as lmax ∈ N>0. Define the finite limited-layer
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partition infinite-layer fud tree tfih(U) ∈ P(VU)×FU,P×N→ trees(FU,P) as

tfih(U)(V, F, h) :=

{(F ∪G, tfih(U)(V, F ∪G, h+ 1)) :

G ⊆ {PT : K ∈ tuples(V, F ), P ∈ B(KCS)},
G 6= ∅,
h ≤ lmax}

Let tfih(U) ∈ P(VU)→ trees(FU,P) be defined tfih(U)(V ) = tfih(U)(V, ∅, 1).

The layer cardinality increments at each step in the tree’s path, so the lim-
ited path length constraint, h ≤ lmax, could equally well be defined as a
limited-layer constraint, layer(F ∪ G, der(F ∪ G)) ≤ lmax, although this
computation would be longer.

The fuds of the tree are the limited-layer infinite-layer substrate fuds,

F∞,UA,VA ∩ Fh = elements(tfih(U)(V )) ∪ {∅}

Define the finite limited-layer limited-underlying-volume limited-breadth par-
tition infinite-layer fud tree tfiubh(U) ∈ P(VU) × FU,P × N → trees(FU,P)
as

tfiubh(U)(V, F, h) :=

{(F ∪G, tfiubh(U)(V, F ∪G, h+ 1)) :

G ⊆ {PT : K ∈ tuples(V, F ), |KC| ≤ xmax, P ∈ B(KCS)},
1 ≤ |G| ≤ bmax,

h ≤ lmax}

where the maximum underlying volume limit is xmax ∈ N>0 and the maxi-
mum breadth limit is bmax ∈ N>0. Let tfiubh(U) ∈ P(VU)→ trees(FU,P) be
defined tfiubh(U)(V ) = tfiubh(U)(V, ∅, 1).

The finite set of limited-models non-overlapping infinite-layer substrate fuds
is

F∞,U,V ∩ Fn ∩ Fq = {F : F ∈ elements(tfiubh(U)(V )), nd(F )}

where nd ∈ F → B is defined as nd(F ) = ¬overlap(F ) ∧ (|WC| ≤ wmax :
W = der(F )), and the maximum derived volume limit is wmax ∈ N>0.
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Both the non-overlapping and limited-derived constraints must be tested
after the construction of the limited-layer limited-underlying-volume limited-
breadth partition infinite-layer fud tree, tfiubh(U)(V ). In order to be se-
lected only the last fud in a sublist M ∈ subpaths(tfiubh(U)(V )) need be
non-overlapping and limited-derived, ∀i ∈ {1 . . . |M |} (Mi ∈ Fu ∩ Fb) and
M|M | ∈ Fu ∩Fb ∩Fn ∩Fd. That is, an ancestor fud, Mi where i < |M |, need
not be non-overlapping nor limited-derived, so these constraints cannot be
applied when constructing the tree in tfiubh(U)(V ).

As in the case of the partition infinite-layer fud tree above, a limited-layer
limited-underlying-volume limited-breadth partition infinite-layer fud tree fud
F ∈ elements(tfiubh(U)(V )) may appear more than once in the tree if there
are multiple paths to its construction,

|{M : M ∈ subpaths(tfiubh(U)(V )), M|M | = F}| ≥ 1

The cardinality of the finite set of limited-models non-overlapping subpaths
in the tree must be greater than or equal to the cardinality of limited-models
non-overlapping infinite-layer substrate fuds

|{M : M ∈ subpaths(tfiubh(U)(V )), nd(M|M |)}| ≥ |F∞,U,V ∩ Fn ∩ Fq|

A finite computer Itfinq ∈ computers can be defined such that its application
to the substrate variables, V , constructs the limited-models non-overlapping
infinite-layer substrate fuds, I∗tfinq(V ) = F∞,U,V ∩Fn∩Fq, by traversing the fi-
nite limited-layer limited-underlying-volume limited-breadth partition infinite-
layer fud tree, tfiubh(U)(V ). Let the finite traversal enumeration P ∈
enums(subpaths(tfiubh(U)(V ))) be such that the paths of the tree are searched
in sequence, ∀L,M ∈ subpaths(tfiubh(U)(V )) (L ⊆ M =⇒ PL ≤ PM). An
example of such an enumeration, P , would be a breadth-first traversal of
the tree, ∀i ∈ {1 . . . lmax − 1} (maxr({(M, j) : (M, j) ∈ P, |M | = i}) <
minr({(M, j) : (M, j) ∈ P, |M | = i + 1})). Then the finite search list is
N = {(j,M|M |) : (M, j) ∈ P} ∈ L(F∞,U,V ∩ Fu ∩ Fb ∩ Fh). The finite set
of limited-models non-overlapping infinite-layer substrate fuds is obtained by
filtering the search list, F∞,U,V ∩ Fn ∩ Fq = set(filter(nd, N)). Thus the car-
dinality of the searched list is greater than or equal to the cardinality of the
set of limited-models non-overlapping nodes which in turn is greater than or
equal to the cardinality of limited-models non-overlapping infinite-layer sub-
strate fuds, |N | ≥ |filter(nd, N)| ≥ |F∞,U,V ∩Fn∩Fq|. The computation time
is therefore greater than the cardinality of the searched list, It

tfinq(V ) > |N |.
Strictly speaking, the limited-derived non-overlapping filtering can take place
during the construction of the last layer, lmax, instead of subsequent to fud
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construction, because there are no descendant fuds. So cumulative compu-
tation space is only required for the fuds in all but the last layer. If the
filtering takes place after searching, however, then the computation space is
also greater than the cardinality of the searched list, Is

tfinq(V ) > |N |. Also
note that children fuds need not copy the transforms of their parents, so the
space required for a fud and a descendant fud is less than the sum of the
spaces.

The set of next layer fuds, {G : G ⊆ {PT : K ∈ tuples(V, F ), |KC| ≤
xmax, P ∈ B(KCS)}, 1 ≤ |G| ≤ bmax} ⊂ FU,P may be defined in terms of
a set of partition-sets. For the first layer, F = ∅, the set of next layer fuds
is the set of fuds of partition transforms of the non-empty partition-sets of
the intersection of the limited-underlying-volume substrate partition-sets set,
NU,V,xmax, and the limited-breadth substrate partition-sets set, NU,V,bmax,

{{PT : P ∈ N} : N ∈ NU,V,xmax ∩NU,V,bmax, N 6= ∅} ⊂ FU,P
which has cardinality |NU,V,xmax ∩ NU,V,bmax| − 1. The limited-underlying-
volume substrate partition-sets set is defined,

NU,V,xmax = P({P : K ⊆ V, |KCS| ≤ xmax, P ∈ B(KCS)})

The limited-breadth substrate partition-sets set is defined,

NU,V,bmax = {N : N ∈ NU,V , |N | ≤ bmax}

The cardinality of the intersection is

|NU,V,xmax ∩NU,V,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
(bell(|KCS|) : K ⊆ V, |KCS| ≤ xmax)

In the case of pluri-valent regular variables V , having valency d > 1 and di-
mension n, if the implied underlying-dimension limit, kmax = ln xmax / ln d,
is integral, ln xmax / ln d ∈ N, then the cardinality is

|NU,V,xmax ∩NU,V,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
k∈{0...kmax}

(
n

k

)
bell(dk)

For higher layers, F 6= ∅, the set of next layer fuds corresponds to the in-
tersection of the intersecting substrate partition-sets set, NU,W,X , the limited-
underlying-volume substrate partition-sets set, NU,W,xmax, and the limited-
breadth substrate partition-sets set NU,W,bmax

{{PT : P ∈ N} : N ∈ NU,W,X ∩NU,W,xmax ∩NU,W,bmax} ⊂ FU,P
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where W = vars(F ) ∪ V and X = der(F ). The cardinality of the set of
higher layer fuds is |NU,W,X ∩NU,W,xmax ∩NU,W,bmax|. The cardinality of the
intersection is

|NU,W,X ∩NU,W,xmax ∩NU,W,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
:

c =
∑

(bell(|KCS|) : K ⊆ W, K ∩X 6= ∅, |KCS| ≤ xmax)

In the case of regular substrate variables V and regular fud variables vars(F )\
V , having valency d, dimension q = |W | and intersecting dimension x =
|X|, such that the implied underlying-dimension limit is integral, kmax =
ln xmax / ln d ∈ N, the cardinality is

|NU,W,X ∩NU,W,xmax ∩NU,W,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
k∈{1...kmax}

((
q

k

)
−
(
q − x
k

))
bell(dk)

Consider the case where a limited-layer limited-underlying-volume limited-
breadth partition infinite-layer fud tree fud F ∈ elements(tfiubh(U)(V )) is
such that (i) it has lmax layers, layer(F, der(F )) = lmax, (ii) the first layer
has breadth bmax−n, (iii) subsequent layers have breadth bmax, and (iv) the
variables are regular, ∀w ∈ vars(F ) (|Uw| = d). In this case the cardinality
of the variables is |vars(F ) ∪ V | = lmax× bmax. The cardinality of the set
of next layer fuds is

|NU,W,X ∩NU,W,xmax ∩NU,W,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
:

c =
∑

k∈{1...kmax}

((
lmax× bmax

k

)
−
(

(lmax− 1)× bmax

k

))
bell(dk)

The cardinality of the selectable set, c, is therefore bounded

c < (lmax× bmax)kmax × bell(xmax)

This expression is dominated by the right-most term, bell(xmax), if lmax×
bmax ≤ xmax, because kmax < xmax. The cardinality of the set of next
layer fuds is also bounded,

|NU,W,X ∩NU,W,xmax ∩NU,W,bmax| < ((lmax× bmax)kmax × bell(xmax))bmax
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In case where the maximum underlying volume equals the size, xmax =
z, and the right-most term dominates, lmax × bmax ≤ z, the cardinality
is comparable to zz

2
. Although finite and tractable, this cardinality may

be impracticable if the computation time and space that it implies exceeds
available resources.

In the case where the limited-layer limited-underlying-volume limited-breadth
partition infinite-layer fud tree, tfiubh(U)(V ), is additionally constrained
such that the fuds have derived volume less than or equal to the maxi-
mum derived volume limit, wmax, then a subset of the limited-models non-
overlapping infinite-layer substrate fuds, F∞,U,V ∩ Fn ∩ Fq, may be con-
structed. Define the limited-layer limited-derived-volume limited-underlying-
volume limited-breadth partition infinite-layer fud tree tfiubhd(U) ∈ P(VU)×
FU,P ×N→ trees(FU,P) as

tfiubhd(U)(V, F, h) :=

{(F ∪G, tfiubhd(U)(V, F ∪G, h+ 1)) :

G ⊆ {PT : K ∈ tuples(V, F ), |KC| ≤ xmax, P ∈ B(KCS)},
1 ≤ |G| ≤ bmax,

W = der(F ∪G), |WC| ≤ wmax,

h ≤ lmax}

Again, let tfiubhd(U) ∈ P(VU) → trees(FU,P) be defined tfiubhd(U)(V ) =
tfiubhd(U)(V, ∅, 1).

The limited-derived-volume constraint, |WC| ≤ wmax, is applied at every
layer of the fud, so only a subset of the limited-models non-overlapping
infinite-layer substrate fuds is searched

F∞,U,V ∩ Fn ∩ Fq ⊇ {F : F ∈ elements(tfiubhd(U)(V )), ¬overlap(F )}

For the first layer, F = ∅, the set of next layer fuds is the set of fuds of
partition transforms of the non-empty partition-sets of the intersection of the
limited-underlying-volume substrate partition-sets set, NU,V,xmax, the limited-
breadth substrate partition-sets set, NU,V,bmax, and the limited-derived-volume
substrate partition-sets set, NU,V,wmax,

{{PT : P ∈ N} : N ∈ NU,V,xmax ∩NU,V,bmax ∩NU,V,wmax, N 6= ∅} ⊂ FU,P

which has cardinality |NU,V,xmax ∩NU,V,bmax ∩NU,V,wmax| − 1.
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The computation of the cardinality of the set of fuds in the higher next layers
requires that the set itself be computed, because the limited-derived-volume
constraint depends on both the given fud, F , and the next layer fud, G, for
its determination. That is, in some cases the derived variables of the child fud
intersect with the derived variables of the given fud, |der(F∪G)∩der(F )| ≥ 0.
However, the cardinality of the children fuds must be less than or equal to
those of the limited-layer limited-underlying-volume limited-breadth partition
infinite-layer fud tree, tfiubh(U)(V ),

|{G : G ⊆ {PT : K ∈ tuples(V, F ), |KC| ≤ xmax, P ∈ B(KCS)},
1 ≤ |G| ≤ bmax, W = der(F ∪G), |WC| ≤ wmax}|

≤ |{G : G ⊆ {PT : K ∈ tuples(V, F ), |KC| ≤ xmax, P ∈ B(KCS)},
1 ≤ |G| ≤ bmax}|

The set of substrate infinite-layer fud decompositions DF,∞,U,V is defined
such that all of the fuds are infinite-layer substrate fuds and none can appear
more than once in a path

DF,∞,U,V = {D : D ∈ DF,d, fuds(D) ⊆ F∞,U,V ,
∀L ∈ paths(D) (maxr(count({(F, i) : (i, (·, F )) ∈ L})) = 1)}

or equivalently,

DF,∞,U,V =

{D : D ∈ DF,d, fuds(D) ⊆ F∞,U,V , ∀L ∈ paths(D) (|L| = |ran(set(L))|)}

The non-empty infinite-layer substrate fud decompositions of non-empty infinite-
layer substrate fuds may be constructed by means of a tree of immediate
super-decompositions. Define the infinite infinite-layer fud decomposition tree
tdfi(U) ∈ P(VU)×DF,d → trees(DF,d) as

tdfi(U)(V,D) :=

{(E, tdfi(U)(V,E)) :

Q = paths(D), L ∈ Q, i ∈ {1 . . . |L|},
(·, F ) = Li, W = der(F ), S ∈ WCS,

G ∈ F∞,U,V \ (ran(set(L{1...i})) ∪ {∅}),
M = L{1...i} ∪ {(i+ 1, (S,G))},
E = tree(Q \ {L{1...i}} ∪ {M}), E ∈ DF,d}

where tdfi(U)(V, ∅) := {(E, tdfi(U)(V,E)) : G ∈ F∞,U,V \{∅}, E = {((∅, G), ∅)}}.
Let tdfi(U) ∈ P(VU)→ trees(DF,d) be defined tdfi(U)(V ) = tdfi(U)(V, ∅).
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The infinite infinite-layer fud decomposition tree is constrained to be a tree
of immediate super-decompositions,

tdfi(U)(V,D) =

{(E, tdfi(U)(V,E)) :

E ∈ DF,d, fuds(E) ⊆ F∞,U,V \ {∅},
∀L ∈ paths(E) (L|L| /∈ set(L{1...|L|−1})),

D ∈ subtrees(E), |nodes(E) \ nodes(D)| = 1}

The decompositions of the tree are a subset of the infinite-layer substrate fud
decompositions

DF,∞,U,V ⊃ elements(tdfi(U)(V ))

The decompositions of the tree form a proper subset because the empty fud
is excluded from the construction.

In this construction exactly one fud is added to the previous decomposi-
tion at each step. Thus the cardinality of the fuds equals the position in the
path, ∀L ∈ paths(tdfi(U)(V )) ∀i ∈ {1 . . . |L|} (|fuds(Li)| = i).

A constructed decomposition, D ∈ elements(tdfi(U)(V )), may appear more
than once in the tree if there are multiple paths to its construction, |{M :
M ∈ subpaths(tdfi(U)(V )), M|M | = D}| ≥ 1, because some decompositions
have multiple immediate sub-decompositions.

The limited-models infinite-layer substrate fud decompositions, DF,∞,UA,VA ∩
trees(S × Fq), may also be constructed by means of a tree of immediate
super-decompositions. Define the finite limited-models infinite-layer fud de-
composition tree tdfiq(U) ∈ P(VU)×DF,d → trees(DF,d) as

tdfiq(U)(V,D) :=

{(E, tdfiq(U)(V,E)) :

Q = paths(D), L ∈ Q, i ∈ {1 . . . |L|},
(·, F ) = Li, W = der(F ), S ∈ WCS,

G ∈ F∞,U,V ∩ Fq \ (ran(set(L{1...i})) ∪ {∅}),
M = L{1...i} ∪ {(i+ 1, (S,G))},
E = tree(Q \ {L{1...i}} ∪ {M}), E ∈ DF,d}

where tdfiq(U)(V, ∅) := {(E, tdfiq(U)(V,E)) : G ∈ F∞,U,V ∩ Fq \ {∅}, E =
{((∅, G), ∅)}}. Let tdfiq(U) ∈ P(VU)→ trees(DF,d) be defined tdfiq(U)(V ) =
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tdfiq(U)(V, ∅).

The decompositions of the tree are a subset of the limited-models infinite-
layer substrate fud decompositions

DF,∞,U,V ∩ trees(S × Fq) ⊃ elements(tdfiq(U)(V ))

The limited-models infinite-layer fud decomposition tree, tdfiq(U)(V ), is fi-
nite. Therefore a computer Itdfiq ∈ computers that is defined such that its ap-
plication to the substrate variables, V , constructs the limited-models infinite-
layer substrate fud decompositions, I∗tdfiq(V ) ⊂ DF,∞,U,V ∩ trees(S × Fq),
by traversing the entire tree, tdfiq(U)(V ), always terminates and is there-
fore also finite. That is, ∀P ∈ enums(tdfiq(U)(V )) (|P | < ∞) and so
|P | < It

tdfiq(V ) <∞.

Similarly, the limited-models non-overlapping infinite-layer substrate fud de-
compositions, DF,∞,UA,VA ∩ trees(S × (Fn ∩Fq)), may also be constructed by
the tree of immediate super-decompositions to contain only non-overlapping
fuds. Define the finite limited-models non-overlapping infinite-layer fud de-
composition tree tdfinq(U) ∈ P(VU)×DF,d → trees(DF,d) as

tdfinq(U)(V,D) :=

{(E, tdfinq(U)(V,E)) :

Q = paths(D), L ∈ Q, i ∈ {1 . . . |L|},
(·, F ) = Li, W = der(F ), S ∈ WCS,

G ∈ F∞,U,V ∩ Fn ∩ Fq \ (ran(set(L{1...i})) ∪ {∅}),
M = L{1...i} ∪ {(i+ 1, (S,G))},
E = tree(Q \ {L{1...i}} ∪ {M}), E ∈ DF,d}

where tdfinq(U)(V, ∅) := {(E, tdfinq(U)(V,E)) : G ∈ F∞,U,V ∩ Fn ∩ Fq \
{∅}, E = {((∅, G), ∅)}}. Let tdfinq(U) ∈ P(VU) → trees(DF,d) be defined
tdfinq(U)(V ) = tdfinq(U)(V, ∅).

The decompositions of the tree are a subset the limited-models non-overlapping
infinite-layer substrate fud decompositions

DF,∞,U,V ∩ trees(S × (Fn ∩ Fq)) ⊃ elements(tdfinq(U)(V ))

It is also the case that the limited-models non-overlapping infinite-layer fud
decomposition tree, tdfinq(U)(V ), is finite, because it is a subset of the finite
limited-models infinite-layer fud decomposition tree, tdfiq(U)(V ). That is,
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elements(tdfinq(U)(V )) ⊂ elements(tdfiq(U)(V )).

A construction of a fud decomposition tree can be defined in terms of the fi-
nite limited-layer limited-underlying-volume limited-breadth partition infinite-
layer fud tree, tfiubh(U)(V ). Define the finite limited-derived non-overlapping
limited-layer limited-underlying-volume limited-breadth infinite-layer fud de-
composition tree tdfiubhnd(U) ∈ P(VU)×DF,d → trees(N>0 ×DF,d) as

tdfiubhnd(U)(V,D) :=

{((j, E), tdfiubhnd(U)(V,E)) :

Q = paths(D), L ∈ Q, i ∈ {1 . . . |L|},
(·, F ) = Li, W = der(F ), S ∈ WCS,

P ∈ order(Dtfiubh, subpaths(tfiubh(U)(V ))),

N = {(j,M|M |) : (M, j) ∈ P},
j ∈ {1 . . . |N |}, Nj /∈ set(L{1...i}), nd(Nj),

M = L{1...i} ∪ {(i+ 1, (S,Nj))},
E = tree(Q \ {L{1...i}} ∪ {M}), E ∈ DF,d}

where

tdfiubhnd(U)(V, ∅) :=

{((j, E), tdfiubhnd(U)(V,E)) :

P ∈ order(Dtfiubh, subpaths(tfiubh(U)(V ))),

N = {(j,M|M |) : (M, j) ∈ P},
j ∈ {1 . . . |N |}, nd(Nj), E = {((∅, Nj), ∅)}}

Let tdfiubhnd(U) ∈ P(VU) → trees(DF,d) be defined tdfiubhnd(U)(V ) =
tdfiubhnd(U)(V, ∅).

Here search list N ∈ L(F∞,U,V ∩ Fu ∩ Fb) is constructed given some order
Dtfiubh on the subpaths of the finite limited-layer limited-underlying-volume
limited-breadth partition infinite-layer fud tree, tfiubh(U)(V ), so that the
search enumeration is P ∈ enums(subpaths(tfiubh(U)(V ))) and the finite
search list is N = {(j,M|M |) : (M, j) ∈ P}.

Again, the decompositions of the tree are a subset of the limited-models non-
overlapping infinite-layer substrate fud decompositions

DF,∞,U,V ∩ trees(S × (Fn ∩ Fq)) ⊃ ran(elements(tdfiubhnd(U)(V )))
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but the cardinality limited-derived non-overlapping limited-underlying limited-
breadth infinite-layer fud decomposition tree is greater than or equal to the
cardinality of the limited-models non-overlapping infinite-layer fud decom-
position tree, |tdfiubhnd(U)(V )| ≥ |tdfinq(U)(V )|. Therefore a computer
Itdfiubhnd ∈ computers that is defined such that its application to the sub-
strate variables, V , constructs the limited-models non-overlapping infinite-
layer substrate fud decompositions, I∗tdfiubhnd(V ) ⊂ DF,∞,U,V ∩ trees(S × (Fn∩
Fq)), by traversing the limited-derived non-overlapping limited-underlying
limited-breadth infinite-layer fud decomposition tree, tdfiubhnd(U)(V ), is such
that It

tdfiubhnd(V ) > It
tdfinq(V ).

Instead of constructing non-overlapping infinite-layer substrate fuds, F∞,U,V∩
Fn, from the partition transforms of tuples, consider constructing them from
contracted non-overlapping substrate transforms of tuples. Define the in-
finite contracted non-overlapping substrate transform infinite-layer fud tree
tfitn(U) ∈ P(VU)×FU,P∗ → trees(FU,P∗) as

tfitn(U)(V, F ) :=

{(F ∪G, tfitn(U)(V, F ∪G)) :

G ⊆ {NT : K ∈ tuples(V, F ), N ∈ N ′U,K,n \ {∅}},
G 6= ∅}

Let tfitn(U) ∈ P(VU)→ trees(FU,P∗) be defined tfitn(U)(V ) = tfitn(U)(V, ∅).

Here the weak non-overlapping substrate partition-sets set, N ′U,K,n, is defined

N ′U,K,n = {N : Y ∈ B′(K), N ∈
∏
J∈Y

B(JCS)} ∪ {∅}

and the non-overlapping substrate transforms set is defined in terms of the
weak non-overlapping substrate partition-sets set

TU,K,n = {NTK : N ∈ N ′U,K,n}

The tree is a tree of multi-partition fuds. The partition fuds are a subset
of the multi-partition fuds, FU,P ⊂ FU,P∗ , and the non-overlapping substrate
transforms are a superset of the partition transforms, {PT : P ∈ B(KCS)} ⊆
TU,K,n, so the infinite non-overlapping infinite-layer substrate fuds can be
constructed from the partition fuds in the tree,

F∞,U,V ∩ Fn =

{F : F ∈ elements(tfitn(U)(V )) ∩ FU,P, ¬overlap(F )}
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However, the infinite non-overlapping infinite-layer substrate fuds can also be
constructed by exploding the contracted non-overlapping substrate transforms
of the multi-partition fuds

F∞,U,V ∩ Fn =

{F ′ : F ∈ elements(tfitn(U)(V )), F ′ = explode(F ), ¬overlap(F ′)}

where explode(F ) := {PT : (·,W ) ∈ F, P ∈ W} ∈ FU,P. Note that,
although contracted non-overlapping substrate transforms are being added,
it is still necessary to explicitly test that the tree exploded fuds are non-
overlapping, ¬overlap(explode(F )). The addition of contracted non-overlapping
substrate transforms does not imply that ancestor exploded fuds are non-
overlapping.

Although the resultant set of non-overlapping infinite-layer substrate fuds,
F∞,U,V ∩ Fn, is the same whether constructed with partition transforms or
contracted non-overlapping substrate transforms, in the latter case more com-
putation is required because |TU,K,n| ≥ |B(KCS)|. That is, the cardinality of
possible construction paths may be greater,

|{M : M ∈ subpaths(tfitn(U)(V )), M|M | = F}|
≥ |{M : M ∈ subpaths(tfi(U)(V )), M|M | = explode(F )}|

where F ∈ elements(tfitn(U)(V )).

The cardinality of the weak non-overlapping substrate partition-sets set is
twice that of the non-overlapping substrate partition-sets set plus one, |N ′U,K,n| =
2 × |NU,K,n| + 1. In the case of non-empty tuple, K 6= ∅, the cardinality of
the non-overlapping substrate partition-sets set, NU,K,n, is

|NU,K,n| =
∑

Y ∈B(K)

∏
J∈Y

|B(JCS)|

If the underlying variables are regular, having dimension k = |K| and com-
mon valency d, {d} = {|Ux| : x ∈ K}, then the cardinality of the non-
overlapping substrate partition-sets set is

|NU,K,n| =
∑

(L,c)∈bcd(k)

(
c
∏

(j,p)∈L

bell(dj)p
)

where bcd = bellcd and the partition function cardinality function is bellcd ∈
N>0 → (L(N)→ N).
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For the first layer, F = ∅, the cardinality of the set of next layer fuds is

|P({NT : K ⊆ V, N ∈ N ′U,K,n, N 6= ∅})| − 1 =

2c − 1 : c =
∑
K⊆V

2
∑

Y ∈B(K)

∏
J∈Y

bell(|JC|)

In the case of regular substrate variables, having dimension k = |K| and
valency d, the cardinality is

|P({NT : K ⊆ V, N ∈ N ′U,K,n, N 6= ∅})| − 1 =

2c − 1 : c =
∑

k∈{0...n}

2

(
n

k

) ∑
(L,a)∈bcd(k)

a
∏

(j,p)∈L

bell(dj)p

For higher layers, F 6= ∅, the cardinality of the set of next layer fuds is

|P({NT : K ∈ tuples(V, F ), N ∈ N ′U,K,n, N 6= ∅})| − 1 =

2c − 1 : c =
∑

K⊆W, K∩X 6=∅

2
∑

Y ∈B(K)

∏
J∈Y

bell(|JC|)

where W = vars(F ) ∪ V and X = der(F ).

In the case of regular substrate variables V and regular fud variables vars(F )\
V , having valency d, dimension q = |W | and intersecting dimension x = |X|,
the cardinality is

|P({NT : K ∈ tuples(V, F ), N ∈ N ′U,K,n, N 6= ∅})| − 1 =

2c − 1 : c =
∑

k∈{1...q}

2

((
q

k

)
−
(
q − x
k

)) ∑
(L,a)∈bcd(k)

a
∏

(j,p)∈L

bell(dj)p

where the binomial coefficient is defined such that ∀a, b ∈ N (b > a =⇒(
a
b

)
= 0).

The construction of the finite limited-models non-overlapping infinite-layer
substrate fuds, F∞,U,V ∩ Fn ∩ Fq, may also be made with contracted non-
overlapping substrate transforms rather than partition transforms. Define the
finite limited-layer limited-underlying-volume limited-breadth contracted non-
overlapping substrate transform infinite-layer fud tree tfitnubh(U) ∈ P(VU)×
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FU,P∗ ×N→ trees(FU,P∗) as

tfitnubh(U)(V, F, h) :=

{(F ∪G, tfitnubh(U)(V, F ∪G, h+ 1)) :

G ⊆ {NT : K ∈ tuples(V, F ), |KC| ≤ xmax, N ∈ N ′U,K,n \ {∅}},
1 ≤ |explode(G)| ≤ bmax,

h ≤ lmax}

Again, let tfitnubh(U) ∈ P(VU)→ trees(FU,P∗) be defined tfitnubh(U)(V ) =
tfitnubh(U)(V, ∅, 1).

The finite set of limited-models non-overlapping infinite-layer substrate fuds
is

F∞,U,V ∩ Fn ∩ Fq =

{F ′ : M ∈ subpaths(tfitnubh(U)(V )), F ′ = explode(M|M |), nd(F ′)}

Similarly to the case of the limited-layer limited-underlying-volume limited-
breadth partition infinite-layer fud tree, tfiubh(U)(V ), above, a finite com-
puter Itfitnq ∈ computers can be defined such that its application to the
substrate variables, V , constructs the limited-models non-overlapping infinite-
layer substrate fuds, I∗tfitnq(V ) = F∞,U,V ∩Fn ∩Fq, by traversing the limited-
layer limited-underlying-volume limited-breadth contracted non-overlapping
substrate transform infinite-layer fud tree, tfitnubh(U)(V ), such that all of
the paths are searched in sequence. The cardinality of the contracted non-
overlapping substrate transform searched list is greater than or equal to the
cardinality of the partition transform searched list,

|subpaths(tfitnubh(U)(V ))| ≥ |subpaths(tfiubh(U)(V ))|

so the computation time must be greater than or equal to that of the previ-
ous case, It

tfitnq(V ) ≥ It
tfinq(V ).

Given cardinality b ∈ N>0, the fixed-breadth non-overlapping substrate partition-
sets set, NU,K,n,b, applied to the tuple, K, is defined

NU,K,n,b = {N : Y ∈ B(K), N ∈
∏
J∈Y

B(JCS), |N | = b}

If the underlying variables are regular, having dimension k = |K| and com-
mon valency d, {d} = {|Ux| : x ∈ K}, then the cardinality of the fixed-breadth
non-overlapping substrate partition-sets set is

|NU,K,n,b| =
∑

(L,c)∈sscd(k,b)

(
c
∏

(j,p)∈L

bell(dj)p
)
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where sscd = stircd and the fixed cardinality partition function cardinality
function is stircd ∈ N>0 ×N>0 → (L(N)→ N) .

The cardinality of the set of next layer fuds is

|{G : G ⊆ {NT : K ∈ tuples(V, F ), |KC| ≤ xmax, N ∈ N ′U,K,n, N 6= ∅},
1 ≤ |explode(G)| ≤ bmax}|

=
∑(∏

2|NU,K,n,j| : (K, j) ∈ Y, j > 0
)

:

b ∈ {1 . . . bmax}, X ∈ C′({K : K ∈ tuples(V, F ), |KC| ≤ xmax}, b),
Y ∈ X, ∀(K, j) ∈ Y (j ≤ |K|))

where the weak composition function is C′ ∈ P(X )×N→ P(X → N). Note
that the constraint ∀(K, j) ∈ Y (j ≤ |K|) is required because for some tuples
the cardinality of fixed-breadth non-overlapping substrate partition-sets set is
too small to admit all weak compositions, |NU,K,n,b| < b.

Consider the case where the fuds of the construction trees are constrained
to consist of recursively non-overlapping multi-partition transforms. The con-
struction of the finite limited-models non-overlapping infinite-layer substrate
fuds, F∞,U,V ∩ Fn ∩ Fq, may also be made with contracted non-overlapping
substrate transforms to form a tree of recursively non-overlapping multi-
partition transform fuds. Define the finite limited-layer limited-underlying-
volume limited-breadth contracted recursively non-overlapping substrate trans-
form infinite-layer fud tree tfitrnubh(U) ∈ P(VU)×FU,P∗×N→ trees(FU,P∗)
as

tfitrnubh(U)(V, F, h) :=

{(F ∪G, tfitrnubh(U)(V, F ∪G, h+ 1)) :

G ⊆ {NT : K ∈ tuples(V, F ), |KC| ≤ xmax, N ∈ N ′U,K,n \ {∅},
¬overlap(depends(explode(F ∪ {NT}), N))},

1 ≤ |explode(G)| ≤ bmax,

h ≤ lmax}

Let tfitrnubh(U) ∈ P(VU) → trees(FU,P∗) be defined tfitrnubh(U)(V ) =
tfitnubh(U)(V, ∅, 1).

Now each transform in the fud is constrained to be recursively non-overlapping,

∀F ∈ elements(tfitrnubh(U)(V )) ∀(·,W ) ∈ F
(¬overlap(depends(explode(F ),W )))
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but the recursively non-overlapping multi-partition fuds are a superset of
the partition fuds, elements(tfiubh(U)(V )) ⊂ elements(tfitrnubh(U)(V )), be-
cause the non-overlapping substrate transforms are a superset of the partition
transforms, {PT : P ∈ B(KCS)} ⊆ TU,K,n, so the set of all of the limited-
models non-overlapping infinite-layer substrate fuds is constructed,

F∞,U,V ∩ Fn ∩ Fq =

{F ′ : F ∈ elements(tfitrnubh(U)(V )), F ′ = explode(F ), nd(F ′)}

The cardinality of the non-overlapping multi-partition fuds is greater than
or equal to the cardinality of the recursively non-overlapping multi-partition
fuds,

|elements(tfitnubh(U)(V )))| ≥ |elements(tfitrnubh(U)(V )))|

If the recursively non-overlapping multi-partition fuds are restricted to those
that are topped, then only a subset of the limited-models non-overlapping
infinite-layer substrate fuds is constructed,

F∞,U,V ∩ Fn ∩ Fq ⊇ {explode(F ) : F ∈ elements(tfitrnubh(U)(V, ∅)),
(∃T ∈ F (der(T ) = der(F ))), W = der(F ), |WC| ≤ wmax}

The topped recursively non-overlapping multi-partition fuds are necessarily
non-overlapping so there is no need to test ¬overlap(explode(F )).

The construction of a subset of the finite limited-models non-overlapping
infinite-layer substrate fuds, F∞,U,V ∩ Fn ∩ Fq, may also be made with con-
tracted non-overlapping substrate transforms to form a tree of recursively
non-overlapping pluri-derived-variate multi-partition transform fuds. Define
the finite limited-layer limited-underlying-volume limited-breadth contracted
recursively non-overlapping pluri-derived-variate substrate transform infinite-
layer fud tree tfiptrnubh(U) ∈ P(VU)×FU,P∗ ×N→ trees(FU,P∗) as

tfiptrnubh(U)(V, F, h) :=

{(F ∪G, tfiptrnubh(U)(V, F ∪G, h+ 1)) :

G ⊆ {NT : K ∈ tuples(V, F ), |KC| ≤ xmax, N ∈ N ′U,K,n,
|N | > 1,

¬overlap(depends(explode(F ∪ {NT}), N))},
1 ≤ |explode(G)| ≤ bmax,

h ≤ lmax}
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Let tfiptrnubh(U) ∈ P(VU) → trees(FU,P∗) be defined tfiptrnubh(U)(V ) =
tfitnubh(U)(V, ∅, 1).

The pluri-derived-variate constraint means that only a subset of the limited-
models non-overlapping infinite-layer substrate fuds is constructed,

F∞,U,V ∩ Fn ∩ Fq ⊇
{F ′ : F ∈ elements(tfiptrnubh(U)(V )), F ′ = explode(F ), nd(F ′)}

The limited-layer limited-underlying-volume limited-breadth contracted non-
overlapping substrate transform infinite-layer fud tree, tfitnubh(U)(V ), does
not readily yield a polynomial-complexity computation of the regular car-
dinality set of next layer fuds. Consider a restricted variation that lim-
its the tuple derived dimension to a parameter mmax ∈ N>0. The tuple
derived dimension limit is also constrained such that the breadth limit is
a multiple, bmax/mmax ∈ N>0. Define the finite limited-layer limited-
tuple-derived-dimension limited-underlying-volume limited-breadth contracted
non-overlapping substrate transform infinite-layer fud tree tfitnmubh(U) ∈
P(VU)×FU,P∗ ×N→ trees(FU,P∗) as

tfitnmubh(U)(V, F, h) :=

{(F ∪G, tfitnmubh(U)(V, F ∪G, h+ 1)) :

G ⊆ {NT : K ∈ tuples(V, F ), |KC| ≤ xmax, N ∈ NU,K,n,mmax},
1 ≤ |G| ≤ bmax/mmax,

h ≤ lmax}

Again, let tfitnmubh(U) ∈ P(VU)→ trees(FU,P∗) be defined tfitnmubh(U)(V ) =
tfitnmubh(U)(V, ∅, 1).

Here the limited-tuple-derived-dimension non-overlapping substrate partition-
sets set, NU,K,n,mmax, is defined as the limited-breadth non-overlapping sub-
strate partition-sets set, NU,V,n,bmax, applied to the tuple,

NU,K,n,mmax = {N : Y ∈ B(K), |Y | ≤ mmax, N ∈
∏
J∈Y

B(JCS)}

In the case where mmax ≤ |K|,

NU,K,n,mmax = {N : m ∈ {1 . . .mmax}, Y ∈ S(K,m), N ∈
∏
J∈Y

B(JCS)}
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In the case of regular variables K, having valency d and dimension k, the
cardinality of the limited-tuple-derived-dimension non-overlapping substrate
partition-sets set is

|NU,K,n,mmax| =
∑(∏

J∈Y

bell(d|J |)
)

: m ∈ {1 . . .mmax}, Y ∈ S(K,m)

=
∑(

a
∏

(j,p)∈L

bell(dj)p
)

: m ∈ {1 . . .mmax}, (L, a) ∈ sscd(k,m)

where sscd = stircd and the fixed cardinality partition function cardinality
function is stircd ∈ N>0 ×N>0 → (L(N)→ N).

The limited-layer limited-tuple-derived-dimension limited-underlying-volume
limited-breadth contracted non-overlapping substrate transform infinite-layer
fud tree is defined with the limited-tuple-derived-dimension non-overlapping
substrate partition-sets set, NU,K,n,mmax. This is a strong partition-sets set so
it excludes the empty transform, (∅, ∅), and the unary partition transform,
{∅CS}T. The finite set of strong limited-models non-overlapping infinite-layer
substrate fuds is

{F : F ∈ F∞,U,V ∩ Fn ∩ Fq, {∅CS}T /∈ F} =

{F ′ : M ∈ subpaths(tfitnmubh(U)(V )), F ′ = explode(M|M |), nd(F ′)}

The cardinality of the limited-layer limited-tuple-derived-dimension limited-
underlying-volume limited-breadth contracted non-overlapping substrate trans-
form infinite-layer fud tree searched list is less than or equal to the cardinality
of the limited-layer limited-underlying-volume limited-breadth contracted non-
overlapping substrate transform infinite-layer fud tree searched list, because
of the additional constraint,

|subpaths(tfitnmubh(U)(V ))| ≤ |subpaths(tfitnubh(U)(V ))|

For the first layer, F = ∅, the cardinality of the set of next layer fuds is

|{G : G ⊆ {NT : K ⊆ V, |KC| ≤ xmax, N ∈ NU,K,n,mmax},
1 ≤ |G| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑(∏

J∈Y

bell(|JC|)
)

: K ⊆ V, |KCS| ≤ xmax,

m ∈ {1 . . .mmax}, Y ∈ S(K,m)
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In the case of pluri-valent regular substrate variables, having dimension k =
|K| and valency d > 1, if the implied underlying-dimension limit, kmax =
ln xmax / ln d, is integral, ln xmax / ln d ∈ N, the cardinality is

|{G : G ⊆ {NT : K ⊆ V, |KC| ≤ xmax, N ∈ NU,K,n,mmax},
1 ≤ |G| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑

k∈{0...kmax}

(
n

k

)(∑(
a
∏

(j,p)∈L

bell(dj)p
)

:

m ∈ {1 . . .mmax}, (L, a) ∈ sscd(k,m)
)

For higher layers, F 6= ∅, the cardinality of the set of next layer fuds is

|{G : G ⊆ {NT : K ∈ tuples(V, F ), |KC| ≤ xmax, N ∈ NU,K,n,mmax},
1 ≤ |G| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑(∏

J∈Y

bell(|JC|)
)

: K ⊆ W, K ∩X 6= ∅, |KCS| ≤ xmax,

m ∈ {1 . . .mmax}, Y ∈ S(K,m)

where W = vars(F ) ∪ V and X = der(F ).

In the case of regular substrate variables V and regular fud variables vars(F )\
V , having valency d, dimension q = |W | and intersecting dimension x = |X|,
the cardinality is

|{G : G ⊆ {NT : K ∈ tuples(V, F ), |KC| ≤ xmax, N ∈ NU,K,n,mmax},
1 ≤ |G| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑

k∈{1...kmax}

((
q

k

)
−
(
q − x
k

))(∑(
a
∏

(j,p)∈L

bell(dj)p
)

:

m ∈ {1 . . .mmax}, (L, a) ∈ sscd(k,m)
)
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In section ‘Substrate structures’ above it is shown that the strong non-
overlapping substrate transforms set, {NTV : N ∈ NU,V,n} ⊆ TU,V,n, can be
constructed explicitly in terms of linear fuds of a strong non-overlapping
substrate self-cartesian transform, {NT : N ∈ NU,V,c ∩ NU,V,n}, followed by
a sequence of strong self non-overlapping substrate decremented transforms,
{NT : N ∈ NU,W,− ∩ NU,W,n,s}. Let the finite set of contracted decrementing
linear non-overlapping fuds FU,n,−,V ⊂ FU,P∗ be defined as

FU,n,−,V
= {{NT : (·, N) ∈ L} : M ∈ NU,V,c ∩NU,V,n,

L ∈ subpaths({(M, tdec(U)(M))})}
= {{NT : (·, N) ∈ L} : Y ∈ B(V ), M = {KCS{} : K ∈ Y },

L ∈ subpaths({(M, tdec(U)(M))})}

where the tree of self non-overlapping substrate decremented partition-sets is
defined tdec(U) ∈ P(VU)→ trees(P(RU)) as

tdec(U)(M) := {(N, tdec(U)(N)) : N ∈ NU,M,− ∩NU,M,n,s}

and tdec(U)(∅) := ∅. Explicitly this is

tdec(U)(M) := {(N, tdec(U)(N)) :

w ∈M, Q ∈ decs({w}CS{}), N = {Q} ∪ {{u}CS{} : u ∈M, u 6= w}}

where decs = decrements ∈ RU → P(RU).

Then {NTV : N ∈ NU,V,n} = {FTV : F ∈ FU,n,−,V }. Note that the contracted
decrementing linear non-overlapping fuds, FU,n,−,V , are multi-partition fuds,
FU,n,−,V ⊂ FU,P∗ , so are not necessarily substrate fuds, FU,V , because they do
not necessarily consist of partition transforms, FU,V ⊂ FU,P ⊂ FU,P∗ . The
transforms are already contracted so the corresponding substrate fuds can
be constructed {explode(F ) : F ∈ FU,n,−,V } ⊂ FU,V . Also, the computation
of the contracted decrementing linear non-overlapping fuds would not need
to check for flattened partition transforms, even if they were substrate fuds,
because partitions in the linear fuds are necessarily distinct from all previous
partitions in the sequence.

The cardinality of the self non-overlapping substrate decremented partition-
sets tree may be computed by defining tdeccd(U) ∈ P(VU) → trees(N ×
L(N)) as

tdeccd(U)(V ) := {((1, L), tdeccd(1, L)) : L = {(i, |Uv|) : (v, i) ∈ order(DV, V )}}
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where order DV is such that order(DV, V ) ∈ enums(V ), and tdeccd ∈ N ×
L(N)→ trees(N× L(N)) as

tdeccd(k, L) := {((m,M), tdeccd(m,M)) :

i ∈ {1 . . . |L|}, Li > 1, m = kLi(Li − 1), M = L \ {(i, Li)} ∪ {(i, Li − 1)}}

The cardinalities of the nodes of the tree of self non-overlapping substrate
decremented partition-sets is

|nodes(tdec(U)(V ))| =
∑

(p : L ∈ subpaths(tdeccd(U)(V )), (p, ·) = L|L|)−1

The cardinality of the contracted decrementing linear non-overlapping fuds
is

|FU,n,−,V |
=

∑
Y ∈B(V )

(|nodes(tdec(U)({KCS{} : K ∈ Y }))|+ 1)

=
∑

p : Y ∈ B(V ),

L ∈ subpaths(tdeccd(U)({KCS{} : K ∈ Y })), (p, ·) = L|L|

In the case of regular substrate variables of valency d and dimension n, the
cardinality of the contracted decrementing linear non-overlapping fuds is

|FU,n,−,V |
=

∑
ap : (M,a) ∈ bcd(n), R = reg(d,M),

L ∈ subpaths({((1, R), tdeccd(1, R))}), (p, ·) = L|L|

where reg ∈ N×L(N)→ L(N) converts a histogram of regular cardinalities
to a list of regular volumes, reg(d,M) := concat(flip(order(DL(N), {{1 . . . q}×
{dj} : (j, q) ∈ M}))), where DL(N) ∈ enums(L(N)) is some order on integer
lists.

Instead of constructing non-overlapping infinite-layer substrate fuds, F∞,U,V ∩
Fn, from either (i) partition transforms, TU,P, or (ii) non-overlapping substrate
transforms, TU,V,n, consider a construction with contracted decrementing lin-
ear non-overlapping fuds, FU,n,−,V . Define the infinite contracted decrement-
ing linear non-overlapping fuds infinite-layer fud tree tfifdn(U) ∈ P(VU) ×
FU,P∗ → trees(FU,P∗) as

tfifdn(U)(V, F ) :=

{(F ∪
⋃

Q, tfifdn(U)(V, F ∪
⋃

Q)) :

Q ⊆ {H : K ∈ tuples(V, F ), H ∈ FU,n,−,K},
Q 6= ∅}
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Note that, because the contracted decrementing linear non-overlapping fuds
sometimes have more than one layer, the layer cardinality of the fuds no
longer corresponds to the length of the construction path,

∀L ∈ subpaths(tfifdn(U)(V )) ∀i ∈ {1 . . . |L|} (layer(Li, der(Li)) ≥ i)

The contracted decrementing linear non-overlapping fuds infinite-layer fud
tree, tfifdn(U)(V ), is constrained to contain only strong fud elements, so
corresponding only to the strong subset of the non-overlapping substrate fuds

{F : F ∈ F∞,U,V ∩ Fn, {∅CS}T /∈ F} =

{F ′ : F ∈ elements(tfifdn(U)(V )), F ′ = explode(F ), ¬overlap(F ′)}

Again note that, although contracted decrementing linear non-overlapping
fuds are being added, it is still necessary to explicitly test that the tree
fuds are non-overlapping, ¬overlap(explode(F )). The addition of contracted
decrementing linear non-overlapping fuds does not imply that ancestor fuds
are non-overlapping.

Even though only a strong subset of the non-overlapping infinite-layer sub-
strate fuds is computed, the computation time is greatest when constructed
with contracted decrementing linear non-overlapping fuds, rather than par-
tition transforms or contracted non-overlapping substrate transforms, be-
cause |FU,n,−,K | ≥ |TU,K,n| ≥ |B(KCS)|. There are sometimes multiple con-
tracted decrementing linear non-overlapping fuds corresponding to a non-
overlapping substrate transform, maxr({(T, |Q|) : (T,Q) ∈ {(F, FTV ) : F ∈
FU,n,−,K}−1}) ≥ 1, because of multiple linear fud paths to the same non-
overlapping substrate transform. The cardinality of possible construction
paths may be greater than when constructed with partition transforms,

|{M : M ∈ subpaths(tfifdn(U)(V )), M|M | = F}|
≥ |{M : M ∈ subpaths(tfi(U)(V )), M|M | = explode(F )}|

where F ∈ elements(tfifdn(U)(V )).

The construction of a strong subset of the limited-models non-overlapping
infinite-layer substrate fuds, F∞,U,V ∩ Fn ∩ Fq, may also be made with con-
tracted decrementing linear non-overlapping fuds. Define the finite limited-
layer limited-tuple-derived-dimension limited-underlying-volume limited-breadth
contracted decrementing linear non-overlapping fuds infinite-layer fud tree
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tfifdnmubh(U) ∈ P(VU)×FU,P∗ ×N→ trees(FU,P∗) as

tfifdnmubh(U)(V, F, h) :=

{(F ∪
⋃

Q, tfifdnmubh(U)(V, F ∪
⋃

Q, h+ 1)) :

Q ⊆ {H : K ∈ tuples(V, F ), |KC| ≤ xmax, H ∈ FU,n,−,K,mmax},
1 ≤ |Q| ≤ bmax/mmax,

h ≤ lmax}

Again, let tfifdnmubh(U) ∈ P(VU)→ trees(FU,P∗) be defined tfifdnmubh(U)(V ) =
tfifdnmubh(U)(V, ∅, 1).

Here the finite set of limited-tuple-derived-dimension contracted decrementing
linear non-overlapping fuds FU,n,−,K,mmax is defined as

FU,n,−,K,mmax

= {{NT : (·, N) ∈ L} : M ∈ NU,K,c ∩NU,K,n,mmax,

L ∈ subpaths({(M, tdec(U)(M))})}
= {{NT : (·, N) ∈ L} : Y ∈ B(K), |Y | ≤ mmax, M = {JCS{} : J ∈ Y },

L ∈ subpaths({(M, tdec(U)(M))})}

The set of limited-tuple-derived-dimension contracted decrementing linear
non-overlapping fuds is defined with the limited-tuple-derived-dimension non-
overlapping substrate partition-sets set, NU,K,n,mmax, which is defined as the
limited-breadth non-overlapping substrate partition-sets set, NU,V,n,bmax, ap-
plied to the tuple. In the case where mmax ≤ k, where k = |K|, the cardi-
nality of the intersection of the substrate self-cartesian partition-sets set and
the limited-tuple-derived-dimension non-overlapping substrate partition-sets
set is

|NU,K,c ∩NU,K,n,mmax| =
∑

m∈{1...mmax}

stir(k,m)

where stir ∈ N>0 ×N→ N>0 is the Stirling number of the second kind.

The cardinality of the limited-tuple-derived-dimension contracted decrement-
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ing linear non-overlapping fuds is

|FU,n,−,K,mmax|
=

∑(
|nodes(tdec(U)({JCS{} : J ∈ Y }))| :

m ∈ {1 . . .mmax}, Y ∈ S(K,m)
)

+ 1

=
∑

p : m ∈ {1 . . .mmax}, Y ∈ S(K,m),

L ∈ subpaths(tdeccd(U)({JCS{} : J ∈ Y })), (p, ·) = L|L|

In the case of regular substrate variables of valency d and dimension n,
the cardinality of the limited-tuple-derived-dimension contracted decrement-
ing linear non-overlapping fuds is

|FU,n,−,K,mmax|
=

∑
ap : m ∈ {1 . . .mmax}, (M,a) ∈ sscd(k,m), R = reg(d,M),

L ∈ subpaths({((1, R), tdeccd(1, R))}), (p, ·) = L|L|

where k = |K|.

The limited-layer limited-tuple-derived-dimension limited-underlying-volume
limited-breadth contracted decrementing linear non-overlapping fuds infinite-
layer fud tree tfifdnmubh(U)(V ), is defined with the set of strong limited-
tuple-derived-dimension contracted decrementing linear non-overlapping fuds,
FU,n,−,K,mmax. These exclude the empty transform, (∅, ∅), and the unary
partition transform, {∅CS}T. The finite set of strong limited-models non-
overlapping infinite-layer substrate fuds is

{F : F ∈ F∞,U,V ∩ Fn ∩ Fq, {∅CS}T /∈ F} =

{F ′ : M ∈ subpaths(tfifdnmubh(U)(V )), F ′ = explode(M|M |), nd(F ′)}

The application of the maximum layer limit is applied to the position in the
tree path, h ≤ lmax, rather than constraining the layer cardinality of the
fuds, because the contracted decrementing linear non-overlapping fuds are
purely a means of construction and so could be flattened to a single layer,
layer({HT}, der({HT})) = 1 where H ∈ FU,n,−,K . That is, the decrementing
notionally takes place within each layer.

Similarly to the case (i) of the limited-layer limited-underlying-volume limited-
breadth partition infinite-layer fud tree, tfiubh(U)(V ), and the case (ii) of
the limited-layer limited-underlying-volume limited-breadth contracted non-
overlapping substrate transform infinite-layer fud tree, tfitnubh(U)(V ), above,
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a finite computer Itfifdnq ∈ computers can be defined such that its applica-
tion to the substrate variables, V , constructs the strong subset of the limited-
models non-overlapping infinite-layer substrate fuds, I∗tfifdnq(V ) ⊆ F∞,U,V ∩
Fn∩Fq, by traversing the finite limited-layer limited-tuple-derived-dimension
limited-underlying-volume limited-breadth contracted decrementing linear non-
overlapping fuds infinite-layer fud tree, tfifdnmubh(U)(V ), such that all paths
are searched in sequence. The cardinality of the contracted decrementing lin-
ear non-overlapping fuds searched list is greater than or equal to the cardinal-
ity of the contracted non-overlapping substrate transform searched list which
in turn is greater than or equal to the cardinality of the partition transform
searched list,

|subpaths(tfifdnmubh(U)(V ))| ≥ |subpaths(tfitnub(U)(V ))|
≥ |subpaths(tfiubh(U)(V ))|

so the computation time must be greater than or equal to that of the previ-
ous cases, It

tfifdnq(V ) ≥ It
tfitnq(V ) ≥ It

tfinq(V ).

For the first layer, F = ∅, the cardinality of the set of next layer fuds is

|{Q : Q ⊆ {H : K ⊆ V, |KC| ≤ xmax, H ∈ FU,n,−,K,mmax},
1 ≤ |Q| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑

p : K ⊆ V, |KCS| ≤ xmax,

m ∈ {1 . . .mmax}, Y ∈ S(K,m),

L ∈ subpaths(tdeccd(U)({JCS{} : J ∈ Y })), (p, ·) = L|L|

In the case of pluri-valent regular substrate variables, having dimension k =
|K| and valency d > 1, if the implied underlying-dimension limit, kmax =
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ln xmax / ln d, is integral, ln xmax / ln d ∈ N, the cardinality is

|{Q : Q ⊆ {H : K ⊆ V, |KC| ≤ xmax, H ∈ FU,n,−,K,mmax},
1 ≤ |Q| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑

k∈{0...kmax}

(
n

k

)(∑
ap :

m ∈ {1 . . .mmax}, (M,a) ∈ sscd(k,m), R = reg(d,M),

L ∈ subpaths({((1, R), tdeccd(1, R))}), (p, ·) = L|L|

)
For higher layers, F 6= ∅, the cardinality of the set of next layer fuds is

|{Q : Q ⊆ {H : K ∈ tuples(V, F ), |KC| ≤ xmax, H ∈ FU,n,−,K,mmax},
1 ≤ |Q| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑

p : K ⊆ W, K ∩X 6= ∅, |KCS| ≤ xmax,

m ∈ {1 . . .mmax}, Y ∈ S(K,m),

L ∈ subpaths(tdeccd(U)({JCS{} : J ∈ Y })), (p, ·) = L|L|

where W = vars(F ) ∪ V and X = der(F ).

In the case of regular substrate variables V and regular fud variables vars(F )\
V , having valency d, dimension q = |W | and intersecting dimension x = |X|,
the cardinality is

|{Q : Q ⊆ {H : K ∈ tuples(V, F ), |KC| ≤ xmax, H ∈ FU,n,−,K,mmax},
1 ≤ |Q| ≤ bmax/mmax}|

=

( ∑
b∈{0... bmax

mmax
}

(
c

b

))
:

c =
∑

k∈{1...kmax}

((
q

k

)
−
(
q − x
k

))(∑
ap :

m ∈ {1 . . .mmax}, (M,a) ∈ sscd(k,m), R = reg(d,M),

L ∈ subpaths({((1, R), tdeccd(1, R))}), (p, ·) = L|L|

)
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4.22.2 Practicable shuffles

The application, I∗z,p(A), of a substrate histogram A ∈ Az in a practi-
cable inducer Iz,p ∈ inducers(z) requires that the histogram be practicably
representable. For example, substrate histogram, A, may have a binary map
histogram representation such that Is

z,p(A) ≤ smax where the maximum space
limit is smax ∈ N>0. In this case the representation space depends on the
effective volume, |AF|.

In some cases the computation of the independent histogram, AX, may be
impracticable because the effective volume, |AXF| = v = |V C

A |, is too large
for available resources, for example, if v > smax. If this is the case, the
computation of the alignment of the histogram, algn(A), is also impractica-
ble, for example Is

a(A) > smax. Consider the case where any subset of the
cartesian, AC, of cardinality equal to the size, {B : B ⊆ AC, size(B) = z},
is practicably representable. In this case of practicable size, a practicable in-
ducer may use a shuffled histogram as a proxy for the independent histogram.
For example, given some substrate transform T ∈ TUA,VA , the computation of
the content alignment, algn(A ∗ T )− algn(AX ∗ T ), may be approximated by
the computation of algn(A ∗ T )− algn(B ∗ T ), where the shuffled histogram,
B, approximates to the independent, B ≈ AX, and the effective volume is
practicable, |BF| ≤ z.

Section ‘Shuffled history’, above, defines the function shuffles ∈ H → P(H).
Let the set of shuffled histories of the substrate histogram A ∈ Az be Q =
shuffles(history(A)) ⊂ H. The independent of each of the shuffled histories is
equal to that of the independent histogram, ∀G ∈ Q ♦B = his(G) (BX ≡ AX),
where his = histogram. If the independent is integral, A ∈ Az,xi, there must
exist independent shuffles, ∃G ∈ Q ♦B = his(G) (B = AX). In this case,
there exist shuffles having zero alignment, ∃G ∈ Q ♦B = his(G) (algn(B) =
0).

As shown above in section ‘Minimum alignment’, the logarithm expected
exponential alignment given distribution histogram of AX is

ln expected(Q̂m,UA
(AX, z))({(B, exp(algn(B))) : B ∈ AUA,i,VA,z}) =

ln
∑

B∈AUA,i,VA,z

mpdf(UA)(AX, z)(BX)
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and that the expected alignment in the case where the independent is carte-
sian, AX = scalar(z/v) ∗ V C

A , is such that

expected(Q̂m,UA
(V C, z))({(B, algn(B)) : B ∈ AUA,i,VA,z})

≤ ln(z + v − 1)!− ln(v − 1)!− v ln(z/v)!− z ln v

where v = |V CS
A |. So conjecture that the expected alignment of the shuffled

histories is also approximately subject to the same inequality,

average({(G, algn(B)) : G ∈ Q, B = his(G)})
≤ ln(z + v − 1)!− ln(v − 1)!− v ln(z/v)!− z ln v

If z � v then the expression above approximates to z ln(v/z). In the case of a
regular volume of dimension n and valency d, the expected alignment approx-
imates to zn ln(d/z1/n). This may be compared to the maximum alignment
which approximates to z(n− 1) ln(d). So in this case, the inequality imposes
little or no constraint. That is, if the volume, v, is impracticable, but the size,
z, is practicable, the inequality above is not a practicable test of a randomly
chosen shuffle histogram that ensures that its alignment does not exceed the
expected alignment. In any case the computation of the alignment of the
shuffle histogram is impracticable.

Even so, a practicable inducer may be implemented without guarantee that
a randomly chosen shuffle histogram has an alignment that is small. Choose
a shuffle histogram at random, Lr, where X ∈ enums(shuffles(history(A))),
L = map(his, flip(X)), r ∈ {1 . . . z!n} and n = |VA|. The randomly chosen
shuffle histogram, Lr, is expected to have alignment that is near zero with re-
spect to maximum alignment, algn(Lr) ≈ expected(Q̂m,UA

(AX, z))({(B, algn(B)) :
B ∈ AUA,i,VA,z}) ≈ 0 = algn(AX). As the size, z, increases, the alignment,
algn(Lr), decreases. Note that the computation of the alignment of the shuf-
fle histogram, algn(Lr), is impracticable.

The confidence in the shuffle histogram may be increased in a practicable
inducer, Iz,p, by scaling the sum of shuffle histograms, B = scalar(1/|R|) ∗∑

r∈R Lr, where R ⊂ {1 . . . z!n} and R 6= ∅. Note that the scaled shuffle
histogram, B, is not necessarily integral. The effective volume of the scaled
shuffle histogram is greater than or equal to the effective volume of the con-
tributing shuffle histograms, ∀r ∈ R (|BF| ≥ |LF

r |). If all possible shuffle
histograms are used the resultant scaled shuffle histogram is the independent,
scalar(1/z!n) ∗

∑
r∈{1...z!n} Lr = AX.
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In addition, the alignment of the scaled shuffle histogram, B, may be tested
for practicable subsets of the substrate. Choose the largest substrate subset
cardinality k ≤ n such that the computation of the combinations,

∑
i∈{1...k} n

i/i! =

|{K : K ⊆ V, |K| ≤ k}|, of reduced alignments is practicable. Then the high-
est reduced alignment is maxr({(K, algn(B%K)) : K ⊆ V, |K| ≤ k}).

4.22.3 Optimisation

In order to find lower bounds on the computation time and space of
implementations of the derived alignment valency-density non-overlapping
fud inducer, I

′

z,ad,F,∞,n,q, given substrate histogram A ∈ Az, section ‘Sub-
strate models computation’, above, considers the computation of the sub-
strate models, F∞,UA,VA∩Fn∩Fq, by explicitly defining the (i) limited-models
constraints, and (ii) layer -ordered limited-underlying limited-breadth infinite-
layer substrate fuds trees. Together these constrain the computation to be
a two stage process of (i) computation of finite search lists of the limited-
layer limited-underlying limited-breadth infinite-layer substrate fuds NA ∈
L(F∞,UA,VA∩Fu∩Fb∩Fh), where flip(NA) ∈ enums(F∞,UA,VA∩Fu∩Fb∩Fh),
and (ii) filtering subsequently applied to the search lists, set(filter(nd, NA)) =
F∞,UA,VA ∩ Fn ∩ Fq where nd(F ) = ¬overlap(F ) ∧ (|WC| ≤ wmax : W =
der(F )).

In particular, the section ‘Substrate models computation’ defines these searches
of the limited-models non-overlapping infinite-layer substrate fuds, F∞,UA,VA∩
Fn ∩ Fq: (i) the limited-layer limited-underlying-volume limited-breadth par-
tition infinite-layer fud tree, tfiubh(U)(V ) ∈ trees(FU,P), which constructs
the layer -ordered fuds from sets of partition transforms of the tuple, {PT :
P ∈ B(KCS)}, and (ii) the limited-layer limited-underlying-volume limited-
breadth contracted non-overlapping substrate transform infinite-layer fud tree,
tfitnubh(U)(V ) ∈ trees(FU,P∗), which constructs the fuds with non-overlapping
substrate transforms of the tuples, TU,K,n.

Also defined are these strong limited-models non-overlapping infinite-layer
substrate fuds searches: (iii) the limited-layer limited-tuple-derived-dimension
limited-underlying-volume limited-breadth contracted non-overlapping substrate
transform infinite-layer fud tree, tfitnmubh(U)(V )→ trees(FU,P∗), for which
there is a non-trivial computation of the regular substrate cardinalities, and
(iv) the limited-layer limited-tuple-derived-dimension limited-underlying-volume
limited-breadth contracted decrementing linear non-overlapping fuds infinite-
layer fud tree tfifdnmubh(U)(V ) → trees(FU,P∗), which constructs the fuds
with strong limited-tuple-derived-dimension contracted decrementing linear
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non-overlapping fuds, FU,n,−,K,mmax, on the tuples.

The section also defines searches which are restricted to subsets of the strong
limited-models non-overlapping infinite-layer substrate fuds : (v) the limited-
layer limited-derived-volume limited-underlying-volume limited-breadth parti-
tion infinite-layer fud tree, tfiubhd(U)(V ) → trees(FU,P), which constructs
the layer -ordered fuds from tuple partition transforms but constrains the de-
rived volume of the fuds, and (vi) the limited-layer limited-underlying-volume
limited-breadth contracted recursively non-overlapping pluri-derived-variate
substrate transform infinite-layer fud tree, tfiptrnubh(U)(V )→ trees(FU,P∗),
in which the fuds are constructed with non-overlapping substrate transforms
of the tuples that are recursively non-overlapping in the dependent fud.

In the case where the computation time and space requirements exceed avail-
able resources, a practicable inducer implementation of the derived align-
ment valency-density non-overlapping fud inducer, I

′

z,ad,F,∞,n,q, must choose
a subset of the substrate models. That is, (i) computation time limits im-
ply that only a searched selection select(TA, NA) ∈ L(set(NA)), where TA ⊂
{1 . . . |NA|}, of the traversable list NA may be computed, and (ii) computa-
tion space limits imply that only a further subset select(SA(t), NA), where
SA(t) ⊂ TA, of these may be simultaneously represented at any step t of the
computation.

Given that a selection of the traversable search list, NA, is necessary in some
circumstances, the choice of selection can be made according to various cri-
teria. Let P ∈ L(X ) be a tuple of parameters. Consider a practicable derived
alignment valency-density non-overlapping fud inducer, I

′

z,ad,F,∞,n,q,P , which,
given substrate histogram A ∈ Az, is defined such that the substrate models
of its application is a subset of that of the derived alignment valency-density
non-overlapping fud inducer, dom(I

′∗
z,ad,F,∞,n,q,P (A)) ⊆ dom(I

′∗
z,ad,F,∞,n,q(A)).

That is,

I
′∗
z,ad,F,∞,n,q,P (A) ⊆
{(F, I∗a (A ∗ FT)/I∗cvl(F )) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

where I∗cvl(F ) := (I∗≈pow((w, 1/m)) : W = der(F ), w = |WC|, m = |W |),
and the power approxer I≈pow ∈ computers, is such that (i) domain(I≈pow) =
Q ×Q, (ii) range(I≈pow) = Q, and (iii) I∗≈pow((x, y)) ≈ xy. The practicable
fud inducer is defined in terms of the alignmenter, Ia, and the power ap-
proxer, I≈pow, and so the application approximates to the application of the
tractable fud inducer, I∗a (A ∗ FT)/I∗cvl(F ) ≈ I∗≈R(algn(A ∗ FT)/cvl(F )).
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Let the practicable inducer have (i) computation time limit I
′t
z,ad,F,∞,n,q,P (A) ≤

tmax, where the maximum time limit is tmax ∈ N>0, and (ii) computa-
tion space limit I

′s
z,ad,F,∞,n,q,P (A) ≤ smax, where the maximum space limit

is smax ∈ N>0. These limits are parameters of the practicable inducer,
tmax, smax ∈ set(P ).

In some cases the computation time and space limits will be such that the ap-
plication of the practicable inducer will be a proper subset of the application
of its corresponding tractable inducer, |I ′∗z,ad,F,∞,n,q,P (A)| < |I ′∗z,ad,F,∞,n,q(A)|.
This would be the case, for example, if |I ′∗z,ad,F,∞,n,q(A)| > tmax. If it is
also the case that the maximum substrate models are excluded from the
practicable inducer, dom(I

′∗
z,ad,F,∞,n,q,P (A)) ∩maxd(I

′∗
z,ad,F,∞,n,q(A)) = ∅, then

the correlation between the maximum functions must be less than one,
corr(z)(maxr ◦ I ′∗z,ad,F,∞,n,q,maxr ◦ I ′∗z,ad,F,∞,n,q,P ) < 1. The following sections
consider various definitions of practicable inducers having different selection
criteria and the effect on the correlation of the maximum functions between
the practicable inducer and the corresponding tractable inducer.

Consider an implementation of a practicable fud inducer, I
′

z,ad,F,∞,n,q,P ,
which, given substrate histogram A ∈ Az, optimises its subset of the limited-
models non-overlapping infinite-layer substrate fuds, F∞,UA,VA ∩ Fn ∩ Fq, by
first optimising the limited-layer limited-underlying limited-breadth infinite-
layer substrate fuds, F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, and then filtering for the
limited-derived non-overlapping, Fd ∩ Fn. The optimisation is implemented
by means of a list maximiser. See appendix ‘Search and optimisation’ for a
definition of list maximisers. The maximisation is of a rational-valued left-
total optimise function XP,A,ad of the limited-layer limited-underlying limited-
breadth infinite-layer substrate fuds, XP,A,ad ∈ F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh :→
Q. Given (i) maximum optimise step cardinality omax ∈ N>0, such that
omax < tmax, (ii) initial subset RP,A,ad ⊂ XP,A,ad, and (iii) neighbourhood
function PP,A,ad ∈ P(XP,A,ad) → P(XP,A,ad), the list maximiser ZP,A,ad ∈
maximisers(XP,A,ad) is constructed

ZP,A,ad = maximiseLister(XP,A,ad, PP,A,ad, top(omax), RP,A,ad)

The cardinality of the elements of the list maximiser is constrained by the
maximum optimise step cardinality,

|elements(ZP,A,ad)| ≤ omax× |list(ZP,A,ad)|

where elements(Z) :=
⋃

set(list(Z)). Note that strictly speaking this is true
only in the case where cardinality of the top(omax) function in each step is
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less than or equal to omax, ∀Y ∈ set(list(ZP,A,ad)) (Y ∈ dom(XP,A,ad) ↔
Q =⇒ |Y | ≤ omax).

Given (iv) that the neighbourhood function, PP,A,ad, is further constrained
such that it terminates before the maximum time limit, the cardinality of the
searched set is such that

|elements(ZP,A,ad)| ≤ |searched(ZP,A,ad)| < tmax

where searched(Z) :=
⋃
{P (Y ) : Y ∈ set(list(Z))} ∪R.

The domain of the elements of the list maximiser is a subset of the limited-
layer limited-underlying limited-breadth infinite-layer substrate fuds,

dom(elements(ZP,A,ad)) ⊂ dom(XP,A,ad) = F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh

The subset of the substrate fuds is the further subset

filter(nd, dom(elements(ZP,A,ad))) ⊂ F∞,UA,VA ∩ Fn ∩ Fq

So the domain of the searched set is the subset of the limited-layer limited-
underlying limited-breadth infinite-layer substrate fuds search list,

dom(searched(ZP,A,ad)) = set(select(TA, NA))

where flip(NA) ∈ enums(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh) and T ⊂ {1 . . . |NA|}.

The practicable inducer is implemented

I
′∗
z,ad,F,∞,n,q,P (A) =

{(F, I∗a (A ∗ FT)/I∗cvl(F )) : F ∈ filter(nd, dom(elements(ZP,A,ad)))}

The fuds optimise function, XP,A,ad, cannot be simply a derived alignment
valency-density function, XP,A,ad 6= {(F, I∗a (A∗FT)/I∗cvl(F )) : F ∈ F∞,UA,VA∩
Fu ∩ Fb ∩ Fh}, because the fuds are not necessarily non-overlapping nor
limited-derived, nd(F ), where F ∈ dom(XP,A,ad). That is, if the fud is
overlapping then the derived alignment may, for example, be purely formal,
algn(A ∗ FT) = algn(AX ∗ FT). This would be the case if the fud was tauto-
logical, tautology(FT), which is allowed in the infinite-layer fuds, F∞,UA,VA .
Also, if the derived volume of the fud exceeds the maximum derived volume
limit, |WC| > wmax, the computation of the independent derived, (A∗FT)X,
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necessary to compute the derived alignment, algn(A ∗ FT), may be imprac-
ticable. However it is defined, the fuds optimise function, XP,A,ad, is con-
strained such that the practicable fud inducer is positively correlated with
the tractable fud inducer,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,ad,F,∞,n,q,maxr ◦ I ′∗z,ad,F,∞,n,q,P ) ≥ 0)

even if the fuds neighbourhood function, PP,A,ad, is purely arbitrary. In this
way, the practicable fud inducer transitively satisfies the requirement that
the maximum functions of inducers are positively correlated with the finite
alignment-bounded iso-transform space ideal transform maximum function,
maxr ◦Xz,xi,T,y,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,ad,F,∞,n,q,P ) ≥ 0)

The fuds neighbourhood function, PP,A,ad, is considered to be arbitrary if
the maximiser gain is zero, optimum(ZP,A,ad) = arbitrary(ZP,A,ad), where
optimum(Z) := maxr(elements(Z)) and arbitrary(Z) := average({(Y,maxr(Y )) :
Y ⊆ X, |Y | = |searched(Z)|}). If the gain of the neighbourhood function
is greater than zero, optimum(ZP,A,ad) > arbitrary(ZP,A,ad), then the correla-
tion of the maximum functions, cov(z)(maxr◦I ′∗z,ad,F,∞,n,q,maxr◦I ′∗z,ad,F,∞,n,q,P ),
may be higher than would otherwise be the case. The discussion below con-
siders various limited-layer limited-underlying limited-breadth infinite-layer
substrate fud optimise functions and neighbourhood functions.

An optimisation of the two stage computation of the substrate models,
F∞,UA,VA ∩Fn∩Fq, must (i) first compute a possibly overlapping fuds subset
of the limited-layer limited-underlying limited-breadth infinite-layer substrate
fuds, select(TA, NA) ⊂ F∞,UA,VA ∩Fu∩Fb∩Fh, and (ii) then compute a non-
overlapping fuds subset of these by filtering, {F : F ∈ select(TA, NA), nd(F )} ⊂
F∞,UA,VA∩Fn∩Fq. In some definitions of the optimisation, computation time
and space limits may constrain the cardinality of the possibly overlapping
fuds, |select(TA, NA)|, such that none are non-overlapping. That is, compu-
tational resources may be such that the filtered subset is empty, {F : F ∈
select(TA, NA), nd(F )} ⊂ {F : F ∈ select(TA, NA), ¬overlap(F )} = ∅. In
this case, the maximum function of a practicable inducer would be undefined,
max(I

′∗
z,ad,F,∞,n,q,P (A)) = ∅.

A fud, F , must be pluri-derived-variate, |der(F )| > 1, if the derived alignment
is non-zero, algn(A ∗ FT) > 0. Let F ∈ FUA,P∗ be a topped recursively non-
overlapping contracted pluri-derived-variate multi-partition fud such that its
explode is a non-overlapping substrate fud, explode(F ) ∈ F∞,UA,VA∩Fn. That
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is, the fud, F , is subject to (i) contracted transforms, ∀T ∈ F (T = T%),
(ii) pluri-partition transforms, ∀T ∈ F (|der(T )| > 1), (iii) recursively non-
overlapping, ∀T ∈ F (¬overlap(depends(explode(F ), der(T )))), (iv) topped,
∃T ∈ F (der(T ) = der(F )), and (v) underlying variables are in the sub-
strate, und(F ) ⊆ VA. Then the cardinality of the substrate n = |VA| im-
plies a maximum layer, layer(F, der(F )) ≤ blog2(n)c, and a minimum sub-
strate cardinality, n ≥ 2. Thus the maximum layer limit is itself limited,
lmax ≤ blog2(n)c, where maximum function is non-zero and the topped re-
cursively non-overlapping fud does not contain mono-partition transforms.

Let fud, F , be further subject to (vi) bi-underlying-variate transforms, ∀T ∈
F (|und(T )| = 2), (vii) bi-partition transforms, ∀T ∈ F (|der(T )| = 2), (viii)
the fud layer is l = layer(F, der(F )) = log2(n) ∈ N>0, and (ix) the cardinality
of the set of bi-partition transforms in each layer is n/2i where i ∈ {1 . . . l}.
The cardinality of all such topped recursively non-overlapping bi-underlying-
variate bi-partition linear fuds is less than n!l/2. The cardinality of possibly
overlapping linear fuds similarly constrained is less than nnl/2. The fraction
that are non-overlapping may be compared to (n!/nn)l/2. This fraction is
less than 10−6 where n = 16. In fact, the limited-layer limited-underlying
limited-breadth infinite-layer multi-partition fuds are only constrained such
that there no more than maximum breadth limit, bmax, transforms in each
layer, rather than n/2i, so the constraint on the cardinality is greater than
nbmax×l/2. That is, if bmax > n, the fraction of the possibly overlapping
optimised fuds that are non-overlapping may be compared to the smaller
fraction, (n!/nbmax)l/2.

A possible solution is to constrain the optimisation to construct only re-
cursively non-overlapping pluri-partition fuds corresponding to limited-layer
limited-underlying limited-breadth infinite-layer substrate fuds, select(TA, NA) ⊂
F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh. For example, section ‘Substrate models computa-
tion’ defines the limited-layer limited-underlying-volume limited-breadth con-
tracted recursively non-overlapping pluri-derived-variate substrate transform
infinite-layer fud tree, tfiptrnubh(U)(V ) ∈ trees(FU,P∗), which is a tree of
recursively non-overlapping pluri-partition fuds constructed from contracted
non-overlapping substrate transforms. This tree is such that

F∞,U,V ∩ Fu ∩ Fb ∩ Fh ⊇ {explode(F ) : F ∈ elements(tfiptrnubh(UA)(VA))}

Each of the recursively non-overlapping pluri-partition fuds

F ∈ elements(tfiptrnubh(UA)(VA))
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can be topped by choosing a transform T in the top layer, der(T ) ⊆ der(F ),
so that top(depends(F, der(T ))) = T . Any such fud is necessarily non-
overlapping and is itself in the fud tree

depends(F, der(T )) ∈ elements(tfiptrnubh(UA)(VA))

Thus the non-overlapping subset of the selection is not empty, {F : F ∈
select(TA, NA), ¬overlap(F )} 6= ∅, if the selection contains topped fuds. In
the case where the maximum derived volume limit is greater than or equal to
the maximum underlying volume limit, wmax ≥ xmax, the filtered subset is
not empty, {F : F ∈ select(TA, NA), nd(F )} 6= ∅, because the top transform
satisfies the limited-derived constraint.

However, in some cases only a proper subset of the substrate models, F∞,UA,VA∩
Fn ∩ Fq, can be constructed when constrained to a top transform,

F∞,U,V ∩ Fn ∩ Fq ⊇ {explode(F ) : F ∈ elements(tfiptrnubh(UA)(VA)),

(∃T ∈ F (der(T ) = der(F ))), W = der(F ), |WC| ≤ wmax}

In section ‘Transform alignment’, above, a definition of degree of overlap is
alignmentOverlap(U)(T, z) := algn(resize(z, V C) ∗ T ), where T ∈ TU,f,1 and
V = und(T ). An optimisation method that contains only topped recursively
non-overlapping multi-partition fuds may exclude a fud F ∈ F∞,UA,VA ∩ Fq

with a small degree of overlap, algn(resize(z, V C
A ) ∗ FT), but high derived

alignment, algn(A ∗ FT). Also, some or all of the derived variables of an
excluded fud, F /∈ elements(tfiptrnubh(UA)(VA)), may form the lower layers
of a descendant non-overlapping fud G ⊃ F , where ¬overlap(explode(G)),
subsequent in the search path.

In section ‘Intractable literal substrate model inclusion’, above, it is shown
that the formal-abstract equality inclusion test, AX ∗ T = (A ∗ T )X, is in-
tractable in the literal derived alignment integral-independent substrate ideal
formal-abstract transform inducer, I

′

z,a,l, which computes the derived align-
ment, algn(A ∗T ), for each of the formal-abstract-equal ideal substrate trans-
forms, {T : T ∈ TUA,VA , A

X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}. The dis-
cussion considers (i) first weakening it to the independent-formal constraint,
AX ∗ T = (AX ∗ T )X, in the derived alignment substrate ideal independent-
formal transform inducer, I

′

z,a,fx,j, which computes the derived alignment,
algn(A ∗ T ), for each of the independent-formal ideal substrate transforms,
{T : T ∈ TUA,VA , A

X ∗ T = (AX ∗ T )X, A = A ∗ T ∗ T †A}, and (ii) then drop-
ping it altogether in the content alignment substrate ideal transform inducer,
I
′
z,c,j, which computes the content alignment, algn(A ∗ T )− algn(AX ∗ T ), for
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each of the ideal substrate transforms, {T : T ∈ TUA,VA , A = A ∗ T ∗ T †A}.
However, both (i) the independent-formal inclusion test, AX ∗T = (AX ∗T )X,
in the independent-formal inducer, I

′

z,a,fx,j, and (ii) the formal alignment,

algn(AX ∗ T ), in the content alignment inducer, I
′
z,c,j, remain intractable be-

cause of intractable substrate volume, |AXF| = |V C
A |. The discussion then

considers the derived alignment substrate ideal non-overlapping transform
inducer, I

′
z,a,n,j, in which the substrate models consist only of non-overlapping

transforms, ¬overlap(T ) =⇒ AX∗T = (AX∗T )X. That is, the derived align-
ment substrate ideal non-overlapping transform inducer, I

′
z,a,n,j, computes

the derived alignment, algn(A ∗ T ), for each of the ideal non-overlapping
substrate transforms, {T : T ∈ TUA,VA,n, A = A ∗ T ∗ T †A}. The discus-
sion then proceeds to drop the ideality inclusion test, A = A ∗ T ∗ T †A,
and consider the midisation pseudo-alignment substrate independent-formal
transform inducer, Iz,m,fx, and the derived alignment valency-density sub-
strate non-overlapping transform inducer, I

′

z,ad,n, in order to partly recover
the formal-abstract equality. The discussion eventually defines the tractable
derived alignment valency-density non-overlapping fud inducer, I

′

z,ad,F,∞,n,q.

However, section ‘Practicable shuffles’, above, considers the use of a shuf-
fle histogram as practicable approximation to the independent, AX. The
computation of an approximation to the formal alignment, algn(AX ∗ FT),
is then practicable. Although there is no guarantee that a randomly chosen
shuffle histogram has an alignment that is small, consider a practicable shuf-
fle content alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P , which, given
substrate histogram A ∈ Az, is defined

I
′∗
z,csd,F,∞,q,P (A) ⊆
{(F, (I∗a (A ∗ FT)− I∗a (AR ∗ FT))/I∗cvl(F )) : F ∈ F∞,UA,VA ∩ Fq}

The scaled shuffle histogram, AR, is defined AR = scalar(1/|R|) ∗
∑

r∈R Lr
whereX ∈ enums(shuffles(history(A))), L = map(his, flip(X)), R ⊆ {1 . . . z!n}
and n = |VA|. The shuffle indices, R, are in the practicable parameters,
R ∈ set(P ). The cardinality of the shuffle indices, |R|, is chosen such that
the effective volume of the scaled shuffle histogram, |AF

R| ≤ |AXF|, is practi-
cable. In the case where the entire volume of the independent, |AXF| = |V C

A |,
is practicable then R = {1 . . . z!n} and AR = AX. In this case the shuffle
content alignment equals the content alignment.

The computation of the substrate models, F∞,UA,VA ∩ Fq, in the practica-
ble shuffle content alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P , still
takes place in two stages but the filtering need only test for limited-derived.
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That is (i) first compute the limited-layer limited-underlying limited-breadth
infinite-layer substrate fuds, select(TA, NA) ⊂ F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, and
(ii) then compute a limited-derived subset of these by filtering, {F : F ∈
select(TA, NA), W = der(F ), |WC| ≤ wmax} ⊂ F∞,UA,VA ∩ Fq. In terms of
an implementation with a list maximiser define

ZP,A,AR,csd = maximiseLister(XP,A,AR,csd, PP,A,AR,csd, top(omax), RP,A,AR,csd)

The limited-derived is {F : F ∈ dom(elements(ZP,A,AR,csd)), W = der(F ), |WC| ≤
wmax} ⊂ F∞,UA,VA ∩ Fq. The fuds optimise function, XP,A,AR,csd, is related
to content alignment valency-density, (algn(A∗FT)−algn(AX∗FT))/cvl(F ).
However it is defined, the fuds optimise function, XP,A,AR,csd, is constrained
such that the practicable fud inducer is positively correlated with the tractable
fud inducer,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,ad,F,∞,n,q,maxr ◦ I ′∗z,csd,F,∞,q,P ) ≥ 0)

However, the correlation of the maximum functions between the tractable
derived alignment valency-density non-overlapping fud inducer, I

′∗
z,ad,F,∞,n,q,

and an intractable content alignment valency-density fud inducer, I
′∗
z,cd,F,∞,q,

is imperfect,

∀z ∈ N>0 (corr(z)(maxr ◦ I ′∗z,ad,F,∞,n,q,maxr ◦ I ′∗z,cd,F,∞,q) < 1)

where the content alignment valency-density fud inducer, I
′∗
z,cd,F,∞,q, is defined

I
′∗
z,cd,F,∞,q(A) =

{(F, I∗≈R((algn(A ∗ FT)− algn(AX ∗ FT))/cvl(F ))) : F ∈ F∞,UA,VA ∩ Fq}

So, depending on available computational resources, the practicable shuf-
fle content alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P , may have
lower correlation than the practicable derived alignment valency-density non-
overlapping fud inducer, I

′

z,ad,F,∞,n,q,P .

In some cases the computation time of the overlap test, ¬overlap(F ), con-
sisting of set intersection and union operations on the substrate variables, VA,
may exceed the computation time of the shuffle formal alignment, algn(AR ∗
FT). So a practicable derived alignment valency-density non-overlapping fud
inducer, I

′

z,ad,F,∞,n,q,P , which is additionally constrained to construct only
non-overlapped fuds, may have a smaller searched set than the practicable
shuffle content alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P .
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The discussion below considers the optimisation in a practicable shuffle con-
tent alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P . The implementation
of the optimisation is not restricted to a single optimiser such as the notional
list maximiser ZP,A,AR,csd.

Consider the limited-path-models tuple partition practicable shuffle content
alignment valency-density fud inducer I

′

z,csd,F,∞,q,P,p which is implemented
by means of a list maximiser ZP,A,AR,csd,p that has a neighbourhood function
that constructs the fuds in the layer sequence of the paths of the limited-
layer limited-derived-volume limited-underlying-volume limited-breadth parti-
tion infinite-layer fud tree, tfiubhd(U)(V ) → trees(FU,P), described in sec-
tion ‘Substrate models computation’ above. The fud tree constructs the fuds
from tuple partition transforms but constrains the derived volume of the fuds
by applying the limited-derived-volume constraint, |WC| ≤ wmax, at every
layer, so only a subset of the limited-models infinite-layer substrate fuds is
searched

F∞,U,V ∩ Fq ⊇ elements(tfiubhd(U)(V ))

The limited-path-models tuple partition list maximiser, ZP,A,AR,csd,p, is con-
structed

ZP,A,AR,csd,p =

maximiseLister(XP,A,AR,csd,p, PP,A,AR,csd,p, top(omax), RP,A,AR,csd,p)

The optimise function XP,A,AR,csd,p ∈ F∞,UA,VA ∩ Fq :→ Q, is the rational
approximation to the shuffle content alignment valency-density valued total
function of the limited-models infinite-layer substrate fuds, defined

XP,A,AR,csd,p = {(F, I∗csd((A,AR, F ))) : F ∈ F∞,UA,VA ∩ Fq}

where the shuffle content alignment valency-density computer Icsd ∈ computers
is defined as

I∗csd((A,AR, F )) = (I∗a (A ∗ FT)− I∗a (AR ∗ FT))/I∗cvl(F )

The neighbourhood function PP,A,AR,csd,p ∈ P(XP,A,AR,csd,p)→ P(XP,A,AR,csd,p),
derived from the limited-layer limited-derived-volume limited-underlying-volume
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limited-breadth partition infinite-layer fud tree, tfiubhd(U)(V ), is defined

PP,A,AR,csd,p(Q) =

{(F ∪G, I∗csd((A,AR, F ∪G))) :

(F, ·) ∈ Q, layer(F, der(F )) < lmax,

G ⊆ {PT : K ∈ tuples(VA, F ), |KC| ≤ xmax, P ∈ B(KCS), |P | ≥ 2},
1 ≤ |G| ≤ bmax,

W = der(F ∪G), |WC| ≤ wmax}

The definition of the neighbourhood function is stricter than the definition
of the fud tree because only pluri-valent partitions are allowed, |P | ≥ 2. This
avoids the increase in capacity caused by the addition of mono-valent vari-
ables which increase the dimension but do not affect the alignment. The
pluri-valent constraint also excludes empty tuples, K = ∅, because the unary
partition variable is mono-valent, |{∅CS}| = 1.

The initial function, RP,A,AR,csd,p ⊂ XP,A,AR,csd,p, is a singleton of the empty
fud, RP,A,AR,csd,p = {(∅, 0)}.

Then the limited-path-models tuple partition practicable shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P,p, is defined,

I
′∗
z,csd,F,∞,q,P,p(A) = elements(ZP,A,AR,csd,p) ⊆ XP,A,AR,csd,p

The fud inducer is defined without the need for filtering the elements of the
list maximiser because (i) the maximisation of the shuffle content alignment
tends to minimise the degree of overlap, and (ii) the list maximiser limits the
fud derived volume.

The limited-derived-volume constraint means that in some cases the opti-
mise function is not completely traversable, dom(traversable(ZP,A,AR,csd,p)) ⊆
F∞,UA,VA ∩ Fq where traversable(Z) := elements(searchLister(X,P,R)), and
so the searched set is sometimes a proper subset, depending on the substrate
and limits,

dom(elements(ZP,A,AR,csd,p)) ⊆ dom(searched(ZP,A,AR,csd,p))

⊆ dom(traversable(ZP,A,AR,csd,p))

⊆ F∞,UA,VA ∩ Fq

The post-application of the limited-derived-volume test implies that the com-
putation of the cardinality of the first layer fuds and subsequent layer fuds

678



of a regular substrate of valency d has non-deterministic time. That is,
the computation requires that the set itself be explicitly constructed. For
the first layer, F = ∅, the set of next layer fuds corresponds to the non-
empty pluri-valent partition-sets of the intersection of (i) the lower-limited-
valency substrate partition-sets set NU,V,umin, where umin = 2, (ii) the limited-
underlying-volume substrate partition-sets set, NU,V,xmax, (iii) the limited-
breadth substrate partition-sets set, NU,V,bmax, (iv) and the limited-derived-
volume substrate partition-sets set, NU,V,wmax,

|PP,A,AR,csd,p({(∅, ·)})| =
|NUA,VA,2

∩NUA,VA,xmax ∩NUA,VA,bmax ∩NUA,VA,wmax| − 1

The cardinality has upper bounds equal to the cardinality of the non-empty
pluri-valent partition-sets subset of the partition-sets corresponding to the
first layer fuds of the limited-layer limited-underlying-volume limited-breadth
partition infinite-layer fud tree, tfiubh(U)(V ). That is, the non-empty pluri-
valent partition-sets subset of the intersection of the limited-underlying-volume
substrate partition-sets set,NU,V,xmax, and the limited-breadth substrate partition-
sets set, NU,V,bmax,

|PP,A,AR,csd,p({(∅, ·)})| ≤ |NUA,VA,2
∩NUA,VA,xmax ∩NUA,VA,bmax| − 1

In the case of pluri-valent regular variables V , having valency d > 1 and di-
mension n, if the implied underlying-dimension limit, kmax = ln xmax / ln d,
is integral, ln xmax / ln d ∈ N, then the cardinality of the intersection is

|NU,V,2 ∩NU,V,xmax ∩NU,V,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
k∈{0...kmax}

(
n

k

)
(bell(dk)− 1)

For higher layers, computation of the cardinality requires that the set itself be
explicitly constructed for the additional reason that the constraint, |WC| ≤
wmax where W = der(F∪G), depends on both the given fud, F , and the next
layer fud, G, for its determination. For higher layers where the list element
of the list maximiser is a singleton of a non-empty fud F 6= ∅, for example if
omax = 1, the set of next layer fuds corresponds to a subset of (i) the lower-
limited-valency substrate partition-sets set NU,V,umin, where umin = 2, (ii)
the intersection of the intersecting substrate partition-sets set, NU,W,X , (iii)
the limited-underlying-volume substrate partition-sets set, NU,W,xmax, and (iv)
the limited-breadth substrate partition-sets set NU,W,bmax

|PP,A,AR,csd,p({(F, ·)})| ≤ |NUA,VA,2
∩NUA,W,X ∩NUA,W,xmax ∩NUA,W,bmax|
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where W = vars(F ) ∪ VA and X = der(F ). In the case of regular sub-
strate variables V and regular fud variables vars(F ) \ V , having valency d,
dimension q = |W | and intersecting dimension x = |X|, such that the im-
plied underlying-dimension limit is integral, kmax = ln xmax / ln d ∈ N, the
cardinality of the intersection is

|NU,V,2 ∩NU,W,X ∩NU,W,xmax ∩NU,W,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
: c =

∑
k∈{1...kmax}

((
q

k

)
−
(
q − x
k

))
(bell(dk)− 1)

The degree of constraint imposed by the limited-underlying-volume of the
tuple, |KC| ≤ xmax, depends on the maximum derived volume limit of
the fud, wmax. For example, the tuple self-partition may be excluded,
wmax ≤ |KCS{}| = |KCS| ≤ xmax. Similarly the degree of constraint im-
posed by the limited-breadth, |G| ≤ bmax, also depends on the maximum
derived volume, wmax. For example, for implied valency of at least two,
bmax ≤ bln wmax/ ln 2c. The limited-derived-volume constraint is weakest
when the maximum derived volume is much greater than the maximum un-
derlying volume, xmax� wmax, and the maximum breadth, 2bmax � wmax.
The weaker the limited-derived-volume constraint, the smaller the difference
between the next layer cardinalities and the computed upper bounds. How-
ever, the maximum derived volume is sometimes restricted to be less than
or equal to the sample size, wmax < z where z = size(A), in order to avoid
arguments to the unit-translated gamma function, Γ!, that are less than one.

In the cases where the substrate and fud variables are not regular, the cardi-
nalities may estimated with a regular valency equal to the geometric product
of the valencies of the variables. That is, for the first layer

d =

(∏
v∈VA

|UA(v)|

)1/n

where n = |VA|. For subsequent layers

d =

(∏
w∈W

|UA(w)|

)1/q

where W = vars(F ) ∪ VA and q = |W |. The implied maximum underlying
dimension is kmax = dln xmax / ln de. If omax > 1, the total cardinality
may be estimated by summing the estimates of the cardinalities of the fuds
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in the list element, Q, which is the argument to the neighbourhood func-
tion. Only the cardinalities of the next layer fuds may be estimated. The
geometric average valency of successive layers is not necessarily constant, al-
though alignment valency-density maximisation tends to shorter diagonals.
However, in some cases the inducer time may be constrained to be less than
the maximum time limit, I

′t
z,csd,F,∞,q,P,p(A) ≤ tmax, at least for the next layer

fuds, by reducing the other parameters to reduce the estimated cardinal-
ity. For example the maximum optimise step cardinality may be restricted,
omax = 1.

The limited-path-models tuple partition practicable shuffle content alignment
valency-density fud inducer, I

′

z,csd,F,∞,q,P,p, is implemented with a list max-
imiser, ZP,A,AR,csd,p, but a tree maximiser could also be used if time and
space is available for the elements of the tree. Note that an implementation
of a list maximiser can lazily evaluate the list, but an implementation of a
tree maximiser must evaluate its tree strictly because the set operations re-
quire instantiation of the elements of the set. That is, a list maximiser need
only evaluate the elements of the layer -ordered list in sequence as they are
required. A lazy solution for tree maximiser would be to implement it a with
a list tree (see appendix ‘Trees’), but then it may contain multiple instances
of the same fud.

The limited-path-models tuple partition practicable shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P,p, has some limitations. First,
in some cases only a subset of the limited-models infinite-layer substrate fuds
is traversable

dom(I
′∗
z,csd,F,∞,q,P,p(A)) ⊂ F∞,UA,VA ∩ Fq

This is because the derived volumes of the intermediate layers of the fud are
limited, as well as the derived volume of the top layer.

Secondly, this limitation of the intermediate layers may restrict the derived
dimensions of these layers to be considerably less than the dimension of
the substrate. For example, in the case where the maximum derived volume
equals the sample size, wmax = z, then a size of 10000 implies a maximum
breadth of at most bmax = bln wmax/ ln 2c = 13, where the derived valency
is at least two. Maximum alignment is approximately z(n−1) ln d and so the
ratio of the maximum alignment of an intermediate layer to the maximum
alignment of the substrate is roughly equal to the ratio of their dimensions.
For example, if the substrate dimension is n = 26, then the ratio of the max-
imum alignments is roughly half. This is also true for maximum alignment
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valency-density. Of course, this is also the case for the top layer, not just
intermediate layers, but the summation alignment of the decomposition par-
tially compensates for this.

Thirdly, as described in section ‘Substrate models computation’ above, con-
sider the special case of a fud F ∈ dom(elements(ZP,A,AR,csd,p)) which is such
that (i) the underlying variables equals the substrate, und(F ) = V , (ii) it
has lmax layers, layer(F, der(F )) = lmax, (iii) the first layer has breadth
bmax − n, (iv) subsequent layers have breadth bmax, and (v) the variables
are regular, ∀w ∈ vars(F ) (|Uw| = d). In this case the cardinality of the
variables is |vars(F )∪ V | = lmax× bmax. The cardinality of the set of next
layer fuds is bounded

|NU,W,X ∩NU,W,xmax ∩NU,W,bmax| =( ∑
b∈{0...bmax}

(
c

b

))
:

c =
∑

k∈{1...kmax}

((
lmax× bmax

k

)
−
(

(lmax− 1)× bmax

k

))
bell(dk)

The cardinality of the selectable set, c, is therefore bounded

c < (lmax× bmax)kmax × bell(xmax)

This expression is dominated by the right-most term, bell(xmax), if lmax×
bmax ≤ xmax, because kmax < xmax. The cardinality of the set of next
layer fuds is bounded,

|NU,W,X ∩NU,W,xmax ∩NU,W,bmax| < ((lmax× bmax)kmax × bell(xmax))bmax

and so the upper bound on the cardinality of the neighbourhood function is
also bounded

|PP,A,AR,csd,p({(F,XP,A,AR,csd,p(F ))})| < ((lmax×bmax)kmax×bell(xmax))bmax

In the case where xmax = wmax = z the second term, bell(xmax), equals
bell(z), which is impracticable in the example above where z = 10000.
The first term, (lmax × bmax)kmax, has complexity (ln z)!, but the second
term, bell(xmax), has complexity z!. So while the limited-path-models tuple
partition practicable shuffle content alignment valency-density fud inducer,
I
′

z,csd,F,∞,q,P,p, strongly constrains the intermediate layer derived volume, the
tuple partition cardinality is only weakly constrained.
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Given the limitations of the limited-path-models tuple partition practica-
ble shuffle content alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P,p, and
given that optimisation in a practicable inducer is necessary because of lim-
ited time or space, consider an alternative method of optimisation that max-
imises maximum function correlation by optimising within the tuple.

The cardinality of the second term of the upper bound on the cardinality
of the neighbourhood function of the limited-path-models tuple partition in-
ducer, |B(KCS)| ≤ bell(xmax) where K ∈ tuples(V, F ) and |KC| ≤ xmax,
can be addressed by choosing only a subset Q of the partitions of a tu-
ple, Q ⊂ B(KCS). The cardinality of the subset must be less than or
equal to the maximum optimise step cardinality |Q| ≤ omax. If the sub-
set, Q, is chosen arbitrarily then the practicable inducer correlation can
be expected to be reduced. However, considered by itself a single par-
tition of the subset P ∈ Q cannot have an optimise function that de-
pends on alignment because a fud G constructed from it must be inde-
pendent, A ∗ GT = (A ∗ GT)X =⇒ algn(A ∗ GT) = 0, where G =
depends(F ∪ {PT}, {P}) = depends(F,K) ∪ {PT}. This is because the con-
structed fud, G, is mono-derived-variate, |der(G)| = 1.

Section ‘Substrate models computation’ defines the limited-layer limited-
underlying-volume limited-breadth partition infinite-layer fud tree, tfiubh(U)(V ) ∈
trees(FU,P), which constructs the layer -ordered fuds from sets of partition
transforms of the tuple, {PT : P ∈ B(KCS)}. The discussion then goes on to
define the limited-layer limited-tuple-derived-dimension limited-underlying-
volume limited-breadth contracted non-overlapping substrate transform infinite-
layer fud tree, tfitnmubh(U)(V ) → trees(FU,P∗), which constructs the fuds
with non-overlapping substrate transforms of the tuples, TU,K,n, such that
the regular substrate cardinalities may be computed. The latter fud tree
constructs transforms of the limited-tuple-derived-dimension non-overlapping
substrate partition-sets set,NU,K,n,mmax, which is defined as the limited-breadth
non-overlapping substrate partition-sets set, NU,V,n,bmax, applied to the tuple,

NU,K,n,mmax = {N : Y ∈ B(K), |Y | ≤ mmax, N ∈
∏
J∈Y

B(JCS)}

Consider a stricter set of transforms of the partition-sets on the tuple such
that the derived variables are pluri-variate and pluri-valent, which avoid
necessarily independent derived histograms that have zero alignment. The
pluri-valent pluri-limited-tuple-derived-dimension non-overlapping substrate
partition-sets set, NU,K,n,b,mmax,2, is the intersection of the lower-limited-
valency substrate partition-sets set, NU,K,umin, where umin = 2, and the
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range-limited-tuple-derived-dimension non-overlapping substrate partition-sets
set, NU,K,n,mran, where mran = (2,mmax) and mmax ≥ 2, is defined

NU,K,n,b,mmax,2 =

{N : Y ∈ B(K), 2 ≤ |Y | ≤ mmax, N ∈
∏
J∈Y

(B(JCS) \ {{JCS}})}

In the case where mmax ≤ |K|, the cardinality is

|NU,K,n,b,mmax,2| =∑(∏
J∈Y

(bell(|JCS|)− 1)
)

: m ∈ {2 . . .mmax}, Y ∈ S(K,m)

In the case of regular variables K, having valency d and dimension k, the
cardinality of the pluri-valent pluri-limited-tuple-derived-dimension non over-
lapping substrate partition-sets set is

|NU,K,n,b,mmax,2| =∑(
a
∏

(j,p)∈L

(bell(dj)− 1)p
)

: m ∈ {2 . . .mmax}, (L, a) ∈ stircd(k,m)

where the fixed cardinality partition function cardinality function is stircd ∈
N>0 ×N>0 → (L(N)→ N).

Therefore, given pluri-variate tuple, |K| > 1, consider instead a subset
of the transforms of the pluri-valent pluri-limited-tuple-derived-dimension
non-overlapping substrate partition-sets set of the tuple Q ⊂ {NT : N ∈
NU,K,n,b,mmax,2} such that |Q| ≤ pmax, where the maximum tuple optimise
limit is pmax = bomax/bmaxc ∈ N>0 and omax ≥ bmax. The derived
variables are pluri-variate and pluri-valent, ∀T ∈ Q (|der(T )| > 1), and
∀T ∈ Q ∀w ∈ der(T ) (|Uw| > 1). Each of these transforms has a correspond-
ing partition, ∀T ∈ Q (TPK ∈ B(KCS)), but now are not restricted to zero
derived alignment. That is, in some cases, A∗GT 6= (A∗GT)X, where T ∈ Q
and G = depends(F ∪ {T}, der(T )).

The tuple transform, T ∈ Q, is non-overlapping, ∀P1, P2 ∈ der(T ) (P1 6=
P2 =⇒ vars(P1) ∩ vars(P2) = ∅). That is, there exists a partition Y
of the tuple, Y ∈ B(K), which is such that ∃M ∈ der(T ) :↔ Y ∀(P, J) ∈
M (vars(P ) = J). However, the constructed exploded fud G′ = explode(G) is
not necessarily non-overlapping if overlap(depends(F,K)), so the tuple trans-
forms, Q, are chosen by maximising the shuffle content alignment valency-
density rather than derived alignment valency-density.
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Together the optimised subset is defined

Q = topd(pmax)({(NT, (algn(A ∗GT)− algn(AR ∗GT))/cvl(G)) :

N ∈ NU,K,n,b,mmax,2, G = depends(F ∪ {NT}, N)})

Maximising the shuffle content alignment, algn(A ∗ GT) − algn(AR ∗ GT),
tends to minimise the formal alignment, algn(AX ∗ GT). The formal align-
ment is zero when non-overlapping, ¬overlap(G′) =⇒ algn(AX ∗GT) = 0.

As mentioned above, an alternative method to shuffle content alignment
would be to simply exclude overlapping constructed exploded fuds, overlap(G′),
from the optimisation, but note that each fud, G′, must be tested because
it is insufficient to exclude it on the basis that the tuple, K, is overlapping,
overlap(depends(F,K))⇐= overlap(G′).

As shown in section ‘Substrate structures’, above, the cardinality of the
strong non-overlapping substrate transforms set is bounded

bell(|KC|) ≤ |{NTK : N ∈ NU,K,n}| ≤ bell(|K|)× bell(|KC|)

That is, to search for the optimised subset from the strong non-overlapping
substrate transforms set, Q ⊂ {NT : N ∈ NU,K,n}, would require compu-
tation time in some cases of bell(kmax) × bell(xmax), if the tuple volume
equals the maximum underlying volume limit, |KC| = xmax. The lower
bound is the cardinality of the partitions of the tuple, bell(xmax). So the
search for non-overlapping substrate transforms of the tuple requires more
computation time than the search for partition transforms of the tuple. As
shown in section ‘Substrate models computation’, above, the cardinality
of the searched list of the limited-layer limited-underlying-volume limited-
breadth contracted non-overlapping substrate transform infinite-layer fud tree
tfitnubh(U)(V ), is greater than or equal to the cardinality of the searched
list of the limited-layer limited-underlying-volume limited-breadth partition
infinite-layer fud tree tfiubh(U)(V ),

|subpaths(tfitnubh(U)(V ))| ≥ |subpaths(tfiubh(U)(V ))|

However, only a subset of the derived histograms of the strong non-overlapping
substrate transforms are non-independent, and hence aligned, so only this
subset is searched. Even in the case where the maximum derived dimension
equals the tuple dimension, mmax = k, the exclusion of the partitions of
the unary partition of the tuple, B(KCS), because of the maximum derived
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dimension, mmin = 2, means that the cardinality of the pluri-valent pluri-
limited-tuple-derived-dimension non-overlapping substrate partition-sets set,
NU,K,n,b,mmax,2, is less than or equal to the cardinality of the partitions of

the tuple, |NU,K,n,b,mmax,2| ≤ |B(KCS)|. This is because the Bell number is
log-convex.

In the case where computational resources are still exceeded by this cardinal-
ity, |NU,K,n,b,mmax,2|, consider searches restricted to subsets of the transforms
of the pluri-valent pluri-limited-tuple-derived-dimension non-overlapping sub-
strate partition-sets set, NU,K,n,b,mmax,2.

Consider the subset of the pluri-valent pluri-limited-tuple-derived-dimension
non-overlapping substrate partition-sets set, NU,K,n,b,mmax,2, where the parti-
tion of the tuple is given, in the case where the tuple is at least bi-variate,
|K| > 1. Let the given partition be Y ∈ B(K) \ {{K}}. Then∏

J∈Y

(B(JCS) \ {{JCS}}) ⊂ NU,K,n,b,mmax,2

The cardinality of this set is
∏

J∈Y (bell(|JCS|)− 1) < bell(xmax). The com-
putation time is comparable at least to bell(xmax1/mmax)mmax < bell(xmax).

Consider an optimisation where the search is broken into two separate searches.
The first search determines the partition of the tuple, Y , by searching the
transforms of the intersection of the substrate self-cartesian partition-sets set,
NU,K,c, and the pluri-limited-tuple-derived-dimension non-overlapping sub-
strate partition-sets set, NU,K,n,b,mmax, where 2 ≤ mmax ≤ |K|, which is

NU,K,c∩NU,K,n,b,mmax = {{JCS{} : J ∈ Y } : m ∈ {2 . . .mmax}, Y ∈ S(K,m)}

The cardinality of the intersection is

|NU,K,c ∩NU,K,n,b,mmax| =
∑

m∈{2...mmax}

stir(|K|,m)

If the tuple is bi-variate the cardinality is stir(2, 2) = 1, so in this case the
tuple partition search need not be performed. The tuple partition search is
optimised by maximising the shuffle content alignment valency-density,

Y ∈ maxd({(Z, (algn(A ∗GT)− algn(AR ∗GT))/cvl(G)) :

m ∈ {2 . . .mmax}, Z ∈ S(K,m),

N = {JCS{} : J ∈ Z}, G = depends(F ∪ {NT}, N)})
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Note that if the tuple partition search, Y , had been optimised by maximis-
ing the derived alignment valency-density, algn(A ∗ GT)/cvl(G), instead of
the shuffle content alignment valency-density, (algn(A ∗ GT) − algn(AR ∗
GT))/cvl(G), then (i) the valency capacity, cvl(G), would not need to be com-
puted because the derived alignment, algn(A∗GT), and the derived alignment
valency-density, algn(A ∗ GT)/cvl(G), are monotonic functions with respect
to their common domain, NU,K,c∩NU,K,n,b,mmax, (see section ‘Transform align-
ment’, above), and (ii) there would be no need to compute tuple partitions of
cardinality less than the maximum tuple derived dimension, m < mmax, be-
cause parent partitions necessarily have lower or equal alignment. That is, the
derived alignment valued function of partition-sets and the parent partition
relation are monotonic, ∀Y1, Y2 ∈ B(K) (parent(Y1, Y2) =⇒ algn(A∗{JCS{} :
J ∈ Y1}T) ≤ algn(A ∗ {JCS{} : J ∈ Y2}T). So it would only be necessary
to compute S(K,mmax). However, the optimisation depends on the shuffle
derived histogram, AR ∗ GT, which in turn depends on the given fud, F , so
the monotonicity does not necessarily hold for either pair of relations.

Then, given the partition, Y , of the tuple, the second search, optimised by
shuffle content alignment valency-density, is

Q = topd(pmax)({(NT, (algn(A ∗GT)− algn(AR ∗GT))/cvl(G)) :

N ∈
∏
J∈Y

(B(JCS) \ {{JCS}}), G = depends(F ∪ {NT}, N)})

The maximum cardinality of the worst-case searched is

maxr({(Y,
∏
J∈Y

(bell(|JCS|)− 1)) : m ∈ {2 . . .mmax}, Y ∈ S(K,m)})

In the case of a regular tuple of dimension k = |K| and valency d, the
maximum cardinality of the worst-case searched is

maxr({(L, a
∏

(j,p)∈L

(bell(dj)− 1)p) : m ∈ {2 . . .mmax}, (L, a) ∈ sscd(k,m)})

where sscd = stircd and the fixed cardinality partition function cardinality
function is stircd ∈ N>0 ×N>0 → (L(N)→ N).

The overall computation time of the searches is at least∑
m∈{2...mmax}

(stir(|K|,m)) +
∏
J∈Y

(bell(|JCS|)− 1)

687



The tuple partition search term is comparable to bell(kmax). The transforms
search term is comparable to bell(xmax1/mmax)mmax. The computation time
of the transforms search, Q, dominates that of the tuple partition search Y .

Consider another subset of the pluri-valent pluri-limited-tuple-derived-dimension
non-overlapping substrate partition-sets set, NU,K,n,b,mmax,2. If the tuple is at
least bi-variate, |K| > 1, the binary non-overlapping substrate transforms
set of the tuple, TU,K,n,b, is a proper subset of the non-overlapping substrate
transforms set, TU,K,n,b ⊂ TU,K,n. This corresponds to the special case of the
pluri-valent pluri-limited-tuple-derived-dimension non-overlapping substrate
partition-sets set, NU,K,n,b,mmax,2, where the maximum derived dimension is
two, mmax = 2. The pluri-valent binary non-overlapping substrate partition-
sets set NU,K,n,b,2 ⊆ NU,K,n,b,mmax,2 is defined

NU,K,n,b,2 = {{P,Q} : J ⊂ K, J 6= ∅, J 6= K,

P ∈ B(JCS) \ {{JCS}}, Q ∈ B((K \ J)CS) \ {{(K \ J)CS}}}

The cardinality is

|NU,K,n,b,2| = 1/2×
∑

J∈P(K)\{∅,K}

(bell(|JCS|)− 1)× (bell(|(K \ J)CS|)− 1)

In the case of regular variables of valency d and dimension k, the cardinality
is

|NU,K,n,b,2| = 1/2×
∑

j∈{1...k−1}

(
k

j

)
(bell(dj)− 1)× (bell(dk−j)− 1)

The subset of the transforms of the pluri-valent binary non-overlapping sub-
strate partition-sets set of the tuple Q ⊂ {NT : N ∈ NU,K,n,b,2}, is such that
the derived variables of the transforms are bi-variate, ∀T ∈ Q (|der(T )| = 2).

Again, the choice of tuple transforms, Q, can be made by maximising the
shuffle content alignment valency-density,

Q = topd(pmax)({(NT, (algn(A ∗GT)− algn(AR ∗GT))/cvl(G)) :

N ∈ NU,K,n,b,2, G = depends(F ∪ {NT}, N)})

A further subset of the pluri-valent binary non-overlapping substrate partition-
sets set, NU,K,n,b,2, is where the binary partition of the tuple is given. Let
J ⊂ K be such that {J, K \ J} ∈ B(K) where |K| > 1. Then

{{P,Q} : P ∈ B(JCS)\{{JCS}}, Q ∈ B((K\J)CS)\{{(K\J)CS}}} ⊂ NU,K,n,b,2
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The cardinality of this set is (bell(|JC|) − 1) × (bell(|(K \ J)C|) − 1) <
bell(xmax). The computation time is comparable at least to bell(xmax1/2)2 <
bell(xmax).

Again, the optimisation search can be broken into two separate searches.
The first search determines the binary partition of the tuple, {J, K \ J},
by searching the intersection of the substrate self-cartesian partition-sets set
and the binary non-overlapping substrate partition-sets set which is

NU,K,c ∩NU,K,n,b = {{JCS{}, (K \ J)CS{}} : J ⊂ K, J 6= ∅, J 6= K}

The tuple binary partition search is optimised by maximising the shuffle
content alignment,

J ∈ maxd({(M, algn(A ∗GT)− algn(AR ∗GT)) :

M ⊂ K, M 6= ∅, M 6= K, N = {MCS{}, (K \M)CS{}},
G = depends(F ∪ {NT}, N)})

Note that in the case of binary tuple partition search, {J, K \J}, it does not
matter whether the optimisation maximises the shuffle content alignment,
algn(A∗GT)−algn(AR∗GT), or the shuffle content alignment valency-density,
(algn(A∗GT)−algn(AR∗GT))/cvl(G). This is because the valency capacity is
constant for all binary partitions of the tuple, ∀J ⊂ K ((|JC||(K \J)C|)1/2 =
|KC|1/2).

The intersection has cardinality |NU,K,c ∩NU,K,n,b| = 2|K|−1− 1. Then, given
the binary partition of the tuple, {J, K \ J}, the second search is the trans-
forms search optimised by shuffle content alignment valency-density,

Q = topd(pmax)({(NT, (algn(A ∗GT)− algn(AR ∗GT))/cvl(G)) :

P ∈ B(JCS), R ∈ B((K \ J)CS), N = {P,R},
G = depends(F ∪ {NT}, N)})

The maximum cardinality of the worst-case searched is

maxr({(J, (bell(|JCS|)− 1)× (bell(|(K \ J)CS|)− 1)) : J ∈ P(K) \ {∅, K}})

In the case of a regular tuple of dimension k = |K| and valency d, the
maximum cardinality of the worst-case searched is

maxr({(j,
(
k

j

)
(bell(dj)− 1)× (bell(dk−j)− 1)) : j ∈ {1 . . . k − 1}})
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The overall computation time of the searches is at least

2|K|−1 − 1 + (bell(|JC|)− 1)× (bell(|(K \ J)C|)− 1)

The tuple binary partition search term is comparable to 2kmax. The trans-
forms search term is comparable to bell(xmax1/2)2. The computation time
of the transforms search, Q, dominates that of the tuple binary partition
search, {J, K \ J}.

Having discussed the limited-layer limited-tuple-derived-dimension limited-
underlying-volume limited-breadth contracted non-overlapping substrate trans-
form infinite-layer fud tree, tfitnmubh(U)(V ) → trees(FU,P∗), which con-
structs the fuds with non-overlapping substrate transforms of the tuples,
TU,K,n, section ‘Substrate models computation’ goes on to consider the limited-
layer limited-tuple-derived-dimension limited-underlying-volume limited-breadth
contracted decrementing linear non-overlapping fuds infinite-layer fud tree
tfifdnmubh(U)(V ) → trees(FU,P∗), which constructs the fuds with strong
limited-tuple-derived-dimension contracted decrementing linear non-overlapping
fuds, FU,n,−,K,mmax, on the tuples, defined

FU,n,−,K,mmax

= {{NT : (·, N) ∈ L} : M ∈ NU,K,c ∩NU,K,n,mmax,

L ∈ subpaths({(M, tdec(U)(M))})}
= {{NT : (·, N) ∈ L} : Y ∈ B(K), |Y | ≤ mmax, M = {JCS{} : J ∈ Y },

L ∈ subpaths({(M, tdec(U)(M))})}

where the tree of self non-overlapping substrate decremented partition-sets is
defined tdec(U) ∈ P(VU)→ trees(P(RU)) as

tdec(U)(M) := {(N, tdec(U)(N)) : N ∈ NU,M,− ∩NU,M,n,s}

and tdec(U)(∅) := ∅. Explicitly this is

tdec(U)(M) := {(N, tdec(U)(N)) :

w ∈M, Q ∈ decs({w}CS{}), N = {Q} ∪ {{u}CS{} : u ∈M, u 6= w}}

where decs = decrements ∈ RU → P(RU).

Instead of a subset of the transforms of the pluri-valent pluri-limited-tuple-
derived-dimension non-overlapping substrate partition-sets of the tuple, Q ⊂
{NT : N ∈ NU,K,n,b,mmax,2}, consider a subset of the pluri-valent pluri-limited-
tuple-derived-dimension contracted decrementing linear non-overlapping fuds
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of the tuple Q ⊂ FU,n,−,K,b,mmax,2 such that |Q| ≤ pmax. The pluri-valent
pluri-limited-tuple-derived-dimension contracted decrementing linear non-overlapping
fuds is defined

FU,n,−,K,b,mmax,2

= {{NT : (·, N) ∈ L} : M ∈ NU,K,c ∩NU,K,n,b,mmax,

L ∈ subpaths({(M, tdecp(U)(M))})}
= {{NT : (·, N) ∈ L} : Y ∈ B(K), 2 ≤ |Y | ≤ mmax, M = {JCS{} : J ∈ Y },

L ∈ subpaths({(M, tdecp(U)(M))})}

where mmax ≥ 2 and the tree of pluri-valent self non-overlapping substrate
decremented partition-sets is defined tdecp(U) ∈ P(VU)→ trees(P(RU)) as

tdecp(U)(M) := {(N, tdecp(U)(N)) : N ∈ NU,M,2 ∩NU,M,− ∩NU,M,n,s}

and tdecp(U)(∅) := ∅. Explicitly this is

tdecp(U)(M) := {(N, tdecp(U)(N)) :

w ∈M, |{w}C| > 2, Q ∈ decs({w}CS{}),

N = {Q} ∪ {{u}CS{} : u ∈M, u 6= w}}

The cardinality of the pluri-valent pluri-limited-tuple-derived-dimension con-
tracted decrementing linear non-overlapping fuds is

|FU,n,−,K,b,mmax,2|

=
∑(

|nodes(tdecp(U)({JCS{} : J ∈ Y }))| :

m ∈ {2 . . .mmax}, Y ∈ S(K,m)
)

+ 1

=
∑

p : m ∈ {2 . . .mmax}, Y ∈ S(K,m),

L ∈ subpaths(tdecpcd(U)({JCS{} : J ∈ Y })), (p, ·) = L|L|

In the case of regular substrate variables of valency d and dimension n,
the cardinality of the pluri-valent pluri-limited-tuple-derived-dimension con-
tracted decrementing linear non-overlapping fuds is

|FU,n,−,K,b,mmax,2|

=
∑

ap : m ∈ {2 . . .mmax}, (M,a) ∈ sscd(k,m), R = reg(d,M),

L ∈ subpaths({((1, R), tdeccpd(1, R))}), (p, ·) = L|L|

where k = |K| and reg ∈ N × L(N) → L(N) is defined reg(d,M) :=
concat(flip(order(DL(N), {{1 . . . q} × {dj} : (j, q) ∈M}))).
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The cardinality of the pluri-valent self non-overlapping substrate decremented
partition-sets tree may be computed by defining tdecpcd(U) ∈ P(VU) →
trees(N× L(N)) as

tdecpcd(U)(V ) :=

{((1, L), tdecpcd(1, L)) : L = {(i, |Uv|) : (v, i) ∈ order(DV, V )}}

where order DV is such that order(DV, V ) ∈ enums(V ), and tdecpcd ∈ N×
L(N)→ trees(N× L(N)) as

tdecpcd(k, L) := {((m,M), tdecpcd(m,M)) :

i ∈ {1 . . . |L|}, Li > 2, m = kLi(Li − 1), M = L \ {(i, Li)} ∪ {(i, Li − 1)}}

In the case of regular substrate variables of valency d and dimension n,
the cardinality of the pluri-valent self non-overlapping substrate decremented
partition-sets cardinality tree may be computed by defining tdecpcd ∈ N ×
N→ trees(N× L(N)) as

tdecpcd(d, n) := {((1, L), tdecpcd(1, L)) : L = {1 . . . n} × {d}}

If the tuple is pluri-variate and pluri-valent, |K| > 1, and ∀v ∈ K (|Uv| > 1),
then the derived variables are pluri-variate and pluri-valent, ∀H ∈ Q (|der(H)| >
1), and ∀H ∈ Q ∀w ∈ der(H) (|Uw| > 1). Each of these fuds has a corre-
sponding partition, ∀H ∈ Q (HTPK ∈ B(KCS)), but now are not restricted
to zero derived alignment. That is, in some cases, A ∗ GT 6= (A ∗ GT)X,
where H ∈ Q and G = depends(F ∪ H, der(H)). The tuple fud, H, is
non-overlapping, ¬overlap(H). However, the constructed exploded fud G′ =
explode(G) is not necessarily non-overlapping so the choice of tuple fuds,
Q ⊂ FUA,n,−,K,b,mmax,2, is made by maximising the shuffle content alignment
valency-density,

Q = topd(pmax)({(H, (algn(A ∗GT)− algn(AR ∗GT))/cvl(G)) :

H ∈ FUA,n,−,K,b,mmax,2, G = depends(F ∪H, der(H))})

The cardinality of the contracted decrementing linear non-overlapping fuds
is greater than or equal to the cardinality of the non-overlapping substrate
transforms, |FU,n,−,K,b,mmax,2| ≥ |NU,K,n,b,mmax,2|, so the computation time is
increased. However, consider the optimisation of the tree of decrements. De-
fine the contracted decrementing linear non-overlapping fuds list maximiser

ZP,A,AR,F,n,−,K =

maximiseLister(XP,A,AR,F,n,−,K , NP,A,AR,F,n,−,K , top(pmax), RP,A,AR,F,n,−,K)
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where (i) the optimiser function is

XP,A,AR,F,n,−,K = {(H, (I∗a (A ∗GT)− I∗a (AR ∗GT))/I∗cvl(G)) :

H ∈ FUA,n,−,K,b,mmax,2, G = depends(F ∪H, der(H))}

(ii) the initial subset is

RP,A,AR,F,n,−,K = {({MT}, XP,A,AR,F,n,−,K({MT})) :

Y ∈ B(K), 2 ≤ |Y | ≤ mmax, M = {JCS{} : J ∈ Y }}

and (iii) the neighbourhood function is

NP,A,AR,F,n,−,K(C) = {(H ∪ {NT}, XP,A,AR,F,n,−,K(H ∪ {NT})) :

(H, ·) ∈ C, M = der(H),

w ∈M, |{w}C| > 2, Q ∈ decs({w}CS{}),

N = {Q} ∪ {{u}CS{} : u ∈M, u 6= w}}

Then the subset of the decrementing linear non-overlapping fuds is

dom(elements(ZP,A,AR,F,n,−,K)) ⊂ FUA,n,−,K,b,mmax,2

So the choice of tuple fuds, Q ⊂ FUA,n,−,K,b,mmax,2, can be made by maximis-
ing the shuffle content alignment valency-density of the elements of the tree
maximiser, ZP,A,AR,F,n,−,K ,

Q = topd(pmax)(elements(ZP,A,AR,F,n,−,K))

The cardinality of the initial set is

|RP,A,AR,F,n,−,K | = |NU,K,c ∩NU,K,n,b,mmax|

=
∑

m∈{2...mmax}

stir(|K|,m)

≤ bell(|K|)− 1

For a given tuple partition Y ∈ B(K) the cardinality of the neighbour-
hood searched could be computed by constructing a tree of lists of valencies,
trees(L(N>0)), congruent to the pluri-valent self non-overlapping substrate
decremented partition-sets cardinality tree, tdecpcd(Y ) ∈ trees(N × L(N)),
and such that (i) at the root the list consists of the volumes of the compo-
nents, {(i, |JC|) : (J, i) ∈ order(DP(P(V)), Y )}, and (ii) at each step one of the
valencies is decremented. The cardinality of the searched at each node L is
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then
∑

(c(c− 1)/2 : (·, c) ∈ L). However, the computation of the tree is ex-
ponential and so is impracticable as a measure of expected computation time.

Instead of finding the cardinalities of searched for all possible search paths,
consider the cardinality of the searched in the worst case which is found
by decrementing the head of a sorted list of component volumes. Rolling
the shortest first is the worst case because the cardinality of the decre-
ments, c(c − 1)/2, is convex. Let srch ∈ L(N) → N be defined srch(L) :=∑

(c(c − 1)/2 : (·, c) ∈ L, c > 2). Let dec ∈ K(N) → K(N) be defined
dec((x,K)) := if(x > 2, (x − 1, K), dec(K)). Let srchmax ∈ N × L(N) →
N be defined srchmax(m, ∅) := m and srchmax(m,L) := srchmax(m +
srch(L), dec(L)). Let srchmax ∈ P(P(VU)) → N be defined srchmax(Y ) :=
srchmax(0, sort({(i, |JC|) : (J, i) ∈ order(DP(P(V)), Y )})), where sort(L) :=
{(i, a) : ((a, ·), i) ∈ order(DN2 , flip(L))}. Then srchmax(Y ) ∈ N is the great-
est cardinality of the searched for the given partition, Y .

The maximum cardinality of the worst-case searched is

maxr({(Y, srchmax(Y )) : m ∈ {2 . . .mmax}, Y ∈ S(K,m)})

In the case of a regular tuple of dimension k = |K| and valency d, the
maximum cardinality of the worst-case searched is

maxr({(L, srchmax(L)) : m ∈ {2 . . .mmax}, (L, a) ∈ sscd(k,m)})

where srchmax(L) := srchmax(0, sort(concat({{1 . . . p} × {dj} : (j, p) ∈
L}))).

If it is the case that the topd(pmax) optimisation is such that each step of the
list has no more than pmax fuds, ∀(i, C) ∈ list(ZP,A,AR,F,n,−,K) (|C| ≤ pmax),
then the cardinality of the elements must be less than (a) the maximum tuple
optimise limit, pmax, times (b) the length of the longest path of decrements,
|KC|/2. Thus |elements(ZP,A,AR,F,n,−,K)| ≤ pmax× xmax/2. The cardinality
of the searched must be less than or equal to (i) the cardinality of the ini-
tial set, |RP,A,AR,F,n,−,K | = |NU,K,c ∩ NU,K,n,b,mmax| ≤ bell(|K|) − 1, plus (ii)
(a) the cardinality of the elements, |elements(ZP,A,AR,F,n,−,K)|, times (b) the
cardinality of the decrements, which is less than |NU,M,2∩NU,M,−∩NU,M,n,s|.
If the tuple is partitioned into a singleton component and a remainder com-
ponent the worst case cardinality of decrements is less than xmax2/23. Thus
cardinality of the searched set is constrained

|searched(ZP,A,AR,F,n,−,K)| ≤ bell(kmax) + pmax× xmax3/24
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If the maximum tuple optimise limit is one, pmax = 1, this cardinality is
smaller than that of the contracted non-overlapping substrate transforms,
|TU,K,n| ≤ bell(kmax)× bell(xmax).

Again, the cardinality of the searched set, |searched(ZP,A,AR,F,n,−,K)|, can
be reduced further by restricting the initial set to binary non-overlapping
substrate transforms set, TU,K,n,b ⊆ TU,K,n, which is the special case where
mmax = 2. Define the tuple-binary-partition contracted decrementing linear
non-overlapping fuds list maximiser

ZP,A,AR,F,n,b,−,K =

maximiseLister(XP,A,AR,F,n,−,K , NP,A,AR,F,n,−,K , top(pmax), RP,A,AR,F,n,b,−,K)

where the initial set is

RP,A,AR,F,n,b,−,K = {({MT}, XP,A,AR,F,n,−,K({MT})) :

J ⊂ K, J 6= ∅, J 6= K, M = {JCS{}, (K \ J)CS{}}}

In this case the choice of tuple fuds is

Q = topd(pmax)(elements(ZP,A,AR,F,n,b,−,K))

The cardinality of the initial set is

|RP,A,AR,F,n,b,−,K | = |NUA,K,c ∩NUA,K,n,b| = 2|K|−1 − 1

The maximum cardinality of the worst-case searched is

maxr({(J, srchmax({J,K \ J})) : J ∈ P(K)})

In the case of a regular tuple of dimension k = |K| and valency d, the
maximum cardinality of the worst-case searched is

maxr({(j, srchmax(0, sort({(1, dj), (2, dk−j)}))) : j ∈ {1 . . . k − 1}})

The cardinality of the searched is constrained

|searched(ZP,A,AR,F,n,b,−,K)| ≤ 2kmax + pmax× xmax3/4

In this case the latter term dominates because 2kmax ≤ xmax.

A variation of the contracted decrementing linear non-overlapping fuds list
maximiser is to restrict the neighbourhood optimisation to the maximum,
pmax = 1, and apply pmax only to the initial set. To do this a tree tail
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maximiser is used with an inclusion function of max and the initial set is
explicitly optimised beforehand. Define the maximum-roll contracted decre-
menting linear non-overlapping fuds tree maximiser

ZP,A,AR,F,n,−,K,mr =

maximiseTailTreer(XP,A,AR,F,n,−,K , NP,A,AR,F,n,−,K ,max,

top(pmax)(RP,A,AR,F,n,−,K))

This restriction pushes the pmax path selection into the initial set rather
than towards the end of the optimise path where sometimes different decre-
menting linear fuds roll to the same derived partition variables.

The decrementing maximiser initial set, top(pmax)(RP,A,AR,F,n,−,K), is biased
to larger tuple partition cardinalities, |Y |, where Y ∈ B(K). This is because
the valency-capacity varies against the partition cardinality, (

∏
J∈Y |JC|)1/|Y | =

|KC|1/|Y |. Therefore consider a variation of the maximum-roll maximiser
that has an initial set of cardinality pmax for each of the possible tuple
partition cardinalities, m ∈ {2 . . .mmax}. Define the maximum-roll-by-
derived-dimension contracted decrementing linear non-overlapping fuds tree
maximiser

ZP,A,AR,F,n,−,K,mm =

maximiseTailTreer(XP,A,AR,F,n,−,K , NP,A,AR,F,n,−,K ,max, RP,A,AR,F,n,−,K,mm)

where the initial subset is

RP,A,AR,F,n,−,K,mm =⋃
{top(pmax)({({MT}, XP,A,AR,F,n,−,K({MT})) :

Y ∈ S(K,m), M = {JCS{} : J ∈ Y }}) : m ∈ {2 . . .mmax}}

Now the cardinality of the searched is constrained

|searched(ZP,A,AR,F,n,−,K,mm)| ≤ bell(kmax)+(mmax−1)×pmax×xmax3/24

Another constraint that may be applied to reduce the cardinality of the
searched set, |searched(ZP,A,AR,F,n,−,K)|, is to restrict the initial set such that
the volume of each component of the tuple partition is limited. The maximum
valency is umax ∈ N>0. The initial partition-set forming the bottom layer
of the decrementing linear fud is in the intersection of the substrate self-
cartesian partition-sets set, the pluri-limited-tuple-derived-dimension non-
overlapping substrate transforms set and the limited-valency substrate partition-
sets set, NU,K,c ∩ NU,K,n,b,mmax ∩ NU,K,umax. The pluri-limited-valency pluri-
limited-tuple-derived-dimension contracted decrementing linear non-overlapping
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fuds is defined

FU,n,−,K,b,mmax,2,umax

= {{NT : (·, N) ∈ L} : M ∈ NU,K,c ∩NU,K,n,b,mmax ∩NU,K,umax,

L ∈ subpaths({(M, tdecp(U)(M))})}
= {{NT : (·, N) ∈ L} : Y ∈ B(K), 2 ≤ |Y | ≤ mmax,

(∀J ∈ Y (|JC| ≤ umax)), M = {JCS{} : J ∈ Y },
L ∈ subpaths({(M, tdecp(U)(M))})}

Define the limited-valency contracted decrementing linear non-overlapping
fuds list maximiser

ZP,A,AR,F,n,w,−,K =

maximiseLister(XP,A,AR,F,n,−,K , NP,A,AR,F,n,−,K , top(pmax), RP,A,AR,F,n,w,−,K)

where the initial set is

RP,A,AR,F,n,w,−,K = {({MT}, XP,A,AR,F,n,−,K({MT})) :

Y ∈ B(K), 2 ≤ |Y | ≤ mmax,

(∀J ∈ Y (|JC| ≤ umax)), M = {JCS{} : J ∈ Y }}

In this case the choice of tuple fuds is

Q = topd(pmax)(elements(ZP,A,AR,F,n,w,−,K))

The cardinality of the initial set now depends on the system,

|RP,A,AR,F,n,w,−,K | = |NU,K,c ∩NU,K,n,b,mmax ∩NU,K,umax|

=
∑

m∈{2...mmax}

|{Y : Y ∈ S(K,m), (∀J ∈ Y (|JC| ≤ umax))}|

≤
∑

m∈{2...mmax}

stir(|K|,m)

The maximum cardinality of the worst-case searched is

maxr({(Y, srchmax(Y )) : m ∈ {2 . . .mmax}, Y ∈ S(K,m),

(∀J ∈ Y (|JC| ≤ umax))})

In the case of a regular tuple of dimension k = |K| and valency d, the
maximum cardinality of the worst-case searched is

maxr({(L, srchmax(L)) : m ∈ {2 . . .mmax}, (L, a) ∈ sscd(k,m),

(∀(j, p) ∈ L (q > 0 =⇒ dj ≤ umax))})
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The effect of the valency limit is to make the partitions of the tuple larger
and more regular. For example, a binary partition such that all but one of
the tuple variables, having common valency d, is in one component has initial
valencies of dk−1 and d. The cardinality of the searched approximately varies
as the cube of the longest valency, so a binary irregular search may require
considerably more computation time than a poly-component regular search
in the same tuple.

Having addressed the cardinality of the second term of the upper bound
on the cardinality of the neighbourhood function of the limited-path-models
tuple partition inducer, |B(KCS)| ≤ bell(xmax) where K ∈ tuples(V, F ) and
|KC| ≤ xmax, by optimising a subset Q of the partitions of a tuple, Q ⊂
B(KCS), above, now consider the first term. A subset of the neighbourhood
function of the limited-path-models tuple partition inducer, PP,A,AR,csd,p, may
be defined which allows only one partition transform for each tuple,

PP,A,AR,csd,p,u(Q) =

{(F ∪G, I∗csd((A,AR, F ∪G))) :

(F, ·) ∈ Q, layer(F, der(F )) < lmax,

B ⊆ {K : K ∈ tuples(VA, F ), |KC| ≤ xmax},
1 ≤ |B| ≤ bmax,

G ∈ {{PT : P ∈ N} : N ∈
∏
K∈B

(B(KCS) \ {{KCS}})},

W = der(F ∪G), |WC| ≤ wmax}

In the case of the fud F , defined above, of variable cardinality |vars(F )| =
lmax × bmax, the upper bound on the cardinality of the neighbourhood
function is

|PP,A,AR,csd,p,u({(F,XP,A,AR,csd,p(F ))})|
< ((lmax× bmax)kmax)bmax × bell(xmax)bmax

The cardinality of the set of next limited-underlying-volume limited-breadth
layers depends on (i) the cardinality of the set of next limited-underlying-
volume limited-breadth layer tuple sets,

|{B : B ⊆ {K : K ∈ tuples(VA, F ), |KC| ≤ xmax}, 1 ≤ |B| ≤ bmax}|
< ((lmax× bmax)kmax)bmax

and (ii) the product of the cardinalities of the sets of partitions of each tuple,∏
K∈B

|B(KCS)| < bell(xmax)bmax
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within each layer tuple set, B.

The cardinality of the set of next limited-underlying limited-breadth tuple
sets, |{B : B ⊆ {K : K ∈ tuples(VA, F ), |KC| ≤ xmax}, 1 ≤ |B| ≤ bmax}|,
can be addressed by (i) constructing only a single content alignment opti-
mised next limited-underlying limited-breadth layer tuple set BB ⊆ {K : K ∈
tuples(VA, F ), |KC| ≤ xmax}, and (ii) constructing the tuples of that tuple
set, BB, one variable at a time. The tuple set, BB, consists of the maximum
breadth, bmax, per maximum tuple derived dimension, mmax, top-most tu-
ples, |BB| = bbmax/mmaxc, if the tuples are uniquely aligned, so that the car-
dinality of derived variables in the layer optimised by applying the contracted
decrementing linear non-overlapping fuds list maximiser, ZP,A,AR,F,n,−,K , to
each tuple, K ∈ BB, is no greater than the maximum breadth, bmax. Define
the limited-underlying tuple set list maximiser

ZP,A,AR,F,B = maximiseLister(XP,A,AR,F,B, PP,A,AR,F,B, top(omax), RP,A,AR,F,B)

where (i) the optimiser function is

XP,A,AR,F,B =

{(K, I∗a (apply(VA, K, his(F ), A))− I∗a (apply(VA, K, his(F ), AR))) :

K ∈ tuples(VA, F )}

where his = histograms ∈ F → P(A), apply ∈ P(V)×P(V)×P(A)×A → A,
and (ii) the neighbourhood function is

PP,A,AR,F,B(B) = {(J,XP,A,AR,F,B(J)) :

(K, ·) ∈ B, w ∈ vars(F ) ∪ VA \K, J = K ∪ {w}, |JC| ≤ xmax}

and (iii) the initial subset is

RP,A,AR,∅,B = {({w, u}, XP,A,AR,∅,B({w, u})) :

w, u ∈ VA, u 6= w, |{w, u}C| ≤ xmax}
RP,A,AR,F,B = {({w, u}, XP,A,AR,F,B({w, u})) :

w ∈ der(F ), u ∈ vars(F ) ∪ VA, u 6= w, |{w, u}C| ≤ xmax}

Then the shuffle content alignment optimised next limited-underlying limited-
breadth layer tuple set, BB, is

BB = topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)) ∈
{B : B ⊆ {K : K ∈ tuples(VA, F ), |KC| ≤ xmax}}
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The fud application, apply ∈ P(V) × P(V) × P(A) × A → A, traverses
from the substrate variables, VA, to the tuple, K, via the histograms of
the transforms of the fud, his(F ). The fud application is a tractable ap-
plication equivalent to the application of the fud’s transform’s histogram fol-
lowed by reduction, apply(VA, K, his(F ), A) = A ∗ histogram(FT) % K. The
shuffle content fud application alignment, algn(apply(VA, K, his(F ), A)) −
algn(apply(VA, K, his(F ), AR)), resembles the shuffle content alignment, algn(A∗
GT) − algn(AR ∗ GT), where G = depends(F,K), except that fud variables
cannot be hidden by being nested in the higher layer depends fud of an-
other fud variable. That is, in some cases K 6= der(depends(F,K)) and so
apply(VA, K, his(F ), A) 6= A ∗ depends(F,K)T.

The tuple set search, ZP,A,AR,F,B, is optimised by maximising the shuffle
content fud application alignment,

algn(apply(VA, K, his(F ), A))− algn(apply(VA, K, his(F ), AR))

not the shuffle content fud application alignment valency-density,

(algn(apply(VA, K, his(F ), A))− algn(apply(VA, K, his(F ), AR)))/y1/k

where y = |KC| and k = |K|. The maximum alignment varies with di-
mension, for example a regular histogram of dimension k and valency d
has approximate maximum alignment of z(k − 1) ln d. Therefore a max-
imiser function value of shuffle content alignment tends to select tuples of
larger dimension. In contrast, the maximum alignment valency-density varies
against geometric-average valency, approximately z(k − 1)(ln d)/d, and so
tends to smaller tuple dimension, k, especially where the entropy of valen-
cies, entropy({(w, |UA(w)|) : w ∈ K}), is low. The contracted decrementing
linear non-overlapping fuds in subsequent applications of contracted decre-
menting linear non-overlapping fuds list maximisers to each tuple of the tuple
set,

⋃
{dom(XP,A,AR,F,n,−,K) : K ∈ BB} ⊂ FUA,P∗ , have derived volume less

than or equal to the tuple volume, |der(H)C| ≤ |KC| where H ∈ FUA,n,−,K ,
so larger tuples can value roll down to smaller subsets of the tuple, but not
the reverse. That is, a maximiser function value of shuffle content alignment
increases the searched cardinality for each tuple making the neighbourhood
function, PP,A,AR,csd, of the notional list maximiser, ZP,A,AR,csd, less arbitrary,
so increasing the maximum function correlation of the practicable inducer,
I
′

z,csd,F,∞,q,P , to the tractable inducer, I
′

z,ad,F,∞,n,q.

An upper bound on the expected cardinality of the searched may be com-
puted given the maximum underlying dimension, kmax. The upper bound
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on the expected cardinality in the first layer, F = ∅, is∑
k∈{2...min(kmax,n)}

(
n

k

)

where n = |VA| and min = minimum. In subsequent layers, F 6= ∅, the upper
bound on the expected cardinality is∑

k∈{2...min(kmax,q)}

(
q

k

)
−
(
q − x
k

)

where W = vars(F ) ∪ VA, q = |W |, X = der(F ) and x = |X|.

The maximum underlying dimension, kmax, may be approximated from the
geometric average valency d = |WC|1/q, and the maximum underlying vol-
ume, xmax,

kmax =

⌈
ln xmax

ln d

⌉
If it is the case that the topd(omax) optimisation is such that each step of
the list has no more than omax tuples, then in the first layer, F = ∅, the
cardinality of the searched set is constrained

|searched(ZP,A,AR,∅,B)| < n2 + (kmax− 2)× omax× n

In subsequent layers, F 6= ∅, the cardinality of the searched set is constrained

|searched(ZP,A,AR,F,B)| < xq + (kmax− 2)× omax× q

The limited-underlying tuple set list maximiser, ZP,A,AR,F,B, has an inclusion
function defined top(omax) ∈ P(XP,A,AR,F,B) → P(XP,A,AR,F,B). The appli-
cation of the top(n) ∈ P(X × Y) → P(X × Y) aggregation function with
parameter n to a relation R may result in a subset of the relation having
a cardinality greater than the given parameter, |top(n)(R)| > n, if there
are duplicate range values at the n-th position of the ordered relation. This
might be the case, for example, in a tuple set list maximiser searched set,
searched(ZP,A,AR,F,B), that contains tuples which contain variables having a
partition equal to the self-partition of a singleton underlying variable.

An implementation of the tuple set list maximiser, ZP,A,AR,F,B, that guar-
antees no more than omax tuples at each step of the optimiser list, ∀B ∈
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set(list(ZP,A,AR,F,B)) (|B| ≤ omax), must have additional inclusion order cri-
teria. An example is where the tuples are ordered first by ascending align-
ment, XP,A,AR,F,B(K), and then by descending sum derived variables layer,
−sumlayer(F,K), where sumlayer ∈ F × P(V)→ N is defined as

sumlayer(F,K) :=
∑
w∈K

layer(F, {w})

For example, the tuples J,K ⊂ vars(F ), such that variable u ∈ K, self par-
tition variable {u}CS{} ∈ J and J = K \ {u} ∪ {{u}CS{}}, have the same
alignments, XP,A,AR,F,B(J) = XP,A,AR,F,B(K), but different sum derived vari-
ables layers, sumlayer(F, J) = sumlayer(F,K) + 1. Ordering by descending
sum derived variables layer avoids the addition of extra variables to the model
which are merely redundant reframe variables, where these reframe variables
are at the inclusion boundary.

There are other order criteria including (i) descending shuffle alignment,
−algn(apply(VA, K, his(F ), AR)), and (ii) descending tuple volume, |KC|. Or-
dering by descending tuple volume tends to prevent tuples from adding mono-
effective variables, |(A%{u})F| = 1 < |{u}C|.

Given the single content alignment optimised next limited-underlying limited-
breadth layer tuple set, BB = topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),
from the limited-underlying tuple set list maximiser, ZP,A,AR,F,B, each tuple
K of the tuple set, BB, can be optimised in a contracted decrementing linear
non-overlapping fuds list maximiser, ZP,A,AR,F,n,−,K , to construct the single
content alignment optimised next limited-underlying limited-breadth layer.
The limited-layer limited-underlying limited-breadth fud tree searcher creates
a path of layer -cumulative fuds of length lmax. Define the limited-layer
limited-underlying limited-breadth fud tree searcher

ZP,A,AR,L = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L, {∅})

where the neighbourhood function returns a singleton

PP,A,AR,L(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F,n,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

If the substrate variables are pluri-variate, |VA| > 1, the tree of the limited-
layer limited-underlying limited-breadth fud tree searcher has a single path,
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|paths(tree(ZP,A,AR,L))| = 1, and a single leaf, |leaves(tree(ZP,A,AR,L))| = 1.

Note that in some cases a partition transform, ITPT, may already exist in the
fud, F , because only one variable of the tuple, K, need be in the fud derived
variables, |K ∩ der(F )| ≥ 1, and so some components of the partition of the
tuple may consist of variables in lower layers of the fud, J ∩ der(F ) = ∅
where J = und(I) ⊂ K. Furthermore, if, after the first layer, a partition
ITP

1 already exists in the fud, ITP
1 ∈ vars(F ), and is not a derived variable,

ITP
1 /∈ der(F ), it may sometimes be hidden by another variable ITP

2 . That is,
ITP

1 ∈ vars(depends(F, und(I2))). It is therefore possible that the succeeding
fud, G, may, in some cases, contain a single derived variable, |der(G)| = 1,
and consequently be independent, algn(A ∗ GT) = 0. This limitation is due
to the separation of the optimisation into two steps, (i) tuple set list max-
imisation, followed by (ii) decrementing fuds list maximisation.

Implementations of the neighbourhood function that do not use partition
variables, F /∈ FU,P, must explicitly check for uniqueness, ITP /∈ {TP : T ∈
F}.

If (i) each content alignment optimised next limited-underlying limited-breadth
layer tuple set has cardinality less than or equal to the maximum layer breadth
limit, |BB| ≤ bbmax/mmaxc, and (ii) each tuple K ∈ BB has contracted
decrementing linear non-overlapping fuds list maximiser cardinality of less
than or equal to the maximum tuple optimise limit, pmax, then the cardi-
nality of each additional layer of the fuds in the path is less than or equal
to the maximum optimise step cardinality, omax = bmax × pmax. That is,
|der(F )| ≤ omax where F ∈ elements(ZP,A,AR,L).

If the substrate variables are pluri-variate, |VA| > 1, the optimised limited-
layer limited-underlying limited-breadth fud FL of layer lmax is the leaf

{FL} = leaves(tree(ZP,A,AR,L)) ⊂ F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh

If the optimised limited-layer limited-underlying limited-breadth fud, FL, ex-
ists, it has at least two variables, |vars(FL) \ VA| > 1.

Now the filtering step is computed by constructing pluri-partition transforms
of the fud variables one variable at a time. Define the limited-derived derived
variables set list maximiser

ZP,A,AR,F,D = maximiseLister(XP,A,AR,F,D, PP,A,AR,F,D, top(omax), RP,A,AR,F,D)
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where (i) the optimiser function is

XP,A,AR,F,D = {(K, (I∗a (A ∗GT)− I∗a (AR ∗GT))/I∗cvl(G)) :

K ⊆ vars(F ), K 6= ∅, G = depends(F,K)}
(ii) the neighbourhood function is

PP,A,AR,F,D(D) = {(J,XP,A,AR,F,D(J)) :

(K, ·) ∈ D, w ∈ vars(F ) \ VA \K,
J = K ∪ {w}, |JC| ≤ wmax, der(depends(F, J)) = J}

and (iii) the initial subset is

RP,A,AR,F,D = {(J,XP,A,AR,F,D(J)) :

w, u ∈ vars(F ) \ VA, u 6= w,

J = {w, u}, |JC| ≤ wmax, der(depends(F, J)) = J}
The limited-derived derived variables set list maximiser has no elements if
the fud is empty, elements(ZP,A,AR,∅,D) = ∅, or if it consists of a single parti-
tion transform, |F | = 1.

The derived variables sets are such that none of the derived variables are
nested in the depends fud variables of another derived variable in the same
set, ∀w, u ∈ J (w 6= u =⇒ u /∈ vars(depends(F, {w}))), so that J =
der(depends(F, J)). This restriction prevents unnecessary searches in the
optimiser where the derived variables of the dependent fud are a proper sub-
set, der(depends(F, J)) ⊂ J . However, hidden variables that are excluded in
a fud are not necessarily excluded in another lower layer fud that does not
contain the dependent variable.

The limited-derived derived variables set list maximiser differs from the limited-
underlying tuple set list maximiser in respect of nested fud variables. The
tuple set optimiser allows nested variables in a tuple in preparation for rolling
in the subsequent application of the contracted decrementing linear non-
overlapping fuds list maximiser, whereas the depends fuds of the derived
variables of the derived variables set optimiser must be limited-models fuds,
depends(F,K) ∈ F∞,UA,VA ∩ Fq.

An upper bound on the expected cardinality of the searched may be com-
puted given the maximum derived dimension, jmax. The upper bound on
the expected cardinality for a non-empty fud, F 6= ∅, is∑

j∈{2...min(jmax,r)}

(
r

j

)
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where R = vars(F ) \ VA and r = |R| and min = minimum.

The maximum derived dimension, jmax, may be approximated from the ge-
ometric average valency d = |RC|1/r, and the maximum derived volume,
wmax,

jmax =

⌈
ln wmax

ln d

⌉
Like the limited-underlying tuple set list maximiser, ZP,A,AR,F,B, the limited-
derived derived variables set list maximiser, ZP,A,AR,F,D, has an inclusion
function defined top(omax) ∈ P(XP,A,AR,F,D) → P(XP,A,AR,F,D). An im-
plementation of the derived variables set list maximiser, ZP,A,AR,F,D, that
guarantees no more than omax derived variables sets at each step of the
optimiser list, ∀D ∈ set(list(ZP,A,AR,F,D)) (|D| ≤ omax), must also have
additional inclusion order criteria such as descending sum derived variables
layer, −sumlayer(F, J).

The optimised limited-model fuds are

{depends(FL, K) :

{FL} = leaves(tree(ZP,A,AR,L)),

K ∈ maxd(elements(ZP,A,AR,FL,D))} ⊂ F∞,UA,VA ∩ Fq

The practicable shuffle content alignment valency-density fud inducer, I
′

z,csd,F,∞,q,P ,
may then be implemented

I
′∗
z,csd,F,∞,q,P (A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L)),

K ∈ maxd(elements(ZP,A,AR,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

where the shuffle content alignment valency-density computer Icsd ∈ computers
is defined as

I∗csd((A,AR, F )) = (I∗a (A ∗ FT)− I∗a (AR ∗ FT))/I∗cvl(F )

In the case where the substrate histogram, A, is scalar or mono-variate,
|VA| ≤ 1, the practicable fud inducer is stuffed with the empty fud, be-
cause the contracted decrementing linear non-overlapping fuds list maximiser,
ZP,A,AR,F,n,−,K , in the limited-layer limited-underlying limited-breadth fud tree
searcher, ZP,A,AR,L, requires a pluri-variate tuple, |K| > 1, and so the limited-
underlying tuple set list maximiser, ZP,A,AR,F,B, requires a pluri-variate sub-
strate, |VA| > 1.
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A variation of this implementation of practicable shuffle content alignment
valency-density fud inducer, I

′

z,csd,F,∞,q,P , is (i) to constrain the derived vari-
ables to intersect with the highest layer of the fud and (ii) to terminate
the layer search as soon as the shuffle content alignment valency-density
decreases. Define the highest-layer limited-derived derived variables set list
maximiser

ZP,A,AR,F,D,d = maximiseLister(XP,A,AR,F,D, PP,A,AR,F,D, top(omax), RP,A,AR,F,D,d)

where the initial subset is

RP,A,AR,F,D,d = {(J,XP,A,AR,F,D(J)) :

w ∈ der(F ), u ∈ vars(F ) \ VA \ vars(depends(F, {w})),
J = {w, u}, |JC| ≤ wmax}

The upper bound on the expected cardinality for a non-empty fud, F 6= ∅, is∑
j∈{2...min(jmax,r)}

(
r

j

)
−
(
r − x
j

)
where R = vars(F ) \ VA and r = |R|, X = der(F ) and x = |X|.

Define the highest-layer limited-layer limited-underlying limited-breadth fud
tree searcher

ZP,A,AR,L,d = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,d, {∅})

where the neighbourhood function returns a singleton

PP,A,AR,L,d(F ) = {G :

G ∈ PP,A,AR,L(F ),

(F 6= ∅ =⇒ maxr(el(ZP,A,AR,F,D,d)) < maxr(el(ZP,A,AR,G,D,d)))}

where el = elements.

The practicable highest-layer shuffle content alignment valency-density fud
inducer, I

′

z,csd,F,∞,q,P,d, may then be implemented

I
′∗
z,csd,F,∞,q,P,d(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L,d)),

K ∈ maxd(elements(ZP,A,AR,FL,D,d)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}
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The practicable highest-layer shuffle content alignment valency-density fud
inducer, I

′

z,csd,F,∞,q,P,d, assumes that there is one maximum along the layer -
cumulative path of fuds. An advantage of the highest-layer fud inducer is
that fuds containing frame full functional transforms, having exactly the
same alignment valency-density of lower layer fuds excluding the reframes,
will be excluded, avoiding the extra computation and reducing the cardinal-
ity of the maximum domain, |maxd(elements(ZP,A,AR,FL,D,d))|. Note that a
computer implementing the highest-layer limited-derived derived variables set
list maximiser need not recompute the previous layer highest shuffle content
alignment valency-density, maxr(elements(ZP,A,AR,F,D,d)), but need only to
carry it to this layer.

If the inclusion functions of the tuple set list maximiser and the derived vari-
ables set list maximiser are further ordered by descending sum derived vari-
ables layer the highest-layer fud inducer, I

′

z,csd,F,∞,q,P,d, must be implemented
with the limited-derived derived variables set list maximiser, ZP,A,AR,F,D,
rather than the highest-layer limited-derived derived variables set list max-
imiser, ZP,A,AR,F,D,d. That is, K ∈ maxd(elements(ZP,A,AR,FL,D)). In this
way reframe variables at the max inclusion boundary may be replaced by
variables below the highest layer.

Another variation of the implementation of practicable shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P , is to include the tuple binary
partition constraint. Define

ZP,A,AR,L,b = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,b, {∅})

where the neighbourhood function returns a singleton

PP,A,AR,L,b(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F,n,b,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}
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The practicable tuple-binary-partition shuffle content alignment valency-density
fud inducer, I

′

z,csd,F,∞,q,P,b, may then be implemented

I
′∗
z,csd,F,∞,q,P,b(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L,b)),

K ∈ maxd(elements(ZP,A,AR,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

Another variation of the implementation of practicable shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P , is to include the maximum-roll
constraint by implementing with the maximum-roll contracted decrementing
linear non-overlapping fuds tree maximiser, ZP,A,AR,F,n,−,K,mr. Define

ZP,A,AR,L,mr = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,mr, {∅})

where the neighbourhood function returns a singleton

PP,A,AR,L,mr(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈
⋃
{maxd(set(L)) : L ∈ paths(tree(ZP,A,AR,F,n,−,K,mr))},

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

The practicable maximum-roll shuffle content alignment valency-density fud
inducer, I

′

z,csd,F,∞,q,P,mr, may then be implemented

I
′∗
z,csd,F,∞,q,P,mr(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L,mr)),

K ∈ maxd(elements(ZP,A,AR,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

A variation of the implementation of practicable maximum-roll shuffle
content alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P,mr, is to include
the maximum-roll-by-derived-dimension constraint by implementing with the
maximum-roll-by-derived-dimension contracted decrementing linear non over-
lapping fuds tree maximiser, ZP,A,AR,F,n,−,K,mm. Define

ZP,A,AR,L,mm = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,mm, {∅})
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where the neighbourhood function returns a singleton

PP,A,AR,L,mm(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈
⋃
{maxd(set(L)) : L ∈ paths(tree(ZP,A,AR,F,n,−,K,mm))},

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

The practicable maximum-roll-by-derived-dimension shuffle content alignment
valency-density fud inducer, I

′

z,csd,F,∞,q,P,mm, may then be implemented

I
′∗
z,csd,F,∞,q,P,mm(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L,mm)),

K ∈ maxd(elements(ZP,A,AR,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

Another variation of the implementation of practicable shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P , is to exclude self partitions
from the derived variables of the fuds of the limited-layer limited-underlying
limited-breadth fud tree searcher, ZP,A,AR,L. Define the excluded-self limited-
layer limited-underlying limited-breadth fud tree searcher as

ZP,A,AR,L,xs = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,xs, {∅})

where the neighbourhood function returns a singleton

PP,A,AR,L,xs(F ) = {G :

G = F ∪ {PT : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F,n,−,K)),

w ∈ der(H), I = depends(explode(H), {w}),
P = ITP, P 6= (∪P ){}},

layer(G, der(G)) ≤ lmax}

The rationale for excluding self partition variables is to reduce the compu-
tation necessary to process redundant variables, although note that the self
partition variables will no longer appear in the top layer, (∪P ){} /∈ der(G),
and so cannot lift variables below during tuple building.
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Also note that if all but one of the derived variables of the top decrement-
ing linear fuds are self partition variables then the new fud G will have
a single derived variable, |der(G)| = 1, and hence have zero alignment,
algn(A ∗ GT) = 0. If the top decrementing linear fuds contain only self
partition derived variables then the neighbourhood function will return the
given fud unchanged, G = F . That is, in this case no new layer is added.

The practicable excluded-self shuffle content alignment valency-density fud
inducer, I

′

z,csd,F,∞,q,P,xs, may then be implemented

I
′∗
z,csd,F,∞,q,P,xs(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L,xs)),

K ∈ maxd(elements(ZP,A,AR,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

Another variation of the implementation of practicable shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P , is to include the limited-
valency constraint by implementing with the limited-valency contracted decre-
menting linear non-overlapping fuds list maximiser, ZP,A,AR,F,n,w,−,K . Define

ZP,A,AR,L,w = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,w, {∅})

where the neighbourhood function returns a singleton

PP,A,AR,L,w(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F,n,w,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

The practicable limited-valency shuffle content alignment valency-density fud
inducer, I

′

z,csd,F,∞,q,P,w, may then be implemented

I
′∗
z,csd,F,∞,q,P,w(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L,w)),

K ∈ maxd(elements(ZP,A,AR,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}
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In some cases a tuple K returned by the limited-underlying tuple set list max-
imiser, ZP,A,AR,F,B, will be rejected by the subsequent limited-valency con-
tracted decrementing linear non-overlapping fuds list maximiser, ZP,A,AR,F,n,w,−,K ,
because there are no limited-valency tuple partitions, ∀Y ∈ B(K) ((|Y | >
mmax) ∨ ¬(∀M ∈ Y (|MC| ≤ umax))). To avoid processing a tuple which
is destined to fail the limited-valency constraint, a variation of the limited-
underlying tuple set list maximiser checks to ensure there is at least one
limited-valency partition of the tuple. Define the checked-valency limited-
underlying tuple set list maximiser

ZP,A,AR,F,B,wc =

maximiseLister(XP,A,AR,F,B, PP,A,AR,F,B,wc, top(omax), RP,A,AR,F,B,wc)

where the neighbourhood function is

PP,A,AR,F,B,wc(B) = {(J,XP,A,AR,F,B(J)) :

(K, ·) ∈ B, w ∈ vars(F ) ∪ VA \K, J = K ∪ {w}, |JC| ≤ xmax,

∃Y ∈ B(J) ((|Y | ≤ mmax) ∧ (∀M ∈ Y (|MC| ≤ umax)))}

and the initial subset is

RP,A,AR,∅,B,wc = {({w, u}, XP,A,AR,∅,B({w, u})) :

w, u ∈ VA, u 6= w, |{w, u}C| ≤ xmax,

|{w}C| ≤ umax, |{u}C| ≤ umax}
RP,A,AR,F,B,wc = {({w, u}, XP,A,AR,F,B({w, u})) :

w ∈ der(F ), u ∈ vars(F ) ∪ VA, u 6= w, |{w, u}C| ≤ xmax,

|{w}C| ≤ umax, |{u}C| ≤ umax}

Another variation of the implementation of the practicable shuffle content
alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P , is to add a cached or
common substrate fud Fc ∈ F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh. For example, a com-
mon fud may be supplied from the parent slice fuds of a decomposition.

The common-fud limited-underlying tuple set list maximiser ZP,A,AR,Fc,F,B

can choose tuples from the variables of the common fud, vars(Fc), as well as
from the substrate variables, VA, and the variables of the given fud, vars(F ).
Define the common-fud limited-underlying tuple set list maximiser

ZP,A,AR,Fc,F,B =

maximiseLister(XP,A,AR,Fc,F,B, PP,A,AR,Fc,F,B, top(omax), RP,A,AR,Fc,F,B)
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where (i) the optimiser function is

XP,A,AR,Fc,F,B =

{(K, I∗a (apply(VA, K, his(F ∪ Fc), A))− I∗a (apply(VA, K, his(F ∪ Fc), AR))) :

K ∈ tuples(vars(Fc) ∪ VA, F )}

and (ii) the neighbourhood function is

PP,A,AR,Fc,F,B(B) = {(J,XP,A,AR,Fc,F,B(J)) :

(K, ·) ∈ B, w ∈ vars(F ∪ Fc) ∪ VA \K, J = K ∪ {w}, |JC| ≤ xmax}

and (iii) the initial subset is

RP,A,AR,Fc,∅,B = {({w, u}, XP,A,AR,Fc,∅,B({w, u})) :

w, u ∈ vars(Fc) ∪ VA, u 6= w, |{w, u}C| ≤ xmax}
RP,A,AR,Fc,F,B = {({w, u}, XP,A,AR,Fc,F,B({w, u})) :

w ∈ der(F ), u ∈ vars(F ∪ Fc) ∪ VA, u 6= w,

|{w, u}C| ≤ xmax}

An upper bound on the expected cardinality of the searched may be com-
puted given the maximum underlying dimension, kmax. The upper bound
on the expected cardinality in the first layer, F = ∅, is∑

k∈{2...min(kmax,s)}

(
s

k

)

where s = |vars(Fc)∪ V | and min = minimum. In subsequent layers, F 6= ∅,
the upper bound on the expected cardinality is∑

k∈{2...min(kmax,t)}

(
t

k

)
−
(
t− x
k

)

where W = vars(F ∪ Fc) ∪ VA, t = |W |, X = der(F ) and x = |X|.

Define the common-fud limited-layer limited-underlying limited-breadth fud
tree searcher

ZP,A,AR,Fc,L = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,Fc,L, {∅})
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where the neighbourhood function returns a singleton

PP,A,AR,Fc,L(F ) = {G :

G = F ∪
⋃
{{T} ∪ depends(Fc, und(T )) :

K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,Fc,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F∪Fc,n,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

Whereas in the limited-layer limited-underlying limited-breadth fud tree searcher,
ZP,A,AR,L, the layers of the fud increment at each step along the path,
∀(i, G) ∈ L (layer(G, der(G)) = i) where L ∈ paths(tree(ZP,A,AR,L)), in the
common-fud fud tree searcher, ZP,A,AR,Fc,L, there is no such guarantee.

Note that in some cases a partition transform, ITPT, may already exist in
the common fud, Fc. Just as in the case of the fud tree searcher, ZP,A,AR,L,
above, the common-fud fud tree searcher, ZP,A,AR,Fc,L, may also hide par-
tition variables, but in this case it may occur in the first step, because the
layer need not correspond to the common-fud fud tree searcher path position.

Implementations of the neighbourhood function that do not use partition
variables, F /∈ FU,P, must explicitly check for uniqueness, ITP /∈ {TP :
T ∈ Fc}. If the partition transform is in the common fud, Tc ∈ Fc where
TP

c = ITP, then the common fud’s transform should be added to the given
fud instead, F ∪ {Tc}.

The practicable common-fud shuffle content alignment valency-density fud
inducer, I

′

z,csd,F,∞,q,P,Fc
, may then be implemented

I
′∗
z,csd,F,∞,q,P,Fc

(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,Fc,L)),

K ∈ maxd(elements(ZP,A,AR,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

Note that the addition of a common fud hint to the common-fud fud inducer,
I
′

z,csd,F,∞,q,P,Fc
, will not necessarily produce the same models as the fud in-

ducer, I
′

z,csd,F,∞,q,P , without the hint. Nor is there necessarily an improvement
in computation performance.
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Another variation of the implementation of the practicable shuffle content
alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P , is to explicitly specify
the substrate. Rather than modelling with the given substrate variables,
VA, level modelling is parameterised by a pair of (i) a set of variables Vg,
which is a subset of the substrate variables, Vg ⊆ VA, and (ii) a level fud
Fg ∈ F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, which is such that its underlying is also a
subset of the substrate variables, und(Fg) ⊆ VA. Here only the union of (i)
the substrate variables subset, Vg, and (ii) the derived variables of the given
level fud, der(Fg), are visible to the tuple maximiser, so the substrate vari-
ables, VA, are effectively replaced by the level variables, Vg ∪ der(Fg).

The level fud inducer allows multiple levels to be modelled in sequence,
so, for example, large substrates, VA, with large underlying volumes, |V C

A |,
may be made practicable by (i) partitioning them into components, Vg ∈ P ,
where P ∈ B(VA), with smaller underlying volumes, |V C

g | < |V C
A |, (ii) induc-

ing a level fud on each component, Vg, of the substrate partition, and then
(iii) combining these level fuds in a higher level to produce a model with
coverage of the whole substrate, VA. Another example is to use the level fud
inducer in order to exclude mono-valent substrate variables, Vg = {w : w ∈
VA, |(A%{w})F| > 1}, which might occur near the leaves of a decomposition.
Note that higher levels do not necessarily require non-overlapping level fuds.

The level limited-underlying tuple set list maximiser ZP,A,AR,Vg,Fg,F,B replaces
the substrate variables, VA, with the level variables, Vg ∪ der(Fg). Define the
level limited-underlying tuple set list maximiser

ZP,A,AR,Vg,Fg,F,B =

maximiseLister(XP,A,AR,Vg,Fg,F,B, PP,A,AR,Vg,Fg,F,B, top(omax), RP,A,AR,Vg,Fg,F,B)

where (i) the optimiser function is

XP,A,AR,Vg,Fg,F,B =

{(K, I∗a (apply(VA, K, his(F ∪ Fg), A))− I∗a (apply(VA, K, his(F ∪ Fg), AR))) :

K ∈ tuples(Vg ∪ der(Fg), F )}

and (ii) the neighbourhood function is

PP,A,AR,Vg,Fg,F,B(B) = {(J,XP,A,AR,Vg,Fg,F,B(J)) :

(K, ·) ∈ B, w ∈ vars(F ) \ vars(Fg) ∪ Vg ∪ der(Fg) \K,
J = K ∪ {w}, |JC| ≤ xmax}
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and (iii) the initial subset is

RP,A,AR,Vg,Fg,∅,B = {({w, u}, XP,A,AR,Vg,Fg,∅,B({w, u})) :

w, u ∈ Vg ∪ der(Fg), u 6= w, |{w, u}C| ≤ xmax}
RP,A,AR,Vg,Fg,F,B = {({w, u}, XP,A,AR,Vg,Fg,F,B({w, u})) :

w ∈ der(F ), u ∈ vars(F ) \ vars(Fg) ∪ Vg ∪ der(Fg), u 6= w,

|{w, u}C| ≤ xmax}

An upper bound on the expected cardinality of the searched may be com-
puted given the maximum underlying dimension, kmax. The upper bound
on the expected cardinality in the first layer, F = ∅, is∑

k∈{2...min(kmax,s)}

(
s

k

)

where s = |Vg ∪ der(Fg)| and min = minimum. In subsequent layers, F 6= ∅,
the upper bound on the expected cardinality is∑

k∈{2...min(kmax,t)}

(
t

k

)
−
(
t− x
k

)

where W = vars(F ) \ vars(Fg) ∪ Vg ∪ der(Fg), t = |W |, X = der(F ) and
x = |X|.

Define the level limited-layer limited-underlying limited-breadth fud tree searcher

ZP,A,AR,Vg,Fg,L = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,Vg,Fg,L, {∅})

where the neighbourhood function returns a singleton

PP,A,AR,Vg,Fg,L(F ) = {G :

G = F ∪
⋃
{{T} ∪ depends(Fg, und(T )) :

K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,Vg,Fg,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F∪Fg,n,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

Note that the resultant fud of the level fud tree searcher, ZP,A,AR,Vg,Fg,L, has
its underlying variables flattened to the substrate. That is, und(FL) ⊆ VA,
where {FL} = leaves(tree(ZP,A,AR,Vg,Fg,L)). So it is not necessary to supply
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Fg along with FL.

Whereas in the limited-layer limited-underlying limited-breadth fud tree searcher,
ZP,A,AR,L, the layers of the fud increment at each step along the path,
∀(i, G) ∈ L (layer(G, der(G)) = i) where L ∈ paths(tree(ZP,A,AR,L)), in the
level fud tree searcher, ZP,A,AR,Vg,Fg,L, there is no such guarantee.

Define the level limited-derived derived variables set list maximiser

ZP,A,AR,Fg,F,D = maximiseLister(XP,A,AR,F,D, PP,A,AR,Fg,F,D, top(omax), RP,A,AR,Fg,F,D)

where the neighbourhood function is

PP,A,AR,Fg,F,D(D) = {(J,XP,A,AR,F,D(J)) :

(K, ·) ∈ D, w ∈ vars(F ) \ VA \ vars(Fg) \K,
J = K ∪ {w}, |JC| ≤ wmax, der(depends(F, J)) = J}

and the initial subset is

RP,A,AR,Fg,F,D = {(J,XP,A,AR,F,D(J)) :

w, u ∈ vars(F ) \ VA \ vars(Fg), u 6= w,

J = {w, u}, |JC| ≤ wmax, der(depends(F, J)) = J}

The practicable level shuffle content alignment valency-density fud inducer,
I
′

z,csd,F,∞,q,P,Vg,Fg
, may then be implemented

I
′∗
z,csd,F,∞,q,P,Vg,Fg

(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,Vg,Fg,L)),

K ∈ maxd(elements(ZP,A,AR,Fg,FL,D)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

Of the variations described above of the implementation of practicable
shuffle content alignment valency-density fud inducer, I

′

z,csd,F,∞,q,P , only the
practicable limited-valency shuffle content alignment valency-density fud in-
ducer, I

′

z,csd,F,∞,q,P,w, is potentially unrestricted. That is, the limited-valency

inducer, I
′

z,csd,F,∞,q,P,w, can perform the same search as the unlimited inducer,

I
′

z,csd,F,∞,q,P , if the maximum valency is set equal to the maximum underlying
volume, umax = xmax. The other variations all have restricted functional-
ity with respect to the unlimited inducer, I

′

z,csd,F,∞,q,P , no matter what the
parameters.
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As shown above, the use of a shuffle histogram, AR, is a practicable ap-
proximation to the independent, AX, in the practicable shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P . This allows optimisations to
avoid a two stage (i) search of possibly overlapping fuds, select(TA, NA) ⊂
F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, followed by (ii) filtering of non-overlapping fuds,
{F : F ∈ select(TA, NA), nd(F )} ⊂ F∞,UA,VA ∩ Fn ∩ Fq. The optimis-
ers do this by maximisation of the shuffle content alignment valency-density
to construct fuds that approximate loosely to recursively non-overlapping
pluri-partition fuds, from which an approximately non-overlapping top trans-
form can be chosen. The same reasoning may be extended to a fud de-
composition inducer. Here a shuffle histogram is constructed from each
of the slices of the fuds of the decomposition. Each shuffle approximates
to the independent of the contingent sample. Redefine the shuffle indices,
RA ⊆ {1 . . . zA!nA}, where A ∈ Az(A), zA = size(A) and nA = |vars(A)|. Re-
define the scaled shuffle histogram, AR(A) = scalar(1/|R(A)|)∗

∑
r∈R(A) LA(r)

where XA ∈ enums(shuffles(history(A))) and LA = map(his, flip(XA)). Then
the scaled contingent shuffle histogram is (A ∗ C)R(A∗C) ≈ (A ∗ C)X, where
(·, C) ∈ cont(D) and D ∈ DF,∞,UA,VA .

The practicable summed shuffle content alignment valency-density fud decom-
position inducer, which, given substrate histogram A ∈ Az, is constrained

I
′∗
z,Scsd,D,F,∞,q,P (A) ⊆
{(D, I∗Scsd((A,D))) :

D ∈ DF,∞,UA,VA ∩ trees(S × Fq),

∀(C,F ) ∈ cont(D)

(I∗a (A ∗ C ∗ FT)− I∗a ((A ∗ C)R(A∗C) ∗ FT) > 0)} ∪
{(D∅, 0)}

where D∅ = {((∅, ∅), ∅)} and the summed shuffle content alignment valency-
density computer IScsd ∈ computers is defined as

I∗Scsd((A,D)) =∑
(I∗a (A ∗ C ∗ FT)− I∗a ((A ∗ C)R(A∗C) ∗ FT))/I∗cvl(F ) : (C,F ) ∈ cont(D)

In some cases the practicable inducer optimisation may be empty. For exam-
ple, the independent substrate histogram, AX, cannot have non-zero positive
summation content alignment. The maximum function, maxr(I

′∗
z,Scsd,D,F,∞,q,P (AX)),

would therefore be undefined for some inducer domain substrate histograms.
In order to have well defined maximum correlation, the practicable inducer
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is therefore stuffed with the empty decomposition, D∅ ∈ DF, in the case of
empty optimisation.

Each non-zero positive shuffle content alignment valency-density fud de-
composition of the application of the practicable fud decomposition inducer,
I
′

z,Scsd,D,F,∞,q,P , is related to the computation of fuds of the slices in the

practicable fud inducer, I
′

z,csd,F,∞,q,P , which is defined in terms of the limited-
layer limited-underlying limited-breadth fud tree searcher, ZP,A,AR,L, and the
limited-derived derived variables set list maximiser, ZP,A,AR,F,D,

∀(D, a) ∈ I ′∗z,Scsd,D,F,∞,q,P (A) (a > 0 =⇒
(∀(C,F ) ∈ cont(D) ∀FL ∈ leaves(tree(ZP,A∗C,(A∗C)R(A∗C),L))

∃K ∈ maxd(elements(ZP,A∗C,(A∗C)R(A∗C),FL,D)) (F = depends(FL, K))))

Note that the practicable summed shuffle content alignment valency-density
fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P , is defined such that the contingent
histogram, A ∗ C, is shuffled, (A ∗ C)R(A∗C), rather taking the contingent of
the shuffled histogram, AR(A) ∗ C. If the contingent shuffle histogram were
used then any biases for or against the alignment in the shuffle, AR(A), in the
parent slice would be safely removed. However, the size of the contingent
shuffle histogram is not necessairly equal to that of the contingent sample,
size(AR(A) ∗ C) 6= size(A ∗ C), and so scaling is often necessary. This would
not be a disadvantage if it were not the case that typically the entropy of
the parent derived histogram of the contingent shuffle is greater than that
of the sample, and so the contingent shuffle slice size tends to zero much
more quickly than the sample slice size. Therefore the scaling factor is often
large, making the contingent shuffle less effective as an approximation to the
independent slice, (A ∗ C)X.

In section ‘Substrate models computation’ above, the finite limited-models
infinite-layer fud decomposition tree, tdfiq(U) ∈ P(VU)×DF,d → trees(DF,d),
is a tree of immediate super-decompositions of limited-models infinite-layer
substrate fuds. The decompositions of the tree are a subset the limited-models
infinite-layer substrate fud decompositions

DF,∞,U,V ∩ trees(S × Fq) ⊃ elements(tdfiq(U)(V ))

The limited-models infinite-layer substrate fud decompositions tree searcher
chooses a sublist of a path of immediate super-decompositions from the
limited-models infinite-layer fud decomposition tree. Define the limited-models
infinite-layer substrate fud decompositions tree searcher

ZP,A,D,F = searchTreer(DF,∞,U,V ∩ trees(S × Fq), PP,A,D,F, RP,A,D,F)
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where the neighbourhood function returns a singleton

PP,A,D,F(D) = {E :

(·, S,G, L) ∈ maxd(order(DQ×S×X 2 , {(size(B), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A), size(B) > 0,

FL ∈ leaves(tree(ZP,B,BR(B),L)),

(K, a) ∈ max(elements(ZP,B,BR(B),FL,D)), a > 0,

G = depends(FL, K)})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

where

RP,A,D,F = {{((∅, G), ∅)} :

G ∈ maxd(order(DF, {G :

FL ∈ leaves(tree(ZP,A,AR(A),L)),

(K, a) ∈ max(elements(ZP,A,AR(A),FL,D)), a > 0,

G = depends(FL, K)}))}

The computation of the slice B is a tractable fud application equivalent to
the application of the fud’s transforms’ histograms, his(HL), multiplied by
the slice derived state, {RL∪S}U, followed by reduction to the substrate, VA,

apply(VA, VA, his(HL)∪{{RL∪S}U}, A) = A∗
∏

his(HL)∗{RL∪S}U % VA

The neighbourhood function PP,A,D,F(D) returns an empty set or a singleton
super-decomposition with an additional slice having non-zero positive shuffle
content alignment. The order DQ×S×X 2 selects by slice size and then arbitrar-
ily. Together the orders DQ×S×X 2 and DF ensure that the fud decomposition
is distinct. The tree of the limited-models infinite-layer substrate fud decom-
positions tree searcher has at most one path, |paths(tree(ZP,A,D,F))| ≤ 1, and
hence the tree has at most one leaf, |leaves(tree(ZP,A,D,F))| ≤ 1. If the path
exists, {L} = paths(tree(ZP,A,D,F)), it is in the limited-models infinite-layer
fud decomposition tree, L ∈ subpaths(tdfiq(UA)(VA, ∅)).
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The practicable summed shuffle content alignment valency-density fud de-
composition inducer may then be implemented

I
′∗
z,Scsd,D,F,∞,q,P (A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F)), {D} = Q

The highest-layer limited-models infinite-layer substrate fud decompositions
tree searcher, ZP,A,D,F,d, is defined exactly the same as the limited-models
infinite-layer substrate fud decompositions tree searcher, ZP,A,D,F, except that
it depends instead on the highest-layer limited-layer limited-underlying limited-
breadth fud tree searcher, ZP,B,BR,L,d, and the highest-layer limited-derived
derived variables set list maximiser, ZP,B,BR,FL,D,d. The practicable highest-
layer summed shuffle content alignment valency-density fud decomposition
inducer is implemented

I
′∗
z,Scsd,D,F,∞,q,P,d(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,d)), {D} = Q

The common-fud limited-underlying tuple set list maximiser, ZP,A,AR,Fc,F,B,
and the common-fud limited-layer limited-underlying limited-breadth fud tree
searcher, ZP,A,AR,Fc,L, of the practicable common-fud shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P,Fc
, can be used to implement

an accumulating fud along the path of immediate super-decompositions of the
limited-models infinite-layer fud decomposition tree. An accumulated fud al-
lows children slice fuds to incorporate the lower layers of parent slice fuds in
a decomposition tree path, thus reducing computation in some cases. Imple-
mentations of fud tree searchers that do not use partition variables, F /∈ FU,P,
also avoid unnecessary duplication of partition variables. These implementa-
tions can also detect fud symmetries in the decomposition, without the need
to compare fuds in different paths explicitly.

An accumulating-fud fud decompositions tree searcher must carry around
the accumulating-fud so far. So the searcher domain consists of pairs of de-
compositions and common-fuds. Define the accumulating-fud limited-models
infinite-layer substrate fud decompositions tree searcher

ZP,A,D,F,c =

searchTreer((DF,∞,U,V ∩ trees(S × Fq))× (F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh),

PP,A,D,F,c, RP,A,D,F,c)
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where the neighbourhood function returns a singleton

PP,A,D,F,c((D,Fc)) = {(E,Gc) :

(·, S,G, L,Gc) ∈ maxd(order(DQ×S×X 2×F, {(size(B), S,G, L, Fc ∪ FL) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A), size(B) > 0,

FL ∈ leaves(tree(ZP,B,BR(B),Fc,L)),

(K, a) ∈ max(elements(ZP,B,BR(B),FL,D)), a > 0,

G = depends(FL, K)})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

where

RP,A,D,F,c = {({((∅, G), ∅)}, FL) :

(G,FL) ∈ maxd(order(DF2 , {(G,FL) :

FL ∈ leaves(tree(ZP,A,AR(A),L)),

(K, a) ∈ max(elements(ZP,A,AR(A),FL,D)), a > 0,

G = depends(FL, K)}))}

The practicable accumulating-fud summed shuffle content alignment valency-
density fud decomposition inducer may then be implemented

I
′∗
z,Scsd,D,F,∞,q,P,c(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,c)), {(D, ·)} = Q

If the inclusion functions of the tuple set list maximiser and the derived vari-
ables set list maximiser in the common-fud fud tree searcher, ZP,A,AR,Fc,L, are
further ordered by descending sum derived variables layer in order to exclude
redundant reframe variables at the inclusion boundaries, an implementation
may also explicitly recursively exclude reframe transforms from the top layer
of the common fud, Gc, where these do not also appear in the decomposition
fud, G.
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The level limited-layer limited-underlying limited-breadth fud tree searcher,
ZP,A,AR,Vg,Fg,L, of the practicable level shuffle content alignment valency-density
fud inducer, I

′

z,csd,F,∞,q,P,Vg,Fg
, can be used to implement a fud decomposition

inducer parameterised by a heritable tree of levels. Let Zg ∈ trees(N>0 ×
P(V)×F) be the level hierarchy. A node ((wmaxg, Vg, Fg), Xg) ∈ nodes(Zg)
parameterises the node’s level fud tree searcher, ZP,A,AR,Vg,Fg,L, with (i) the
maximum derived volume, wmaxg, (ii) the subset of the substrate, Vg, and (iii)
the union of (a) the level fud, Fg, and (b) the level fuds from the application
of recursively parameterised level fud tree searchers of the children nodes,
Xg. The level hierarchy has various uses including (i) the partitioning of a
large substrate, for example into local regions implied by an external metric,
so that the resultant fud has complete coverage, (ii) allowing multiple over-
lapping representations of a small substrate, (iii) hinting derived variables of
the substrate that are externally known to be in alignments, and (iv) exclud-
ing mono-valent substrate variables that sometimes occur near the leaves of
a decomposition.

Define the level limited-models infinite-layer substrate fud decompositions tree
searcher

ZP,A,D,F,g = searchTreer(DF,∞,U,V ∩ trees(S × Fq), PP,A,D,F,g, RP,A,D,F,g)

where the parameters includes the level hierarchy tree, Zg ∈ set(P ), where
Zg ∈ trees(N>0 × P(VA)× (F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh)). The neighbourhood
function is defined

PP,A,D,F,g(D) = {E :

(·, S,G, L) ∈ maxd(order(DQ×S×X 2 , {(size(B), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A), size(B) > 0,

G = level(B,BR(B))(Zg), G 6= ∅})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

where

RP,A,D,F,g = {{((∅, G), ∅)} : G ∈ maxd(order(DF, level(A,AR(A))(Zg)))}
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and level(A,AR) ∈ trees(N>0 × P(VA) × (F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh)) →
(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh) is defined

level(A,AR)(Zg) =
⋃
{G :

((wmaxg, Vg, Fg), Xg) ∈ Zg,

Fh = level(A,AR)(Xg), wmaxg ∈ set(Pg),

FL ∈ leaves(tree(ZPg,A,AR,Vg,Fg∪Fh,L)),

(K, a) ∈ max(elements(ZPg,A,AR,Fg∪Fh,FL,D)), a > 0,

G = depends(FL, K)}

The practicable level summed shuffle content alignment valency-density fud
decomposition inducer may then be implemented

I
′∗
z,Scsd,D,F,∞,q,P,g(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,g)), {(D, ·)} = Q

The limited-nodes limited-models infinite-layer substrate fud decomposi-
tions tree searcher, ZP,A,D,F,f , is a variation of the limited-models infinite-layer
substrate fud decompositions tree searcher, ZP,A,D,F, in which the cardinality
of the fuds of the decomposition tree is limited to the maximum fuds limit
fmax ∈ N>0. The neighbourhood function PP,A,D,F,f is modified

PP,A,D,F,f(D) = {E :

|nodes(D)| < fmax,

(·, S,G, L) ∈ maxd(order(DQ×S×X 2 , {(size(B), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A), size(B) > 0,

FL ∈ leaves(tree(ZP,B,BR(B),L)),

(K, a) ∈ max(elements(ZP,B,BR(B),FL,D)), a > 0,

G = depends(FL, K)})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}
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The practicable limited-nodes summed shuffle content alignment valency-density
fud decomposition inducer is implemented

I
′∗
z,Scsd,D,F,∞,q,P,f(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,f)), {D} = Q

A further variation of the limited-nodes limited-models infinite-layer sub-
strate fud decompositions tree searcher, ZP,A,D,F,f , is to modify the sequence of
fud search and the termination condition in order to minimise label entropy.
Let the query variables VQ ⊂ VA be a proper subset of the substrate vari-
ables, VQ 6= VA. The difference forms the label variables VL = VA \ VQ.
Here the modelling is restricted to the query variables, VQ, so that the
underlying variables of the decomposition D are a subset, und(D) ⊆ VQ.
Given a query histogram Q ∈ AU in the query variables, vars(Q) = VQ,
the modelled transformed conditional product is a probability histogram if
(Q ∗DT)F ∩ (A ∗DT)F 6= ∅,

(Q ∗DT ∗ his(DT) ∗ A)∧ % VL ∈ A ∩ P

where his = histogram.

The slice histogram of the neighbourhood function is restricted to the query
variables, B%VQ, where the slice histogram is B = apply(VA, VA, his(HL) ∪
{{RL ∪ S}U}, A). The sized label entropy of the slice is defined as

size(B) ∗ entropy(B%VL)

If the slice is an effective singleton in the label variables, |(B%VL)F| = 1,
then the sized label entropy is zero, entropy(B%VL) = 0.

The label-entropy limited-nodes limited-models infinite-layer substrate fud de-
compositions tree searcher, ZP,A,D,F,f,e,VL , is such that (i) the limited-layer
limited-underlying limited-breadth fud tree searcher, ZP,A,AR,L, and the limited-
derived derived variables set list maximiser, ZP,A,AR,F,D, are restricted to
the query variables, VQ, (ii) the order of fud decomposition is modified to
maximise slice label entropy and then slice size, and (iii) the decomposition
of a slice with zero label entropy terminates. The neighbourhood function
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PP,A,D,F,f,e,VL is modified

PP,A,D,F,f,e,VL(D) = {E :

|nodes(D)| < fmax,

(·, S,G, L) ∈ maxd(order(DQ2×S×X 2 , {((eB, zB), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A),

zB = size(B), eB = zB ∗ entropy(B%VL), eB > 0,

B′ = B%(VA \ VL), FL ∈ leaves(tree(ZP,B′,B′
R(B′),L

)),

(K, a) ∈ max(elements(ZP,B′,B′
R(B′),FL,D)), a > 0,

G = depends(FL, K)})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

The practicable label-entropy limited-nodes summed shuffle content alignment
valency-density fud decomposition inducer is implemented

I
′∗
z,Scsd,D,F,∞,q,P,f,e,VL(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,f,e,VL)), {D} = Q

A similar method is to modify the sequence of fud search and the termination
condition in order to minimise non-modal label size. The non-modal label size
of the slice is defined as

size(B)−maxr(B%VL)
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The neighbourhood function PP,A,D,F,f,m,VL is modified

PP,A,D,F,f,m,VL(D) = {E :

|nodes(D)| < fmax,

(·, S,G, L) ∈ maxd(order(DQ2×S×X 2 , {((mB, zB), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A),

zB = size(B), mB = zB −maxr(B%VL), mB > 0,

B′ = B%(VA \ VL), FL ∈ leaves(tree(ZP,B′,B′
R(B′),L

)),

(K, a) ∈ max(elements(ZP,B′,B′
R(B′),FL,D)), a > 0,

G = depends(FL, K)})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

The practicable label-mode limited-nodes summed shuffle content alignment
valency-density fud decomposition inducer is implemented

I
′∗
z,Scsd,D,F,∞,q,P,f,m,VL(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,f,m,VL)), {D} = Q

The delabelled limited-models infinite-layer substrate fud decompositions
tree searcher, ZP,A,D,F,x,VL , is a variation of the limited-models infinite-layer
substrate fud decompositions tree searcher, ZP,A,D,F, which allows the fud
F to be constructed on the entire substrate, VA, including label variables,
VL ⊂ VA, but then recursively removes all variables from the fud that di-
rectly or indirectly depend on the label variables, F ′ = depends(F, {w : w ∈
der(F ), vars(depends(F, {w}))∩VL = ∅}). If there are some derived variables
of the fud that do not depend on the label variables, then the resultant fud
is not empty, ∃w ∈ der(F ) (vars(depends(F, {w})) ∩ VL = ∅) =⇒ F ′ 6= ∅.
The underlying variables of the resultant decomposition do not include la-
bel variables, und(D) ∩ VL = ∅. This method allows the fud tree searcher,
ZP,A,AR,L, to detect alignments between label variables and non-label vari-
ables, but does not require queries to contain the label variables, for example
by expanding with the cartesian, VL ⊂ vars(Q ∗ V C

L ).
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The neighbourhood function PP,A,D,F,x,VL is modified

PP,A,D,F,x,VL(D) = {E :

(·, S,G, L) ∈ maxd(order(DQ×S×X 2 , {(size(B), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A), size(B) > 0,

FL ∈ leaves(tree(ZP,B,BR(B),L)),

(K, a) ∈ max(elements(ZP,B,BR(B),FL,D)), a > 0,

G = depends(FL, {w : w ∈ K, vars(depends(FL, {w})) ∩ VL = ∅}),
G 6= ∅})),

M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

The practicable delabelled summed shuffle content alignment valency-density
fud decomposition inducer is implemented

I
′∗
z,Scsd,D,F,∞,q,P,x,VL(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,x,VL)), {D} = Q

The level limited-layer limited-underlying limited-breadth fud tree searcher,
ZP,A,AR,Vg,Fg,L, of the practicable level shuffle content alignment valency-density
fud inducer, I

′

z,csd,F,∞,q,P,Vg,Fg
, can also be used to implement a supervised fud

decomposition inducer parameterised by (i) a tree of level substrates and (ii)
a goodness function. Instead of creating a fud from a hierarchical tree of
levels, as in the practicable level summed shuffle content alignment valency-
density fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,g, above, the supervised fud
decomposition inducer uses the goodness function to select the maximum
goodness level substrate and its corresponding fud from the maximum good-
ness level substrate path. Let Zg ∈ trees(N>0 × P(V) × F) be the level
substrate tree. A node ((wmaxg, Vg, Fg), Xg) ∈ nodes(Zg) parameterises the
node’s level fud tree searcher, ZP,A,AR,Vg,Fg,L, with (i) the maximum derived
volume, wmaxg, (ii) the subset of the substrate, Vg, and (iii) the level fud, Fg.
Let good(U) ∈ AU ×AU ×FU → Q be some goodness function given in the
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parameters, good ∈ set(P ).

Define the goodness limited-models infinite-layer substrate fud decompositions
tree searcher

ZP,A,D,F,p = searchTreer(DF,∞,U,V ∩ trees(S × Fq), PP,A,D,F,p, RP,A,D,F,p)

where the parameters includes the level substrate tree, Zg ∈ set(P ), where
Zg ∈ trees(N>0 × P(VA)× (F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh)). The neighbourhood
function is defined

PP,A,D,F,p(D) = {E :

(·, S,G, L) ∈ maxd(order(DQ×S×X 2 , {(size(B), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A), size(B) > 0,

(·, G) = best(B,BR(B))(Zg), G 6= ∅})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

where

RP,A,D,F,p = {{((∅, G), ∅)} : (·, G) = best(A,AR(A))(Zg), G 6= ∅}

and best(A,AR) ∈ trees(N>0×P(VA)× (F∞,UA,VA ∩Fu ∩Fb ∩Fh))→ (Q×
(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh)) is defined

best(A,AR)(Zg) = if(Q 6= ∅, if((G′ 6= ∅) ∧ (g′ > g), (g′, G′), (g,G)), (0, ∅))
Q = maxd(order(DQ×F×X ,

{(good(UA)(A,AR, G), G,Xg) : ((wmaxg, Vg, Fg), Xg) ∈ Zg,

wmaxg ∈ set(Pg),

FL ∈ leaves(tree(ZPg,A,AR,Vg,Fg,L)),

(K, a) ∈ max(elements(ZPg,A,AR,Fg,FL,D)), a > 0,

G = depends(FL, K)}))
{(g,G,Xg)} = Q,

(g′, G′) = best(A,AR)(Xg)
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The practicable goodness summed shuffle content alignment valency-density
fud decomposition inducer may then be implemented

I
′∗
z,Scsd,D,F,∞,q,P,p(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,p)), {(D, ·)} = Q

An example of the goodness function is simply shuffle content alignment
valency-density computer application,

good(U)(A,AR, F ) = I∗csd((A,AR, F ))

Another example is a goodness function that minimises label entropy. Let
the query variables VQ ⊂ VA be a proper subset of the substrate vari-
ables, VQ 6= VA. The difference forms the label variables VL = VA \ VQ.
Here the level substrates are restricted to the query variables, ∀(·, Vg, ·) ∈
elements(Zg) (Vg ⊆ VQ), and ∀(·, ·, Fg) ∈ elements(Zg) (und(Fg) ⊆ VQ). The
label entropy is the sum of the component label entropies,∑

(·,C)∈(FT)−1

size(A ∗ C)× entropy(A ∗ C % VL)

and the goodness function is the negative label entropy computed by his-
togram application

good(U)(A, ·, F ) = I∗≈R(−
∑

size(B)× entropy(B%VL) :

R ∈ (A ∗ FT)FS, B = apply(VA, VA, his(F ) ∪ {{R}U}, A))

A similar example is a goodness function that minimises non-modal label size.
The non-modal label size is the sum of the component non-modal label sizes,∑

(·,C)∈(FT)−1

size(A ∗ C)−maxr(A ∗ C % VL)

and the goodness function is the negative non-modal label size computed by
histogram application

good(U)(A, ·, F ) = −
∑

size(B)−maxr(B%VL) :

R ∈ (A ∗ FT)FS, B = apply(VA, VA, his(F ) ∪ {{R}U}, A)

4.22.4 Implementation

The implementation of practicable inducers must exclude partition vari-
ables because they are impracticable. In the following computers none of the
instantiated variables are partition variables.
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In order to implement the limited-underlying tuple set list maximiser,
ZP,A,AR,F,B, define the limited-underlying tuple set list builder IP,U,B ∈ computers
such that (i) the domain is domain(IP,U,B) = P(VU) × FU,1 × AU × AU , (ii)
the range is range(IP,U,B) = P(VU)×AU ×AU → Q, and (iii) the application
is

I∗P,U,B((V, ∅, X,XR)) = topd(bbmax/mmaxc)(buildb(V,X,XR, init(V ), ∅))
I∗P,U,B((V, F,X,XR)) = topd(bbmax/mmaxc)(buildb(vars(F ) ∪ V,X,XR,

init(der(F )), ∅))

where init(V ) := {((({w}, ∅, ∅), 0), 0) : w ∈ V }, buildt = ((P(VU) × AU ×
AU)×Q)× (Q×N×Q×N×N) and buildb ∈ P(VU)×AU ×AU ×buildt×
buildt→ buildt is defined

buildb(W,X,XR, Q,N) =

if(M 6= ∅, buildb(W,X,XR,M,N ∪M), final(N)) :

P = {J : (((K, ·, ·), ·), ·) ∈ Q, w ∈ W \K, J = K ∪ {w}},
M = top(omax)({(((J,B,BR), a1 − b1),

(a1 − a2 − b1 + b2, − l, − b1 + b2, − u, DX (J))) :

J ∈ P, u = |JC|, u ≤ xmax, l = sumlayer(F, J),

B = I∗%((J,X)), BR = I∗%((J,XR)),

a1 = I∗S≈ln!(B), a2 = I∗S≈ln!(I
∗
X(B)),

b1 = I∗S≈ln!(BR), b2 = I∗S≈ln!(I
∗
X(BR))})

where final(N) := {(((K,A,B), y), a) : (((K,A,B), y), a) ∈ N, |K| > 1},
DX ∈ enums(X ) is an arbitrary order, sumlayer ∈ F × P(V) → N, the re-
ducer I% = reducer ∈ computers, the independenter IX = independenter ∈
computers is such that I∗X(A) = AX, and IS≈ln! = sumlogfactorialer ∈
computers is defined

I∗S≈ln!(A) =
∑
S∈AFS

I∗≈ln!(AS)

where I≈ln! = logfactorialer ∈ computers is defined I∗≈ln!(x) ≈ ln Γ!x.

The tuples of the limited-underlying tuple set list builder IP,U,B, are pluri-
variate, ∀((K, ·, ·), ·) ∈ I∗P,U,B((V, F,X,XR)) (|K| > 1).

The buildb function argument histograms, X,XR, have the same variables,
vars(X) = vars(XR). The argument variables, W , are a subset of the argu-
ment histograms variables, W ⊆ vars(X). It is sufficient that the system, U ,
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contains the variables of the argument histograms, vars(X) ⊆ vars(U).

The argument histograms, X,XR, are in a list representation or binary map
representation, because in some cases the volume, |vars(X)C|, is impractica-
bly large for an array representation. The resultant histograms, B,BR, may
be in array representation because their volume cannot exceed the given
limit, |BC| ≤ xmax, which is chosen to be practicable.

The limited-underlying tuple set list builder implements the limited-underlying
tuple set list maximiser, insofar as the inclusion boundaries are the same,
dom(I∗P,U,B((V, F,A,AR))) ⊆ top(bbmax/mmaxc)(elements(ZP,A,AR,F,B)).

The tuple set list builder never returns more than bbmax/mmaxc tuples,
because of the trailing arbitrary ordering of the tuples, DX (J).

Although inducers are defined only for substrate histograms, A ∈ Az, which
are constrained such that the independent sample histogram is completely
effective, AXF = AC, the implementation of induction computers here only
requires that the argument histogram, X, be in the system U , X ∈ AU .

The limited-underlying tuple set list builder returns the non-independent con-
tent sum factorial, a1 − b1 = I∗S≈ln!(B) − I∗S≈ln!(BR), to avoid unnecessary
recomputation subsequently in the partitioner.

The computation of sumlayer(F, J) is costly so some implementations may
exclude it, especially as it only affects tuples in the inclusion boundary. If
the layerer (see later) is subject to the excluded-self restriction then it is
less likely that there will be duplicate tuple alignments, so the inclusion bou-
undary is more likely to be a singleton.

Another performance improvement is to restrict the builder to variables that
are multi-effective, {u : u ∈ V, |(X%{u})F| > 1}. This prevents some vari-
ables from being included in the tuple that are necessarily independent of the
other variables in the tuple.

To implement the highest-layer limited-derived derived variables set list
maximiser, ZP,A,AR,F,D,d, define the highest-layer limited-derived derived vari-
ables set builder IP,U,D,d ∈ computers such that (i) the domain is domain(IP,U,D,d) =
P(VU)× FU,1 ×AU ×AU , (ii) the range is range(IP,U,D,d) = (P(VU)×AU ×
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AU)→ Q, and (iii) the application is

I∗P,U,D,d((V, F,X,XR)) = maxd(buildd(vars(F ) \ V,X,XR, init(der(F )), ∅))

where buildd ∈ P(VU)×AU ×AU × buildt× buildt→ buildt is defined

buildd(W,X,XR, Q,N) =

if(M 6= ∅, buildb(W,X,XR,M,N ∪M), final(N)) :

P = {J : (((K, ·, ·), ·), ·) ∈ Q, w ∈ W \K, J = K ∪ {w}},
M = top(omax)({(((J,B,BR), (a− b)/c),

((a− b)/c, − l, − b/c, − u, DX (J))) :

J ∈ P, u = |JC|, u ≤ wmax, der(depends(F, J)) = J,

m = |J |, l = sumlayer(F, J),

B = I∗%((J,X)), BR = I∗%((J,XR)),

a = I∗a (B), b = I∗a (BR), c = I∗≈pow((u, 1/m))})

where the power approxer I≈pow ∈ computers is such that I∗≈pow((x, y)) ≈ xy,
and the alignmenter Ia = alignmenter ∈ computers is such that I∗a (A) ≈
algn(A).

The tuples of the highest-layer limited-derived derived variables set builder
IP,U,D,d, are pluri-variate, ∀((K, ·, ·), ·) ∈ I∗P,U,D,d((V, F,X,XR)) (|K| > 1).

The buildd function argument histograms, X,XR, have the same variables,
vars(X) = vars(XR). The argument variables, W , are a subset of the argu-
ment histograms variables, W ⊆ vars(X). It is sufficient that the system, U ,
contains the variables of the argument histograms, vars(X) ⊆ vars(U).

The argument histograms, X,XR, are in a list representation or binary map
representation, because in some cases the volume, |vars(X)C|, is impractica-
bly large for an array representation. The resultant histograms, B,BR, may
be in array representation because their volume cannot exceed the given
limit, |BC| ≤ wmax, which is chosen to be practicable.

If the fud is a non-empty substrate fud, F ∈ FUA,VA \ {∅}, the highest-
layer limited-derived derived variables set builder implements the highest-
layer limited-derived derived variables set list maximiser, insofar as the in-
clusion boundaries are the same,

dom(I∗P,U,D,b((V, F,A,AR))) ⊆ top(bbmax/mmaxc)(elements(ZP,A,AR,F,D,b))
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Similarly to the tuple builder above, some implementations may drop the
computation of sumlayer(F, J), especially if the layerer is subject to the
excluded-self restriction.

Also, some implementations may drop the exclusion of hidden variables
J = der(depends(F, J)). This computation is costly, but dropping may in
some cases lead to tuple rolls that result in a single derived variable. How-
ever, this is also true of the excluded-self restriction which is applied in the
layerer (see later).

In order to implement the limited-valency contracted decrementing linear
non-overlapping fuds list maximiser initial set, RP,A,AR,F,n,w,−,K , the tuple
partitioner IP,U,K ∈ computers is defined such that (i) domain(IP,U,K) =
(P(VU) × AU × AU) × Q, (ii) range(IP,U,K) = P(L(SU → N) × AU × AU),
and (iii) the application is

I∗P,U,K(((K,B,BR), y1)) =

topd(pmax)({((N,C,CR), ((y1 − a2 + b2)/c, b2/c, −m, DX (J))) :

m ∈ {2 . . .mmax}, Y ∈ S(K,m), (∀J ∈ Y (|JC| ≤ umax)),

N = {(i, order(DS, J
CS)) : (J, i) ∈ order(DP(V), Y )},

T = ({
⋃
{S ∪ {(w, u)} : (w, (S, u)) ∈ L} : L ∈

∏
N}U, {1 . . .m}),

C = I∗∗T((T,B)), CR = I∗∗T((T,BR)),

a2 = I∗S≈ln!(I
∗
X(C)), b2 = I∗S≈ln!(I

∗
X(CR)), c = I∗≈pow((v, 1/m))})

where v = |KC|, vars(U)∩N = ∅, DS ∈ enums(SU), DP(V) ∈ enums(P(VU)),
and the transformer I∗T = transformer ∈ computers is such that I∗∗T((T,A)) =
A ∗ T .

The tuple partitioner has non-empty application if |K| ≥ 2. The resul-
tant histograms, C,CR where (·, C, CR) ∈ I∗P,U,K((K,B,BR, y1)), should be in
array representation, suitable for succeeding value roll computers. The tuple
partitioner assumes that the array index variables are not system variables,
vars(U) ∩N = ∅.

Because (i) the alignmenter equals the difference in the non-independent sum
log factorialer and the independent sum log factorialer, I∗a (A) = I∗S≈ln!(A)−
I∗S≈ln!(A

X), and (ii) the non-independent terms are constant,
∑

S∈CS ln Γ!CS =∑
S∈BS ln Γ!BS, so only the independent terms,

∑
S∈CXS ln Γ!C

X
S , need be com-

puted for each of the possible partitions. Thus the non-independent part of
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the computation of the difference in alignments, I∗a (C) − I∗a (CR), need not
be re-computed, but can be carried from the tuple builder.

In order to implement the maximum-roll-by-derived-dimension limited-
valency contracted decrementing linear non-overlapping fuds list maximiser
initial set, RP,A,AR,F,n,w,−,K,mm, the maximum-roll-by-derived-dimension tuple
partitioner IP,U,K,mm ∈ computers is defined such that (i) domain(IP,U,K,mm) =
(P(VU)×AU ×AU)×Q, (ii) range(IP,U,K,mm) = P(L(SU → N)×AU ×AU),
and (iii) the application is

I∗P,U,K,mm(((K,B,BR), y1)) =⋃
{topd(pmax)({((N,C,CR), ((y1 − a2 + b2)/c, b2/c, −m, DX (J))) :

Y ∈ S(K,m), (∀J ∈ Y (|JC| ≤ umax)),

N = {(i, order(DS, J
CS)) : (J, i) ∈ order(DP(V), Y )},

T = ({
⋃
{S ∪ {(w, u)} : (w, (S, u)) ∈ L} : L ∈

∏
N}U, {1 . . .m}),

C = I∗∗T((T,B)), CR = I∗∗T((T,BR)),

a2 = I∗S≈ln!(I
∗
X(C)), b2 = I∗S≈ln!(I

∗
X(CR)), c = I∗≈pow((v, 1/m))}) :

m ∈ {2 . . .mmax}}

After constructing the initial set in a tuple partitioner, IP,U,K, the remain-
der of the limited-valency contracted decrementing linear non-overlapping
fuds list maximiser, ZP,A,AR,F,n,w,−,K , is implemented by means of value roll
computers, defined in section ‘Value roll computers’, above. The tuple-
partition value roller IP,U,R ∈ computers is defined such that (i) the do-
main is domain(IP,U,R) = P(L(SU → N) × AU × AU), (ii) the range is
range(IP,U,R) = P(L(SU → N)), and (iii) the application is

I∗P,U,R(Q) =

{N ′ :
M = {((N,RA, RB), (a− b)/c) :

(N,A,B) ∈ Q,
a = I∗a (A), b = I∗a (B),

w =
∏

(·,I)∈N

|ran(I)|, m = |N |, c = I∗≈pow((w, 1/m)),

RA = (a,A, I∗X(A)), RB = (b, B, I∗X(B))},
(N ′, ·, ·) ∈ topd(pmax)(rollb(M,M))}
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where rollb ∈ rollbt × rollbt → rollbt, where rollbt = L(SU → N) × (Q ×
AU ×AU)2 → Q, is defined

rollb(Q,P ) =

if(M 6= ∅, rollb(M,P ∪M), P ) :

M = top(pmax)({((N ′, R′A, R′B), (a′ − b′)/c′) :

((N,RA, RB), ·) ∈ Q,
V = dom(N), (·, A,AX) = RA, (·, B,BX) = RB,

YA = rals(N,A,AX), YB = rals(N,B,BX),

(v, I) ∈ N, |ran(I)| > 2, s, t ∈ ran(I), s > t,

N ′ = N \ {(v, I)} ∪ {(v, {(s, t)} ◦ I)},
R′A = I∗R,a(((V, v, s, t), YA, RA)),

R′B = I∗R,a(((V, v, s, t), YB, RB)),

(a′, ·, ·) = R′A, (b′, ·, ·) = R′B,

w =
∏

(·,I′)∈N ′
|ran(I ′)|, m = |V |, c′ = I∗≈pow((w, 1/m))})

where IR,a = rollValueAlignmenter ∈ computers and rals ∈ L(SU → N) ×
A×A → (V → (S → Q)) is defined as

rals(N,A,AX) :=

{(w, {(S,
∑

(I∗≈ln!(A(T )) : T ∈ AS, T ⊇ S)−∑
(I∗≈ln!(AX(T )) : T ∈ AS

X, T ⊇ S)) :

u ∈ ran(Nw), S = {(w, u)}}) : w ∈ dom(N)}

The roll value alignmenter, IR,a, requires that all histograms are implemented
in array histogram representations on ordered list state representations.

The value roll compositions do not necessarily lead to a contiguous set, so
in some cases ran(I) 6= {1 . . . |ran(I)|}. In some implementations, however,
a source value may be completely removed from the representation, rather
than simply zeroed out. In these cases the value roll compositions must also
value roll by one all values higher than the source values. That is, instead
of {(s, t)} ◦ I the composition is {(r, r− 1) : r ∈ ran(I), r > s} ◦ {(s, t)} ◦ I.

The operation to take the top(pmax) at each step requires that the value roll
list composition, I, be computed for each value roll because different value
roll lists can have the same composition. However, the computation is costly,
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so some implementations may simply take the top value roll lists rather than
the top value roll list compositions. The functionality is only equivalent
with respect to value roll list compositions when pmax = 1. An alterna-
tive is to implement the limited-valency maximum-roll contracted decrement-
ing linear non-overlapping fuds tree maximiser, ZP,A,AR,F,n,w,−,K,mr, which
only applies the pmax parameter to the initial set. The tuple partitioner,
IP,U,K, is unchanged and the tuple-partition value roller, IP,U,R, is modified
to use the max inclusion function instead of top(pmax). The maximum-roll
tuple-partition value roller IP,U,R,mr ∈ computers is defined such that (i) the
domain is domain(IP,U,R,mr) = L(SU → N) × AU × AU , (ii) the range is
range(IP,U,R,mr) = P(L(SU → N)), and (iii) the application is

I∗P,U,R,mr((N,A,B)) =

{N ′ :
M = {((N,RA, RB), (a− b)/c) :

a = I∗a (A), b = I∗a (B),

w =
∏

(·,I)∈N

|ran(I)|, m = |N |, c = I∗≈pow((w, 1/m)),

RA = (a,A, I∗X(A)), RB = (b, B, I∗X(B))},
(N ′, ·, ·) ∈ maxd(rollb(M,M))}

and

rollb(Q,P ) =

if(M 6= ∅, rollb(M,P ∪M), P ) :

M = max({((N ′, R′A, R′B), (a′ − b′)/c′) :

((N,RA, RB), ·) ∈ Q,
V = dom(N), (·, A,AX) = RA, (·, B,BX) = RB,

YA = rals(N,A,AX), YB = rals(N,B,BX),

(v, I) ∈ N, |ran(I)| > 2, s, t ∈ ran(I), s > t,

N ′ = N \ {(v, I)} ∪ {(v, {(s, t)} ◦ I)},
R′A = I∗R,a(((V, v, s, t), YA, RA)),

R′B = I∗R,a(((V, v, s, t), YB, RB)),

(a′, ·, ·) = R′A, (b′, ·, ·) = R′B,

w =
∏

(·,I′)∈N ′
|ran(I ′)|, m = |V |, c′ = I∗≈pow((w, 1/m))})

Next, the functionality of (i) the highest-layer limited-layer limited-underlying
limited-breadth fud tree searcher, ZP,A,AR,L,d, and (ii) the highest-layer limited-
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derived derived variables set list maximiser, ZP,A,AR,F,D,d, is implemented in
the highest-layer layerer IP,U,L,d ∈ computers, which is defined such that (i)
the domain is domain(IP,U,L,d) = P(VU) × AU × AU × N, (ii) the range is
range(IP,U,L,d) = U × F × (P(V)→ Q), and (iii) the application is

I∗P,U,L,d((V,A,AR, f)) = layer(V, U, ∅, ∅, A,AR, f, 1)

where layer ∈ P(V)×U ×F × ((P(V)×A×A)→ Q)×A×A×N×N→
(U × F × (P(V)→ Q)) is defined

layer(V, U, F,M,X,XR, f, l) =

if((l ≤ lmax) ∧ (H 6= ∅) ∧ (M 6= ∅ =⇒ maxr(M ′) > maxr(M)),

layer(V, U ′, F ∪H,M ′, X ′, X ′R, f, l + 1),

(U, F,M)) :

L = {(b, (T, (w, ran(I)))) :

((·, I), b) ∈ order(DL, {(v, I) :

Q ∈ I∗P,U,B((V, F,X,XR)),

N ∈ I∗P,U,R(I∗P,U,K(Q)),

(v, I) ∈ N}),
w = (f, l, b), T = ({S ∪ {(w, k)} : (S, k) ∈ I}, {w})},

L′ = {(i, (T, (w,W ))) : (i, (T, (w,W ))) ∈ L,
∀(i′, (T ′, (w′,W ′))) ∈ L (i > i′ =⇒ TP 6= T

′P)},
H = dom(set(L′)), U ′ = U ∪ ran(set(L′)),

X ′ = I∗∗X((H,X)), X ′R = I∗∗X((H,XR)),

M ′ = I∗P,U ′,D,d((V, F ∪H,X ′, X ′R))

where I∗X = applier ∈ computers.

Here the order DL is some enumeration of the layer fud representation,
DL ∈ enums(N× (SU → N)).

The new variable, w = (f, l, b), is constructed from the fud identifier, f ,
the layer identifier, l, and the position within the breadth of the layer fud,
b. The new variable, w, is added to a new system, U ′. The values of the
new variable are cardinal numbers, U ′(w) ⊂ N>0, such that 1 ∈ U ′(w). The
values are not necessarily contiguous, unless the implementation completely
removes source values, in which case U ′(w) = {1 . . . |U ′(w)|}.

The layer list, L, potentially contains duplicate transform partitions, |{TP :

737



(·, (T, ·)) ∈ L}| ≤ |L|. These duplicates are stripped from the list L′ by
crossing each new variable with all previous and checking that the trans-
forms differ. Note that implementations may improve the performance of
the check by testing the valency and underlying variables before testing the
partition, ∀(i′, (T ′, (w′,W ′))) ∈ L (i > i′ =⇒ |W | 6= |W ′| ∧ und(T ) 6=
und(T ′) ∧ TP 6= T

′P).

A variation of the highest-layer layerer, IP,U,L,d, is to implement the limited-
valency maximum-roll contracted decrementing linear non-overlapping fuds
tree maximiser, ZP,A,AR,F,n,w,−,K,mr, by means of the maximum roll tuple parti-
tion value roller, IP,U,R,mr. The highest-layer maximum-roll layerer IP,U,L,mr,d ∈
computers is defined such that the application is

I∗P,U,L,mr,d((V,A,AR, f)) = layer(V, U, ∅, ∅, A,AR, f, 1)

and

layer(V, U, F,M,X,XR, f, l) =

if((l ≤ lmax) ∧ (H 6= ∅) ∧ (M 6= ∅ =⇒ maxr(M ′) > maxr(M)),

layer(V, U ′, F ∪H,M ′, X ′, X ′R, f, l + 1),

(U, F,M)) :

L = {(b, (T, (w, ran(I)))) :

((·, I), b) ∈ order(DL, {(v, I) :

Q ∈ I∗P,U,B((V, F,X,XR)),

P ∈ I∗P,U,K(Q), N ∈ I∗P,U,R,mr(P ),

(v, I) ∈ N}),
w = (f, l, b), T = ({S ∪ {(w, k)} : (S, k) ∈ I}, {w})},

L′ = {(i, (T, (w,W ))) : (i, (T, (w,W ))) ∈ L,
∀(i′, (T ′, (w′,W ′))) ∈ L (i > i′ =⇒ TP 6= T

′P)},
H = dom(set(L′)), U ′ = U ∪ ran(set(L′)),

X ′ = I∗∗X((H,X)), X ′R = I∗∗X((H,XR)),

M ′ = I∗P,U ′,D,d((V, F ∪H,X ′, X ′R))

A further variation of the highest-layer maximum-roll layerer IP,U,L,mr,d, is
to add the functionality of the excluded-self contracted decrementing linear
non-overlapping fuds tree maximiser, ZP,A,AR,L,xs, by excluding self parti-
tions. The highest-layer excluded-self maximum-roll layerer IP,U,L,mr,xs,d ∈
computers is defined such that the application is

I∗P,U,L,mr,xs,d((V,A,AR, f)) = layer(V, U, ∅, ∅, A,AR, f, 1)
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and

layer(V, U, F,M,X,XR, f, l) =

if((l ≤ lmax) ∧ (H 6= ∅) ∧ (M 6= ∅ =⇒ maxr(M ′) > maxr(M)),

layer(V, U ′, F ∪H,M ′, X ′, X ′R, f, l + 1),

(U, F,M)) :

L = {(b, (T, (w, ran(I)))) :

((·, I), b) ∈ order(DL, {(v, I) :

Q ∈ I∗P,U,B((V, F,X,XR)),

P ∈ I∗P,U,K(Q), N ∈ I∗P,U,R,mr(P ),

(v, I) ∈ N, |ran(I)| < |I|}),
w = (f, l, b), T = ({S ∪ {(w, k)} : (S, k) ∈ I}, {w})},

L′ = {(i, (T, (w,W ))) : (i, (T, (w,W ))) ∈ L,
∀(i′, (T ′, (w′,W ′))) ∈ L (i > i′ =⇒ TP 6= T

′P)},
H = dom(set(L′)), U ′ = U ∪ ran(set(L′)),

X ′ = I∗∗X((H,X)), X ′R = I∗∗X((H,XR)),

M ′ = I∗P,U ′,D,d((V, F ∪H,X ′, X ′R))

A variation of the highest-layer maximum-roll layerer, IP,U,L,mr,d, is to im-
plement the limited-valency maximum-roll-by-derived-dimension contracted
decrementing linear non-overlapping fuds tree maximiser, ZP,A,AR,F,n,w,−,K,mm,
by means of the maximum-roll-by-derived-dimension tuple partitioner, IP,U,K,mm.
The highest-layer maximum-roll-by-derived-dimension layerer IP,U,L,mm,d ∈
computers is defined such that the application is

I∗P,U,L,mm,d((V,A,AR, f)) = layer(V, U, ∅, ∅, A,AR, f, 1)

739



and

layer(V, U, F,M,X,XR, f, l) =

if((l ≤ lmax) ∧ (H 6= ∅) ∧ (M 6= ∅ =⇒ maxr(M ′) > maxr(M)),

layer(V, U ′, F ∪H,M ′, X ′, X ′R, f, l + 1),

(U, F,M)) :

L = {(b, (T, (w, ran(I)))) :

((·, I), b) ∈ order(DL, {(v, I) :

Q ∈ I∗P,U,B((V, F,X,XR)),

P ∈ I∗P,U,K,mm(Q), N ∈ I∗P,U,R,mr(P ),

(v, I) ∈ N}),
w = (f, l, b), T = ({S ∪ {(w, k)} : (S, k) ∈ I}, {w})},

L′ = {(i, (T, (w,W ))) : (i, (T, (w,W ))) ∈ L,
∀(i′, (T ′, (w′,W ′))) ∈ L (i > i′ =⇒ TP 6= T

′P)},
H = dom(set(L′)), U ′ = U ∪ ran(set(L′)),

X ′ = I∗∗X((H,X)), X ′R = I∗∗X((H,XR)),

M ′ = I∗P,U ′,D,d((V, F ∪H,X ′, X ′R))

A further variation of the highest-layer maximum-roll-by-derived-dimension
layerer IP,U,L,mm,d, is to add the functionality of the excluded-self contracted
decrementing linear non-overlapping fuds tree maximiser, ZP,A,AR,L,xs, by
excluding self partitions. The highest-layer excluded-self maximum-roll-by-
derived-dimension layerer IP,U,L,mm,xs,d ∈ computers is defined such that the
application is

I∗P,U,L,mm,xs,d((V,A,AR, f)) = layer(V, U, ∅, ∅, A,AR, f, 1)
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and

layer(V, U, F,M,X,XR, f, l) =

if((l ≤ lmax) ∧ (H 6= ∅) ∧ (M 6= ∅ =⇒ maxr(M ′) > maxr(M)),

layer(V, U ′, F ∪H,M ′, X ′, X ′R, f, l + 1),

(U, F,M)) :

L = {(b, (T, (w, ran(I)))) :

((·, I), b) ∈ order(DL, {(v, I) :

Q ∈ I∗P,U,B((V, F,X,XR)),

P ∈ I∗P,U,K,mm(Q), N ∈ I∗P,U,R,mr(P ),

(v, I) ∈ N, |ran(I)| < |I|}),
w = (f, l, b), T = ({S ∪ {(w, k)} : (S, k) ∈ I}, {w})},

L′ = {(i, (T, (w,W ))) : (i, (T, (w,W ))) ∈ L,
∀(i′, (T ′, (w′,W ′))) ∈ L (i > i′ =⇒ TP 6= T

′P)},
H = dom(set(L′)), U ′ = U ∪ ran(set(L′)),

X ′ = I∗∗X((H,X)), X ′R = I∗∗X((H,XR)),

M ′ = I∗P,U ′,D,d((V, F ∪H,X ′, X ′R))

The functionality of the practicable highest-layer shuffle content alignment
valency-density fud inducer, I

′

z,csd,F,∞,q,P,d, is implemented in the highest-layer
fud induction computer IP,U,Z,F,d ∈ computers, which is defined such that (i)
the domain is domain(IP,U,Z,F,d) = P(VU) × AU × AU ×N, (ii) the range is
range(IP,U,Z,F,d) = F → Q, and (iii) the application is

I∗P,U,Z,F,d((V,A,AR, f)) =

{(G, a) :

(·, F,N) = I∗P,U,L,d((V,A,AR, f)),

(K, a) ∈ N, G = depends(F,K)}

The fud identifier, f , is used to construct the new variables in the new sys-
tem. The fud identifier should be such that ∀i, j ∈ N>0 ((f, i, j) /∈ vars(U)).

The fuds of the fud induction computer, IP,U,Z,F,d, are not partition fuds,
∀(U ′, F, ·) ∈ I∗P,U,L,d((V,A,AR, f)) (F /∈ FU ′,P), so the fud induction com-

puter is not a literal implementation of the fud inducer, I
′

z,csd,F,∞,q,P,d. How-
ever, the fuds flatten to the same substrate partition transforms, ∀A ∈
Az ({(FTPT, a) : (F, a) ∈ I∗P,UA,Z,F,b,d

((VA, A,A
X, f))} = {(FTPT, a) : (F, a) ∈

I
′∗
z,csd,F,∞,q,P,d(A)} ⊂ (TUA,VA → Q)). Thus, an inducer implemented with
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the fud induction computer, IP,U,Z,F,d, after suitable conversion of the fuds to
substrate models, would have the same inducer correlation as the fud inducer,
I
′

z,csd,F,∞,q,P,d. That is, maxr(I∗P,U,Z,F,d((V,A,AX, f))) = maxr(I
′∗
z,csd,F,∞,q,P,d(A)).

Now consider the yet more restricted functionality of the practicable highest-
layer excluded-self maximum-roll shuffle content alignment valency-density
fud inducer, I

′

z,csd,F,∞,q,P,mr,xs,d, is implemented in the highest-layer maximum-
roll excluded-self fud induction computer IP,U,Z,F,mr,xs,d ∈ computers, which
is defined such that the application is

I∗P,U,Z,F,mr,xs,d((V,A,AR, f)) =

{(G, a) :

(·, F,N) = I∗P,U,L,mr,xs,d((V,A,AR, f)),

(K, a) ∈ N, G = depends(F,K)}

Finally, the maximum-roll variation functionality of the practicable highest-
layer excluded-self maximum-roll-by-derived-dimension shuffle content align-
ment valency-density fud inducer, I

′

z,csd,F,∞,q,P,mm,xs,d, is implemented in the
highest-layer maximum-roll-by-derived-dimension excluded-self fud induction
computer IP,U,Z,F,mm,xs,d ∈ computers, which is defined such that the appli-
cation is

I∗P,U,Z,F,mm,xs,d((V,A,AR, f)) =

{(G, a) :

(·, F,N) = I∗P,U,L,mm,xs,d((V,A,AR, f)),

(K, a) ∈ N, G = depends(F,K)}

Now consider the practicable highest-layer summed shuffle content align-
ment valency-density fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d, implemented
by means of induction computers. The implementation of the practicable fud
decomposition inducer in terms of optimisers is described above in section
‘Optimisation’. The functionality of the highest-layer limited-models infinite-
layer substrate fud decompositions tree searcher, ZP,A,D,F,d, is implemented in
the highest-layer fud decomper IP,U,D,F,d ∈ computers, which is defined such
that (i) the domain is domain(IP,U,D,F,d) = P(VU) × AU , (ii) the range is
range(IP,U,D,F,d) = U × DF,d, and (iii) the application is

I∗P,U,D,F,d((V,A)) = decomp(V,A, U, ∅, 1, ∅)
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where decomp ∈ P(V)×A×U ×DF,d×N×P(L(S ×F)×S)→ (U ×DF,d)
is defined as

decomp(V,A, U,D, f, Z) =

if(Q 6= ∅,
if(N 6= ∅ ∧maxr(N) > 0,

decomp(V,A, U ′, E, f + 1, Z ′),

decomp(V,A, U,D, f, Z ′)),

(U,D)) :

Q = maxd(order(DQ×S×X 3 , {(zB, S, L,B) :

(L, Y ) ∈ places(D),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

(L, S) /∈ Z,
RL =

⋃
dom(set(L)), HL =

⋃
ran(set(L)),

B = I∗%((V, I∗∗ ((I
∗
∗X((HL, A)), {RL ∪ S}U)))),

zB = size(B), zB > 0})),
{(·, S, L,B)} = Q,

Z ′ = Z ∪ {(L, S)},
(U ′, F,N) = I∗P,U,L,d((V,B,BR(B), f)),

{K} = maxd(order(DK, dom(N))),

G = depends(F,K),

M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

and

decomp(V,A, U, ∅, f, Z) =

if(N 6= ∅ ∧maxr(N) > 0,

decomp(V,A, U ′, D, f + 1, ∅),
(U,D∅)) :

(U ′, F,N) = I∗P,U,L,d((V,A,AR(A), f)),

{K} = maxd(order(DK, dom(N)))),

G = depends(F,K),

D = {((∅, G), ∅)}
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The fuds of the decomposition in the fud decomposition induction computer,
IP,U,D,F,d, are not partition fuds, ∀F ∈ fuds(D) (F /∈ FU ′,P) where (U ′, D) =
decomp(V,A, U, ∅, 1, ∅), so the fud decomposition induction computer is not
a literal implementation of the fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d.
However, the fuds flatten to the same substrate partition transforms, so
an inducer implemented with the fud decomposition induction computer,
IP,U,D,F,d, after suitable conversion of the fuds to substrate models, would
have the same maximum function correlation as the fud decomposition in-
ducer, I

′

z,Scsd,D,F,∞,q,P,d. That is, I∗Scsd((A,D)) = maxr(I
′∗
z,Scsd,D,F,∞,q,P,d(A)),

where D = I∗P,U,D,F,d((V,A)).

The practicable highest-layer excluded-self maximum-roll summed shuffle con-
tent alignment valency-density fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,mr,xs,d,
is implemented in the highest-layer excluded-self maximum-roll fud decom-
per IP,U,D,F,mr,xs,d ∈ computers exactly as in the highest-layer fud decomper
IP,U,D,F,d, above, except that the highest-layer maximum-roll excluded-self
fud induction computer, IP,U,Z,F,mr,xs,d, replaces the highest-layer fud induc-
tion computer, IP,U,Z,F,d.

The practicable highest-layer excluded-self maximum-roll-by-derived-dimension
summed shuffle content alignment valency-density fud decomposition inducer,
I
′

z,Scsd,D,F,∞,q,P,mm,xs,d, is implemented in the highest-layer excluded-self maximum-
roll-by-derived-dimension fud decomper IP,U,D,F,mm,xs,d ∈ computers exactly
as in the highest-layer fud decomper IP,U,D,F,d, above, except that the highest-
layer maximum-roll-by-derived-dimension excluded-self fud induction com-
puter, IP,U,Z,F,mm,xs,d, replaces the highest-layer fud induction computer, IP,U,Z,F,d.

5 Induction

This section considers how tractable and practicable induction is related to
(a) structure and compression, and (b) likelihood and sensitivity.

A variable or structure is defined as known below if (a) its type or con-
taining class is defined, and (b) its instance of the type is specified. For
example, it is known if (i) it is finite and can be explicitly constructed in a
first order formula, or (ii) it is countably enumerable and can be defined re-
cursively/algorithmically. An unknown variable or structure may be subject
to known constraints. That is, the variable or structure is partially known.
At the least, the type of an unknown is usually defined.
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First review the definitions of the degree of structure and compression.

Let U be a non-empty finite system, U ∈ U = V → (P(W) \ {∅}) such
that 0 < |U | <∞ and ∀(·,W ) ∈ U (|W | <∞). Let X ⊂ X be a non-empty
unknown finite set of event identifiers, 0 < |X| < ∞. Let HU,X be the non-
empty unknown finite set of histories in system U having event identifiers
X,

HU,X =
⋃
{X → WCS : W ⊆ vars(U)} ⊂ HU ⊂ X → SU

and 0 < |HU,X | <∞.

Let P ∈ (HU,X :→ Q≥0) ∩ P be an unknown history probability function in
the histories HU,X . The expected space of a history coder C ∈ coders(HU,X)
is greater than or equal to the entropy of the history probability function,

expected(P )(Cs) =
∑

H∈HU,X

PH × Cs(H)

≥ −
∑

(PH lnPH : H ∈ HU,X , PH > 0)

= entropy(P )

The expected space of a history coder C ∈ coders(HU,X) may also be com-
pared to the canonical space which is the lesser space of the canonical his-
tory coders, (i) index history coder, CH, and (ii) classification history coder,
CG. The expected canonical space is defined canonical(U,X) ∈ ((HU,X :→
Q≥0) ∩ P)→ Q≥0 ln N>0 as

canonical(U,X)(P ) := expected(P )(minimum(Cs
H, C

s
G))

The expected canonical space is also always greater than or equal to the en-
tropy of the history probability function, canonical(U,X)(P ) ≥ entropy(P ).

The degree of structure is defined for probability function P ∈ (HU,X :→
Q≥0)∩P with respect to a history coder C ∈ coders(HU,X) in terms of a re-
lationship between (i) the expected space, expected(P )(Cs) , (ii) the expected
canonical space, canonical(U,X)(P ), and (iii) the entropy, entropy(P ). The
degree of structure is defined in section ‘Derived history space’, structure(U,X) ∈
((HU,X :→ Q≥0) ∩ P)× coders(HU,X)→ Q ln Q>0/ ln Q>0 as

structure(U,X)(P,C) :=
canonical(U,X)(P )− expected(P )(Cs)

canonical(U,X)(P )− entropy(P )

The compression of coder C with respect to probability function P is a syn-
onym for the degree of structure of probability function P with respect to the
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coder C.

The degree of structure, or compression, is defined for any history coder,
coders(HU,X). The derived history coders are a special case of history coders.
Given a transform T , the expanded specialising derived history coder CG,T,H(T ) ∈
coders(HU,X) is derived from the specialising derived substrate history coder,
CG,V,T,H. It expands the transform to the history variables, VH , where the
set of history variables is a superset of the underlying variables, V = und(T ),
and otherwise defaults to an index coder,

CG,T,H(T )s(H) = (CG,VH ,T,H(TPVHT)s(H) + s|VH | : VH ⊇ V ) +

(Cs
H(H) : VH + V )

where sn = spaceVariables(U)(n) and the specialising derived substrate his-
tory coder is

CG,V,T,H(T ) = coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)

The specialising degree of structure of the probability function P with respect
to the expanded specialising derived history coder for some transform T is

structure(U,X)(P,CG,T,H(T )) ∈ Q ln Q>0/ ln Q>0

In section ‘Derived history space’, above, the specialising-canonical space
difference, 2CG,V,T,H(T )s(H) − Cs

H,V (H) − Cs
G,V (H), of history H ∈ HU,X

is characterised for given transform T in terms of (i) the component size
cardinality relative entropy,

entropyRelative(AH ∗ T, V C ∗ T )

(ii) the possible derived volume space, w′, where w′ = |T−1|, and (iii) the
expected component entropy,

entropyComponent(AH , T )

The specialising-canonical space difference is minimised by varying the trans-
form such that (i) the derived entropy is low, (ii) the possible derived volume
is small, (iii) the underlying components have high entropy and (iv) high
counts are in low cardinality components and high cardinality components
have low counts. The canonical space terms, Cs

H,V (H) and Cs
G,V (H), do not

depend on the transform, T , and so the minimisation of the specialising-
canonical space difference is also the minimisation of the specialising derived
substrate history coder space, CG,V,T,H(T )s(H).
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Now review substrate structure alignment.

The substrate transforms set in system U and variables V is defined

TU,V = {FT : F ⊆ {PT : P ∈ B(V CS)}}

The set of complete congruent integral substrate histograms of size z is defined

AU,i,V,z = {A : A ∈ AU,i, AU = V C, size(A) = z}

Given T ∈ TU,V , the integral iso-transform-independents is derived from the
formal-abstract pair valued function of the complete congruent integral sub-
strate histograms,

YU,i,T,z = {(A, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,i,V,z}

The integral iso-transform-independents given transform T ∈ TU,V for inte-
gral substrate histogram A ∈ AU,i,V,z are abbreviated

AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

= {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

The integral iso-transform-independents, AU,i,y,T,z(A), are equivalently the
subset of integral substrate histograms which are both iso-formal and iso-
abstract with respect to substrate histogram A, ∀B ∈ AU,i,y,T,z(A) ((BX ∗T =
AX ∗ T ) ∧ ((B ∗ T )X = (A ∗ T )X)).

The generalised multinomial probability distribution of draw (E, z) ∈ AU,V,zE×
N is defined Q̂m,U(E, z) ∈ (AU,i,V,z → Q≥0) ∩QU ∩Qz ∩ P . The generalised
multinomial probability for integral substrate histogram A ∈ AU,i,V,z is

Q̂m,U(E, z)(A) =
z!∏

S∈AS AS!

∏
S∈AS

(
ES
zE

)AS

The set of sized cardinal substrate histograms Az is the finite set of complete
integral cardinal substrate histograms of size z and dimension less than or
equal to the size such that the independent is completely effective,

Az = {A : A ∈ Ac ∩ Ai, size(A) = z, |VA| ≤ z, AU = AXF = AC}

where ACS = cartesian(UA)(VA) and UA = implied(implied(A)) and VA =
vars(A).
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The subset of the sized cardinal substrate histograms, Az, for which the in-
dependent, AX, is integral, is the set of integral-independent substrate his-
tograms,

Az,xi = {A : A ∈ Az, AX ∈ Ai}

The independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space integral-independent substrate ideal formal-abstract
transform search set, also known as the alignment-bounded iso-transform
space ideal transform search set, is defined Xz,xi,T,y,fa,j ∈ Az,xi → (Tf →
ln Q>0) as

Xz,xi,T,y,fa,j(A) = {(T,− ln
Q̂m,UA

(AX, z)(A)∑
B∈AUA,i,y,T,z(A) Q̂m,UA

(AX, z)(B)
) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

The derived alignment integral-independent substrate ideal formal-abstract
transform search set is defined X ′z,xi,T,a,fa,j ∈ Az,xi → (Tf → ln Q>0) as

X ′z,xi,T,a,fa,j(A) = {(T, algn(A ∗ T )) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

In section ‘Substrate structures alignment’, above, it is conjectured that
the alignment-bounded iso-transform space ideal transform maximum func-
tion, maxr ◦ Xz,xi,T,y,fa,j, is correlated with the derived alignment integral-
independent substrate ideal formal-abstract transform maximum function,
maxr ◦X ′z,xi,T,a,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥ 0)

where cov(z)(F,G) := covariance(R̂z)(F,G) and the renormalised geometry-
weighted probability function is R̂z = normalise({(A, 1/(|VA|!

∏
w∈VA |UA(w)|!)) :

A ∈ dom(F )}).

Now review the definition of induction. First inducers and literal inducers
are defined.

The set of inducers is defined in section ‘Tractable alignment-bounding’,
above. The inducers are computers Iz ∈ inducers(z) ⊂ computers such that
(i) the domain is a set of substrate histograms which are at least a superset
of the integral-independent substrate histograms, Az,xi ⊆ domain(Iz) ⊆ Az,
(ii) the finite time and space application returns a rational-valued function
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of the substrate models set, I∗z (A) ∈ MUA,VA → Q, and (iii) the maximum
of the inducer application, maxr ◦ I∗z , is positively correlated with the finite
alignment-bounded iso-transform space ideal transform maximum function,
maxr ◦Xz,xi,T,y,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I∗z ) ≥ 0)

That is, the induction correlation of inducer Iz is positive.

The literal derived alignment integral-independent substrate ideal formal-abstract
transform inducer I

′

z,a,l ∈ inducers(z) is a literal finite approximation to the
derived alignment integral-independent substrate ideal formal-abstract trans-
form search set, X ′z,xi,T,a,fa,j(A),

I
′∗
z,a,l(A) = {(T, I∗≈lnQ(algn(A ∗ T ))) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

The induction correlation of the literal derived alignment inducer is conjec-
tured to be positive,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,l) ≥ 0)

Now consider the definition of the class of tractable inducers.

Although the literal derived alignment inducer, I
′

z,a,l, is finitely computable
and faster than a literal implementation of the alignment-bounded iso-transform
space ideal transform search set, Xz,xi,T,y,fa,j, it is nonetheless intractable. Sec-
tion ‘Tractable alignment-bounding’ discusses the various intractabilities and
the classes of limits and constraints on the structures of more tractable in-
ducers.

First, the substrate volume is intractable. The application of the transformer
I∗T, in the literal derived alignment inducer, I

′

z,a,l, to a substrate histogram,
A, and a substrate transform, T ∈ TUA,VA , is I∗∗T((T,A)) = A ∗ T . The vol-
ume, |V C

A |, grows exponentially with underlying dimension n = |VA|, and so
the space complexity of the transformer, I∗T, is exponential with respect to
underlying dimension, n. To address this (i) the inducer models of the literal
derived alignment inducer are expanded from substrate transforms, TUA,VA ,
to substrate fuds, FUA,VA , and (ii) the substrate fuds are then limited by in-
tersecting with one of the class of limited-underlying subsets of the functional
definition sets Fu ⊂ F . A set of limited-underlying fuds, Fu, is defined such
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that a fud F ∈ Fu is such that its transforms, F ⊂ T , are each tractably
computable. For example the underlying volume of the transforms may be
limited by a maximum underlying volume limit xmax ∈ N≥4. The set of
inducer models is FUA,VA ∩ Fu.

Next, the derived volume is intractable. Both the computation time and
computation space of the alignmenter applied to the transformed sample
histogram, I∗a (A ∗ T ) ≈ algn(A ∗ T ), in the literal derived alignment inducer,
I
′

z,a,l, vary with the derived volume, w = |WC|, where W = der(T ). The de-
rived volume, w, grows exponentially with derived dimension m = |W | and
so the time and space complexities are exponential, and therefore intractable,
with respect to derived dimension, m. This is also the case where the im-
plementation uses a fuder, I∗F, in a limited-underlying derived alignment fud
inducer, because the application of a fud F ∈ FUA,VA ∩Fu must still compute
(A ∗ F )X in an independenter, IX, in order to compute derived alignment,
algn(A ∗ F ). So a further compromise is made by intersecting the substrate
fuds with one of the class of limited-derived subsets of the functional defi-
nition sets Fd ⊂ F . A set of limited-derived fuds, Fd, is defined such that
a fud F ∈ Fd is such that the independent derived of the fud is tractable.
For example the derived volume of the fud may be limited by a maximum
derived volume limit of wmax ∈ N≥4.

Although the limited-variables substrate fuds, FUA,VA ∩ Fu ∩ Fd, has cov-
erage of the entire substrate even when the substrate volume, v, is greater
than the underlying volume limit, for example v > xmax, the derived vol-
ume is still strictly limited, w ≤ wmax. In section ‘Summation aligned
decomposition inducers’, above, it is conjectured that a summation aligned
decomposition D ∈ DΣ(A) is such that the content alignment equals the sum-
mation alignment, algn(A ∗ DT) − algn(AX ∗ DT) = alignmentSum(A,D),
where alignmentSum(A,D) =

∑
algn(A ∗ C ∗ T ) : (C, T ) ∈ cont(D) and

cont = elements ◦ contingents. Thus, insofar as the content alignment ap-
proximates to the derived alignment, summing the derived alignments of
the contingent fuds avoids the computation of the nullable transform, DT,
which may have intractable derived volume, for example w > wmax, where
w = |WC| and W = der(DT). Just as above where the set of inducer
models is increased from substrate transforms, TUA,VA , to substrate fuds,
FUA,VA , the inducer models is again expanded to the substrate fud decom-
positions DF,UA,VA . The set of inducer models is then the limited-variables
substrate fud decompositions, DF,UA,VA∩trees(S×(Fu∩Fd)). Given a limited-
variables substrate fud decomposition D ∈ DF,UA,VA ∩ trees(S × (Fu ∩ Fd)),
the inducer computes the tractable sum of the contingent derived alignments,
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∑
algn(A ∗ C ∗ FT) : (C,F ) ∈ cont(D).

Third, the computation of the search set models is intractable for two rea-
sons, (i) fud flattening, and (ii) layer variables cardinality. The computation
of the finite substrate fud set, FUA,VA , requires the exclusion of duplicate
nested partitions. This is done by checking for the uniqueness of the flat-
tened partitions. This check is intractable so the substrate fud set, FUA,VA , is
replaced by the intersection of (i) the infinite-layer substrate fud set F∞,UA,VA ,
which dispenses with the check, and (ii) one of the class of the sets of limited-
layer fuds, Fh. The limited-layer substrate fuds, F∞,UA,VA ∩Fh, places a limit
on the number of layers, for example, a maximum layer limit of lmax ∈ N>0.

The layer variables cardinality intractability is because of exponential time
complexity of the computation of the layers of the fuds. This is addressed
by defining one of the class of the sets of limited-breadth fuds, Fb. For
example a maximum layer breadth limit of bmax ∈ N>0. Together the
classes of limits are intersected together to form the class of limited-models
Fq = Fu∩Fd∩Fh∩Fb. The set of inducer models is then the limited-models
infinite-layer fud decompositions, DF,∞,UA,VA ∩ trees(S × Fq).

Last, the computation of the literal substrate model inclusion is intractable.
The derivation of the conjectured induction correlation of the literal derived
alignment inducer,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,l) ≥ 0)

is described in section ‘Derived alignment and conditional probability’. The
derivation imposes several constraints, (i) integral independent histogram,
A ∈ Axi =⇒ AX ∈ Ai, (ii) the formal histogram equals the abstract
histogram, AX∗T = (A∗T )X, and (iii) the transform is ideal, A = A∗T ∗T †A.
Formal-abstract equality implies independent formal, AX ∗ T = (A ∗ T )X =
(AX ∗ T )X. Together with integral independent histogram, AX ∈ Ai, this
implies that the independent is an integral iso-transform-independent,

AX ∈ AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

and the lifted integral iso-transform-independents contains the abstract his-
togram

(A ∗ T )X ∈ A′U,i,y,T,z(A) = {B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}

Then, given the minimum alignment conjecture, it can be shown that the
alignment-bounded lifted iso-transform space is bounded by the derived align-
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ment,

algn(A ∗ T )

≤

(
− ln

Q̂m,U(EX ∗ T, z)(A ∗ T )∑
B′∈A′U,i,y,T,z(A) Q̂m,U(EX ∗ T, z)(B′)

:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
≤ algn(A ∗ T ) + ln |A′U,i,y,T,z(A)|

The corresponding alignment-bounded iso-transform space is(
− ln

Q̂m,U(EX, z)(A)∑
B∈AU,i,y,T,z(A) Q̂m,U(EX, z)(B)

:

EX ∗ T = (EX ∗ T )X, EXF ≥ AXF, AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
∈ ln Q>0

The formal histogram equals the abstract histogram, AX∗T = (A∗T )X, and so
each derived histogram maps to exactly one set of iso-transform-independents,

{(A ∗ T, Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)))) : A ∈ AU,i,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,i,W,z → P(AU,i,V,z)

Thus the alignment-bounded lifted iso-transform space is correlated with the
alignment-bounded iso-transform space.

The derivation goes on to conjecture that when independent-sample dis-
tributed, EX = AX, the correlation is highest when the transform is ideal,
A = A ∗ T ∗ T †A. That is, the alignment-bounded lifted iso-transform space
is correlated with the alignment-bounded iso-transform idealisation space,(

− ln
Q̂m,U(AX, z)(A ∗ T ∗ T †A)∑
B∈AU,i,y,T,z(A) Q̂m,U(AX, z)(B)

:

AX ∈ Ai, A
X ∗ T = (A ∗ T )X, A ∗ T ∗ T †A ∈ Ai

)
∈ ln Q>0

Therefore the derived alignment, algn(A ∗ T ), is conjectured to be correlated
with the alignment-bounded iso-transform idealisation space, hence the literal
derived alignment inducer correlation.
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The constraint that the independent histogram is integral, AX ∈ Ai, is some-
times not the case if the sample histogram, A, is a given. As noted in sec-
tion ‘Tractable alignment-bounding’, the inducer correlation, cov(z)(maxr ◦
Xz,xi,T,y,fa,j,maxr ◦ I∗z ), is restricted to the intersection of the domains of the
argument functions, which is the integral-independent substrate histograms,
Az,xi. However, in the case of non-integral-independent substrate histograms,
Az\Az,xi, an inducer defined in terms of the generalised multinomial probabil-

ity distribution Q̂m,U(E, z) ∈ AU,i,V,z → Q≥0 can be extended by interpolat-
ing instead with the multinomial probability density function, mpdf(U)(E, z) ∈
AU,V,z → R≥0,

mpdf(U)(E, z)(A) :=
Γ!z∏

S∈AS Γ!AS

∏
S∈AS

(
ES
zE

)AS

The multinomial probability density function is defined in terms of the unit-
translated gamma function, Γ! ∈ R → R. An inducer defined in terms
of alignment is already extended to the non-integral-independent substrate
histograms, algn ∈ A → R is defined as algn(A) :=

∑
S∈AS ln Γ!AS −∑

S∈AXS ln Γ!A
X
S .

The substrate histograms, Az, defined in section ‘Substrate structures align-
ment’, are such that the independent is completely effective, AXF = AC.
Hence, if the size, z, is less than the volume, v = |AC|, the independent is
necessarily non-integral, z < v =⇒ AX /∈ Ai. For this reason, any vol-
ume limits, for example, xmax ∈ N≥4, should be chosen such that they
are less than or equal to the size, xmax ≤ z. This is also more likely
to avoid the region of negative logarithm unit-translated gamma function,
∀x ∈ R (0 < x < 1 =⇒ 0 > ln Γ!x < 0).

Consider the remaining two constraints, (i) formal-abstract equality, AX∗T =
(A ∗ T )X, and (ii) ideal transform, A = A ∗ T ∗ T †A. As described in section
‘Intractable literal substrate model inclusion’, both of these inclusion tests
of the model are intractable with respect to substrate volume. The section
considers how inducers can be made tractable while adhering to these con-
straints as closely as possible.

First, the formal-abstract equality is weakened to the independent-formal
constraint, AX ∗ T = (AX ∗ T )X, in the derived alignment substrate ideal
independent-formal transform inducer, I

′

z,a,fx,j. This constraint is still in-
tractable, so it is replaced by constraining the transforms to be non-overlapping,
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¬overlap(T ) =⇒ AX∗T = (AX∗T )X, in the derived alignment substrate ideal
non-overlapping transform inducer, I

′
z,a,n,j. If the ideality inclusion test is

dropped and the inducer model set of substrate transforms, TUA,VA , is replaced
by the limited-models infinite-layer substrate fuds, F∞,UA,VA ∩ Fq, then the
tractable limited-models derived alignment substrate non-overlapping infinite-
layer fud inducer I

′
z,a,F,∞,n,q ∈ inducers(z), given substrate histogram A ∈ Az,

can be defined

I
′∗
z,a,F,∞,n,q(A) =

{(F, I∗≈R(algn(A ∗ FT))) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

Although this inducer is tractable, the non-overlapping constraint is weaker
than the formal-abstract equality constraint and the ideality constraint has
been dropped altogether. The entropy of the doubly-independent formal in-
dependent histogram, entropy((AX ∗ T )X), is expected to be greater than the
entropy of the abstract histogram, entropy((A ∗ T )X), whereas if the formal-
abstract equality constraint holds then the entropies would be equal. The
abstract-non-formal entropy substrate ideal independent-formal transform in-
ducer, I

′

z,e,fx,j ∈ inducers(z), maximises the entropy difference between the
abstract and the formal independent. The inducer is defined

I
′∗
z,e,fx,j(A) =

{(T, I∗≈lnQ(entropy((A ∗ T )X)− entropy((AX ∗ T )X))) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X, A = A ∗ T ∗ T †A}

Derived alignment approximates to the sized entropy difference between the
abstract histogram and the derived histogram,

algn(A ∗ T ) ≈ z × (entropy((A ∗ T )X)− entropy(A ∗ T ))

so the abstract-non-formal entropy inducer, I
′

z,e,fx,j, weakly maximises the de-
rived alignment.

The abstract-non-formal entropy inducer is defined in terms of the entropies
of histograms in the derived variables, entropy((A ∗ T )X) and entropy((AX ∗
T )X), and so ignores the entropies of the underlying components, {(C, entropy(A∗
C)) : (·, C) ∈ T−1} ∈ P(V CS

A ) → ln Q>0. The discussion considers the ac-
tualisations, which alter the relative independence of the derived and under-
lying, and then proposes an inducer that maximises the midisation pseudo-
alignment, algn(A)− algn(A ∗T ∗T †A)− algn((A ∗T )X ∗T�A). However, the
ideality constraint restricts the midisation pseudo-alignment to be equal to
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the negative surrealisation alignment, so the ideality constraint is dropped.
The midisation pseudo-alignment substrate independent-formal transform in-
ducer Iz,m,fx ∈ inducers(z), given substrate histogram A ∈ Az, is defined

I∗z,m,fx(A) =

{(T, I∗≈R(algn(A)− algn(A ∗ T ∗ T †A)− algn((A ∗ T )X ∗ T�A))) :

T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X}

The computation of midisation is intractable, so a further approximation is
required. Maximisation of midisation tends to move component alignments
from off-diagonal states to on-diagonal states, balancing the high derived
alignment of longer diagonals with the high on-diagonal component align-
ments of shorter diagonals. Thus the midisation pseudo-alignment varies
with the derived alignment valency density. The derived alignment valency-
density substrate independent-formal transform inducer I

′

z,ad,fx ∈ inducers(z),
given substrate histogram A ∈ Az, is defined

I
′∗
z,ad,fx(A) =

{(T, I∗≈R(algn(A ∗ T )/w1/m)) : T ∈ TUA,VA , A
X ∗ T = (AX ∗ T )X}

If the independent formal constraint is replaced by constraining the trans-
forms to be non-overlapping, and the inducer model set of substrate trans-
forms, TUA,VA , is replaced by the limited-models infinite-layer substrate fuds,
F∞,UA,VA ∩ Fq, then the tractable limited-models derived alignment valency-
density substrate non-overlapping infinite-layer fud inducer I

′

z,ad,F,∞,n,q ∈
inducers(z), given substrate histogram A ∈ Az, can be defined as

I
′∗
z,ad,F,∞,n,q(A) =

{(F, I∗≈R(algn(A ∗ FT)/w1/m)) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

This derived alignment valency-density fud inducer, I
′

z,ad,F,∞,n,q, addresses
the formal-abstract equality constraint, AX ∗ T = (A ∗ T )X, but ignores the
ideal transform constraint, A = A ∗ T ∗ T †A. As described above, intractable
derived volume can be addressed by expanding the inducer models to the sub-
strate fud decompositions, DF,UA,VA , and summing the derived alignments of
the contingent fuds,

∑
algn(A ∗C ∗ FT) : (C,F ) ∈ cont(D). Using a similar

method, sections ‘Decomposition alignment’ and ‘Tractable decomposition
inducers’ show how maximising the sum of the contingent alignment valency-
densities,

∑
algn(A ∗ C ∗ FT)/w

1/mF

F : (C,F ) ∈ cont(D), of limited-models
non-overlapping infinite-layer fud decompositions, DF,∞,UA,VA∩trees(S×(Fn∩
Fq)), removes alignments along the decomposition path and tends to inde-
pendent leaf components. When fully decomposed the nullable transform of
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the decomposition is ideal, A ∗DT ∗DT†A = A. The tractable limited-models
summed alignment valency-density substrate aligned non-overlapping infinite-
layer fud decomposition inducer, given non-independent substrate histogram
A ∈ Az \ {AX}, is defined

I
′∗
z,Sd,D,F,∞,n,q(A) =

{(D, I∗≈R(
∑

algn(A ∗ C ∗ FT)/w
1/mF

F : (C,F ) ∈ cont(D))) :

D ∈ DF,∞,UA,VA ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(A ∗ C ∗ FT) > 0)}

where WF = der(F ), wF = |WC
F | and mF = |WF |. The summed alignment

valency-density decomposition inducer, I
′

z,Sd,D,F,∞,n,q, is conjectured to have
positive induction correlation. That is, it is positively correlated with the
alignment-bounded iso-transform space ideal transform maximum function,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,Sd,D,F,∞,n,q) ≥ 0)

In section ‘Tractable decomposition inducers’, above, it is shown that, al-
though the maximisation of the midisation alignment tends to minimise the
mid component size cardinality relative entropy, the subsequent maximisation
of the idealisation alignment tends to restore the relative entropy so that the
maximal relative entropy of the tractable limited-models summed alignment
valency-density fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q, is (a) greater than
that of the corresponding model in the tractable derived alignment valency-
density fud inducer, I

′

z,ad,F,∞,n,q,

entropyRelative(A ∗DT, V C
A ∗DT) > entropyRelative(A ∗ FT

ad, V
C
A ∗ FT

ad)

where D ∈ maxd(I
′∗
z,Sd,D,F,∞,n,q(A)) and Fad ∈ maxd(I

′∗
z,ad,F,∞,n,q(A)), and

(b) comparable to that of the corresponding model in the tractable derived
alignment fud inducer, I

′
z,a,F,∞,n,q,

entropyRelative(A ∗DT, V C
A ∗DT) ≈ entropyRelative(A ∗ FT

a , V
C
A ∗ FT

a )

where Fa ∈ maxd(I
′∗
z,a,F,∞,n,q(A)).

In order to investigate the constraints necessary to make tractable in-
ducers practicable, section ‘Practicable alignment-bounding’, above, con-
siders how the limited-models non-overlapping infinite-layer substrate fuds,
F∞,UA,VA ∩ Fn ∩ Fq, may be constructed. Section ‘Optimisation’ goes on to
consider the explicit definitions of the (i) limited-models constraints, and (ii)
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layer -ordered limited-underlying limited-breadth infinite-layer substrate fuds
trees, in order to define a finite search for a practicable inducer.

Let A be a substrate histogram, A ∈ Az. The scaled shuffle histogram, AR, is
definedAR = scalar(1/|R|)∗

∑
r∈R Lr whereX ∈ enums(shuffles(history(A))),

L = map(his, flip(X)), R ⊆ {1 . . . z!n} and n = |VA|.

The practicable highest-layer shuffle content alignment valency-density fud
inducer, I

′

z,csd,F,∞,q,P,d, is defined,

I
′∗
z,csd,F,∞,q,P,d(A) =

{(G, I∗csd((A,AR, G))) :

|VA| > 1, {FL} = leaves(tree(ZP,A,AR,L,d)),

K ∈ maxd(elements(ZP,A,AR,FL,D,d)), G = depends(FL, K)} ∪
{(∅, 0) : |VA| ≤ 1}

where (i) the shuffle content alignment valency-density computer is

I∗csd((A,AR, F )) = (I∗a (A ∗ FT)− I∗a (AR ∗ FT))/I∗cvl(F )

(ii) the valency capacity computer is

I∗cvl(F ) := (I∗≈pow((w, 1/m)) : W = der(F ), w = |WC|, m = |W |)

(iii) the highest-layer limited-layer limited-underlying limited-breadth fud tree
searcher is

ZP,A,AR,L,d = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,d, {∅})

(iv) the highest-layer limited-layer limited-underlying limited-breadth fud tree
searcher neighbourhood function is

PP,A,AR,L,d(F ) = {G :

G ∈ PP,A,AR,L(F ),

(F 6= ∅ =⇒ maxr(el(ZP,A,AR,F,D,d)) < maxr(el(ZP,A,AR,G,D,d)))}

(v) the limited-layer limited-underlying limited-breadth fud tree searcher neigh-
bourhood function is

PP,A,AR,L(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F,n,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

757



(vi) the limited-underlying tuple set list maximiser is

ZP,A,AR,F,B = maximiseLister(XP,A,AR,F,B, PP,A,AR,F,B, top(omax), RP,A,AR,F,B)

(vii) the limited-underlying tuple set list maximiser optimiser function is

XP,A,AR,F,B =

{(K, I∗a (apply(VA, K, his(F ), A))− I∗a (apply(VA, K, his(F ), AR))) :

K ∈ tuples(VA, F )}

(viii) the limited-underlying tuple set list maximiser neighbourhood function
is

PP,A,AR,F,B(B) = {(J,XP,A,AR,F,B(J)) :

(K, ·) ∈ B, w ∈ vars(F ) ∪ VA \K, J = K ∪ {w}, |JC| ≤ xmax}

(ix) the limited-underlying tuple set list maximiser initial subset is

RP,A,AR,∅,B = {({w, u}, XP,A,AR,∅,B({w, u})) :

w, u ∈ VA, u 6= w, |{w, u}C| ≤ xmax}
RP,A,AR,F,B = {({w, u}, XP,A,AR,F,B({w, u})) :

w ∈ der(F ), u ∈ vars(F ) ∪ VA, u 6= w, |{w, u}C| ≤ xmax}

(x) the contracted decrementing linear non-overlapping fuds list maximiser
is

ZP,A,AR,F,n,−,K =

maximiseLister(XP,A,AR,F,n,−,K , NP,A,AR,F,n,−,K , top(pmax), RP,A,AR,F,n,−,K)

(xi) the contracted decrementing linear non-overlapping fuds list maximiser
optimiser function is

XP,A,AR,F,n,−,K = {(H, I∗csd((A,AR, G))) :

H ∈ FUA,n,−,K,b,mmax,2, G = depends(F ∪H, der(H))}

(xii) the contracted decrementing linear non-overlapping fuds list maximiser
initial subset is

RP,A,AR,F,n,−,K = {({MT}, XP,A,AR,F,n,−,K({MT})) :

Y ∈ B(K), 2 ≤ |Y | ≤ mmax, M = {JCS{} : J ∈ Y }}
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(xiii) the contracted decrementing linear non-overlapping fuds list maximiser
neighbourhood function is

NP,A,AR,F,n,−,K(C) = {(H ∪ {NT}, XP,A,AR,F,n,−,K(H ∪ {NT})) :

(H, ·) ∈ C, M = der(H),

w ∈M, |{w}C| > 2, Q ∈ decs({w}CS{}),

N = {Q} ∪ {{u}CS{} : u ∈M, u 6= w}}

(xiv) the highest-layer limited-derived derived variables set list maximiser is

ZP,A,AR,F,D,d = maximiseLister(XP,A,AR,F,D, PP,A,AR,F,D, top(omax), RP,A,AR,F,D,d)

(xv) the highest-layer limited-derived derived variables set list maximiser ini-
tial subset is

RP,A,AR,F,D,d = {(J,XP,A,AR,F,D(J)) :

w ∈ der(F ), u ∈ vars(F ) \ VA \ vars(depends(F, {w})),
J = {w, u}, |JC| ≤ wmax}

(xvi) the limited-derived derived variables set list maximiser optimiser func-
tion is

XP,A,AR,F,D = {(K, I∗csd((A,AR, G))) :

K ⊆ vars(F ), K 6= ∅, G = depends(F,K)}

(xvi) the limited-derived derived variables set list maximiser neighbourhood
function is

PP,A,AR,F,D(D) = {(J,XP,A,AR,F,D(J)) :

(K, ·) ∈ D, w ∈ vars(F ) \ VA \K,
J = K ∪ {w}, |JC| ≤ wmax, der(depends(F, J)) = J}

where the alignmenter is such that I∗a (A) ≈ algn(A), the partition decrements
are

decs(Q) := {P : P ∈ parents(Q), |P | = |Q| − 1}

the tuples are defined

tuples(V, F ) := {K : K ⊆ vars(F ) ∪ V, (der(F ) 6= ∅ =⇒ K ∩ der(F ) 6= ∅)}

el = elements, his = histograms ∈ F → P(A), and apply ∈ P(V) × P(V) ×
P(A)×A → A.
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The practicable highest-layer summed shuffle content alignment valency-density
fud decomposition inducer is implemented

I
′∗
z,Scsd,D,F,∞,q,P,d(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,d)), {D} = Q

where (i)D∅ = {((∅, ∅), ∅)} ,(ii) the summed shuffle content alignment valency-
density computer is

I∗Scsd((A,D)) =∑
(I∗a (A ∗ C ∗ FT)− I∗a ((A ∗ C)R(A∗C) ∗ FT))/I∗cvl(F ) : (C,F ) ∈ cont(D)

(iii) the highest-layer limited-models infinite-layer substrate fud decomposi-
tions tree searcher is

ZP,A,D,F,d = searchTreer(DF,∞,U,V ∩ trees(S × Fq), PP,A,D,F,d, RP,A,D,F,d)

(iv) the highest-layer limited-models infinite-layer substrate fud decomposi-
tions tree searcher neighbourhood function is

PP,A,D,F,d(D) = {E :

(·, S,G, L) ∈ maxd(order(DQ×S×X 2 , {(size(B), S,G, L) :

(L, Y ) ∈ places(D),

RL =
⋃

dom(set(L)), HL =
⋃

ran(set(L)),

(·, F ) = L|L|, W = der(F ),

S ∈ WCS \ dom(dom(Y )),

B = apply(VA, VA, his(HL) ∪ {{RL ∪ S}U}, A), size(B) > 0,

FL ∈ leaves(tree(ZP,B,BR(B),L,d)),

(K, a) ∈ max(elements(ZP,B,BR(B),FL,D,d)), a > 0,

G = depends(FL, K)})),
M = L ∪ {(|L|+ 1, (S,G))},
E = tree(paths(D) \ {L} ∪ {M})}

760



and (v) the highest-layer limited-models infinite-layer substrate fud decompo-
sitions tree searcher initial subset is

RP,A,D,F,d = {{((∅, G), ∅)} :

G ∈ maxd(order(DF, {G :

FL ∈ leaves(tree(ZP,A,AR(A),L,d)),

(K, a) ∈ max(elements(ZP,A,AR(A),FL,D,d)), a > 0,

G = depends(FL, K)}))}

5.1 Inducers and Compression

Now consider how substrate structure alignment and inducers relate to de-
rived history coders.

The fud decomposition minimum space specialising derived search function
for history H ∈ HU,X is defined in terms of the expanded specialising derived
history coder, CG,T,H(T ) ∈ coders(HU,X), as

ZD,F,P,m,G,T,H(H) = {(D,−CG,T,H(DT)s(H)) : D ∈ DF,U,P}

The summed alignment valency-density decomposition inducer, I
′

z,Sd,D,F,∞,n,q,
application also defines a fud decomposition search function, but restricted
to the limited-models non-overlapping fud decompositions, DF,U,P∩ trees(S ×
(Fn ∩ Fq)) ⊆ DF,U,P. Define the limited-models summed alignment valency-
density aligned non-overlapping fud decomposition search function

ZD,F,P,n,q,Sd(H) =

{(D, I∗≈R(
∑

algn(A ∗ C ∗ FT)/w
1/mF

F : (C,F ) ∈ cont(D))) :

D ∈ DF,U,P ∩ trees(S × (Fn ∩ Fq)), und(D) ⊆ V,

∀(C,F ) ∈ cont(D) (algn(A ∗ C ∗ FT) > 0)} ∪
{(Du, 0)}

where V = vars(H), A = histogram(H), the unary fud decomposition Du =
{((∅, {Tu}), ∅)}, and the unary transform Tu = {V CS}T. The addition of the
unary fud decomposition ensures that the search is not empty, as it would
otherwise be in the case, say, of independent history, A = AX. The domain of
the inducer search function is a subset of the minimum space search function,

dom(ZD,F,P,n,q,Sd(H)) ⊆ dom(ZD,F,P,m,G,T,H(H)) = DF,U,P

The definition of the subset depends on the instance of the class of limited-
models, Fq.
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Although the specialising derived substrate history coder, CG,V,T,H, is de-
fined completely separately of the notions of alignment and independence, the
properties of the minimum coder space are similar in many ways to the prop-
erties of the maximum summed alignment valency-density of the tractable
midising/idealising fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q, as is discussed
below. Conjecture that in some cases, the maximum decompositions inter-
sect,

|maxd(ZD,F,P,n,q,Sd(H)) ∩maxd(ZD,F,P,m,G,T,H(H))| ≥ 0

More formally, conjecture that for all finite systems and finite event identifier
sets there exists a class of limited-models fuds such that the search functions
are positively correlated for uniform history probability function,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃Fq ⊂ F (covariance(HU,X × {1/|HU,X |})

(maxr ◦ ZD,F,P,m,G,T,H,maxr ◦ ZD,F,P,n,q,Sd) ≥ 0))

The fud decomposition minimum space specialising derived search function
for history H ∈ HU,X is

ZD,F,P,m,G,T,H(H) = {(D,−CG,T,H(DT)s(H)) : D ∈ DF,U,P}

It is maximised by finding the fud decomposition D ∈ DF,U,P which minimises
the specialising derived substrate history coder space, CG,V,T,H(DPV T)s(H)
where V = vars(H).

The minimisation of the specialising derived substrate history coder space,
CG,V,T,H(DPV T)s(H), occurs where (i) the derived entropy is low, (ii) the
possible derived volume is small, (iii) the underlying components have high
entropy and (iv) high counts are in low cardinality components and high
cardinality components have low counts. The minimisation of the specialis-
ing derived substrate history coder space, CG,V,T,H(DPV T)s(H), also minimises
the specialising-canonical space difference, 2CG,V,T,H(DPV T)s(H)−Cs

H,V (H)−
Cs

G,V (H). History probability functions that have high specialising degree of
structure, structure(U,X)(P,CG,T,H(DT)), are expected to have encodings
with these properties because the degree of structure is defined relative to
the canonical coders.

The limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd(H), is maximised by searching
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for the fud decomposition D ∈ maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P, which max-
imises summed alignment valency-density, algnValDensSum(U)(A,DD) =∑

algn(A ∗ C ∗ FT)/w
1/mF

F : (C,F ) ∈ cont(D), where A = histogram(H)
and ()D ∈ DF → D.

In order to compare the properties of the minimum space search function,
ZD,F,P,m,G,T,H, and the summed alignment valency-density search function,
ZD,F,P,n,q,Sd, first consider the correlation between summed alignment valency-
density, algnValDensSum(U)(A,DD), and derived entropy, entropy(A ∗DT).
Clearly the summed alignment valency-density is correlated with its numera-
tor, summed alignment, algnSum(U)(A,DD) =

∑
algn(A∗C∗FT) : (C,F ) ∈

cont(D),∑
(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F ∼
∑

(C,F )∈cont(D)

algn(A ∗ C ∗ FT)

Within the degree to which Stirling’s approximation holds, the contingent
derived alignment is approximately equal to the sized difference between the
contingent abstract entropy and the contingent derived entropy,

algn(A ∗ C ∗ FT) ≈ z × entropy((A ∗ C ∗ FT)X)− z × entropy(A ∗ C ∗ FT)

So the summed alignment varies against the summed derived entropy∑
(C,F )∈cont(D)

algn(A ∗ C ∗ FT) ∼ −
∑

(C,F )∈cont(D)

entropy(A ∗ C ∗ FT)

So summed alignment valency-density, algnValDensSum(U)(A,DD), maximi-
sation in the summed alignment valency-density search function, ZD,F,P,n,q,Sd,
tends to minimise the summed derived entropy,∑
(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F ∼ −
∑

(C,F )∈cont(D)

entropy(A ∗ C ∗ FT)

As the cardinality of the decomposition tree increases the summed derived en-
tropy decreases, because the slices are aligned, ∀(C,F ) ∈ cont(D) (algn(A ∗
C ∗ FT) > 0).

The summed alignment valency-density, algnValDensSum(U)(A,DD), also
varies against the derived entropy of the nullable transform, entropy(A∗DT).
If it so happens that the decomposition is also a summation aligned decom-
position, DD ∈ DΣ(A), then the decomposition is contingently diagonalised,
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∀(C, T ) ∈ cont(DD) (diagonal(A ∗ C ∗ T )), and contingently formal-abstract
equivalent, ∀(C, T ) ∈ cont(DD) (AX ∗ C ∗ T = (A ∗ C ∗ T )X). In section
‘Summation aligned decomposition inducers’, above, it is conjectured that
the content alignment of a summation aligned decomposition, DD, equals the
summation alignment, algn(A∗DT)−algn(AX ∗DT) = algnSum(U)(A,DD).
So, in the case of a summation aligned decomposition, the summation align-
ment varies with the nullable transform derived alignment and against the
nullable transform derived entropy,∑

(C,F )∈cont(D)

algn(A ∗ C ∗ FT) ∼ algn(A ∗DT)

∼ − entropy(A ∗DT)

Hence for a summation aligned decomposition, DD ∈ DΣ(A),∑
(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F ∼ − entropy(A ∗DT)

The limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd(H), constrains the fuds to be
non-overlapping and its maximisation tends to increase slice midisation. This
is consistent with the contingently formal-abstract equivalence constraint of
the summation aligned decompositions, DΣ(A). The maximisation of the
slice alignment valency-density tends to contingent diagonalisation, which is
also consistent with summation aligned decompositions. Therefore conjec-
ture that, even in the cases where the decomposition is not a summation
aligned decomposition, DD /∈ DΣ(A), the maximisation of summed alignment
valency-density, algnValDensSum(U)(A,DD), tends to minimise the derived
entropy of the nullable transform, entropy(A ∗DT),∑

(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F ∼ − entropy(A ∗DT)

However, this anti-correlation between the summed alignment valency-density,
algnValDensSum(U)(A,DD), and the derived entropy, entropy(A∗DT), is not
perfect. One of the reasons is that maximising the contingent derived align-
ment, algn(A ∗C ∗FT), also tends to maximise the sized contingent abstract
entropy, z×entropy((A∗C ∗FT)X). As discussed in section ‘Maximum align-
ment’, above, maximum alignment, alignmentMaximum(U)(W, zA∗C) where
W = der(F ), is obtained when the histogram is uniformly diagonalised. In
this case maximum alignment occurs when the contingent derived histogram
is diagonalised, diagonal(A∗C∗FT), and uniform, |ran(trim(A∗C∗FT))| = 1.

764



In the case of regular derived variables of dimension m = |W | and valency
{d} = {|Uw| : w ∈ W}, the maximum alignment approximates to

alignmentMaximum(U)(W, zA∗C) ≈ zA∗C(m− 1) ln d

That is, maximum alignment increases weakly with increasing diagonal, d.
Entropy, on the other hand, is minimised when the histogram is a singleton,
entropy({(·, 1)}) = 0, so near maximum alignment the entropy no longer
decreases, but instead increases as the diagonal becomes more uniform.
However, in the limited-models summed alignment valency-density aligned
non-overlapping fud decomposition search function, ZD,F,P,n,q,Sd(H), it is the
contingent alignment valency-density that is maximimised, so the maximum
alignment valency-density for regular derived histogram approximates to

alignmentMaximum(U)(W, zA∗C)/d ≈ zA∗C(m− 1)(ln d)/d

Thus the diagonals tend to shorten to bivalent, d = 2. Although the diago-
nals cannot shorten to singletons, the derived entropy, entropy(A ∗ DT), is
lower in order to minimise valency-capacity, d. In any case, the space of the
specialising derived substrate history coder, CG,V,T,H, is sometimes minimised
where there are two effective derived states, |(A ∗ DT)F| = 2, depending on
the partition events space, as described in section ‘Derived history space’,
above.

In the case where the decomposition, D ∈ maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P,
is also a summation aligned decomposition, DD ∈ DΣ(A), then the decompo-
sition is contingently diagonalised,

∀(C, T ) ∈ cont(DD) (diagonal(A ∗ C ∗ T ))

and so there exists a skeletal reduction,

∃DD
s ∈ reductions(A,DD) (skeletal(A ∗DDT

s ))

The summed derived entropy is unchanged,∑
(C,{T})∈cont(Ds)

entropy(A ∗ C ∗ T ) =
∑

(C,F )∈cont(D)

entropy(A ∗ C ∗ FT)

because the off-diagonal derived states of the contingently diagonalised de-
composition’s fuds are ineffective and do not contribute to the derived en-
tropy. So, with respect to summed derived entropy, the skeletal reductions
of a summation aligned decomposition of singleton fuds are equally well cor-
related with the minimum space search function, ZD,F,P,m,G,T,H, than is the
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case without reduction.

In the special case of full functional fud decomposition Df = {((∅, {Tf}), ∅)},
where Tf = {{w}CS{}T : w ∈ V }T, the derived alignment equals the his-
togram alignment, algn(A ∗ DT

f ) = algn(A), and the derived entropy equals
the histogram entropy, entropy(A ∗ DT

f ) = entropy(A). Note that the full
functional decomposition, Df , is not necessarily a limited-models fud decom-
position, trees(S × Fq), depending on the definition of limited-models fuds,
Fq, and so the full functional decomposition may not be in the domain of the
limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd(H). At the other extreme
of unary fud decomposition Du = {((∅, {Tu}), ∅)}, where Tu = {V CS}T, the
derived alignment is zero, algn(A ∗DT

u ) = 0, and the derived entropy is zero,
entropy(A ∗DT

u ) = 0.

To continue the comparison of the properties of the minimum space search
function, ZD,F,P,m,G,T,H, and the summed alignment valency-density search
function, ZD,F,P,n,q,Sd, now consider the correlation between summed align-
ment valency-density, algnValDensSum(U)(A,DD), and component size car-
dinality relative entropy, entropyRelative(A ∗ DT, V C ∗ DT), where D ∈
maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P, H ∈ HU,X , A = histogram(H), V =
vars(H), v = |V C| and z = size(A).

The minimisation of the specialising derived substrate history coder space,
CG,V,T,H(DPV T)s(H), in the minimum space search function, ZD,F,P,m,G,T,H(H),
maximises the component size cardinality relative entropy so that high counts
tend to be in low cardinality components and high cardinality components
tend to have low counts. The component size cardinality relative entropy can
be expressed in terms of components,

entropyRelative(A ∗DT, V C ∗DT) =∑
(size(A ∗ CU)/z) ln

size(A ∗ CU)/z

|C|/v
: C ∈ DP, size(A ∗ CU) > 0

The limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd(H), is maximised by searching
for the fud decomposition D ∈ maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P, which max-
imises summed alignment valency-density, algnValDensSum(U)(A,DD) =∑

algn(A ∗ C ∗ FT)/w
1/mF

F : (C,F ) ∈ cont(D). The limited-models summed
alignment valency-density substrate aligned non-overlapping infinite-layer fud
decomposition inducer maximum function, maxr ◦ I ′∗z,Sd,D,F,∞,n,q, is correlated
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with the midisation pseudo-alignment substrate independent-formal trans-
form inducer maximum function, maxr◦ I∗z,m,fx, which maximises the midisa-
tion pseudo-alignment. The alignment valency-density of a contingent fud of
the decomposition, algn(A ∗ C ∗ FT)/w

1/mF

F , where (C,F ) ∈ cont(D), varies
with the midisation pseudo-alignment,

algn(A ∗ C ∗ FT)/w
1/mF

F ∼
algn(A ∗ C)− algn(A ∗ C ∗ FT ∗ FT†A∗C)− algn((A ∗ C ∗ FT)X ∗ FT�A∗C))

Maximisation of midisation tends to move component alignments from off-
diagonal states to on-diagonal states. That is, if not fully decomposed, the
on-diagonal states have high component alignment, algn(A ∗ C ∗ C ′) > 0
where (R′, C ′) ∈ (FT)−1 and (A ∗C ∗FT)R′ = size(A ∗C ∗C ′) > 0, while off-
diagonal states have (i) low component alignment, algn(A∗C ∗C ′) ≈ 0 where
(A∗C ∗FT)R′ ≈ 0, or (ii) are independent, algn(A∗C ∗C ′) = 0 ⇐⇒ A∗C ∗
C ′ = (A∗C ∗C ′)X, or (iii) are ineffective, (A∗C ∗FT)R′ = 0. If the contingent
derived histogram is diagonalised, diagonal(A∗C ∗FT), then the off-diagonal
components are necessarily ineffective, (A ∗C ∗FT)R′ = size(A ∗C ∗C ′) = 0.

Although the maximisation of the midisation alignment tends to minimise
the mid component size cardinality relative entropy, entropyRelative(A ∗C ∗
FT, C ∗ FT) ≈ 0, the subsequent maximisation of the idealisation alignment
in the super-decomposition tends to restore it. The increase in relative en-
tropy was conjectured, in section ‘Likely histograms’, above, to occur where
the idealisation is integral, because the logarithm of the cardinality of integral
independent histograms varies against the volume. It is shown below that,
regardless of whether the idealisation is integral or not, the relative entropy
also increases during decomposition because of the tendency to diagonalise
as the midisation alignment of the slice is maximised. The maximisation
of summed alignment valency-density, algnValDensSum(U)(A,DD), tends to
maximise the relative entropy of the nullable transform,∑
(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F ∼ entropyRelative(A ∗DT, V C ∗DT)

Choose a node of the decomposition ((C,F ), X) ∈ contingents(D). In the
case of a sub-decomposition E ∈ subtrees(D) which is such that the com-
ponent, C, is a component of the decomposition partition, CS ∈ EP, the
contribution of C to the relative entropy of E is

(size(A ∗ C)/z) ln
size(A ∗ C)/z

|C|/v
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where size(A ∗ C) > 0. In the super-decomposition, D, however, the com-
ponent, C, is further decomposed so that in the case where the node has no
children, X = ∅, the contribution to the relative entropy is instead∑

(size(A ∗ C ∗ C ′)/z) ln
size(A ∗ C ∗ C ′)/z
|C ∗ C ′|/v

:

(·, C ′) ∈ (FT)−1, size(A ∗ C ∗ C ′) > 0

The fud, F , is chosen such that the midisation is maximised and so in some
cases the relative entropy increases,

(size(A ∗ C)/z) ln
size(A ∗ C)/z

|C|/v

≤
∑

(size(A ∗ C ∗ C ′)/z) ln
size(A ∗ C ∗ C ′)/z
|C ∗ C ′|/v

:

(·, C ′) ∈ (FT)−1, size(A ∗ C ∗ C ′) > 0

In the special case where the decomposed slice has uniform sub-slice sizes,
∀(·, C ′) ∈ (FT)−1 (size(A ∗ C ∗ C ′) = size(A ∗ C)/|(FT)−1|), then the rela-
tive entropy must increase if the sub-components do not all have the same
cardinality, ∃(·, C ′) ∈ (FT)−1 (|C ′| 6= |C|/|(FT)−1|), because then

∃(·, C ′) ∈ (FT)−1

(
size(A ∗ C ∗ C ′)/z
|C ∗ C ′|/v

6= size(A ∗ C)/z

|C|/v

)
In the case where there are ineffective components, size(A ∗ C ∗ C ′) = 0, the
relative entropy necessarily increases because the effective underlying volume
decreases,

|
⋃
{C ∗ C ′ : (·, C ′) ∈ (FT)−1, size(A ∗ C ∗ C ′) > 0}| < |C|

whereas the size of the slice A ∗ C is conserved,∑
size(A ∗ C ∗ C ′) : (·, C ′) ∈ (FT)−1 = size(A ∗ C)

Viewed as an optimising process, decomposition consists of successive alter-
nating maximisations of midisation pseudo-alignment and then idealisation
alignment. Alignments are removed along the decomposition paths so that
a fully decomposed decomposition is ideal, ideal(A,DT). In the case where
the node, ((C,F ), X) ∈ contingents(D), has children, X 6= ∅, a child slice
A ∗ C2 ⊂ A ∗ C, where (C2, F2) ∈ dom(X), which cannot contain the parent
alignment, algn(A ∗ C2 ∗ FT) = 0, again has its fud, F2, chosen to maximise
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midisation from the remaining alignment, tending to diagonalise the derived
histogram, A ∗C2 ∗FT

2 . Again, ineffective components and independent com-
ponents are removed from subsequent slices, so the contribution to relative
entropy, which was

(size(A ∗ C2)/z) ln
size(A ∗ C2)/z

|C2|/v
= (size(A ∗ C ∗ C ′)/z) ln

size(A ∗ C ∗ C ′)/z
|C ∗ C ′|/v

where (·, C ′) ∈ (FT)−1 and C ∗C ′ = C2, is such that now, in some cases, the
relative entropy again increases,

(size(A ∗ C2)/z) ln
size(A ∗ C2)/z

|C2|/v

≤
∑

(size(A ∗ C2 ∗ C ′′)/z) ln
size(A ∗ C2 ∗ C ′′)/z
|C2 ∗ C ′′|/v

:

(·, C ′′) ∈ (FT
2 )−1, size(A ∗ C2 ∗ C ′′) > 0

The decomposition tends to concentrate events into smaller and smaller com-
ponents along the decomposition path as the idealisation is maximised, be-
cause of the asymmetric distribution of events in the contingent fuds’ slice
partitions as midisation is maximised, thus increasing the component size
cardinality relative entropy. However, the correlation between the minimum
space search function, ZD,F,P,m,G,T,H, and the summed alignment valency-
density search function, ZD,F,P,n,q,Sd, in this respect, is not perfect. A reason
is that when any effective component, size(A ∗ C ∗ C ′) > 0, is independent,
A ∗C ∗C ′ = (A ∗C ∗C ′)X, the decomposition is ideal with respect to it, and
no further slicing of the component can take place, (C ∗ C ′)S ∈ DP.

On the other hand, the alignment of the components varies weakly with the
component cardinality if the component volume is a proper cartesian sub-
volume, |C ∗ C ′| ≤ |(C ∗ C ′)XF| < |V C|. In the on-diagonal case where the
component alignments may be high, algn(A∗C∗C ′) > 0, the maximum align-
ment varies approximately with the logarithm of the component cardinality,
ln |(C ∗ C ′)XF|(n−1)/n. (See the section ‘Maximum alignment’, above, where
it is shown that alignmentMaximum(U)(V, z) ≈ z ln v(n−1)/n.) In the off-
diagonal case where the component alignments are low, algn(A∗C ∗C ′) ≈ 0,
the expected alignment varies with the logarithm of the component cardinal-
ity, ln |(C ∗C ′)XF|. (See the section ‘Minimum alignment’, above, where it is
conjectured that expected alignment varies approximately with the logarithm
of the volume, ln v where z � v.) In both cases if the component is a proper
cartesian sub-volume, |(C ∗ C ′)XF| < |V C|, the alignment, algn(A ∗ C ∗ C ′),
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varies weakly with the component cardinality, |C ∗C ′|. Hence the further de-
composition of these non-independent slices decomposes larger cardinalities,
tending to increase the relative entropy.

However, as shown in section ‘Tractable decomposition inducers’, above, the
fraction of derived histograms of a given derived geometry that are diago-
nalised, |{A : A ∈ AU,i,V,z, diagonal(A)}|/|AU,i,V,z|, increases as the diagonals
shorten. Maximisation of alignment valency-density or midisation tends to
shorten the diagonals, so the probability of off-diagonal states being com-
pletely ineffective is higher than would otherwise be the case. The probabil-
ity of effective independent off-diagonal derived states that cannot be further
decomposed is lower. In addition, maximisation of valency-density does not
necessarily decrease the derived dimension where this does not lengthen the
diagonal, so the fraction of the derived volume may be low, which tends to
reduce the total volume of effective underlying components.

In the section above, which considers the correlation between the summed
alignment valency-density, algnValDensSum(U)(A,DD), and the derived en-
tropy, entropy(A ∗ DT), it was shown that if it is the case that the de-
composition D ∈ maxd(ZD,F,P,n,q,Sd(H)) is a summation aligned decomposi-
tion, DD ∈ DΣ(A), and also such that the fuds are all singletons, ∀F ∈
fuds(D) (|F | = 1), then the summed derived entropy of the skeletal reduction
DD

s ∈ reductions(A,DD) is unchanged,
∑

entropy(A ∗ C ∗ T ) : (C, {T}) ∈
cont(Ds) =

∑
entropy(A ∗ C ∗ FT) : (C,F ) ∈ cont(D). While the summa-

tion aligned decomposition, DD, may have high component size cardinality
relative entropy because of the contingent diagonalisation, in the skeletal re-
duction, DD

s , the fuds are mono-derived-variate, ∀F ∈ fuds(Ds) (|der(F )| =
1), and therefore all of the components are effective, ∀C ∈ DP

s (size(A ∗
C) > 0), and there are fewer, larger components, |DP

s | < |DP|. The com-
ponent cardinalities, |C|, tend to be more correlated with the component
sizes, size(A ∗ C), and hence the component size cardinality relative entropy
is lower in the contingently reduced decomposition, Ds. Thus, the history
space, CG,V,T,H(DPV T

s )s(H), may be larger than that of the decomposition,
CG,V,T,H(DPV T)s(H). So the skeletal reduction, Ds, is less likely to be a
maximum of the minimum space search function, ZD,F,P,m,G,T,H. The skele-
tal reduction, Ds, cannot be a maximum of the summed alignment valency-
density search function, ZD,F,P,n,q,Sd, because it has zero summed alignment,
algnValDensSum(U)(A,DD

s ) = 0.

In the special case of full functional fud decomposition, Df , the component
size cardinality relative entropy equals the log volume less the histogram en-
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tropy

entropyRelative(A ∗DT
f , V

C ∗DT
f ) = ln v − entropy(A)

At the other extreme of unary fud decomposition, Du, the component size
cardinality relative entropy is zero,

entropyRelative(A ∗DT
u , V

C ∗DT
u ) = 0

To continue the comparison of the properties of the minimum space search
function, ZD,F,P,m,G,T,H, and the summed alignment valency-density search
function, ZD,F,P,n,q,Sd, consider the correlation between summed alignment
valency-density, algnValDensSum(U)(A,DD), and expected component en-
tropy, entropyComponent(A,DT), whereD ∈ maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P,
H ∈ HU,X , A = histogram(H) and z = size(A).

The minimisation of specialising derived coder space, CG,V,T,H(DPV T)s(H),
also minimises the specialising-canonical space difference, 2CG,V,T,H(DPV T)s(H)−
Cs

H,V (H)−Cs
G,V (H), which tends to maximise the entropy of the underlying

components.

The limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd(H), is maximised when the
fud decomposition D ∈ maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P, is ideal with respect
to the histogram, ideal(A,DT), because contingent alignments are succes-
sively removed along the decomposition paths. Thus the components of the
fully decomposed model are independent,

ideal(A,DT) =⇒ ∀(·, C) ∈ (DT)−1 (A ∗ C = (A ∗ C)X)

and so

entropyComponent(A,DT)

= expected(Â ∗DT)({(R, entropy(A ∗ C)) : (R,C) ∈ (DT)−1})
= expected(Â ∗DT)({(R, entropy((A ∗ C)X)) : (R,C) ∈ (DT)−1})

In section ‘Minimum alignment’, above, it is shown that the entropy of the
independent of a histogram tends to be greater than the entropy of the his-
togram,

entropy(A ∗ C) ≤ entropy((A ∗ C)X)
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So the entropies are expected to be higher than would be the case if the de-
composition were not ideal. The maximisation of summed alignment valency-
density, algnValDensSum(U)(A,DD), tends to maximise the expected com-
ponent entropy of the nullable transform,∑

(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F ∼ entropyComponent(A,DT)

The correlation between the minimum space search function, ZD,F,P,m,G,T,H,
and the summed alignment valency-density search function, ZD,F,P,n,q,Sd, in
this respect however, is not perfect. Maximum entropy is obtained when a
component is uniform,

entropy((A ∗ C)X) ≤ entropy((A ∗ C)XF)

but an independent component that is not uniform cannot be further de-
composed into smaller, more uniform components by the fully decomposed
decomposition, ∀C1, C2 ∈ dom(cont(D)) ((A ∗ C1 = (A ∗ C1)X) ∧ (C2 6=
C1) =⇒ C2 * C1).

In the special case of full functional fud decomposition, Df , the expected com-
ponent entropy is zero,

entropyComponent(A,DT
f ) = 0

At the other extreme of unary fud decomposition, Du, the expected component
entropy equals the histogram entropy,

entropyComponent(A,DT
u ) = entropy(A)

To continue the comparison of the properties of the minimum space search
function, ZD,F,P,m,G,T,H, and the summed alignment valency-density search
function, ZD,F,P,n,q,Sd, consider the correlation between summed alignment
valency-density, algnValDensSum(U)(A,DD), and possible derived volume,
w′ = |(DT)−1|, where D ∈ maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P and H ∈ HU,X .
As shown in section ‘Decompositions’, above, the possible derived volume,
w′, is bounded by the possible derived volumes of the individual fuds,

w′ ≤
∑
F∈G

(
|(FT)−1|

)
+ 1− |G|

=
∑
F∈G

w′F + 1− |G|
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where G = fuds(D) and w′F = |(FT)−1|. In this case all of the fuds are
non-overlapping, so

w′ ≤
∑
F∈G

(
|WC

F |
)

+ 1− |G|

=
∑
F∈G

wF + 1− |G|

where WF = der(F ) and wF = |WC
F |.

The fud decompositions of the alignment search, ZD,F,P,n,q,Sd(H), are limited-
models fud decompositions, DF,U,P ∩ trees(S × (Fn ∩Fq)) and hence the fuds
are limited-derived, Fd ⊂ Fq ⊂ F . In the case where there is a maximum
derived volume limit wmax ∈ N≥4, then then possible derived volume is also
explicitly limited,

w′ ≤ |G| × wmax + 1− |G|

The maximisation of the midisation, or its tractable counterpart, the align-
ment valency-density, of a decomposition fud, (C,F ) ∈ cont(D), tends to

decrease the valency-capacity, w
1/mF

F , shortening the diagonal. Therefore the
derived volume, wF = w′F , also tends to decrease. The possible derived vol-
ume of the decomposition, w′, is bounded by the sum of the fuds’ derived
volumes,

∑
F∈GwF , and so it also tends to decrease.

The possible derived volume, w′, equals the cardinality of the leaf components
of the decomposition, w′ = |(DT)−1| = |DP|, and so the possible derived vol-
ume does not depend on the cardinality of the fuds, |G|. For example, (i) a
multi-fud decomposition D1 such that |fuds(D1)| > 1 and (ii) a singleton de-
composition D2 = {((∅, ·), ∅)}, which are such that the partitions are equal,
DP

1 = DP
2 , have the same possible derived volume, w′ = |DP

1 | = |DP
2 |. The

possible derived volume of a multi-fud decomposition does not necessarily in-
crease with fud cardinality, |G1| where G1 = fuds(D1), or decomposition path
length, |L| where L ∈ paths(D1).

So the possible derived volume, w′, can be minimised by choosing a decompo-
sition tree, D ∈ trees(S × F), that minimises the cardinality of the decom-
position partition, |DP|. This is achieved in the summed alignment valency-
density search function, ZD,F,P,n,q,Sd, by removing alignments as quickly as
possible along the decomposition paths, resulting in a few large cardinal-
ity independent components, A ∗ C = (A ∗ C)X where (C,F ) ∈ cont(D)
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and CS ∈ DP. The rate of derived alignment removal per additional com-
ponent along the decomposition path is the derived alignment per effective
non-independent slice,

algn(A ∗ C ∗ FT)

|{C ′ : (·, C ′) ∈ (FT)−1, algn(A ∗ C ∗ C ′) > 0}|
≥ algn(A ∗ C ∗ FT)

|(A ∗ C ∗ FT)F|

where (C,F ) ∈ cont(D). The alignment effective-density is less than or equal
to the alignment valency-density,

algn(A ∗ C ∗ FT)

|(A ∗ C ∗ FT)F|
≤ algn(A ∗ C ∗ FT)

w
1/mF

F

In the case of a regular diagonalised derived histogram, diagonal(A ∗C ∗FT),

of valency {dF} = {|Uw| : w ∈ WF}, which is such that dF = w
1/mF

F , the
alignment effective-density equals the alignment valency-density,

algn(A ∗ C ∗ FT)

|(A ∗ C ∗ FT)F|
=

algn(A ∗ C ∗ FT)

dF

Thus the maximisation of the fud’s alignment valency-density tends to max-
imise the rate of derived alignment removal per additional component. Along
the decomposition path the parent fud’s alignment, algn(A ∗ C ∗ FT), is re-
moved from the children slices, reducing the cardinality of effective children
slices that are not independent, |{C ′ : (·, C ′) ∈ (FT)−1, algn(A ∗ C ∗ C ′) >
0}|. By balancing the removal of alignment in the numerator with the cre-
ation of new non-independent components in the denominator, the maximi-
sation tends to deep, narrow decompositions that minimise the possible de-
rived volume, w′. The maximisation of summed alignment valency-density,
algnValDensSum(U)(A,DD), tends to minimise the derived volume of the
nullable transform,∑

(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F ∼ 1/w′

The effect on the possible derived volume, w′, of maximising the alignment
valency-density, algn(A∗C∗FT)/w

1/mF

F , is similar to the effect on the derived
entropy, entropy(A∗C ∗FT). However, the tendency to large cardinality leaf
components, |C| where CS ∈ DP, which also have large size, size(A∗C), may
reduce (a) the component size cardinality relative entropy and (b) the un-
derlying component entropies. To optimise these properties both (i) maximi-
sation of midisation, and (ii) maximisation of idealisation by decomposition,
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are required.

While viewing the decomposition as constructed from a sequence of sub-
decompositions in a computational process is a useful way of describing the
removal of alignments along the decomposition paths, the search merely op-
timises the sum of the contingent alignment valency-densities for the whole
decomposition. Therefore in some cases children fuds may have higher align-

ment valency-densities than their parents, algn(A∗C1∗FT
1 )/w

1/mF1
F1

< algn(A∗
C2 ∗ FT

2 )/w
1/mF2
F2

, where (C1, F1), (C2, F2) ∈ cont(D) and C2 ⊂ C1, although
the sizes necessarily decrease, size(A ∗ C1) > size(A ∗ C2). However, the
maximum alignment, approximately z ln v(n−1)/n, varies with size, and so it
is often the case that the highest alignments are near the root of the decom-
position tree.

In the special case of full functional fud decomposition, Df , the possible de-
rived volume is the substrate volume, w′ = v, where v = |V C|. At the other
extreme of unary fud decomposition, Du, the possible derived volume is one,
w′ = 1.

Also, note that each non-root fud adds no more than wF − 1 to the pos-
sible derived volume,

w′ ≤
∑
F∈G

wF + 1− |G|

=
∑
F∈G

(wF − 1) + 1

so there is a case for optimising the alignment decremented-valency-density,

algn(A ∗ C ∗ FT)

(w
1/mF

F − 1)

The alignment decremented-valency-density has a slightly weaker capacity
than the alignment valency-density, and so its maximisation would tend to
longer diagonals and shallower, wider decompositions.

The comparisons above between the properties of the minimum space
search function, ZD,F,P,m,G,T,H, and the summed alignment valency-density
search function, ZD,F,P,n,q,Sd, provide evidence for the conjecture that the
search functions are positively correlated for uniform history probability func-
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tion,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃Fq ⊂ F (covariance(PU,X)(maxr ◦ ZD,F,P,m,G,T,H,maxr ◦ ZD,F,P,n,q,Sd) ≥ 0))

where PU,X = HU,X × {1/|HU,X |}.

Although the minimum space search function, ZD,F,P,m,G,T,H, searches for
a fud decomposition, the history itself is encoded in a specialising derived
substrate history coder parameterised only with the transform of the fud de-
composition, CG,V,T,H(DPV T) ∈ coders(HU,V,X).

In some cases, however, a history may be encoded in less space by means of a
specialising fud substrate history coder if CG,V,F,H(F )s(H) < CG,V,T,H(DT)s(H),
where CG,V,F,H(F ) ∈ coders(HU,V,X) and fud F is such that its transform
equals that of the fud decomposition, FT = DT. It is shown in ‘Derived
history space’, above, that in the law-like case where the fud has a top trans-
form, ∃T ∈ F (WT = der(F )), the space difference is just the difference in
partitioned events space,

CG,V,F,H(F )s(H)− CG,V,T,H(FT)s(H) =∑
T∈F

spaceEventsPartition(A ∗ depends(F, VT )T, T )

− spaceEventsPartition(A,FT)

which is the size scaled difference in component size cardinality cross en-
tropies,

CG,V,F,H(F )s(H)− CG,V,T,H(FT)s(H) =

z × entropyCross(A ∗ FT, V C ∗ FT)

− z ×
∑
T∈F

entropyCross(A ∗ depends(F,WT )T, V C
T ∗ T )

where VT = und(T ) and WT = der(T ).

It was also conjectured that when the specialising fud space, CG,V,F,H(F )s(H),
is minimised, (i) the derived entropy decreases up the layers, (ii) the possible
derived volume decreases up the layers, (iii) the expected component entropy
increases up the layers, and (iv) the component size cardinality cross entropy
increases up the layers. The optimisation of a fud without a layer limit may
be made computable by building the fud layer by layer, minimising the spe-
cialising space at each step, until the addition of a layer fails to reduce the
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specialising space.

In some cases a history may be encoded in yet smaller space by means of a
specialising fud decomposition substrate history coder if CG,V,D,F,H(D)s(H) <
CG,V,T,H(DT)s(H), where CG,V,D,F,H(D) ∈ coders(HU,V,X). This is because (i)
a specialising fud decomposition substrate history coder allows different slices
to have different fuds and (ii) complete coverage of the substrate is only
required for whole paths, ∀L ∈ paths(D∗) (

⋃
(·,(F,·))∈L VF = V ). Therefore

consider the fud decomposition minimum space specialising fud decomposi-
tion search function which is defined in terms of the expanded specialising
fud decomposition history coder CG,D,F,H(D) ∈ coders(HU,X),

ZD,F,P,m,G,D,F,H(H) = {(D,−CG,D,F,H(D)s(H)) : D ∈ DF,U,P}

The limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd, which is derived from the
summed alignment valency-density decomposition inducer, I

′

z,Sd,D,F,∞,n,q, is
conjectured to be positively correlated with the fud decomposition minimum
space specialising fud decomposition search function, ZD,F,P,m,G,D,F,H, for uni-
form history probability function,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃Fq ⊂ F (covariance(PU,X)

(maxr ◦ ZD,F,P,m,G,D,F,H,maxr ◦ ZD,F,P,n,q,Sd) ≥ 0))

where PU,X = HU,X × {1/|HU,X |}. However, the correlation is less than or
equal to the correlation with the fud decomposition minimum space special-
ising derived search function, ZD,F,P,m,G,T,H,

covariance(PU,X)(maxr ◦ ZD,F,P,m,G,D,F,H,maxr ◦ ZD,F,P,n,q,Sd)

≤ covariance(PU,X)(maxr ◦ ZD,F,P,m,G,T,H,maxr ◦ ZD,F,P,n,q,Sd)

The reason for this is that the alignment search function, ZD,F,P,n,q,Sd, does
not depend directly on the transforms of the fuds of the decomposition. The
optimisation of the alignment search function, ZD,F,P,n,q,Sd, does not necessar-
ily minimise the space difference, CG,VF ,F,H(F )s(H%VF )−CG,VF ,T,H(FT)s(H%VF ),
whereas the optimisation of the fud decomposition minimum space specialis-
ing fud decomposition search function, ZD,F,P,m,G,D,F,H, tends to do so. For
example, the alignment search function, ZD,F,P,n,q,Sd, is independent of the
component cardinalities of the transforms, so the optimisation is neutral with
respect to the component size cardinality cross entropies,

entropyCross(A ∗ depends(F,WT )T, V C
T ∗ T )
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where T ∈ F and F ∈ fuds(D). Neither does the alignment search function,
ZD,F,P,n,q,Sd, depend directly on the component sizes of the transforms ex-
cept in the case of a top transform A ∗ depends(F,WT )T = A ∗ FT, where
WT = WF . Even in this case, there is no dependency on the component cardi-
nalities of the top transform, {(R, |C|) : (R,C) ∈ T}. The alignment search
function, ZD,F,P,n,q,Sd, does tend to maximise the component size cardinality
cross entropy,

entropyCross(A ∗DT, V C ∗DT)

by decomposing high on-diagonal component sizes, but this is the component
size cardinality cross entropy of the transform of the decomposition, DT,
rather than the cross entropies of the transforms of the fuds of the decom-
position. There is no constraint that the derived entropy and the possible
derived volume decreases up the layers, nor any constraint that the expected
component entropy increases up the layers. There is no sense that the fuds
are built layer by layer in sequence.

The practicable highest-layer summed shuffle content alignment valency-density
fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d, however, does impose a sequence
on the search and other constraints that do not apply to the tractable summed
alignment valency-density decomposition inducer, I

′

z,Sd,D,F,∞,n,q, correspond-
ing to the limited-models summed alignment valency-density aligned non-
overlapping fud decomposition search function, ZD,F,P,n,q,Sd. The practicable
highest-layer summed shuffle content alignment valency-density fud decom-
position inducer is implemented in section ‘Optimisation’, above, as

I
′∗
z,Scsd,D,F,∞,q,P,d(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,d)), {D} = Q

Define the practicable highest-layer summed shuffle content alignment valency-
density fud decomposition search function

ZD,F,P,q,d,P,Scsd(H) =

{(D, I∗Scsd((AH , D))) : Q = leaves(tree(ZP,AH ,D,F,d)), Q 6= ∅, {D} = Q} ∪
{(Du, 0)}

Corresponding to the conjecture that the tractable limited-models summed
alignment valency-density aligned non-overlapping fud decomposition search
function, ZD,F,P,n,q,Sd, and the fud decomposition minimum space specialising
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derived search function, ZD,F,P,m,G,T,H, are positively correlated,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃Fq ⊂ F (covariance(PU,X)

(maxr ◦ ZD,F,P,m,G,T,H,maxr ◦ ZD,F,P,n,q,Sd) ≥ 0))

conjecture that for all finite systems and finite event identifier sets there
exists a tuple of parameters such that the practicable highest-layer summed
shuffle content alignment valency-density fud decomposition search function,
ZD,F,P,q,d,P,Scsd, is positively correlated with the fud decomposition minimum
space specialising fud decomposition search function, ZD,F,P,m,G,D,F,H, for uni-
form history probability function,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃P ∈ L(X ) (covariance(PU,X)

(maxr ◦ ZD,F,P,m,G,D,F,H,maxr ◦ ZD,F,P,q,d,P,Scsd) ≥ 0))

Depending on the parameters, P , which imply a set of limited-models, Fq ⊂
F , the domain of the application of the practicable highest-layer summed shuf-
fle content alignment valency-density fud decomposition inducer is a subset of
domain of the application of the tractable summed alignment valency-density
decomposition inducer, dom(I

′∗
z,Scsd,D,F,∞,q,P,d(A)) ⊆ dom(I

′∗
z,Sd,D,F,∞,n,q(A)),

so, in some cases, the maximum decompositions of the practicable search
function, ZD,F,P,q,d,P,Scsd, intersect with the maximum decompositions of the
tractable search function, ZD,F,P,n,q,Sd,

|maxd(ZD,F,P,q,d,P,Scsd(H)) ∩maxd(ZD,F,P,n,q,Sd(H))| ≥ 0

and, in general, there is a high correlation

covariance(PU,X)(maxr ◦ ZD,F,P,q,d,P,Scsd,maxr ◦ ZD,F,P,n,q,Sd)

So the relationships between the properties of the fud decomposition mini-
mum space specialising derived search function, ZD,F,P,m,G,T,H, and the prop-
erties of the tractable search function, ZD,F,P,n,q,Sd, in the discussion above,
also tend to hold for the relationships between the properties of the mini-
mum space search function, ZD,F,P,m,G,T,H, and the properties of the practi-
cable search function, ZD,F,P,q,d,P,Scsd.

In the case of the practicable search function, ZD,F,P,q,d,P,Scsd, however, the
fuds of the decomposition are built layer by layer,

∀(i, G) ∈ L (layer(G, der(G)) = i)
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where {L} = paths(tree(ZP,A,AR,L,d)) and the highest-layer limited-layer limited-
underlying limited-breadth fud tree searcher is

ZP,A,AR,L,d = searchTreer(F∞,UA,VA ∩ Fu ∩ Fb ∩ Fh, PP,A,AR,L,d, {∅})

So the properties of the fuds of the decomposition also depend on layer. In
particular the highest-layer fud tree searcher, ZP,A,AR,L,d, is constrained such
that the shuffle content alignment valency-density of the derived variables set
increases in each layer. Let the cumulative fud F{1...i} =

⋃
j∈{1...i} Fj, where

Fi = {T : T ∈ F, layer(F, der(T )) = i}. Then consecutive fuds, F{1...i} and
F{1...i+1} are in the path,

{(i, F{1...i}), (i+ 1, F{1...i+1})} ⊆ L

where F = Ll and l = |L|. The highest-layer limited-layer limited-underlying
limited-breadth fud tree searcher neighbourhood function is defined

PP,A,AR,L,d(F ) = {G :

G ∈ PP,A,AR,L(F ),

(F 6= ∅ =⇒ maxr(el(ZP,A,AR,F,D,d)) < maxr(el(ZP,A,AR,G,D,d)))}

where the highest-layer limited-derived derived variables set list maximiser is

ZP,A,AR,F,D,d = maximiseLister(XP,A,AR,F,D, PP,A,AR,F,D, top(omax), RP,A,AR,F,D,d)

so the neighbouring layers are such that

maxr(el(ZP,A,AR,F{1...i},D,d)) < maxr(el(ZP,A,AR,F{1...i+1},D,d))

Let the layer derived variables set Ji found by the highest-layer derived vari-
ables set list maximiser be

Ji ∈ maxd(el(ZP,A,AR,F{1...i},D,d))

The layer derived variables set is such that Ji ⊆ vars(F{1...i}) \ V . The layer
derived variables set, Ji, is not necessarily equal to the derived variables of the
whole layer, der(F{1...i}), but there must be an intersection, Ji∩der(F{1...i}) 6=
∅. The shuffle content alignment valency-density of the derived variables
set of a layer is XP,A,AR,F{1...i},D(Ji) = maxr(el(ZP,A,AR,F{1...i},D,d)) where the
limited-derived derived variables set list maximiser optimiser function is

XP,A,AR,F,D = {(K, I∗csd((A,AR, G))) :

K ⊆ vars(F ), K 6= ∅, G = depends(F,K)}
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the shuffle content alignment valency-density computer is

I∗csd((A,AR, F )) = (I∗a (A ∗ FT)− I∗a (AR ∗ FT))/I∗cvl(F )

and the valency capacity computer is

I∗cvl(F ) := (I∗≈pow((w, 1/m)) : W = der(F ), w = |WC|, m = |W |)

The layer derived variables set, Ji, intersects with the derived variables of
the whole layer, der(F{1...i}), so the shuffle content alignment valency-density
varies with the derived entropy

XP,A,AR,F{1...i},D(Ji) ∼ algn(A ∗ depends(F{1...i}, Ji)
T)

∼ −z × entropy(A ∗ depends(F{1...i}, Ji)
T)

∼ −z × entropy(A ∗ FT
{1...i})

The shuffle content alignment valency-density of the derived variables set
increases in each layer,

XP,A,AR,F{1...i},D(Ji) < XP,A,AR,F{1...i+1},D(Ji+1)

so, in general, the derived entropy decreases up the layers,

∀i ∈ {2 . . . l} (entropy(A ∗ FT
{1...i}) < entropy(A ∗ FT

{1...i−1}))

which is a property of the specialising fud substrate history coder, CG,V,F,H(F ),
and hence a property of the specialising fud decomposition substrate history
coder, CG,V,D,F,H(DV ).

Note that it is the shuffle content alignment valency-density that is max-
imised, rather than the shuffle content alignment. The shuffle content align-
ment valency-density varies against the derived volume,

XP,A,AR,F{1...i},D(Ji) ∼ 1/|JC
i |1/|Ji|

∼ 1/|JC
i |

and so, in general, the derived volume decreases up the layers,

∀i ∈ {2 . . . l} (|WC
i | < |WC

i−1|)

whereWi = der(Gi), G = depends(FL, K), K ∈ maxd(elements(ZP,A,AR,FL,D,d))
and {FL} = leaves(tree(ZP,A,AR,L,d)).
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That is, the derived entropy and the derived volume tend to decrease up
the layers of the fuds of the decompositions in both the practicable highest-
layer summed shuffle content alignment valency-density fud decomposition
search function, ZD,F,P,q,d,P,Scsd, and the fud decomposition minimum space
specialising fud decomposition search function, ZD,F,P,m,G,D,F,H.

Another correlation that is a consequence of the layer by layer search in the
highest-layer limited-layer limited-underlying limited-breadth fud tree searcher,
ZP,A,AR,L,d, arises in the contracted decrementing linear non-overlapping fuds
list maximiser,

ZP,A,AR,F,n,−,K =

maximiseLister(XP,A,AR,F,n,−,K , NP,A,AR,F,n,−,K , top(pmax), RP,A,AR,F,n,−,K)

which value rolls a tuple, K, from the limited-underlying tuple set list max-
imiser, ZP,A,AR,F,B, in the limited-layer limited-underlying limited-breadth fud
tree searcher neighbourhood function,

PP,A,AR,L(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,A,AR,F,B)),

H ∈ topd(pmax)(elements(ZP,A,AR,F,n,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

The contracted decrementing linear non-overlapping fuds list maximiser op-
timiser function is

XP,A,AR,F,n,−,K = {(H, I∗csd((A,AR, G))) :

H ∈ FUA,n,−,K,b,mmax,2, G = depends(F ∪H, der(H))}

The contracted decrementing linear non-overlapping fuds list maximiser ini-
tial subset,

RP,A,AR,F,n,−,K = {({MT}, XP,A,AR,F,n,−,K({MT})) :

Y ∈ B(K), 2 ≤ |Y | ≤ mmax, M = {JCS{} : J ∈ Y }}

partitions the tuple, Y ∈ B(K), maximising the shuffle content alignment
valency-density, XP,A,AR,F,n,−,K(GY ), of the fud of self transforms on the com-
ponents of the tuple partition, GY = {JCS{}T : J ∈ Y }. The maximisation
of the derived alignment between the derived variables of the components,
algn(AF ∗GT

Y ), where AF = A∗
∏

(X,·)∈F X, tends to minimise the underlying
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alignments within the components,
∑

J∈Y algn(AF%J). So in some cases the
intra-component alignments are less than the inter-component alignments,
algn(AF%{v1, v2}) < algn(AF%{v1, v3}), where v1, v2 ∈ J and v3 ∈ K \ J .

The fud, H, resulting from the contracted decrementing linear non-overlapping
fuds list maximiser, ZP,A,AR,F,n,−,K , is value rolled from the fud, GY , of self
transforms, partitioning the underlying histogram, AF%K. Conjecture that
alignments of the components of this partition vary against the derived align-
ment, ∑

(·,C)∈(HT)−1

algn(AF%K ∗ C) ∼ − algn(AF ∗HT)

Then the fud, H, is exploded into a fud of transforms each correspond-
ing to a component of the tuple partition. Let w ∈ der(H) correspond
to the component J . Then der(T ) = {w} and und(T ) = J , where T =
depends(explode(H), {w})TPT. The layer, Fi, is the set of these transforms,
F{1...i} = PP,A,AR,L(F{1...i−1}). The differential between the intra-component
alignments and the inter-component alignments in each layer implies that
the layer derived entropy varies against the layer expected component entropy,

z × entropy(A ∗ FT
{1...i})

∼ − algn(A ∗ FT
{1...i})

∼
∑
T∈Fi

∑
(·,C)∈T−1

algn(A ∗ FT
{1...i−1}%VT ∗ C)

∼ −
∑
T∈Fi

∑
(R,C)∈T−1

(A ∗ FT
{1...i−1} ∗ T )R × entropy(A ∗ FT

{1...i−1}%VT ∗ C)

∼ −
∑

(R,C)∈(FT
i )−1

(A ∗ FT
{1...i})R × entropy(A ∗ FT

{1...i−1} ∗ C)

= − entropyComponent(A ∗ FT
{1...i−1}, F

T
i )

It has already been shown that, in general, the derived entropy decreases up
the layers,

∀i ∈ {2 . . . l} (entropy(A ∗ FT
{1...i}) < entropy(A ∗ FT

{1...i−1}))

so, in general, the expected component entropy increases up the layers,

∀i ∈ {2 . . . l}
(entropyComponent(A,FT

{1...i}) > entropyComponent(A,FT
{1...i−1}))
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because the layer derived entropy varies against the layer expected compo-
nent entropy. Again, this is a property of the specialising fud substrate history
coder, CG,V,F,H(F ), and hence a property of the specialising fud decomposi-
tion substrate history coder, CG,V,D,F,H(DV ). That is, the expected component
entropy tends to increase up the layers of the fuds of the decompositions in
both the practicable highest-layer summed shuffle content alignment valency-
density fud decomposition search function, ZD,F,P,q,d,P,Scsd, and the fud de-
composition minimum space specialising fud decomposition search function,
ZD,F,P,m,G,D,F,H.

Although the alignments within the tuple components tend to be less than the
alignments between components, algn(AF%{v1, v2}) < algn(AF%{v1, v3}),
the tuple is found in the limited-underlying tuple set list maximiser, ZP,A,AR,F,B,
by maximising the shuffle content alignment of the whole tuple, XP,A,AR,F,B(K) ∼
algn(AF%K). So the intra-component alignments are only small relative to
the inter-component alignments and are not necessarily small absolutely,
algn(AF%J) ≥ 0.

The last property of the specialising fud substrate history coder, CG,V,F,H(F ),
to be considered is the increase of the component size cardinality cross entropy
up the layers. This also arises in the contracted decrementing linear non-
overlapping fuds list maximiser, ZP,A,AR,F,n,−,K . If the component histogram,
AF%J , where J ∈ Y and Y ∈ B(K), is not uniform, |ran(AF%J)| 6= 1, which
is the case if component histogram is not independent, algn(AF%J) > 0, then
the initial self transform, JCS{}T, of the component histogram has non-zero
component size cardinality cross entropy,

entropyCross(AF ∗ JCS{}T, JC ∗ JCS{}T) = −
∑

S∈(AF %J)FS

(ÂF%J)s ln
1

|JC|

> 0

This is because the component cardinalities within the layer, {|C| : (·, C) ∈
(JCS{}T)−1} = {1}, are uniform, but the component sizes are not, |{size(AF ∗
C) : (·, C) ∈ (JCS{}T)−1}| > 1.

The decrementing fuds maximiser, ZP,A,AR,F,n,−,K , value rolls one value in
each step, so the largest counts of the component histogram, AF%J , tend to
roll together at the beginning of the derived diagonal. The diagonal is con-
structed approximately in a sequence tending to minimise component cardi-
nalities at the beginning of the diagonal and maximise component cardinali-
ties at the end of the diagonal and off-diagonal. Maximisation of the derived

784



alignment tends to uniform counts along the diagonal. Thus the component
size cardinality cross entropy increases as the diagonal shortens below the
volume of a component histogram, |WC|1/|W | < |JC|, where W = der(H).
Conjecture that component size cardinality cross entropy varies with the de-
rived alignment valency-density,

z × entropyCross(AF ∗HT, KC ∗HT) = −
∑

(R,C)∈(HT)−1

(AF ∗HT)R ln
|C|
|KC|

∼ algn(AF ∗HT)/|WC|1/|W |

So the layer derived entropy varies against the layer component size cardi-
nality cross entropy,

z × entropy(A ∗ FT
{1...i})

∼ − algn(A ∗ FT
{1...i})

∼ −

− 1

|Fi|
∑
T∈Fi

∑
(R,C)∈T−1

(A ∗ FT
{1...i−1} ∗ T )R ln

|C|
|V C
T |


∼ −

− ∑
(R,C)∈(FT

i )−1

(A ∗ FT
{1...i})R ln

|C|
|V C
i |


∼ −z × entropyCross(A ∗ FT

{1...i}, V
C
i ∗ FT

i )

It has already been shown that, in general, the derived entropy decreases up
the layers,

∀i ∈ {2 . . . l} (entropy(A ∗ FT
{1...i}) < entropy(A ∗ FT

{1...i−1}))

so, in general, the component size cardinality cross entropy increases up the
layers,

∀i ∈ {2 . . . l}
(entropyCross(A ∗ FT

{1...i}, V
C ∗ FT

{1...i}) >

entropyCross(A ∗ FT
{1...i−1}, V

C ∗ FT
{1...i−1}))

because the layer derived entropy varies against the layer component size
cardinality cross entropy. Again, this is a property of the specialising fud
substrate history coder, CG,V,F,H(F ), and hence a property of the specialis-
ing fud decomposition substrate history coder, CG,V,D,F,H(DV ). That is, the
component size cardinality cross entropy tends to increase up the layers of
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the fuds of the decompositions in both the practicable highest-layer summed
shuffle content alignment valency-density fud decomposition search function,
ZD,F,P,q,d,P,Scsd, and the fud decomposition minimum space specialising fud
decomposition search function, ZD,F,P,m,G,D,F,H.

As well as retaining much of the correlation with the fud decomposition
minimum space specialising derived search function, ZD,F,P,m,G,T,H, via the
tractable search function, ZD,F,P,n,q,Sd, the practicable highest-layer summed
shuffle content alignment valency-density fud decomposition search function,
ZD,F,P,q,d,P,Scsd, is additionally correlated with the fud decomposition mini-
mum space specialising fud decomposition search function, ZD,F,P,m,G,D,F,H.
This is the case even though the additional constraints implemented in the
practicable highest-layer summed shuffle content alignment valency-density
fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d, were imposed purely for practi-
cable reasons.

The comparisons above between the properties of the fud decomposition
minimum space specialising fud decomposition search function, ZD,F,P,m,G,D,F,H,
and the practicable highest-layer summed shuffle content alignment valency-
density fud decomposition search function, ZD,F,P,q,d,P,Scsd, provide evidence
for the conjecture that the search functions are positively correlated for uni-
form history probability function,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃P ∈ L(X ) (covariance(PU,X)

(maxr ◦ ZD,F,P,m,G,D,F,H,maxr ◦ ZD,F,P,q,d,P,Scsd) ≥ 0))

5.2 Artificial neural networks and Compression

The discussion above compares (i) the properties of the tractable and prac-
ticable alignment inducers to (ii) the properties of the specialising derived
history coder and the specialising fud decomposition history coder. Now con-
sider how artificial neural networks relate to the specialising fud history coder.

The fud minimum space specialising fud search function for history H ∈ HU,X

is defined in terms of the expanded specialising fud history coder, CG,F,H(F ) ∈
coders(HU,X), as

ZF,P,m,G,F,H(H) = {(F,−CG,F,H(F )s(H)) : F ∈ FU,P}

To construct a search function for a neural network, first consider how a
neuron may be represented in a transform. Section ‘Transforms’, above, has
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an example of a transform defined by a real valued function that represents
a perceptron, T = (V,w, fσ(Q)), where the dimension is n = |V | and the
function fσ(Q) ∈ Rn :→ R is parameterised by (i) some differentiable func-
tion σ ∈ R :→ R, called the activation function, and (ii) a vector of weights,
Q ∈ Rn+1, and is defined

fσ(Q)(S) := σ(
∑

i∈{1...n}

QiSi + Qn+1)

Usually the activation function is such that it has a positive gradient every-
where, ∀x ∈ R (d(σ)(x) ≥ 0), where d ∈ (R → R) → (R → R) is defined
d(F ) := {(x, dF (x)/dx) : x ∈ dom(F )}.

The function composition of artificial neural networks may be represented
by fuds of these transforms. Define nets as a subset of the set of lists of
tuples of the graph and real weights,

nets := {G : G ∈ L(P(V)× V × L(R)), ∀(·, (V, ·, Q)) ∈ G (|Q| = |V |+ 1)}

Define the graph, graph ∈ nets→ L(P(V)× V) as

graph(G) := {(i, (V,w)) : (i, (V,w, ·)) ∈ G}

Define the real weights, weights ∈ nets→ L(R) as

weights(G) := concat({(i, Q) : (i, (·, ·, Q)) ∈ G})

Define the set of transforms, fud(σ) ∈ nets→ P(Tf) as

fud(σ)(G) :=

{({SV ∪ {(w, σ(
∑

i∈{1...n}

QiSi + Qn+1))} : S ∈ Rn} × {1}, {w}) :

(·, (V,w,Q)) ∈ G, n = |V |}

The construction of a coordinate from a state is defined ()[] ∈ S → L(W) as

S[] := {(i, u) : ((v, u), i) ∈ order(DV×W , S)}

where DV×W is an order on the variables and values. The converse function
to construct a state from a coordinate ()V ∈ L(W)→ S is

SV := {(v, Si) : (v, i) ∈ order(DV , V )}

Let the neural net substrate fud set F∞,U,V,σ be a subset of the infinite-layer
substrate fud set, F∞,U,V,σ = F∞,U,V ∩ (fud(σ) ◦ nets).

787



An example of a neural net substrate fud F ∈ F∞,U,V,σ has l = layer(F, der(F ))
layers of fixed breadth equal to the underlying dimension, ∀i ∈ {1 . . . l} (|Fi| =
n) where n = |V | and Fi = {T : T ∈ F, layer(F, der(T )) = i}, such
that the underlying of each transform is the derived of the layer below,
∀T ∈ F1 (und(T ) = V ) and ∀i ∈ {2 . . . l} ∀T ∈ Fi (und(T ) = der(Fi−1)).

The optimisation of artificial neural networks can be divided into unsuper-
vised and supervised types. In the supervised case there is additional knowl-
edge. First, there exists an unknown distribution histogram E from which the
known sample histogram, A, is drawn, A < E. Secondly, the substrate can be
partitioned into query variables K ⊂ V and label variables, V \K, such that
the distribution histogram, E, is causal between the query variables and the
label variables,

split(K,EFS) ∈ KCS → (V \K)CS

and so the sample histogram, A, is also causal,

split(K,AFS) ∈ KCS → (V \K)CS

That is, in the supervised case, there is a functional relation such that there
is exactly one label state for every effective query state. In an optimisa-
tion, a fud F ∈ F∞,U,K,σ has its underlying variables restricted to the query
variables, und(F ) ⊆ K. The optimisation maximises the causality between
the derived variables and the label variables by minimising some cost or loss
function. At the optimum there is no error and the relation is functional,

split(WF , (A ∗XF % (WF ∪ V \K))FS) ∈ WCS
F → (V \K)CS

where XF = histogram(FT) and WF = der(F ). In some cases the choice
of optimisation parameters, such as the graph or the definition of the loss
function, is such that, when optimal, (i) the model is causal from the derived
variables to the label variables, and (ii) a query application via model is equal
to a query application on the unknown distribution histogram,

∀Q ∈ (E%K)F{} ((Q ∗ FT ∗XF ∗ A)∧ % (V \K) = Q ∗ EF % (V \K))

That is, even in the case where the sample is ineffective with respect to the
query, QF � AF, if the model is not over-fitted, (Q∗FT)F ≤ (A∗FT)F, then an
estimate of the query application, Q∗EF % (V \K), may sometimes be made.

Note that there are some cases where no set of optimisation parameters can
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avoid an over-fitted model. For example, if the sample reduced to the query
variables is independent, A%K = (A%K)X, but the distribution histogram is
not, E%K 6= (E%K)X, then the self-transform obtained from the optimisa-
tion will be over-fitted, QF � AF =⇒ (Q ∗KCS{}T)F � (A ∗KCS{}T)F.

There are various candidates for the loss function. Given a sample histogram
A, a functional definition set F , and a set of query variables K, the label
entropy loss function lent ∈ A× F × P(V)→ R is

lent(A,F,K) :=
∑

(R,C)∈(FT)−1

(A ∗ FT)R × entropy(A ∗ C % (V \K))

where V = vars(A). It is not obvious, however, if the derivative of the la-
bel entropy function with respect to an underlying neural net weight has an
analytic solution. Given D ⊂ R, a numeric approximation to a discretised
fud transform, (V,w, discrete(D,n)(fσ(Q))) where (V,w, fσ(Q)) = FT, can
be defined, but its computation may be intractable.

In the case where the derived variables of the fud is a literal frame of the
label variables, WF :↔: (V \K) and ∀v ∈ (V \K) (Uv ⊆ R), the least squares
loss function lsq ∈ A× F × P(V)→ R is

lsq(A,F,K) :=
∑

(S,c)∈A∗XF

(
c×

∑
i∈{1...m}

((S%WF )
[]
i − (S%(V \K))

[]
i )

2
)

where m = |WF | = |(V \K)|. Let lsq(σ) ∈ A× nets× P(V)→ R be

lsq(σ)(A,G,K) := lsq(A, fud(σ)(G), K)

and its derivative with respect to the i-th weight dlsq(σ)(i) ∈ A × nets ×
P(V)→ (L(R)→ R) be

dlsq(σ)(i)(A,G,K) :=

∂i({(weights(G′), lsq(σ)(A,G′, K)) : G′ ∈ nets, graph(G′) = graph(G)})

where ∂j ∈ (L(R)→ R)→ (L(R)→ R) is defined ∂j(F ) := {(Z, ∂F (Z)/∂Zj) :
Z ∈ dom(F )}.

Typically the label variables form a bivalent crown, crown(A % (V \ K))
where ∀v ∈ (V \K) (Uv = {0, 1}), with each label variable corresponding to
a label value. When the loss is zero, a query via the model need not compute
the component,

∀Q ∈ (E%K)F{} (reframe(Y,Q ∗ FT) = Q ∗ EF % (V \K))
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where the frame mapping is Y = {(LWF
(i), LV \K(i)) : i ∈ {1 . . .m}} ∈

WF :↔: (V \K) and LW = flip(order(DV ,W )).

Define the substrate net set as nets(U, V, σ) = {G : G ∈ nets, fud(σ)(G) ∈
F∞,U,V }, which is such that F∞,U,V,σ = fud(σ) ◦ nets(U, V, σ).

Given a loss function, a search function for a neural network can be de-
fined using the method of gradient descent. Let P ∈ L(X ) be a list of search
parameters. Let the activation function, system and query variables be de-
fined in the search parameters, σ, U,K ∈ set(P ). Let initial substrate net
GR ∈ nets(U,K, σ) have (a) graph graph(GR) ∈ set(P ) and (b) arbitrary
weights R ∈ L(R) where R = weights(GR) ∈ set(P ). Given a histogram
A of variables V in system U such that (i) the variables are real valued,
∀v ∈ V (Uv ⊆ R), (ii) A is causal, split(K,AFS) ∈ KCS → (V \ K)CS, and
(iii) the set of derived variables, der(fud(σ)(GR)), is a literal frame of the set
of label variables, V \K, define the least squares gradient descent substrate
net tree searcher as

ZP,A,gr,lsq = searchTreer(nets(U,K, σ), PP,A,gr,lsq, {GR})

where the neighbourhood function is

PP,A,gr,lsq(G) = {G′ : lsq(σ)(A,G,K) > t,

G′ ∈ nets(U,K, σ), graph(G′) = graph(G),

Q = weights(G), Q′ = weights(G′),

Q′ = {(i, Qi − r × dlsq(σ)(i)(A,G,K)(Q)) : i ∈ {1 . . . |Q|}}}

and loss threshold t ∈ set(P ) and rate of descent r ∈ set(P ).

Note that a practicable implementation of the net searcher would usually
(i) perform an optimise step for each event rather than the whole history,
and (ii) compute the deltas to be applied to the net weights, Q, one layer at
a time in sequence from the top to the bottom (which is called backpropa-
gation).

Let history H ∈ HU,X be such that its histogram A = histogram(H) satisfies
the constraints, of (i) real valued variables, (ii) causal histogram, and (iii) a
literal frame, imposed by the search parameters P of the least squares gra-
dient descent substrate net tree searcher, ZP,A,gr,lsq. Define the least squares
gradient descent fud search function as

ZF,P,P,gr,lsq(H) =

{(fud(σ)(G),−lsq(σ)(A,G,K)) : Q = leaves(tree(ZP,A,gr,lsq)), {G} = Q}

790



It is conjectured above that for all finite systems and finite event identifier
sets there exists a tuple of parameters such that the practicable highest-layer
summed shuffle content alignment valency-density fud decomposition search
function, ZD,F,P,q,d,P,Scsd, is positively correlated with the fud decomposition
minimum space specialising fud decomposition search function, ZD,F,P,m,G,D,F,H,
for uniform history probability function,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃P ∈ L(X ) (covariance(PU,X)

(maxr ◦ ZD,F,P,m,G,D,F,H,maxr ◦ ZD,F,P,q,d,P,Scsd) ≥ 0))

A similar generalisation of a correlation between the least squares gradient
descent fud search function, ZF,P,P,gr,lsq, and the fud minimum space special-
ising fud search function, ZF,P,m,G,F,H, cannot be made because the history,
H, is not independent of the search parameters, P . That is, least squares
gradient descent supervised neural net optimisation requires specific config-
uration. Conjecture, however, that in some cases the properties of the net
search function and the minimum space search function are similar.

First consider the simpler relation to the minimum space search function
for the specialising derived history coder. The fud minimum space specialising
derived search function for history H ∈ HU,X is defined in terms of the
expanded specialising derived history coder, CG,T,H(FT) ∈ coders(HU,X), as

ZF,P,m,G,T,H(H) = {(F,−CG,T,H(FT)s(H)) : F ∈ FU,P}

The minimisation of the specialising derived substrate history coder space,
CG,V,T,H(FTV )s(H), occurs where (i) the derived entropy is low, (ii) the possi-
ble derived volume is small, (iii) the underlying components have high entropy
and (iv) high counts are in low cardinality components and high cardinality
components have low counts.

Note that, in some cases, particularly where there is a residual loss, the
derived histogram may be unit, A ∗ FT = (A ∗ FT)F, because the derived
values are continuous. The infinite derived volume of the real valued derived
variables, |WC| = |Rm| = ∞ where m = |W | = |V \ K|, may be made fi-
nite by discretising with the values of the label variables, {(i, nearest(D, r)) :
(i, r) ∈ R[]} ∈ Dm where D = ∪{Uv : v ∈ (V \ K)} ⊂ R and R ∈ WCS.
If the label variables form a bivalent crown, crown(A % (V \ K)) where
∀v ∈ (V \K) (Uv = {0, 1}), then the discretised derived volume reduces to
a finite |WC

{0,1}| = |(V \ K)C| = 2m. In the computations of alignment and
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entropy that follow, the derived variables are discretised to the values of the
label variables.

The initial substrate net, GR, has arbitrary weights, R = weights(GR) ∈
L(R), and so the corresponding initial fud, FR = fud(σ)(GR), is likely to
have a high least squares loss. That is, far from the derived variables and
the label variables being causally related, WCS

D → (V \K)CS, they are likely
to be independent,

A ∗XFR
∗ {WCS{}T

D , (V \K)CS{}T}T ≈
(A ∗XFR

∗ {WCS{}T
D , (V \K)CS{}T}T)X

or

algn(A ∗XFR
∗ {WCS{}T

D , (V \K)CS{}T}T) ≈ 0

where {WCS{}T
D , (V \ K)CS{}T} is the fud of the self transforms of the (i)

discretised derived variables and (ii) label variables.

As the optimisation proceeds from the initial fud, FR, to the optimal fud,
F ∈ maxd(ZF,P,P,gr,lsq(H)), the loss decreases and the relation between the
top layer and the label becomes more causal,

algn(A ∗XF ∗ {WCS{}T
D , (V \K)CS{}T}T) > 0

If the loss is zero, after discretising, then the relation between the derived
variables and the label variables is not only causal but bijective, WCS

D ↔
(V \K)CS. So the self partition transforms are highly aligned because diag-
onalised,

diagonal(A ∗XF ∗ {WCS{}T
D , (V \K)CS{}T}T)

The negative least squares loss (i) varies with the alignment of the self parti-
tion transforms, (ii) varies with the alignment of the reduction to the union
of the derived variables and label variables, (iii) varies against the size scaled
entropy of the reduction to the union of the derived variables and label vari-
ables, and so (iv) varies against the derived entropy of the fud transform,

− lsq(A,FD, K) ∼ algn(A ∗XF ∗ {WCS{}T
D , (V \K)CS{}T}T)

∼ algn(A ∗XF % (WD ∪ V \K))

∼ −z × entropy(A ∗XF % (WD ∪ V \K))

∼ −z × entropy(A ∗XF % WD)

= −z × entropy(A ∗ FT
D)
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That is, as the loss, lsq(A,FD, K), is minimised the derived entropy, entropy(A∗
FT
D), tends to be minimised, which is a property of the specialising coder,
CG,V,T,H(FTV

D ).

The discretised derived volume is fixed, |WC
D | = |D|m, because the graph

is fixed in the parameters, graph(G) ∈ set(P ) where F = fud(σ)(G) and
F ∈ maxd(ZF,P,P,gr,lsq(H)). So the derived volume is not minimised during
the optimisation. The optimisation does not share the property of low de-
rived volume with the specialising coder, CG,V,T,H(FTV

D ). However, as the
derived alignment, algn(A ∗FT

D), increases during least squares optimisation,
the causal relation between the discretised derived variables and the label
variables tends to bijective, WCS

D ↔ (V \K)CS. So if the label is diagonalised
then the derived tends to be diagonalised, diagonal(A % (V \ K)) =⇒
diagonal(A ∗ FT

D), and if the label is a crown then the derived tends to be a
crown, crown(A % (V \K)) =⇒ crown(A ∗FT

D). In both cases the effective
derived volume is less than the derived volume, |(A ∗ FT

D)F| < |WC
D |, if the

label is multi-variate, m ≥ 2, and multi-valent, |D| ≥ 2.

The minimisation of the least squares loss function, lsq(A,FD, K), tends
to minimise the label entropy loss function, lent(A,FD, K), as the relation
between the discretised derived variables and the label variables tends to
functional or causal, WCS

D → (V \K)CS. The corollary of the label entropy
loss function,

lent(A,F,K) :=
∑

(R,C)∈(FT)−1

(A ∗ FT)R × entropy(A ∗ C % (V \K))

is the query entropy loss function qent ∈ A× F × P(V)→ R,

qent(A,F,K) :=
∑

(R,C)∈(FT)−1

(A ∗ FT)R × entropy(A ∗ C % K)

The fud, F ∈ F∞,U,K , is in substrate K, so the query entropy is just the size
scaled expected component entropy of the reduced histogram,

qent(A,F,K) = z × entropyComponent(A%K,FT)

The histogram entropy, entropy(A), is a constant, so the query entropy,
qent(A,F,K), varies against the label entropy, lent(A,F,K). The negative
least squares loss (i) varies with the negative label entropy loss, (ii) varies
with the query entropy, (iii) varies with the size scaled expected component
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entropy of the reduction to the query variables, and so (iv) varies with the
size scaled expected component entropy,

− lsq(A,FD, K) ∼ − lent(A,FD, K)

∼ qent(A,FD, K)

∼ z × entropyComponent(A%K,FT
D)

∼ z × entropyComponent(A,FT
D)

That is, as the loss, lsq(A,FD, K), is minimised the expected component en-
tropy, entropyComponent(A,FT

D), tends to be maximised, which is a property
of the specialising coder, CG,V,T,H(FTV

D ).

Consider the case of a multi-variate set of real valued query variables K,
where k = |K| ≥ 2 and ∀x ∈ K (Ux ⊆ R), and a neural net fud F ∈ F∞,U,K,σ
consisting of two transforms, F = {T1, T2}, each having the query variables
as the underlying, und(T1) = und(T2) = K. Given a coordinate S ∈ Rk the
weights of the transforms form a pair of hyperplanes,∑

i∈{1...k}

Q1,iSi + Q1,k+1 = 0

and ∑
i∈{1...k}

Q2,iSi + Q2,k+1 = 0

where Q1, Q2 ∈ Rk+1 are the weights correspondng to T1, T2. If the hyper-
planes of the arbitrarily weighted initial fud, FR, intersect, the acute angle
between them is expected to be 45◦. That is, given an activation function,
σ, which is a step function, or a binary set of discrete values, D = {0, 1},
the probability distribution of the component cardinalities of the initial fud
is bi-modal. If (·, C1), (·, C2) ∈ (FT

R,{0,1})
−1 are such that |C1| < |C2|, then it

is expected that 3|C1| = |C2|. So the component cardinality entropy of the
initial fud is expected to be less than maximal,

entropy(KC ∗ FT
R,D) < entropy(WC

D)

The derived entropy of the initial fud is expected to be approximately equal
to the component cardinality entropy,

entropy(A ∗ FT
R,D) ≈ entropy(KC ∗ FT

R,D)
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and so the component size cardinality relative entropy of the initial fud is
expected to be small,

entropyRelative(A ∗ FT
R,D, K

C ∗ FT
R,D) ≈ 0

If the histogram, A, is approximately uniformly distributed over the volume,
then the component size cardinality relative entropy remains small during the
optimisation,

entropyRelative(A ∗ FT
D , K

C ∗ FT
D) ≈ 0

In contrast, consider the case where the histogram, A, is not uniformly dis-
tributed, but clustered by label state. Let YL ⊂ KCS be the set of the centres
of the clusters for effective label state L ∈ (A%(V \K))FS. The maximum
radius rL ∈ R>0 is such that

∀S ∈ AFS ♦L = S%(V \K) ∃Q ∈ YL (
∑

i∈{1...k}

(Q
[]
i − S

[]
i )2 ≤ r2

L)

Let rC be the radius of component C. In the case where the histogram is
clustered such that the cluster radius of a label state is much smaller than
the least initial component radius, ∀(·, C) ∈ (FT

R,{0,1})
−1 (rL � rC), then

optimised rotations of the hyperplanes, that sweep up nearby clusters in
the same label state, tend to be such that the magnitude of the change in
the fractional component size, |(A ∗ FT

2,D)(R) − (A ∗ FT
1,D)(R)|/z, is greater

than magnitude of the change in the fractional component cardinality, |(KC ∗
FT

2,D)(R)−(KC∗FT
1,D)(R)|/|KC|. So, in the clustered case, as the optimisation

decreases the derived entropy, entropy(A ∗ FT
D), the component sizes and

component cardinalities become less synchronised and the component size
cardinality relative entropy increases,

− lsq(A,FD, K) ∼ −z × entropy(A ∗ FT
D)

∼ z × entropyRelative(A ∗ FT
D , K

C ∗ FT
D)

= z × entropyRelative(A ∗ FT
D , V

C ∗ FT
D)

The same reasoning applies to fuds consisting of more than two transforms,
|F | > 2, but note that at higher fud cardinalities the initial component cardi-
nality entropy, entropy(KC ∗ FT

R,D), tends to be multi-modal and so approx-
imates more closely to the uniform cartesian derived entropy, entropy(WC

D).
So there is less freedom for the relative entropy of the fud to increase dur-
ing optimisation. In the case of multi-layer fuds, however, the breadth can
be constrained and so the relative entropy of taller, narrrower fuds may be
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higher than in shorter, wider fuds of the same cardinality.

In general, in the clustered case, the optimised fud is such that high counts
are in low cardinality components and high cardinality components have low
counts, which, again, is a property of the specialising coder, CG,V,T,H(FTV

D ).

Overall, the comparisons above suggest that, given search parameters P ,
there sometimes exists a subset of histories HU,X,P ⊂ HU,X satisfying the
constraints of (i) real valued variables, (ii) causal histogram, (iii) a literal
frame, and (iv) clustered histogram such that there is a positive correlation
between the least squares gradient descent fud search function, ZF,P,P,gr,lsq,
and the fud minimum space specialising derived search function, ZF,P,m,G,T,H,

covariance(PU,X,P )(maxr ◦ ZF,P,m,G,T,H,maxr ◦ ZF,P,P,gr,lsq) ≥ 0

where PU,X,P = HU,X,P × {1/|HU,X,P |}.

Now consider the relation to the minimum space search function for the
specialising fud history coder. It is conjectured that when the specialising
fud space, CG,V,F,H(F )s(H), is minimised in the fud minimum space special-
ising fud search function, ZF,P,m,G,F,H, (i) the derived entropy decreases up
the layers, (ii) the possible derived volume decreases up the layers, (iii) the
expected component entropy increases up the layers, and (iv) the component
size cardinality cross entropy increases up the layers. The optimisation of a
fud without a layer limit may be made computable by building the fud layer
by layer, minimising the specialising space at each step, until the addition of
a layer fails to reduce the specialising space.

In the case of the net search function, ZF,P,P,gr,lsq, the substrate nets are not
built layer by layer during the optimisation because the graph, graph(G)
where F = fud(σ)(G) and F ∈ maxd(ZF,P,P,gr,lsq(H)), is fixed in the pa-
rameters, graph(G) = graph(GR) ∈ set(P ). The properties of the nets do
vary layer by layer, however, because the optimisation of the least squares
loss function minimises the square of the distance between the top layer,
W = der(F ), and the label variables, V \K. So the top layer is more closely
aligned to the label variables than the other layers.

The loss function with respect to the neuron weights is composed of lay-
ers. The second order sensitivity of the loss function generally increases with
the layer,

ddlsq(σ)(i)(A,G,K)(Q) < ddlsq(σ)(j)(A,G,K)(Q)
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where Q = weights(G), weights i, j ∈ {1 . . . |Q|} parameterise corresponding
transforms Ti, Tj ∈ F such that layer(F, der(Ti)) < layer(F, der(Tj)), and the
second order derivative of the least squares loss function is defined

ddlsq(σ)(i)(A,G,K) :=

∂2
i ({(weights(G′), lsq(σ)(A,G′, K)) : G′ ∈ nets, graph(G′) = graph(G)})

So gradient descent optimisation resolves more quickly for higher layers than
lower layers.

Let Fi be the i-th layer of the fud, F , where i ∈ {1 . . . l} and l = layer(F,W ).
The second order sensitivity of the loss function generally increases with the
layer because, although the relation between a lower layer and a higher layer
is always causal, WCS

i−1,D → WCS
i,D, it is not usually bijective, WCS

i−1,D ↔ WCS
i,D.

For example, the relation between layers is sometimes only partially bi-
jective, JCS

i−1,D ↔ JCS
i,D where Ji−1 ⊂ Wi−1 and Ji ⊂ Wi. The relation

is always functional so the degree of multijectivity is the query entropy,
qent(A ∗ FT

{1...i−1},D, Fi,D,Wi−1,D). When the query entropy is zero, the rela-

tion is effectively bijective, corresponding to a self transform, W
CS{}T
i−1,D . When

the query entropy is maximised, the relation is multijective, corresponding
to a unary transform, {WCS

i−1,D}T.

For the same reason it is less likely for the lower layer to be causal to the
label variables, WCS

i−1,D → (V \K)CS, than for the higher layer to be causal
to the label variables, WCS

i,D → (V \K)CS. So, in general, the alignment be-
tween the layer variables and the label variables increases up the layers. For
i ∈ {2 . . . l},

algn(A ∗X ∗ {WCS{}T
i,D , (V \K)CS{}T}T) >

algn(A ∗X ∗ {WCS{}T
i−1,D , (V \K)CS{}T}T)

and

algn(A ∗X % (Wi,D ∪ V \K)) > algn(A ∗X % (Wi−1,D ∪ V \K))

where X =
∏

T∈F his(T ). So the entropy between the layer variables and the
label variables tends to decrease up the layers,

entropy(A ∗X % (Wi,D ∪ V \K)) < entropy(A ∗X % (Wi−1,D ∪ V \K))

Therefore conjecture that, in general, the derived entropy also decreases up
the layers, regardless of the label variables,

∀i ∈ {2 . . . l} (entropy(A ∗ FT
{1...i},D) < entropy(A ∗ FT

{1...i−1},D))
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which is a property of the specialising fud substrate history coder, CG,V,F,H(FD).

In the comparison above between the least squares gradient descent fud search
function, ZF,P,P,gr,lsq, and the fud minimum space specialising derived search
function, ZF,P,m,G,T,H it is shown that the derived entropy, entropy(A ∗ FT

D),
(i) varies with the effective derived volume, |(A ∗ FT

D)F|, (ii) varies against
the expected component entropy, entropyComponent(A,FT

D), and (iii) varies
against the component size cardinality relative entropy, entropyRelative(A ∗
FT
D , V

C ∗FT
D). So conjecture that, in general, (i) the effective derived volume

decreases up the layers,

∀i ∈ {2 . . . l} (|(A ∗ FT
{1...i},D)F| < |(A ∗ FT

{1...i−1},D)F|)

(ii) the expected component entropy increases up the layers,

∀i ∈ {2 . . . l}
(entropyComponent(A,FT

{1...i},D) > entropyComponent(A,FT
{1...i−1},D))

and (iii) the component size cardinality relative entropy increases up the
layers,

∀i ∈ {2 . . . l}
(entropyRelative(A ∗ FT

{1...i},D, V
C
D ∗ FT

{1...i},D) >

entropyRelative(A ∗ FT
{1...i−1},D, V

C
D ∗ FT

{1...i−1},D))

Again, these properties are also properties of the specialising fud substrate
history coder, CG,V,F,H(FD).

To conclude, the comparisons above suggest that, given search parameters
P , there sometimes exists a subset of histories HU,X,P ⊂ HU,X satisfying
the constraints of (i) real valued variables, (ii) causal histogram, (iii) a literal
frame, and (iv) clustered histogram such that there is a positive correlation
between the least squares gradient descent fud search function, ZF,P,P,gr,lsq,
and the fud minimum space specialising fud search function, ZF,P,m,G,F,H,

covariance(PU,X,P )(maxr ◦ ZF,P,m,G,F,H,maxr ◦ ZF,P,P,gr,lsq) ≥ 0

where PU,X,P = HU,X,P × {1/|HU,X,P |}.

An example of additional supervised knowledge is where it is known that
the substrate exhibits some symmetry. The supervised models can be con-
strained to exhibit these symmetries by copying common submodels amongst
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them. For example, in the case where the substrate represents a visual or au-
ditory field with translational symmetry, the common submodel can consist
of a relative model on a frame subset of the substrate which is copied across
the whole substrate by adding translation offsets to the frame variables.

If the optimisation of artificial neural networks is of the unsupervised type,
there is no knowledge of a causal label. An example of an unsupervised op-
timisation is the auto-encoder [2]. Here the method of least squares gradient
descent is used but the label is simply the substrate itself. Let Y ∈ V :↔: VY
be a mapping from the sample variables, V , to a disjoint reframed set, VY ,
such that the reframe is literal, ∀(v, w) ∈ Y (Uw = Uv). The histogram may
be extended by dotting with the reframe,

AY = {(S ∪ reframe(Y, S), c) : (S, c) ∈ A}

Then the query variables are the substrate, K = V ∈ set(P ), the label vari-
ables are the reframed substrate, VY , and the search is performed on the
dotted histogram, ZP,AY ,gr,lsq.

If the auto-encoder’s graph is such that all layers have the same breadth,
∀i ∈ {1 . . . l} (|Fi| = n), then the likely model is the over-fitted effective self
transform, FT = (AFS{} ∪ {V CS \ AFS})T or the full functional transform,
FT = {{w}CS{}T : w ∈ V }T. However, if the fud has an hourglass shape
such that there is an intermediate layer Fa which has a breadth less than all
other layers, ∀i ∈ {1 . . . l} (i 6= a =⇒ |Fi| > |Fa|), then it may be expected
that (i) the derived entropy decreases up to this layer,

∀i ∈ {2 . . . a} (entropy(A ∗ FT
{1...i},D) < entropy(A ∗ FT

{1...i−1},D))

(ii) the effective derived volume decreases up to this layer,

∀i ∈ {2 . . . a} (|(A ∗ FT
{1...i},D)F| < |(A ∗ FT

{1...i−1},D)F|)

(iii) the expected component entropy increases up to this layer,

∀i ∈ {2 . . . a}
(entropyComponent(A,FT

{1...i},D) > entropyComponent(A,FT
{1...i−1},D))

and (iv) the component size cardinality relative entropy increases up to this
layer,

∀i ∈ {2 . . . a}
(entropyRelative(A ∗ FT

{1...i},D, V
C
D ∗ FT

{1...i},D) >

entropyRelative(A ∗ FT
{1...i−1},D, V

C
D ∗ FT

{1...i−1},D))
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Above the intermediate layer, a, it is expected that there is little change in
these properties. For example, entropy(A∗FT

{1...l},D) ≈ entropy(A∗FT
{1...a},D).

5.3 Classical induction

The following sections consider how induction is related to likelihood and
sensitivity. First consider classical induction.

As defined at the beginning of this section P ∈ (HU,X :→ Q[0,1]) ∩P is an
unknown history probability function in the non-empty histories HU,X , where
U is a non-empty finite system and X ⊂ X is a non-empty unknown finite
set of event identifiers.

Now, similarly to section ‘Derived history space’, above, let Hh ∈ HU,X

be a distribution history with substrate Vh equal to the system variables,
Vh = vars(Hh) = vars(U). Its volume is vh = |V C

h |. Its domain is the
entire set of event identifiers, ids(Hh) = X, so that the size zh = |Hh|
equals the cardinality of the event identifiers, zh = |X|. Thus the distri-
bution history is a left total state-valued function of the event identifiers,
Hh ∈ X :→ V CS

h . The historically distributed history probability function
PU,X,Hh

∈ (HU,X :→ Q[0,1]) ∩ P is defined

PU,X,Hh
:=

(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}
= {(H, 1/(zh2vh

(
zh
zH

)
)) : H ∈ HU,X , H ⊆ Hh%VH , H 6= ∅} ∪

{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

where VH = vars(H), zH = |H|, X̂ = normalise(X) and normalise(∅) = ∅.

The historically distributed history probability, PU,X,Hh
(H), is the probabil-

ity of drawing the history H ⊆ Hh%VH of arbitrary variables VH ⊆ Vh and
size zH ∈ {1 . . . zh} from distribution history Hh ∈ HU,X . All subsets of the
distribution history for a given set of variables and size are defined as equally
probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V (|G| = |H| =⇒ PU,X,Hh
(G) = PU,X,Hh

(H))

Note that this definition does not assume that the subsets of the distribu-
tion history, P(Hh%VH), are equally probable, PU,X,Hh

6= {(H, 1) : VH ⊆
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Vh, H ⊆ Hh%VH}∧. Equi-probable subsets would imply that there is a
modal sample size at zh/2. Here it is assumed that there is no constraint
on the sample size other than it is non-zero and less than or equal to the
distribution size, 1 ≤ zH ≤ zh. So sizes are defined as equi-probable,
∀z ∈ {1 . . . zh} (

∑
(PU,X,Hh

(H) : H ∈ HU,X , |H| = z) = 1/zh).

Now for arbitrary non-empty drawn history H ⊆ Hh%VH , the historical
probability of drawing without replacement its histogram AH = histogram(H)
from the distribution histogram Eh = histogram(Hh), is the expected histor-
ically distributed history probability of the histogram, AH , times the normal-
ising factor,

Q̂h(Eh%VH , zH)(AH) = zh2vh
∑

(PU,X,Hh
(G) : G ∈ HU,X , AG = AH)

where the historical distribution is

Qh(E, z)(A) =
∏
S∈AS

(
ES
AS

)
=
∏
S∈AS

ES!

AS! (ES − AS)!
∈ N>0

and the historical probability distribution is normalised,

Q̂h(E, z)(A) = Qh(E, z)(A)/
(
zE
z

)
The stuffed historical probability distribution, Q̂h,U , can equally well be ex-
pressed in terms of the historically distributed history probability function,
PU,X,Hh

,

Q̂h,U(Eh%VH , zH)(AH) = zh2vh
∑

(PU,X,Hh
(G) : G ∈ HU,X , AG = AH)

where the distribution histogram is complete, Eh = histogram(Hh) + V CZ
h ∈

AU,i,Vh,zh , the histograms are complete, AH = histogram(H)+V CZ
H ∈ AU,i,VH ,zH ,

the stuffed historical distribution, Qh,U , is defined

Qh,U(E, z) = {(A+ ACZ, f) : (A, f) ∈ Qh(E, z)} ∪
(AU,i,V,z \ {A+ ACZ : A ∈ dom(Qh(E, z))})× {0}

and the stuffed historical probability distribution, Q̂h,U , is defined Q̂h,U(E, z) :=
normalise(Qh,U(E, z)).

In classical induction it is assumed that the history probability function, P ,
is historically distributed,

P = PU,X,Hh
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where the distribution history, Hh, is unknown, but there exists a non-empty
observation or sample history Ho ⊆ Hh%Vo of known size zo = |Ho| > 0
in known variables Vo ⊆ Vh that has a known complete histogram Ao =
histogram(Ho) + V CZ

o . The system, U , is known at least for the observation
variables, Vo. The distribution history, Hh, is unknown, so the historically
distributed history probability of the sample history, PU,X,Hh

(Ho), is also un-
known, except that it is non-zero,

PU,X,Hh
(Ho) > 0

because the sample history exists. The complete distribution histogram,
Eh = histogram(Hh) + V CZ

h , is unknown, so the stuffed historical probabil-
ity of the sample histogram, Q̂h,U(Eh%Vo, zo)(Ao), is also unknown, except

that is non-zero, Q̂h,U(Eh%Vo, zo)(Ao) > 0. In order to estimate the distribu-
tion histogram, Eh, and hence the stuffed historical probability distribution,
Q̂h,U(Eh%Vo, zo), and the historically distributed history probability function,
PU,X,Hh

, the likelihood function for the probability distribution must be de-
fined. See appendix ‘Likelihood functions and Fisher information’, below.

First make the further induction assumption that the distribution history
size, zh, is large with respect to the sample size zo = size(Ao), so that, in the
limit, the stuffed historical probability, Q̂h,U(Eh%Vo, zo)(Ao), approximates

to the generalised multinomial probability, Q̂m,U(Eh%Vo, zo)(Ao). That is, if
zo � zh then

Q̂h,U(Eo, zo)(Ao) ≈ Q̂m,U(Eo, zo)(Ao)

where Eo = Eh%Vo and the generalised multinomial probability is

Q̂m,U(E, z)(A) =
z!∏

S∈AS AS!

∏
S∈AS

ÊAS
S

where integral substrate histogram A ∈ AU,i,V,z is drawn with replacement
from E ∈ AU,V,zE .

The maximum likelihood estimate and the Fisher information of the gen-
eralised multinomial probability distribution, Q̂m,U , are well defined, but may
also be considered by noting that this distribution approximates to the gen-
eralised multiple binomial probability distribution, Q̂b,U ,

Q̂m,U(Eo, zo)(Ao) ≈ Q̂b,U(Eo, zo)(Ao)

where the generalised multiple binomial probability distribution is defined

Q̂b,U(E, z)(A) =
∏

S∈V CS

(
z

AS

)
ÊAS
S (1− ÊS)z−AS
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where multiple support histogram A ∈ AU,i,V,{0...z} is drawn with replacement
from E ∈ AU,V,zE . The approximation is best when the entropy of the dis-
tribution histogram, entropy(E), is high.

Likelihood functions are parameterised by a real tuple or coordinate, Rn. In
order to construct a coordinate from a histogram define ()[] ∈ A → L(Q≥0)
as

A[] := {(i, c) : ((S, c), i) ∈ order(DS×Q, A)}

where DS is an order on the states. If A is complete, AU = AC, then A[] ∈ Rv,
where v = |AC|.

The multiple binomial parameterised probability density function mbppdf(z) ∈
ppdfs(v, v), where v = |V C|, is defined

mbppdf(z)(E) :=

{(A,
∏

i∈{1...v}

z!

Γ!(Ai) Γ!(z − Ai)
EAi
i (1− Ei)z−Ai) : A ∈ Rv

[0,z]} ∪

(Rv \Rv
[0,z])× {0}

where z ∈ N>0, E ∈ Rv
(0,1) and Γ! is the unit-translated gamma function.

The multiple binomial likelihood function mblf(z) ∈ lfs(v, v) is defined

mblf(z)(A) := {(E,mbppdf(z)(E)(A)) : E ∈ Rv
(0,1)}

where A ∈ Rv.

These definitions only require that each parameter is in the open set between
zero and one, E ∈ Rv

(0,1) = {r : r ∈ R, 0 < r < 1}v, so E is not necessarily a

probability function. That is, in some cases E 6= Ê ∈ P . This is to allow well
defined partial derivatives in free parameters. So ∂i(mblf(z)(A))(E) is the
sensitivity of the likelihood to the i-th parameter at E, where ∂j ∈ (L(R)→
R) → (L(R) → R) is defined ∂j(F ) := {(Z, ∂F (Z)/∂Zj) : Z ∈ dom(F )}
and F is a continuous function.

In the case where the volume is at least two, v > 1, and the distribution
histogram is completely effective, EF = V C =⇒ Ê[] ∈ Rv

(0,1), the multiple bi-
nomial parameterised probability density and the multiple binomial likelihood
equals the generalised multiple binomial probability,

mbppdf(z)(Ê[])(A[]) = mblf(z)(A[])(Ê[]) = Q̂b,U(E, z)(A)
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As shown in the appendix, the binomial parameterised probability density
function, bppdf(n)(p), is defined

bppdf(n)(p)(k) :=
n!

Γ!k Γ!(n− k)
pk(1− p)n−k ∈ R(0,1)

and the corresponding likelihood function is blf(n)(k)(p) := bppdf(n)(p)(k),
where n > 0 and 0 < p < 1. Given observation coordinate ko ∈ R(0,n)

the maximum likelihood estimate for the parameter of the probability den-
sity function is the modal likelihood, {p̃} = maxd(blf(n)(ko)), which is p̃ =
ko/n. Here the gradient of the likelihood function is zero, d(blf(n)(ko))(p̃) =
d(blf(n)(ko))(ko/n) = 0, where d ∈ (R → R) → (R → R) is defined
d(F ) := {(x, dF (x)/dx) : x ∈ dom(F )}.

The multiple binomial parameterised probability density function, mbppdf(z),
is the product of a set of independent binomial parameterised probability den-
sity functions, bppdf(z),

mbppdf(z)(E)(A) =
∏

i∈{1...v}

bppdf(z)(Ei)(Ai)

and so, given non-singleton volume, vo = |V C
o | > 1, and a completely effective

sample histogram, AF
o = V C

o =⇒ Â
[]
o ∈ Rvo

(0,1), the maximum likelihood

estimate is Ẽ
[]
o = Â

[]
o, where {Ẽ[]

o} = maxd(mblf(zo)(A
[]
o)). Thus, in classical

induction, in the case of completely effective sample histogram, AF
o = V C

o =⇒
EF

o = V C
o , the maximum likelihood estimate Ẽo ∈ AU,Vo,1 of the unknown

distribution probability histogram, Êo, in the generalised multiple binomial
probability distribution, Q̂b,U(Eo, zo), is

Ẽo = Âo

The maximum likelihood estimate in this case is a rational-valued function,
Ẽ

[]
o = Â

[]
o ∈ N → Q≥0, so the maximum likelihood estimate can also be

written as the maximisation of the complete congruent histograms of unit
size,

{Ẽo} = maxd({(E, Q̂b,U(E, zo)(Ao)) : E ∈ AU,Vo,1})
The maximum likelihood estimate is not computable as a maximisation. Al-
though the substrate histograms are countably infinite, AU,Vo,1 ↔ N, the
maximisation never terminates. An approximation to the continuous case
may be made by using a scaling factor. The scaled complete integral congru-
ent histograms equals the complete congruent histograms in the limit

lim
k→∞
{A/Zk : A ∈ AU,i,V,kz} = AU,V,z
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where k ∈ N>0 and Zk = scalar(k). The finite approximation to the maxi-
mum likelihood estimate is

{Ẽo} ≈ maxd({(E/Zk, Q̂b,U(E/Zk, zo)(Ao)) : E ∈ AU,i,Vo,k})

The approximation improves as the scaling factor, k, increases.

The normalised mean of the generalised multiple binomial probability dis-
tribution at the maximum likelihood estimate equals the maximum likelihood
estimate of the distribution histogram,

normalise(mean(Q̂b,U(Ẽo, zo))) = Ẽo = Âo

The multinomial parameterised probability density function mppdf(z) ∈ ppdfs(v, v),
where v ∈ N>0, is defined

mppdf(z)(E) :=

{(A, n!∏
i∈{1...v} Γ!Ai

∏
i∈{1...v}

EAi
i ) : A ∈ Rv

[0,z],
∑

i∈{1...v}

Ai = z} ∪

{(A, 0) : A ∈ Rv
[0,z],

∑
i∈{1...v}

Ai 6= z} ∪

(Rv \Rv
[0,z])× {0}

where z ∈ N>0, E ∈ Rv
(0,1) and

∑
i∈{1...v}Ei = 1, otherwise mppdf(z)(E) is

undefined.

The multinomial likelihood function mlf(z) ∈ lfs(v, v) is defined

mlf(n)(A) := {(E,mppdf(z)(E)(A)) : E ∈ Rv
(0,1)}

where A ∈ Rv. Note that the multinomial likelihood function only requires
that each parameter is in the open set between zero and one, E ∈ Rv

(0,1) =

{r : r ∈ R, 0 < r < 1}v, so E is not necessarily a probability function. That
is, in some cases E 6= Ê /∈ P .

In the case where the volume is at least two, v > 1, and the distribution
histogram is completely effective, EF = V C =⇒ Ê[] ∈ Rv

(0,1), the multino-
mial parameterised probability density and the multinomial likelihood equals
the generalised multinomial probability,

mppdf(z)(Ê[])(A[]) = mlf(z)(A[])(Ê[]) = Q̂m,U(E, z)(A)
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The maximum likelihood estimate for the parameter of the multinomial pa-
rameterised probability density function, {Ẽ[]

o} = maxd(mlf(zo)(A
[]
o)), is equal

to the maximum likelihood estimate for the parameter of the multiple bino-
mial parameterised probability density function,

{Ẽ[]
o} = maxd(mlf(zo)(A[]

o)) = maxd(mblf(zo)(A[]
o))

That is, the maximum likelihood estimate, Ẽo, of the unknown distribution
probability histogram, Êo, in the generalised multinomial probability distribu-
tion, Q̂m,U(Eo, zo), is Ẽo = Âo.

Again, the maximum likelihood estimate can also be written as the max-
imisation of the complete congruent histograms of unit size,

{Ẽo} = maxd({(E, Q̂m,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

and the normalised mean of the generalised multinomial probability distri-
bution at the maximum likelihood estimate equals the maximum likelihood
estimate of the distribution histogram,

normalise(mean(Q̂m,U(Ẽo, zo))) = Ẽo = Âo

In the multinomial distribution one of the states is not free, because sum(Âo) =
zo, but the maximum likelihood estimate remains constrained to completely
effective sample histogram, AF

o = V C
o . This would be the case even if the

distribution history size, zh, were known.

Finally, the maximum likelihood estimate for the parameter of the historical
parameterised probability density function corresponding to the stuffed histor-
ical probability distribution, Q̂h,U , is conjectured to be the same as the maxi-
mum likelihood estimate for the parameter of the multinomial parameterised
probability density function, maxd(mlf(zo)(A

[]
o)). That is, the maximum like-

lihood estimate, Ẽo, of the unknown distribution probability histogram, Êo, in
the stuffed historical probability distribution, Q̂h,U(Eo, zo), is Ẽo = Âo.

To conclude, in classical induction where (i) the history probability func-
tion is historically distributed, P = PU,X,Hh

, (ii) the volume is non-singleton,
vo > 1, and (iii) the sample histogram is completely effective, AF

o = V C
o ,

the unknown distribution probability histogram, Êo, is simply estimated to be
equal to the sample probability histogram, Âo,

Ẽo = Âo
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Consider the maximum likelihood estimate of the generalised multinomial
probability distribution, Q̂m,U(E, z), in the case where the distribution is the

maximum likelihood estimate, Ẽ = Â. The logarithm of the generalised
multinomial probability is

ln Q̂m,U(A, z)(A) = ln z!− z ln z −
∑
S∈AS

lnAS! +
∑
S∈AFS

AS lnAS

Applying Stirling’s approximation, lnn! = n lnn− n + O(lnn), the log like-
lihood varies against the sum of the logarithm of the histogram

ln Q̂m,U(A, z)(A) ∼ −
∑
S∈AFS

lnAS

= − sum(ln(A))

where ln ∈ (X → Q) → (X → ln Q>0) is defined as ln(X) := {(x, ln q) :
(x, q) ∈ X, q > 0}. This is to say that the likelihood varies against the
product of the counts of the histogram,

Q̂m,U(A, z)(A) ∼ 1/
∏

S∈AFS

AS

The sum of the logarithm of the histogram varies with the entropy of the
histogram,

sum(ln(A)) ∼ entropy(A)

The so the log-likelihood varies against the histogram entropy,

ln Q̂m,U(A, z)(A) ∼ − entropy(A)

Note that the entropy is not scaled by the size.

In classical induction where (i) the history probability function is histori-
cally distributed, P = PU,X,Hh

, (ii) the volume is non-singleton, vo > 1, and
(iii) the sample histogram is completely effective, AF

o = V C
o , the maximum

likelihood estimate, Ẽo, of the unknown distribution probability histogram,
Êo, in the stuffed historical probability distribution, Q̂h,U(Eo, zo), is Ẽo = Âo,
so, if it is also the case that (iv) the distribution history size is large with
respect to the sample size, zh � zo, and such that (v) the scaled probability
sample histogram is integral, Ao,zh ∈ Ai where Ao,zh = scalar(zh) ∗ Âo, then
the log likelihood of the stuffed historical probability distribution at the max-
imum likelihood estimate (a) varies against the sum of the logarithm of the
sample histogram

ln Q̂h,U(Ao,zh , zo)(Ao) ∼ − sum(ln(Ao))

807



and (b) varies against the sample entropy

ln Q̂h,U(Ao,zh , zo)(Ao) ∼ − entropy(Ao)

The Fisher information of the parameter p of the binomial parameterised
probability density function, bppdf(n)(p), is the second moment of the log-
likelihood sensitivity,

Ibppdf(n)(p) :=

∫ n

0

(d(ln ◦ blf(n)(k))(p))2 × bppdf(n)(p)(k) dk

=
n

p(1− p)

where n > 0 and 0 < p < 1. The Fisher information of the parameter,
Ibppdf(n)(p), is minimised where p = 0.5. In this case the Fisher information
is Ibppdf(n)(0.5) = 4n. If an observation coordinate is ko = n/2, then the max-
imum likelihood estimate, p̃ = ko/n = 0.5, minimises the Fisher information.
The Fisher information is maximised at the extremes of the parameter. As
the parameter, p, tends to zero or one, the Fisher information tends to in-
finity. The Fisher information is proportional to the size, n.

The multiple binomial parameterised probability density function, mbppdf(z),
is the product of a set of independent binomial parameterised probability den-
sity functions, bppdf(z), so the Fisher information of the multiple binomial
parameterised probability density function is the sum,

Imbppdf(z)(E) =
∑

i∈{1...v}

Ibppdf(z)(Ei)

=
∑

i∈{1...v}

z

Ei(1− Ei)

where z ∈ N>0 and E ∈ Rv
(0,1).

The sum sensitivity of the generalised multiple binomial probability distri-
bution, Q̂b,U(E, z), to the distribution histogram, E, is defined as the Fisher
information of the multiple binomial parameterised probability density func-
tion, mbppdf(z). Define the sensitivity of a state for a complete distribution
as sensitivity(U) ∈ QU → (SU → R≥0), and for the generalised multiple
binomial probability distribution as

sensitivity(U)(Q̂b,U(E, z))(S) :=
z

ÊS(1− ÊS)
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where ÊS /∈ {0, 1}. The sum sensitivity is

sum(sensitivity(U)(Q̂b,U(E, z))) :=
∑
S∈EFS

z

ÊS(1− ÊS)

where |EF| > 1.

In the case of non-singleton volume, v > 1, and completely effective distribu-
tion histogram, EF = V C, the sensitivity is equal to the Fisher information,

sensitivity(U)(Q̂b,U(E, z))(S) := Ibppdf(z)(Ê
[]
i ) =

z

ÊS(1− ÊS)

where S ∈ V CS and i ∈ {1 . . . v} corresponds to S. The sum sensitivity is

sum(sensitivity(U)(Q̂b,U(E, z))) := Imbppdf(z)(Ê
[]) =

∑
S∈V CS

z

ÊS(1− ÊS)

The sensitivity of the generalised multinomial probability distribution, Q̂m,U(E, z),
is conjectured to be equal to sensitivity of the generalised multiple binomial
probability distribution, Q̂b,U(E, z),

sensitivity(U)(Q̂m,U(E, z))(S) = sensitivity(U)(Q̂b,U(E, z))(S) =
z

ÊS(1− ÊS)

and hence the sum sensitivities are equal

sum(sensitivity(U)(Q̂m,U(E, z))) = sum(sensitivity(U)(Q̂b,U(E, z)))

=
∑
S∈V CS

z

ÊS(1− ÊS)

The sum sensitivity varies with size,

sum(sensitivity(U)(Q̂m,U(E, z))) ∼ z

The variance of state S in the generalised multinomial probability distribution
is

var(U)(Q̂m,U(E, z))(S) = zÊS(1− ÊS)

The sum variance is shown in ‘Multinomial distributions’, above, to vary
with the scaled entropy,

sum(var(U)(Q̂m,U(E, z))) ∼ z × entropy(E)
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The sensitivity varies against the variance,

sensitivity(U)(Q̂m,U(E, z))(S) ∼ −var(U)(Q̂m,U(E, z))(S)

so the sum sensitivity varies against the scaled entropy,

sum(sensitivity(U)(Q̂m,U(E, z))) ∼ −z × entropy(E)

The entropy is maximised, and the sum sensitivity minimised, when the
distribution histogram is uniform, E = V C,

sum(sensitivity(U)(Q̂m,U(V C, z))) =
v2z

(v − 1)

where v = |V C| > 1. For large volume, v � 1, the uniform sum sensitivity
is asymptotically proportionate to the volume, v. That is, sample histograms
that have large volumes and sizes tend to be more sensitive to the distribu-
tion histogram, E, than smaller sample histograms.

The sensitivity of the stuffed historical probability distribution, Q̂h,U(E, z), is
conjectured to vary with the sensitivity of the generalised multinomial prob-
ability distribution, Q̂m,U(E, z), and hence the sum sensitivities also vary
together

sum(sensitivity(U)(Q̂h,U(E, z))) ∼ sum(sensitivity(U)(Q̂m,U(E, z)))

=
∑
S∈V CS

z

ÊS(1− ÊS)

As the distribution history size exceeds the sample size, zE � z, in the limit
the sum sensitivity of the stuffed historical probability distribution tends to
equal the sum sensitivity of the generalised multinomial probability distribu-
tion,

lim
zE→∞

sum(sensitivity(U)(Q̂h,U(E, z))) = sum(sensitivity(U)(Q̂m,U(E, z)))

In classical induction where (i) the history probability function is historically
distributed, P = PU,X,Hh

, (ii) the volume is non-singleton, vo > 1, and (iii)
the sample histogram is completely effective, AF

o = V C
o , the maximum like-

lihood estimate, Ẽo, of the unknown distribution probability histogram, Êo,
in the stuffed historical probability distribution, Q̂h,U(Eo, zo), is Ẽo = Âo, so,
if it is also the case that (iv) the distribution history size is large with re-
spect to the sample size, zh � zo, and such that (v) the scaled probability
sample histogram is integral, Ao,zh ∈ Ai, then (a) the sum sensitivity of the
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stuffed historical probability distribution at the maximum likelihood estimate
is approximately

sum(sensitivity(U)(Q̂h,U(Ao,zh , zo))) ≈
∑
S∈V CS

o

zo

Âo(S) (1− Âo(S))

(b) the sum sensitivity varies against the size scaled entropy,

sum(sensitivity(U)(Q̂h,U(Ao,zh , zo))) ∼ −zo × entropy(Ao)

The sum sensitivity varies against the size scaled entropy, and the log-
likelihood also varies against the entropy, albeit not size scaled, so conjecture
that the sum sensitivity varies weakly with the log-likelihood,

sum(sensitivity(U)(Q̂h,U(Ao,zh , zo))) ∼ ln Q̂h,U(Ao,zh , zo)(Ao)

This is consistent with the discussion in appendix ‘Likelihood functions and
Fisher information’ where it is conjectured that, in some cases, the sensitivity
of the probability density function to parameter at the maximum likelihood
estimate varies with the log-likelihood.

In the discussion above of the maximum likelihood estimate and sum sen-
sitivity in classical induction, the sample histogram is constrained to be com-
pletely effective, AF

o = V C
o . This allows the maximum likelihood estimate,

Ẽo = Âo, to be made by deriving the likelihood function of the historical
parameterised probability density function from the binomial likelihood func-
tion,

blf(n)(k)(p) :=
n!

Γ!k Γ!(n− k)
pk(1− p)n−k

which is only defined for non-zero, non-unit parameter, 0 < p < 1.

Similarly, the sum sensitivity is derived from the Fisher information of the
binomial likelihood function. The Fisher information tends to infinity in the
limit,

lim
p→0

Ibppdf(n)(p) = lim
p→0

n

p(1− p)
=∞

If it is the case that the sample histogram is neither singleton nor completely
effective, 1 < |AF

o | < vo, then the coordinate has smaller, but not unit,

dimension, (Âo∗AF
o )[] ∈ R|A

F
o |

(0,1) /∈ {{1},R
vo
(0,1)}, and so the maximum likelihood

estimate and sum sensitivity must be restricted to a subset of the cartesian
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states, AFS
o ⊂ V CS

o . The maximum likelihood estimate for an incompletely
effective non-singleton sample histogram is then

(Ẽo ∗ AF
o )∧ = Âo

The maximum likelihood estimate for the ineffective states, Ẽo \(Ẽo ∗AF
o ), re-

mains unknown. In addition, the effective normalising factor, 1/size(Ẽo∗AF
o ),

is unknown.

Similarly, the approximation of the sum sensitivity is restricted to the ef-
fective states,

sum(sensitivity(U)(Q̂h,U(Ao,zh ∗ AF
o , zo))) ≈

∑
S∈AFS

o

zo

Âo(S) (1− Âo(S))

This may be an underestimate, however, because of the unknown effective
normalisation. The sum sensitivity of the ineffective states is unknown be-
cause there is no draw from Ẽo \ (Ẽo ∗ AF

o ).

The sum sensitivity of the stuffed historical probability distribution at the
maximum likelihood estimate, sum(sensitivity(U)(Q̂h,U(Ao,zh , zo))), can be re-
lated to queries on the maximum likelihood estimate of the distribution his-
togram, Ẽo = Âo. Let non-zero histogram Q ∈ AU , be a query histogram
in the variables K = vars(Q) that are a subset of the sample variables,
K ⊆ Vo. The normalisation of the query histogram is a probability histogram,
Q̂ ∈ A ∩ P . The estimated transform induced from the maximum likelihood
estimate, Âo, for the query variables, K, is TÂo,K

= (Âo, (Vo \K)) ∈ T . The

estimated transformed product is Q̂ ∗ TÂo,K
= Q̂ ∗ (Âo, (Vo \ K)) ∈ A ∩ P ′.

The estimated conditional transform induced from Âo and K is T ′
Âo,K

=

(Âo/(Âo%K), (Vo \K)) ∈ T . In the case where the sample histogram is com-
pletely effective, AF

o = V C
o =⇒ QF ≤ (Ao%K)F, the estimated transformed

conditional product is a probability histogram,

Q̂ ∗ T ′
Âo,K

= Q̂ ∗ (
Âo

Âo%K
, (Vo \K)) ∈ A ∩ P

The sum sensitivity is a property of the distribution, so, in the case where
the query histogram consists of one effective state, |QF| = 1 =⇒ Q+KCZ ∈
AU,i,K,1, (i) expand the query histogram to the sample variables, Vo, and (ii)
scale the expanded query histogram to the sample size, zo. Now the estimated
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transformed conditional product can be rewritten in terms of a draw of the
sample size, zo, from the distribution histogram

Q̂ ∗ T ′
Âo,K

= {(N, Q̂h,U(Ao,zh , 1)(Q̂ ∗ {N}U + V CZ
o )) : N ∈ (Vo \K))CS}∧

= {(N, (Q̂h,U(Ao,zh , zo)(Zo ∗ Q̂ ∗ {N}U + V CZ
o ))1/zo)

: N ∈ (Vo \K))CS}∧

where Zo = scalar(zo).

The application of the model induced from the maximum likelihood estimate
to the query histogram, Q̂∗T ′

Âo,K
, can be viewed as a probability function of la-

bel, T ′(Âo, Q̂) ∈ ((Vo\K)CS → Q[0,1])∩P , parameterised by (i) the maximum

likelihood estimate, Âo, and (ii) the query histogram, Q. The model appli-
cation is relatively independent of the query state, SQ where {SQ} = QFS,
and query variables, K. The model application depends on the geometric
scaling of the historical distribution, Q̂h,U(Ao,zh , zo), so the query sensitivity
to the distribution histogram varies with the sum sensitivity of the historical
distribution at the maximum likelihood estimate divided by the sample size,

sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))/zo ≈
∑
S∈V CS

o

1

Âo(S) (1− Âo(S))

∼ − entropy(Ao)

That is, as the sample entropy increases, the sum sensitivity of the query to
the model implied by the sample decreases.

If it is known that the label variables are a function of the query variables,

split(K,EFS
o ) ∈ KCS → (Vo \K)CS

then the distribution histogram, Eo, is known to be ineffective, EF
o < V C

o , and
so the sample histogram cannot be completely effective, AF

o 6= V C
o . However,

the effectiveness of the distribution histogram in the query variables is not
known, (Eo%K)F ≤ KC, unless the sample histogram is completely effective
in the query variables, (Ao%K)F = KC =⇒ (Eo%K)F = KC. So if the
sample histogram is ineffective in the query variables, (Ao%K)F < KC, then
there still exists an unknown normalising factor,

1/size(Ẽo ∗ AF
o % K) = 1/size(Ẽo ∗ AF

o )

In this case the maximum likelihood estimate remains restricted,

(Ẽo ∗ AF
o % K)∧ = Âo % K

(Ẽo ∗ AF
o )∧ = Âo
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and the sum sensitivity may be an underestimate.

5.4 Classical independent induction

In classical induction it is assumed that the history probability function is
historically distributed, P = PU,X,Hh

. Consider the related case of classical
independent induction where all drawn histories are known to be indepen-
dent, P = PU,X,Hh,x, where the independent historically distributed history
probability function PU,X,Hh,x ∈ (HU,X :→ Q[0,1]) ∩ P , is

PU,X,Hh,x :=
(⋃{

{(H, 1) : H ⊆ Hh%VH , |H| = zH , AH = AX
H}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , AH 6= AX
H} ∪

{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

That is, drawn histories are necessarily independent, ∀H ∈ HU,X (PU,X,Hh,x(H) >
0 =⇒ AH = AX

H).

Now, since drawing the distribution history, Hh, itself is always possible,
PU,X,Hh,x(Hh) > 0, the distribution histogram is known to be independent,
Eh = EX

h , as well as the sample histogram, Ao = AX
o . Given a drawn history

H ∈ HU,X , where PU,X,Hh,x(H) > 0, the independent historical probability of
histogram AH = histogram(H) + V CZ

H ∈ AU,i,VH ,zH is now conditional,

Q̂h,x,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,x(G) : G ∈ HU,X , AG = AH)

where the independent conditional stuffed historical probability distribution,
Q̂h,x,U , is defined

Q̂h,x,U(E, z) = {(A, Q̂h,U(E, z)(A)∑
(Q̂h,U(E, z)(B) : B ∈ AU,i,V,z, B = BX)

)

: A ∈ AU,i,V,z, A = AX} ∪
{(A, 0) : A ∈ AU,i,V,z, A 6= AX}

The denominator,
∑

(Q̂h,U(E, z)(B) : B ∈ AU,i,V,z, B = BX), is a constant
and so the independent conditional stuffed historical probability distribution,
Q̂h,x,U , is just the normalisation of the stuffed historical probability distribu-

tion, Q̂h,U , where the histogram is independent,

Q̂h,x,U(E, z) = {(A, Q̂h,U(E, z)(A)) : A ∈ AU,i,V,z, A = AX}∧ ∪
{(A, 0) : A ∈ AU,i,V,z, A 6= AX}
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The maximum likelihood estimate now corresponds to

{Ẽo} = maxd({(EX, Q̂h,x,U(EX, zo)(Ao)) : E ∈ AU,Vo,1})

Conjecture that, though the sample histogram, Ao = AX
o , is in the denomi-

nator, the maximum likelihood estimate is as before, Ẽo = Âo, because the
distribution histogram, EX, is also independent. The sum sensitivity, however,
is lower now. In section ‘Alignment and independent histograms’, above, it is
shown that the multinomial probability density of an independent histogram
AX of size z and variables V drawn from an independent distribution EX is
approximately equal to the product of the multinomial probability densities
of the reduced independent histogram AX%{w}, where w ∈ V , drawn from
the reduced independent distribution EX%{w}

mpdf(U)(EX, z)(AX) ≈
∏
w∈V

mpdf(U)(EX%{w}, z)(AX%{w})

where the multinomial probability density function is defined

mpdf(U)(E, z) := {(A, Γ!z∏
S∈AS Γ!AS

∏
S∈AS

ÊAS
S ) : A ∈ AU,V,z}

In this case where the sample histogram is integral, A = AX ∈ Ai, the
generalised multinomial probability distribution approximates

Q̂m,U(EX, z)(AX) ≈
∏
w∈V

Q̂m,U(EX%{w}, z)(AX%{w})

and therefore the sum sensitivity of the numerator is the sum of the sum
sensitivities of the perimeter, which is less than the sum sensitivity of the
volume,∑
w∈V

sum(sensitivity(U)(Q̂m,U(EX%{w}, z)))

=
∑
w∈V

∑
S∈{w}CS

z

ÊX%{w}(S) (1− ÊX%{w}(S))

≤
∑
S∈V CS

z

ÊS(1− ÊS)

= sum(sensitivity(U)(Q̂m,U(EX, z)))

The sum sensitivity of independent conditional stuffed historical probability
distribution, Q̂h,x,U , is conjectured to be less than the sum sensitivity of the
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numerator because the denominator has sum sensitivity

sum(sensitivity(U)(Q̂h,x,U(EX, z)))

≤
∑
w∈V

sum(sensitivity(U)(Q̂h,U(EX%{w}, z)))

The perimeter sum sensitivities are minimised when the distribution his-
togram is uniform, E = V C, and so the perimeters are uniform, ∀w ∈
V ((E%{w})∧ = ({w}C)∧). In the case of regular distribution histogram
of dimension n = |V | and valency {d} = {|Uw| : w ∈ V }, the minimum sum
sensitivity is

sum(sensitivity(U)(Q̂h,x,U(V C, z))) ≤ ndz

(d− 1)
≤ dnz ≤ d2nz

(dn − 1)
=

v2z

(v − 1)

where v = |V C| > 1. That is, in the independent case, sum sensitivity varies
with dimension, n, rather than volume, v.

In classical independent induction where (i) the history probability func-
tion is independent historically distributed, P = PU,X,Hh,x, (ii) the volume is
non-singleton, vo > 1, and (iii) the sample histogram is completely effective,
AF

o = V C
o , the maximum likelihood estimate, Ẽo, of the unknown distribution

probability histogram, Êo, in the independent conditional stuffed historical
probability distribution, Q̂h,x,U(Eo, zo), is Ẽo = Âo, so, if it is also the case
that (iv) the distribution history size is large with respect to the sample size,
zh � zo, and such that (v) the scaled probability sample histogram is integral,
Ao,zh ∈ Ai, then the sum sensitivity of the independent conditional stuffed
historical probability distribution at the maximum likelihood estimate varies
as the sum of the perimeter sum sensitivities,

sum(sensitivity(U)(Q̂h,x,U(Ao,zh , zo))) ∼∑
w∈Vo

∑
S∈{w}CS

zo

ÂX
o %{w}(S) (1− ÂX

o %{w}(S))

Given a mono-effective query histogram Q = {SQ}U, where SQ ∈ KCS and

K ⊂ Vo, the estimated transformed conditional product is Q̂ ∗ T ′
Âo,K

, where

the estimated conditional transform induced from the sample histogram, Âo,
and the query variables, K, is T ′

Âo,K
= (Âo/(Âo%K), (Vo \ K)). The query

sensitivity varies as the sum sensitivity of the independent conditional histor-
ical distribution at the maximum likelihood estimate divided by the sample
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size,

sum(sensitivity(U)(Q̂h,x,U(Ao,zh , zo)))/zo ∼∑
w∈Vo

∑
S∈{w}CS

1

ÂX
o %{w}(S) (1− ÂX

o %{w}(S))

Of course, in the case of independent sample histogram, Âo = ÂX
o , the label

variables, Vo \ K, are independent of the query variables, K, and so the
estimated transformed conditional product is trivial,

Q̂ ∗ T ′
ÂX

o ,K
= ÂX

o % (Vo \K)

That is, in spite of lower query sensitivity to the estimate of the unknown
distribution histogram, EX

o , there is no functional or causal relation between
the query variables and the label variables,

split(K, ÂXFS
o ) /∈ KCS → (Vo \K)CS

This is true for any query in the contrived case of independent historically
distributed history probability function, P = PU,X,Hh,x.

5.5 Classical modelled induction

Having considered (i) the case of classical induction, where the history
probability function is historically distributed, P = PU,X,Hh

, and (ii) the spe-
cial case of classical independent induction where the history probability func-
tion is independent historically distributed, P = PU,X,Hh,x, now consider (iii)
the special case of classical modelled induction.

5.5.1 Necessary derived

Given some known substrate transform in the sample variables To ∈ TU,Vo ,
the derived histogram of the distribution probability histogram is Êh ∗ To. In
classical modelled induction, while the distribution probability histogram, Êh,
remains unknown, the derived distribution probability histogram, Êh ∗ To, is
known and necessary. That is, the history probability function, P , is histori-
cally distributed but constrained such that all drawn histories have a derived
probability histogram equal to the known derived distribution probability his-
togram, ÂH ∗ To = Êh ∗ To. Define the iso-derived historically distributed
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history probability function PU,X,Hh,d,To ∈ (HU,X :→ Q[0,1]) ∩ P ,

PU,X,Hh,d,To :=(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH , ÂH ∗ To = Êh ∗ To}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , ÂH ∗ To 6= Êh ∗ To} ∪
{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

For drawn histories the derived probability histogram is necessary, ∀H ∈
HU,X (PU,X,Hh,d,To(H) > 0 =⇒ ÂH ∗ To = Êh ∗ To). Not all sizes and
sets of variables are necessarily drawable. That is, in some cases, ∃z ∈
{1 . . . zh} ∃V ⊆ Vh ∀H ∈ HU,X ((zH = z)∧ (VH = V ) =⇒ PU,X,Hh,d,To(H) =
0). A size z ∈ {1 . . . zh} can be drawn if (i) the variables V ⊆ Vh are a
superset of the transform underlying, und(To), and (ii) the scaled derived
distribution histogram, scalar(z) ∗ Êh ∗ To, is integral,

(und(To) ⊆ V ) ∧ (scalar(z) ∗ Êh ∗ To ∈ Ai) =⇒
∃H ∈ HU,X ((zH = z) ∧ (VH = V ) ∧ (PU,X,Hh,d,To(H) > 0))

The distribution history can always be drawn, so the probability function is
not a weak probability function,

∑
H∈HU,X

PU,X,Hh,d,To(H) = 1.

All iso-derived subsets of the distribution history for a given set of variables
and size are defined as equally probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(AG ∗ To = AH ∗ To =⇒ PU,X,Hh,d,To(G) = PU,X,Hh,d,To(H))

In classical modelled induction the history probability function is iso-derived
historically distributed, P = PU,X,Hh,d,To .

Given a drawn history H ∈ HU,X , where PU,X,Hh,d,To(H) > 0, the iso-derived
historical probability of histogram AH = histogram(H) + V CZ

H ∈ AU,i,VH ,zH is
now conditional,

Qh,U(Eh%VH , zH)(AH)∑
B∈D−1

U,i,To,zH
(AH∗To) Qh,U(Eh%VH , zH)(B)

=∑
PU,X,Hh,d,To(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,d,To(G) : G ∈ HU,X , VG = VH , |G| = zH
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The iso-derived historical probability may be expressed in terms of a histogram
distribution which is not explicitly conditional on the necessary derived, Êh ∗
To,

Q̂h,d,To,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,d,To(G) : G ∈ HU,X , AG = AH)

where the iso-derived conditional stuffed historical probability distribution is
defined

Q̂h,d,T,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈D−1

U,i,T,z(A∗T ) Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

which is defined if z ≤ size(E). The derived histogram valued integral his-
togram function DU,i,T,z is defined

DU,i,T,z = {(A,A ∗ T ) : A ∈ AU,i,V,z}

The finite set of iso-deriveds of derived histogram A ∗ T is

D−1
U,i,T,z(A ∗ T ) = {B : B ∈ AU,i,V,z, B ∗ T = A ∗ T}

which is such that the lifted iso-deriveds is a singleton, {B ∗ T : B ∈
AU,i,V,z, B ∗ T = A ∗ T} = {A ∗ T}.

In the case where all the derived are possible,

∀A′ ∈ ran(DU,i,T,z) ∃A ∈ AU,i,V,z ((A ∗ T = A′) ∧ (A ≤ E))

the normalisation of the iso-derived conditional stuffed historical probability
distribution is a fraction 1/|ran(DU,i,T,z)|,

Q̂h,d,T,U(E, z)

= {(A, 1

|ran(DU,i,T,z)|
Qh,U(E, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Qh,U(E, z)(B)

) : A ∈ AU,i,V,z}

The case of possible derived is equivalent to possible iso-derived, ∀A′ ∈
ran(DU,i,T,z) (

∑
B∈D−1

U,i,T,z(A′)Qh,U(E, z)(B) > 0). All derived are possible in

the case where the least count of the distribution histogram is greater than
or equal to the sample size, z ≤ mind(Eh).
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In the case of possible derived the iso-derived historical probability is

Q̂h,d,To,U(Eh%VH , zH)(AH) =

1

|ran(DU,i,To,zH )|

∑
PU,X,Hh,d,To(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,d,To(G) : G ∈ HU,X , VG = VH , |G| = zH

In the case of a full functional transform, Ts = {{w}CS{}V T : w ∈ V }T, the
iso-derived is a singleton of the sample histogram, D−1

U,i,Ts,z
(A∗Ts) = {A}, and

so the denominator equals the numerator,
∑

B∈D−1
U,i,Ts,z

(A∗Ts) Qh,U(E, z)(B) =

Qh,U(E, z)(A). Thus the scaled iso-derived historically distributed history

probability is certain, |AU,i,V,z| × Q̂h,d,Ts,U(E, z)(Z ∗ Ê) = 1, where Z =

scalar(z). In this case, the distribution probability histogram, Ê, is known,
because Ê ∗ Ts is known, and so everything is known.

At the other extreme of a unary transform, Tu = {V CS}T, the iso-derived in-
cludes all substrate histograms, D−1

U,i,Tu,z
(A∗Tu) = AU,i,V,z, and the normalised

denominator is one,
∑

B∈D−1
U,i,Tu,z(A∗Tu) Q̂h,U(E, z)(B) = 1. Thus the iso-

derived conditional stuffed historical probability distribution equals the under-
lying stuffed historical probability distribution, Q̂h,d,Tu,U(E, z) = Q̂h,U(E, z).

In this case, nothing is known, because Ê ∗ Tu = {({({V CS}, V CS)}, 1)} is
trivially known. In this case classical modelled induction reduces to classical
induction.

The iso-derived conditional generalised multinomial probability distribution
is defined

Q̂m,d,T,U(E, z)

:= {(A, Qm,U(E, z)(A)∑
B∈D−1

U,i,T,z(A∗T ) Qm,U(E, z)(B)
) : A ∈ AU,i,V,z, AF ≤ EF}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, AF � EF}

which is defined if size(E) > 0.

The case where all the derived are possible is weaker than for historical,

∀A′ ∈ ran(DU,i,T,z) ∃A ∈ AU,i,V,z ((A ∗ T = A′) ∧ (AF ≤ EF))
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In this case the iso-derived conditional generalised multinomial probability
distribution is

Q̂m,d,T,U(E, z)

= {(A, 1

|ran(DU,i,T,z)|
Qm,U(E, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Qm,U(E, z)(B)

) : A ∈ AU,i,V,z}

Let Ao ∈ AU,i,Vo,zo be a known sample integral histogram of size zo in the
underlying variables of the transform Vo = und(To). It is assumed that
the distribution history size, zh, is large with respect to the sample size
zo = size(Ao), so that, in the limit, the iso-derived historical probability,
Q̂h,d,To,U(Eh%Vo, zo)(Ao), approximates to the iso-derived multinomial prob-

ability, Q̂m,d,To,U(Eh%Vo, zo)(Ao). That is, if zo � zh then

Q̂h,d,To,U(Eo, zo)(Ao) ≈ Q̂m,d,To,U(Eo, zo)(Ao)

where Eo = Eh%Vo.

The iso-derived conditional generalised multinomial parameterised probabil-
ity density function, mdtppdf(T, z) ∈ ppdfs(v, v), and iso-derived conditional
generalised multinomial likelihood function, mdtlf(T, z) ∈ lfs(v, v), corre-
sponding to the iso-derived conditional generalised multinomial probability
distribution, Q̂m,d,T,U , are not given explicitly here, but are such that

mdtppdf(T, z)(Ê[])(A[]) = mdtlf(T, z)(A[])(Ê[]) = Q̂m,d,T,U(E, z)(A)

Now in the case of classical modelled induction where the transform, To, is
known, the real maximum likelihood estimate Ẽ ′o ∈ Rvo

(0,1) for the parameter
of the iso-derived multinomial parameterised probability density function is

{Ẽ ′o} = maxd(mdtlf(To, zo)(A[]
o))

which is such that ∀i ∈ {1 . . . vo} (∂i(mdtlf(To, zo)(A
[]
o))(Ẽ ′o) = 0). The

maximum likelihood estimate Ẽ ′o is only defined in the case where the sam-

ple histogram is completely effective, AF
o = V C

o =⇒ Â
[]
o ∈ Rvo

(0,1), because
the binomial likelihood function is only defined for the open set. That is,
d(blf(zo)(0)) is undefined and so the derivative of the iso-derived multino-
mial parameterised probability density function is undefined where there are
ineffective states.

In the case of completely effective sample histogram, AF
o = V C

o , the max-
imisation for known transform, To, of the iso-derived conditional generalised
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multinomial probability parameterised by the complete congruent histograms
of unit size is a singleton of the rational maximum likelihood estimate

{Ẽo} = maxd({(E, Q̂m,d,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

The real maximum likelihood estimate, Ẽ ′o, is not necessarily a rational co-
ordinate, Rvo

(0,1) ⊃ Qvo
(0,1), and so the rational maximum likelihood estimate is

not necessarily equal to the real maximum likelihood estimate. However, it
is conjectured that the maximisation of the distribution approximates to the
maximisation of the likelihood function,

Ẽ[]
o ≈ Ẽ ′o

In the case where the sample histogram is not completely effective, AF
o < V C

o ,
the maximisation of the iso-derived conditional generalised multinomial prob-
ability distribution for known transform is well defined, unlike the parame-
terised probability density function, but is not necessarily a singleton

|max({(E, Q̂m,d,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})| ≥ 1

In the case where the maximisation of the iso-derived conditional gener-
alised multinomial probability distribution is a singleton, it is equal to the
normalised derived-dependent, Ẽo = Â

D(To)
o , where the derived-dependent

AD(T ) ∈ AU,V,z is defined in ‘Likely histograms’, above, as the maximum
likelihood estimate of the distribution histogram of the multinomial probabil-
ity of the histogram, A, conditional that it is an iso-derived,

{AD(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )
) : D ∈ AU,V,z})

The derived-dependent, AD(T ), is sometimes not computable. The finite ap-
proximation to the derived-dependent is

{AD(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

) : D ∈ AU,i,V,kz})

The approximation, A
D(T )
k ≈ AD(T ), improves as the scaling factor, k, in-

creases.

Unlike in classical non-modelled induction where the maximum likelihood
estimate, Ẽo, is equal to the sample probability histogram, Âo, in classical

822



modelled induction the maximum likelihood estimate is not necessarily equal
to the sample probability histogram. It is only in the case where the sam-
ple histogram is natural that the maximum likelihood estimate is necessarily
equal to the sample probability histogram,

Ao = Ao ∗ To ∗ T †o =⇒ AD(To)
o = Ao =⇒ Ẽo = Âo

Otherwise, the overall maximum likelihood estimate, which is the derived-
dependent, is near the histogram, Ẽo ∼ Âo, only in as much as it is far from
the naturalisation, Ẽo � Âo ∗ To ∗ T †o .

The requirement that the distribution history itself be drawable, PU,X,Hh,d,To(Hh) >
0, has been ignored so far. This requirement modifies the maximisation
to add the constraint that the maximum likelihood estimate be iso-derived,
Ẽo ∗ To = Âo ∗ To,

{Ẽo} = maxd({(E, Q̂m,d,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1, E ∗ To = Âo ∗ To})

So, strictly speaking, the maximum likelihood estimate is only approximately
equal to the normalised derived-dependent, Ẽo ≈ Â

D(To)
o , if the derived-

dependent is not iso-derived, A
D(To)
o ∗ To 6= Ao ∗ To. In the special case, how-

ever, where the sample histogram is natural, the maximum likelihood estimate
is exactly equal to the normalised derived-dependent, Ao = Ao ∗ To ∗ T †o =⇒
Ẽo = Â

D(To)
o = Âo, because Ao ∗ To ∗ T †o ∗ To = Ao ∗ To.

In classical modelled induction, where (i) the history probability function is
iso-derived historically distributed, P = PU,X,Hh,d,To , given some substrate
transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is natural, Ao = Ao ∗ To ∗ T †o , then the maximum likelihood
estimate, Ẽo, of the unknown distribution probability histogram, Êo, in the iso-
derived conditional stuffed historical probability distribution, Q̂h,d,To,U(Eo, zo),
is

Ẽo = Âo

In section ‘Iso-sets’, above, the degree to which an integral iso-set I ⊆
AU,i,V,z, where A ∈ I, is said to be law-like, or the iso-derivedence, is defined
as

|I ∩ D−1
U,i,T,z(A ∗ T )|

|I ∪ D−1
U,i,T,z(A ∗ T )|

In the case of classical modelled induction the integral iso-set is the integral
iso-derived, I = D−1

U,i,T,z(A ∗ T ), and so classical modelled induction is maxi-
mally law-like.
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The iso-abstractence of the iso-deriveds equals the iso-derivedence of the
iso-abstracts,

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

So classical modelled induction is not maximally entity-like if the iso-deriveds
is a proper subset of the iso-abstracts, D−1

U,T,z(A ∗ T ) ⊂ Y −1
U,T,W,z((A ∗ T )X).

This is the case if the derived is not independent, A ∗ T 6= (A ∗ T )X.

Given the known substrate transform, To, consider the log likelihood of
the iso-derived conditional generalised multinomial probability distribution,
Q̂m,d,To,U , at the maximum likelihood estimate.

In section ‘Likely histograms’, above, the logarithm of the maximum con-
ditional probability with respect to the dependent-analogue is conjectured to
vary with the relative space with respect to the independent-analogue. In the
case of iso-derived conditional,

ln
Qm,U(AD(T ), z)(A)∑

Qm,U(AD(T ), z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

∼ spaceRelative(A ∗ T ∗ T †)(A)

where the distribution-relative multinomial space is defined, in section ‘Likely
histograms’, above, as

spaceRelative(E)(A) := − ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(E)

In section ‘Transform alignment’, above, because the set of iso-deriveds is
law-like, it is shown that, in the case where the dependent analogue is in
the iso-set, the difference in relative space between the histogram and the
dependent must be in the differences between the relative spaces of the com-
ponents,

AD(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T † ∗ C)(A ∗ C)

≤
∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T † ∗ C)(AD(T ) ∗ C)

So, in the case of the derived-dependent, the difference in relative space be-
tween the histogram and the dependent must be in the difference between
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the non-independent terms of the alignments,

AD(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒

∑
S∈V CS

ln Γ!AS ≤
∑
S∈V CS

ln Γ!A
D(T )
S

The sum of the relative spaces of the components approximates to∑
(·,C)∈T−1

spaceRelative(A ∗ T ∗ T † ∗ C)(A ∗ C) ≈

z +
∑
S∈V CS

ln Γ!AS −
∑

(R,C)∈T−1

(A ∗ T )R ln((A ∗ T )R/|C|)

So the sum of the relative spaces of the components varies with the non-
independent term of the histogram alignment,∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T † ∗ C)(A ∗ C) ∼
∑
S∈V CS

ln Γ!AS

which is independent of the transform, T . The sum of the relative spaces
of the components varies against the size scaled component size cardinality
relative entropy,∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T † ∗ C)(A ∗ C) ∼

−z × entropyRelative(A ∗ T, V C ∗ T )

The derived-dependent varies with the histogram, Ẽo ∼ Âo, so conjecture
that in the case where the sample is not natural, A 6= A ∗ T ∗ T † =⇒
spaceRelative(A ∗ T ∗ T †)(A) > 0, the log-likelihood varies with the non-
independent term of the histogram alignment,

ln
Qm,U(AD(T ), z)(A)∑

Qm,U(AD(T ), z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

∼
∑
S∈V CS

ln Γ!AS

and varies against the size scaled component size cardinality relative entropy,

ln
Qm,U(AD(T ), z)(A)∑

Qm,U(AD(T ), z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

∼

−z × entropyRelative(A ∗ T, V C ∗ T )

In classical modelled induction, where (i) the history probability function is
iso-derived historically distributed, P = PU,X,Hh,d,To , given some substrate
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transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is not natural, Ao 6= Ao ∗ To ∗ T †o , (iii) the distribution
history size is large with respect to the sample size, zh � zo, and such that
(iv) the scaled estimate distribution histogram is integral, Ẽo,zh ∈ Ai where
Ẽo,zh = scalar(zh) ∗ Ẽo, then the log likelihood of the iso-derived conditional
stuffed historical probability distribution at the maximum likelihood estimate
varies with the relative space of the sample with respect to the naturalisation,

ln Q̂h,d,To,U(Ẽo,zh , zo)(Ao) ∼ spaceRelative(Ao ∗ To ∗ T †o )(Ao)

varies with the non-independent term of the sample alignment,

ln Q̂h,d,To,U(Ẽo,zh , zo)(Ao) ∼
∑
S∈V CS

o

ln Γ!Ao(S)

and varies against the size scaled component size cardinality relative entropy,

ln Q̂h,d,To,U(Ẽo,zh , zo)(Ao) ∼ − zo × entropyRelative(Ao ∗ To, V
C

o ∗ To)

Given the known substrate transform, To, consider the log likelihood of
the iso-derived conditional generalised multinomial probability distribution,
Q̂m,d,To,U , at the maximum likelihood estimate, in the special case where the

histogram is natural, Ao = Ao ∗ To ∗ T †o =⇒ Ẽo = Â
D(To)
o = Âo.

First consider the cardinality of the integral iso-deriveds. Let a pair of sub-
strate transforms T1, T2 ∈ TU,V be such that (i) both are natural, A∗T1∗T †1 =

A ∗ T2 ∗ T †2 = A, (ii) the first derived is independent, A ∗ T1 = (A ∗ T1)X, (iii)
the second derived is not independent, A∗T2 6= (A∗T2)X, but (iv) the second
abstract equals the first derived, (A ∗ T2)X = A ∗ T1 = (A ∗ T1)X. In section
‘Iso-sets‘, above, it is shown that if and only if the derived is independent
then the iso-deriveds equals the iso-abstracts,

A ∗ T = (A ∗ T )X ⇐⇒ D−1
U,T,z(A ∗ T ) = Y −1

U,T,W,z((A ∗ T )X)

So the second integral iso-deriveds is a proper subset of the first integral
iso-deriveds,

D−1
U,i,T2,z

(A ∗ T2) ⊂ Y −1
U,i,T1,W,z((A ∗ T1)X) = D−1

U,i,T1,z
(A ∗ T1)

and the denominator of the second iso-derived conditional multinomial prob-
ability is necessarily less than the denominator of the first iso-derived condi-
tional multinomial probability,∑

B∈D−1
U,i,T2,z

(A∗T2)

Q̂m,U(A, z)(B) <
∑

B∈D−1
U,i,T1,z

(A∗T1)

Q̂m,U(A, z)(B)
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So the second iso-derived conditional multinomial probability at the maximum
likelihood estimate is necessarily greater than the first iso-derived conditional
multinomial probability at the maximum likelihood estimate,

Q̂m,U(A, z)(A)∑
B∈D−1

U,i,T2,z
(A∗T2) Q̂m,U(A, z)(B)

>
Q̂m,U(A, z)(A)∑

B∈D−1
U,i,T1,z

(A∗T1) Q̂m,U(A, z)(B)

or

Q̂m,d,T2,U(A, z)(A) > Q̂m,d,T1,U(A, z)(A)

That is, in this case the second transform is more likely than the first trans-
form. As shown in ‘Minimum alignment’, above, the independent entropy is
always at least the histogram entropy, ∀A ∈ A (entropy(AX) ≥ entropy(A)).
The second derived is not independent so its entropy is necessarily less than
the entropy of the first derived, entropy(A ∗ T2) < entropy(A ∗ T1). It is
conjectured in ‘Transform alignment’, above, that the log iso-abstractence of
the second transform varies with the size scaled derived entropy and against
the size scaled independent derived entropy,

ln
|D−1

U,i,T,z(A ∗ T )|
|Y −1
U,i,T,W,z((A ∗ T )X)|

∼ z × entropy(A ∗ T )− z × entropy((A ∗ T )X)

≈ − algn(A ∗ T )

hence conjecture that the log likelihood at the maximum likelihood estimate
varies against the derived entropy,

ln Q̂m,d,T,U(A, z)(A) ∼ −z × entropy(A ∗ T )

This can be refined by considering the cardinality of the set of integral iso-
deriveds which may be stated explicitly as the product of the weak compo-
sitions of the components,

|D−1
U,i,T,z(A ∗ T )| =

∏
(R,C)∈T−1

((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

It is shown in ‘Integral iso-sets and entropy’, above, that the integral iso-
deriveds log-cardinality varies against the size-volume scaled component size
cardinality sum relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)
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In the domain where the size is greater than the volume, z > v, the inte-
gral iso-deriveds log-cardinality varies against the volume scaled component
cardinality size relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −v × entropyRelative(V C ∗ T,A ∗ T )

In the domain where the size is less than or equal to the volume, z ≤ v, the
integral iso-deriveds log-cardinality varies against the size scaled component
size cardinality relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −z × entropyRelative(A ∗ T, V C ∗ T )

In both domains the integral iso-deriveds log-cardinality varies against the
relative entropy. That is, integral iso-deriveds log-cardinality is minimised
when (a) the cross entropy is maximised and (b) the component entropy
is minimised. The cross entropy is maximised when high size components
are low cardinality components and low size components are high cardinality
components.

The log likelihood varies against the iso-derived log-cardinality,

ln Q̂m,d,T,U(A, z)(A) ∝ ln
Qm,U(A, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Qm,U(A, z)(B)

∼ − ln |D−1
U,i,T,z(A ∗ T )|

So the log likelihood varies with the size-volume scaled component size car-
dinality sum relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

In the domain where the size is greater than the volume, z > v, the log
likelihood varies with the volume scaled component cardinality size relative
entropy,

ln Q̂m,d,T,U(A, z)(A) ∼ v × entropyRelative(V C ∗ T,A ∗ T )

The volume scaled component cardinality size relative entropy approximates
to the negative logarithm of the cartesian derived multinomial probability
with respect to the derived, so in this domain the log likelihood varies against
the cartesian derived multinomial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ − ln Q̂m,U(A ∗ T, v)(V C ∗ T )
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The sample histogram is natural, Ao = Ao ∗ To ∗ T †o , so even if the sample
is not completely effective, AF

o < V C
o , the component size of effective com-

ponents is always at least equal to the component cardinality, ∀(R,C) ∈
T−1

o ((Ao ∗ To)R > 0 =⇒ (Ao ∗ To)R ≥ |C|), and this domain, where the log
likelihood varies with the component cardinality size relative entropy, applies.

In the domain where the size is less than or equal to the volume, z ≤ v,
the log likelihood varies with the size scaled component size cardinality rela-
tive entropy,

ln Q̂m,d,T,U(A, z)(A) ∼ z × entropyRelative(A ∗ T, V C ∗ T )

The size scaled component size cardinality relative entropy approximates to
the negative logarithm of the derived multinomial probability with respect to
the cartesian derived, so in this domain the log likelihood varies against the
derived multinomial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ − ln Q̂m,U(V C ∗ T, z)(A ∗ T )

If the size is less than the volume, zo < vo, the effective volume is necessarily
less than cartesian, AF

o < V C
o , so sometimes the sample merely approximates

to the naturalisation, Ao ≈ Ao ∗ To ∗ T †o .

In classical modelled induction, where (i) the history probability function is
iso-derived historically distributed, P = PU,X,Hh,d,To , given some substrate
transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is natural, Ao = Ao ∗ To ∗ T †o , then the maximum likelihood
estimate, Ẽo, of the unknown distribution probability histogram, Êo, in the iso-
derived conditional stuffed historical probability distribution, Q̂h,d,To,U(Eo, zo),

is Ẽo = Âo, so, if it is also the case that (iii) the distribution history size is
large with respect to the sample size, zh � zo, and such that (iv) the scaled
probability sample histogram is integral, Ao,zh ∈ Ai, then the log likelihood
of the iso-derived conditional stuffed historical probability distribution at the
maximum likelihood estimate varies with the size-volume scaled component
size cardinality sum relative entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼
(zo + vo)× entropy(Ao ∗ To + V C

o ∗ To)

−zo × entropy(Ao ∗ To) − vo × entropy(V C
o ∗ To)

In the case where the size is greater than the volume, zo > vo, the log like-
lihood of the iso-derived conditional stuffed historical probability distribution
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at the maximum likelihood estimate varies with the volume scaled component
cardinality size relative entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ vo × entropyRelative(V C
o ∗ To, Ao ∗ To)

∼ − ln Q̂m,U(Ao ∗ To, vo)(V C
o ∗ To)

In the case where the size is less than the volume, zo < vo, but the sample
approximates to the naturalisation, Ao ≈ Ao∗To∗T †o , the log likelihood of the
iso-derived conditional stuffed historical probability distribution at the maxi-
mum likelihood estimate varies with the size scaled component size cardinality
relative entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ zo × entropyRelative(Ao ∗ To, V
C

o ∗ To)

∼ − ln Q̂m,U(V C
o ∗ To, zo)(Ao ∗ To)

In other words, the log likelihood of the iso-derived conditional stuffed histor-
ical probability distribution at the maximum likelihood estimate varies with
the size scaled component size cardinality cross entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ zo × entropyCross(Ao ∗ To, V
C

o ∗ To)

and against the size scaled derived entropy

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ −zo × entropy(Ao ∗ To)

So, in this case, the log likelihood is maximised when (a) the derived entropy
is minimised, and (b) high size components are low cardinality components
and low size components are high cardinality components.

This case, where the sample is approximately natural, Ao ≈ Ao ∗ To ∗ T †o ,
and the maximum likelihood estimate is approximately equal to the natural-
isation, Ẽo = Â

D(To)
o ≈ Ao, may be compared to the case where the sample

is not natural, Ao 6= Ao ∗ To ∗ T †o , and the maximum likelihood estimate is

not equal to the naturalisation, Ẽo = Â
D(To)
o 6= Ao. In the natural case the

log likelihood varies with the size scaled component size cardinality relative
entropy,

Ao ≈ Ao ∗ To ∗ T †o =⇒
ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ zo × entropyRelative(Ao ∗ To, V

C
o ∗ To)

whereas in the non-natural case the log likelihood varies against the size
scaled component size cardinality relative entropy,

Ao 6= Ao ∗ To ∗ T †o =⇒
ln Q̂h,d,To,U(Ẽo,zh , zo)(Ao) ∼ − zo × entropyRelative(Ao ∗ To, V

C
o ∗ To)
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Now consider the multinomial probability terms that appear in the numerator
and denominator of the iso-derived conditional generalised multinomial prob-
ability distribution. The logarithm of the iso-derived conditional multinomial
probability at the maximum likelihood estimate, where the sample is natural,
A = A ∗ T ∗ T †, is in proportion to the logarithm of the sample multinomial
probability in the numerator divided by the sum of the iso-derived multino-
mial probabilities in the denominator,

ln Q̂m,d,T,U(A, z)(A) ∝ ln
Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)∑

B∈D−1
U,i,T,z(A∗T ) Q̂m,U(A ∗ T ∗ T †, z)(B)

Given integral iso-derived histogram B ∈ D−1
U,i,T,z(A ∗ T ) the logarithm of

the generalised multinomial probability, where the distribution histogram is
natural, ln Q̂m,U(A ∗ T ∗ T †, z)(B), can be re-written in terms of components,

ln Q̂m,U(A ∗ T ∗ T †, z)(B)

= ln z!− z ln z −
∑
S∈BFS

lnBS! +
∑
S∈BFS

BS ln(A ∗ T ∗ T †)S

= ln z!− z ln z −
∑

(·,C)∈T−1

∑
S∈CS

lnBS! +
∑

(R,·)∈T−1

(A ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R

In the case of natural distribution histogram, A = A ∗T ∗T †, the permutorial
term,

∑
(R,·)∈T−1(A ∗ T )R ln(A ∗ T )R/(V

C ∗ T )R, does not depend on the iso-
derived, B, only on the distribution histogram, A. That is, the permutorial
term is constant for all iso-derived. The permutorial term is proportional to
the size scaled component size cardinality relative entropy,∑

(R,·)∈T−1

(A ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R
∝ z × entropyRelative(A ∗ T, V C ∗ T )

The logarithm of the multinomial probability of the iso-derived, ln Q̂m,U(A∗T∗
T †, z)(B), may be compared to the logarithm of the multinomial probability
of the derived, ln Q̂m,U(A ∗ T, z)(A ∗ T ),

ln Q̂m,U(A ∗ T, z)(A ∗ T )

= ln z!− z ln z −
∑

(R,·)∈T−1

ln(A ∗ T )R! +
∑

(R,·)∈T−1

(A ∗ T )R ln(A ∗ T )R

The permutorial term of the derived is proportional to the negative size
scaled derived entropy,∑

(R,·)∈T−1

(A ∗ T )R ln(A ∗ T )R ∝ z × expected(Â ∗ T )(Â ∗ T )

= −z × entropy(A ∗ T )
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The numerator is the sample multinomial probability. In the case where
the iso-derived equals the sample histogram, B = A, the multinomial term,∑

(·,C)∈T−1

∑
S∈CS lnBS!, simplifies to

∑
(R,·)∈T−1(V C ∗T )R ln((A∗T )R/(V

C ∗
T )R)!, and the multinomial probability is maximised,

ln Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

= ln z!− z ln z −
∑

(R,·)∈T−1

(V C ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R
!

+
∑

(R,·)∈T−1

(A ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R

The difference between multinomial probabilities is the difference in multino-
mial terms, and varies with the difference in size scaled entropies,

ln Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †) − ln Q̂m,U(A ∗ T ∗ T †, z)(B)

=
∑

(·,C)∈T−1

∑
S∈CS

lnBS! −
∑

(R,·)∈T−1

(V C ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R
!

∼ z × entropy(A ∗ T ∗ T †)− z × entropy(B)

The sample multinomial probability can be re-written,

ln Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)
= ln z!− z ln z −

∑
S∈AFS

lnAS! +
∑
S∈AFS

AS lnAS

= ln z!− z ln z −
∑

(R,·)∈T−1

(V C ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R
!

+
∑

(R,·)∈T−1

(V C ∗ T )R
(A ∗ T )R

(V C ∗ T )R
ln

(A ∗ T )R
(V C ∗ T )R

In the case where the cartesian derived is uniform, ∀(R, ·) ∈ T−1 ((V C∗T )R =
v/w′) where w′ = |T−1|, the sample multinomial probability can be written
in terms of the derived multinomial probability,

ln Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

= ln z!− z ln z − v

w′
ln
zw′

v
! + z ln

zw′

v
+

v

w′
ln Q̂m,U(A ∗ T, zw

′

v
)(1/Zv/w′ ∗ A ∗ T )

≈ ln z!− z ln z − v

w′
ln
zw′

v
! + z ln

zw′

v
+ ln Q̂m,U(A ∗ T, z)(A ∗ T )
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where Zv/w′ = scalar(v/w′).

The component size cardinality relative entropy is the component size cardi-
nality cross entropy minus the component size entropy or derived entropy,

entropyRelative(A ∗ T, V C ∗ T ) =

entropyCross(A ∗ T, V C ∗ T ) − entropy(A ∗ T )

When the cartesian derived is uniform, ran(V̂ C∗T ) = {1/w′}, the component
size cardinality cross entropy is a constant, lnw′, and the component size
cardinality relative entropy is in proportion to the negative derived entropy.

expected(Â ∗ T )

(
ln
Â ∗ T
Z1/w′

)
= lnw′ − entropy(A ∗ T )

In the case where the cartesian derived is uniform, the derived multinomial
probability varies most closely to the sample multinomial probability and so,
although the sample multinomial probability also appears in the denominator,
the iso-derived conditional multinomial probability varies with the derived
multinomial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ ln Q̂m,U(A ∗ T, z)(A ∗ T )

In the case where the cartesian derived is not uniform and the cross entropy
is greater than the logarithm of the possible derived volume, entropyCross(A∗
T, V C∗T ) > lnw′, the relative entropy exceeds the uniform cartesian derived
relative entropy,

entropyRelative(A ∗ T, V C ∗ T ) > expected(Â ∗ T )

(
ln
Â ∗ T
Z1/w′

)
and the permutorial term of the sample multinomial probability exceeds that
of the scaled derived multinomial probability,∑

(R,·)∈T−1

(A ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R
>

∑
(R,·)∈T−1

(A ∗ T )R ln
(A ∗ T )R
v/w′

In this case the scaled logarithm of the derived multinomial probability, plus
constants, is necessarily less than the logarithm of the sample multinomial
probability

ln Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

> ln z!− z ln z − v

w′
ln
zw′

v
! + z ln

zw′

v
+

v

w′
ln Q̂m,U(A ∗ T, zw

′

v
)(1/Zv/w′ ∗ A ∗ T )
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and so the scaled logarithm of the derived multinomial probability approxi-
mates more closely to the lower entropy iso-derived that are not equal to the
sample, B 6= A,

∃B ∈ D−1
U,i,T,z(A ∗ T )

(ln Q̂m,U(A ∗ T ∗ T †, z)(A)− v

w′
ln Q̂m,U(A ∗ T, zw

′

v
)(1/Zv/w′ ∗ A ∗ T )

> ln Q̂m,U(A ∗ T ∗ T †, z)(B)− v

w′
ln Q̂m,U(A ∗ T, zw

′

v
)(1/Zv/w′ ∗ A ∗ T ))

In this case of high relative entropy, the derived multinomial probability still
varies with the sample multinomial probability, but varies more closely to
the other iso-derived that appear in the denominator, so now the iso-derived
conditional multinomial probability varies against the derived multinomial
probability,

ln Q̂m,d,T,U(A, z)(A) ∼ − ln Q̂m,U(A ∗ T, z)(A ∗ T )

The degree of anti-correlation varies with the relative entropy.

In the third case where the cartesian derived is not uniform but the cross en-
tropy is less than the logarithm of the possible derived volume, entropyCross(A∗
T, V C ∗ T ) < lnw′, the relative entropy is less than the uniform cartesian
derived relative entropy,

entropyRelative(A ∗ T, V C ∗ T ) < expected(Â ∗ T )

(
ln
Â ∗ T
Z1/w′

)
Now the scaled logarithm of the derived multinomial probability, plus con-
stants, is necessarily greater than the logarithm of the sample multinomial
probability

ln Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

< ln z!− z ln z − v

w′
ln
zw′

v
! + z ln

zw′

v
+

v

w′
ln Q̂m,U(A ∗ T, zw

′

v
)(1/Zv/w′ ∗ A ∗ T )

and so the sample is the closest of the iso-derived. In this case of low relative
entropy, the iso-derived conditional multinomial probability varies with the
derived multinomial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ ln Q̂m,U(A ∗ T, z)(A ∗ T )
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As the cross entropy tends to the derived entropy, the relative entropy tends
to zero, so the derived and cartesian derived become perfectly synchronised
and the sample tends to uniform, Â = V̂ C.

In classical modelled induction, where (i) the history probability function is
iso-derived historically distributed, P = PU,X,Hh,d,To , given some substrate
transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is natural, Ao = Ao ∗ To ∗ T †o , then the maximum likelihood
estimate, Ẽo, of the unknown distribution probability histogram, Êo, in the iso-
derived conditional stuffed historical probability distribution, Q̂h,d,To,U(Eo, zo),

is Ẽo = Âo, so, if it is also the case that (iii) the component size cardinality
relative entropy is high, entropyCross(Ao∗To, V

C
o ∗To) > lnw′o, (iv) the distri-

bution history size is large with respect to the sample size, zh � zo, and such
that (v) the scaled probability sample histogram is integral, Ao,zh ∈ Ai, then
the log likelihood of the iso-derived conditional stuffed historical probability
distribution at the maximum likelihood estimate varies against the derived
multinomial probability,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − ln Q̂m,U(Ao ∗ To, zo)(Ao ∗ To)

Consider further the multinomial probability terms that appear in the numer-
ator and denominator of the iso-derived conditional generalised multinomial
probability distribution where the distribution histogram is natural, A∗T ∗T †.
It is shown above that that the logarithm of the generalised multinomial prob-
ability, re-written in terms of components, is,

ln Q̂m,U(A ∗ T ∗ T †, z)(B)

= ln z!− z ln z −
∑

(·,C)∈T−1

∑
S∈CS

lnBS! +
∑

(R,·)∈T−1

(A ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R

The permutorial term is constant for all iso-derived, so the iso-derived con-
ditional multinomial probability simplifies to

Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)∑
B∈D−1

U,i,T,z(A∗T ) Q̂m,U(A ∗ T ∗ T †, z)(B)
= 1/

∑
B∈D−1

U,i,T,z(A∗T )

∏
S∈V CS

AS!

BS!

The minimum terms in the denominator are such that the iso-derived his-
togram B ∈ D−1

U,i,T,z(A ∗ T ) is singleton in all of its components, ∀(·, C) ∈
T−1(|(B ∗C)F| = 1). The logarithm of a minimum term approximates to the
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size scaled component size cardinality cross entropy,

ln
∏

S∈V CS

AS!

BS!
=

∑
(R,·)∈T−1

(V C ∗ T )R ln
(A ∗ T )R

(V C ∗ T )R
! −

∑
(R,·)∈T−1

ln(A ∗ T )R!

≈ −
∑

(R,·)∈T−1

(A ∗ T )R ln(V C ∗ T )R

∝ z × entropyCross(A ∗ T, V C ∗ T )

So, in the case where the size is greater than the volume, z > v, and the
sample is natural, A = A ∗ T ∗ T †, the logarithm of the iso-derived condi-
tional multinomial probability varies against the size scaled component size
cardinality cross entropy,

ln
Q̂m,U(A, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Q̂m,U(A, z)(B)

∼ − z × entropyCross(A ∗ T, V C ∗ T )

This is somewhat contrary to relationship with respect to the iso-derived car-
dinality where it was shown that the logarithm of the iso-derived conditional
multinomial probability varies with the volume scaled component cardinality
size cross entropy,

ln
Q̂m,U(A, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Q̂m,U(A, z)(B)

∼ v × entropyCross(V C ∗ T,A ∗ T )

However, note that the logarithm of the cardinality of the singleton-component
iso-derived is only

∑
(R,·)∈T−1 ln(V C ∗ T )R, which is much smaller than the

logarithm of the cardinality of the iso-derived, approximately
∑

(R,·)∈T−1(V C∗
T )R ln((A ∗T )R/(V

C ∗T )R), especially in the case where the component car-
dinality size relative entropy is low. So the negative correlation between the
iso-derived conditional multinomial probability and the size scaled component
size cardinality cross entropy is weak.

Also, in the near-natural case where the trimmed sample is unit, A∗AF = AF,
the logarithm of a minimum term approximates to the size scaled derived en-
tropy,

ln
∏

S∈V CS

AS!

BS!
= −

∑
(R,·)∈T−1

ln(A ∗ T )R!

≈ z × entropy(A ∗ T )
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So, in this case where the size is less than the volume, z < v, and the sample
is near-natural, A ≈ A ∗ T ∗ T †, the logarithm of the iso-derived conditional
multinomial probability varies against the size scaled derived entropy,

ln
Q̂m,U(A, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Q̂m,U(A, z)(B)

∼ −z × entropy(A ∗ T )

which agrees with the relationship with respect to the iso-derived cardinality
where it was shown that the logarithm of the iso-derived conditional multino-
mial probability varies with the size scaled component size cardinality relative
entropy,

ln
Q̂m,U(A, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Q̂m,U(A, z)(B)

∼ z × entropyRelative(A ∗ T, V C ∗ T )

In section ‘Derived history space’, above, the specialising derived substrate
history coder, CG,V,T,H(T ), is constructed,

CG,V,T,H(T ) =

coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)

∈ coders(HU,V,X)

whereHU,V,X = {H : H ∈ HU,X , vars(H) = V }. The space of the specialising
coder is

space(CG,V,T,H(T ))(H) = spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )

= spaceIds(|X|, |H|) +

ln
(z + w′ − 1)!

z! (w′ − 1)!
+

ln z!−
∑

R∈(A∗T )S

ln(A ∗ T )R! +

∑
(R,C)∈T−1

(A ∗ T )R ln |C|

The space of the specialising derived substrate history coder, CG,V,T,H(T ),
varies (i) with the possible derived volume, w′, where the possible derived
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volume is less than the size, w′ < z, otherwise with the size scaled log
possible derived volume, z lnw′, and (ii) against the size scaled component
size cardinality relative entropy,

CG,V,T,H(T )s(H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyRelative(A ∗ T, V C ∗ T )

So the space of the specialising derived substrate history coder, CG,V,T,H(T ), is
minimised when (a) the possible derived volume is minimised, (b) the derived
entropy or component size entropy is minimised, and (c) high size components
are low cardinality components and low size components are high cardinality
components.

In the domain where the size is less than or equal to the volume, z ≤ v, the
integral iso-deriveds log-cardinality varies against the size scaled component
size cardinality relative entropy. The sum of the derived classification space
and the partitioned events space varies against the size scaled component size
cardinality relative entropy. So the integral iso-deriveds log-cardinality varies
with the sum of the derived classification space and the partitioned events
space,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −z × entropyRelative(A ∗ T, V C ∗ T )

∼ spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )

So in this domain the log likelihood varies against the specialising space.

Conjecture that in the case where the size is less than the volume, zo < vo,
but the sample approximates to the naturalisation, Ao ≈ Ao ∗ To ∗ T †o , the
log likelihood of the iso-derived conditional stuffed historical probability dis-
tribution at the maximum likelihood estimate varies against the specialising
derived substrate history coder space,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

The iso-derived conditional stuffed historical probability distribution log like-
lihood is maximised and the specialising derived substrate history coder space
is minimised by varying the transform such that (i) the derived entropy is
low, and (ii) high counts are in low cardinality components and high cardi-
nality components have low counts.

838



In section ‘Derived history space’, above, the specialising-canonical space dif-
ference, 2CG,V,T,H(T )s(H)−Cs

H,V (H)−Cs
G,V (H), is shown to be characterised

by certain properties. The specialising-canonical space difference varies (i)
with twice the possible derived volume, 2w′, where w′ < z, otherwise with
twice the size scaled log possible derived volume, 2z lnw′, (ii) with the size
scaled derived entropy, (iii) against twice the size scaled component size car-
dinality cross entropy and (iv) against the size scaled size expected component
entropy,

2CG,V,T,H(T )s(H)− Cs
H,V (H)− Cs

G,V (H) ∼
2
(
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

)
+ z × entropy(A ∗ T )

− 2z × entropyCross(A ∗ T, V C ∗ T )

− z × entropyComponent(A, T )

So the specialising-canonical space difference, 2CG,V,T,H(T )s(H)−Cs
H,V (H)−

Cs
G,V (H), is minimised when (a) the possible derived volume is minimised,

(b) the derived entropy is minimised, (c) high size components are low cardi-
nality components and low size components are high cardinality components,
and (d) the expected component entropy is maximised.

The canonical term, Cs
H,V (H) +Cs

G,V (H), is independent of the model, T , so
properties of the specialising-canonical space difference, 2CG,V,T,H(T )s(H) −
Cs

H,V (H)−Cs
G,V (H), are also properties of the specialising space, CG,V,T,H(T )s(H).

So conjecture that in classical modelled induction where the size is less than
the volume, zo < vo, but the sample approximates to the naturalisation,
Ao ≈ Ao ∗ To ∗ T †o , the log likelihood of the iso-derived conditional stuffed
historical probability distribution at the maximum likelihood estimate varies
against the specialising-canonical space difference,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼
−(2CG,Vo,T,H(To)s(Ho)− Cs

H,Vo(Ho)− Cs
G,Vo(Ho))

In the special case where the histogram is natural, A = A ∗ T ∗ T † =⇒
Ẽ = ÂD(T ) = Â, and the component size cardinality cross entropy is greater
than the logarithm of the possible derived volume, entropyCross(A ∗ T, V C ∗
T ) > lnw′, so the relative entropy is high, conjecture that the iso-derived
conditional multinomial probability at the maximum likelihood estimate varies
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with the underlying-derived relative multinomial probability,

Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)∑
B∈D−1

U,i,T,z(A∗T ) Q̂m,U(A ∗ T ∗ T †, z)(B)
∼ Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

Q̂m,U(A ∗ T, z)(A ∗ T )

This may be generalised to cases where the histogram is not natural, A 6=
A∗T ∗T †, but only approximated to the naturalisation, A ≈ A∗T ∗T †, such
that the relative space with respect to the naturalisation, spaceRelative(A ∗
T ∗ T †)(A), is small,

Q̂m,U(E, z)(A)∑
B∈D−1

U,i,T,z(A∗T ) Q̂m,U(E, z)(B)
∼ Q̂m,U(E, z)(A)

Q̂m,U(E ∗ T, z)(A ∗ T )

In the case of a full functional transform, Ts = {{w}CS{}V T : w ∈ V }T, this
correlation is exact,

∑
B∈D−1

U,i,Ts,z
(A∗Ts) Q̂m,U(E, z)(B) = Q̂m,U(E∗Ts, z)(A∗Ts),

because D−1
U,i,Ts,z

(A ∗ Ts) = {A}. At the other extreme of a unary transform,

Tu = {V CS}T, the correlation is also exact,
∑

B∈D−1
U,i,Tu,z(A∗Tu) Q̂m,U(E, z)(B) =

Q̂m,U(E ∗ Tu, z)(A ∗ Tu) = 1, because D−1
U,i,Tu,z

(A ∗ Tu) = AU,i,V,z.

The numerator of the underlying-derived relative multinomial probability cor-
responds to the unknown underlying, while the denominator corresponds to
the known derived. Thus, in the case of high component size cardinality
relative entropy, the sum sensitivity of the iso-derived conditional stuffed
historical probability distribution, Q̂h,d,T,U , is conjectured to vary with the
unknown-known multinomial probability distribution sum sensitivity differ-
ence,

sum(sensitivity(U)(Q̂h,d,T,U(E, z))) ∼
sum(sensitivity(U)(Q̂m,U(E, z)))− sum(sensitivity(U)(Q̂m,U(E ∗ T, z)))

and so the sum sensitivity of the iso-derived conditional stuffed historical
probability distribution is sometimes less than or equal to the sum sensitivity
of the stuffed historical probability distribution,

sum(sensitivity(U)(Q̂h,d,T,U(E, z)))

≤ sum(sensitivity(U)(Q̂h,U(E, z)))

In the case of a full functional transform, Ts, the iso-derived historically
distributed history probability is a constant, so the iso-derived conditional
stuffed historical probability distribution sum sensitivity is zero,

sum(sensitivity(U)(Q̂h,d,Ts,U(E, z))) = 0
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Here the underlying is known and so the unknown-known multinomial prob-
ability distribution sum sensitivity difference is also zero,

sum(sensitivity(U)(Q̂m,U(E, z))) = sum(sensitivity(U)(Q̂m,U(E ∗ Ts, z)))

In the case of a unary transform, Tu, the iso-derived conditional stuffed his-
torical probability distribution sum sensitivity equals the stuffed historical
probability distribution sum sensitivity,

sum(sensitivity(U)(Q̂h,d,Tu,U(E, z))) = sum(sensitivity(U)(Q̂h,U(E, z)))

Here the derived multinomial probability distribution sum sensitivity is un-
defined, because the derived volume is singular, w = 1, and so the unknown-
known multinomial probability distribution sum sensitivity difference is un-
defined.

Given a transform T ∈ TU,V the multinomial probability can be written in
terms of its component multinomial probabilities,

Q̂m,U(E, z)(A)

=
z!∏

S∈V CS AS!

∏
S∈V CS

ÊAS
S

=
z!∏

(R,·)∈T−1(A ∗ T )R!

∏
(R,C)∈T−1

(A ∗ T )R!∏
S∈CS(A ∗ C)S!

∏
S∈CS

(Ê ∗ C)
(A∗C)S
S

=
z!∏

(R,·)∈T−1(A ∗ T )R!

∏
(R,C)∈T−1

Q̂m,U(E ∗ C, (A ∗ T )R)(A ∗ C)

where the distribution histogram is completely effective, EF = V C. The
derived multinomial probability is

Q̂m,U(E ∗ T, z)(A ∗ T ) =
z!∏

R∈(V C∗T )FS(A ∗ T )R!

∏
R∈(V C∗T )FS

(Ê ∗ T )
(A∗T )R
R

=
z!∏

(R,·)∈T−1(A ∗ T )R!

∏
(R,·)∈T−1

(Ê ∗ T )
(A∗T )R
R

So the underlying-derived relative multinomial probability can be rewritten
in terms of components,

Q̂m,U(E, z)(A)

Q̂m,U(E ∗ T, z)(A ∗ T )
=

∏
(R,C)∈T−1 Q̂m,U(E ∗ C, (A ∗ T )R)(A ∗ C)∏

(R,·)∈T−1(Ê ∗ T )
(A∗T )R
R
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The unknown-known multinomial probability distribution sum sensitivity dif-
ference has several properties corresponding to the numerators and denomi-
nators of each side of this equation.

First, the unknown-known sum sensitivity difference varies with the sum
sensitivity of the numerator of the left hand side, which is the multinomial
probability distribution sum sensitivity,

sum(sensitivity(U)(Q̂m,U(E, z))) =
∑
S∈V CS

z

ÊS(1− ÊS)

As shown above, the multinomial probability distribution sum sensitivity
varies against the scaled entropy, so the iso-derived conditional stuffed his-
torical probability distribution sum sensitivity varies against the underlying
entropy

sum(sensitivity(U)(Q̂h,d,T,U(E, z))) ∼
∑
S∈V CS

z

ÊS(1− ÊS)

∼ −z × entropy(E)

The underlying entropy, entropy(E), is independent of the transform, T , and
so remains constant during any optimisation of the sum sensitivity by vary-
ing the transform.

Second, the unknown-known sum sensitivity difference varies against the
sum sensitivity of the denominator of the left hand side, which is the de-
rived multinomial probability distribution sum sensitivity,

sum(sensitivity(U)(Q̂m,U(E ∗ T, z))) =
∑

(R,·)∈T−1

z

(Ê ∗ T )R (1− (Ê ∗ T )R)

so the iso-derived conditional stuffed historical probability distribution sum
sensitivity varies with the derived entropy,

sum(sensitivity(U)(Q̂h,d,T,U(E, z))) ∼ −
∑

(R,·)∈T−1

z

(Ê ∗ T )R (1− (Ê ∗ T )R)

∼ z × entropy(E ∗ T )

Third, the unknown-known sum sensitivity difference varies with the sum
sensitivity of the numerator of the right hand side, which is the sum of the
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unknown multinomial probability distribution sum sensitivities,∑
(R,C)∈T−1

sum(sensitivity(U)(Q̂m,U(E ∗ C, (A ∗ T )R))) =

∑
(R,C)∈T−1

∑
S∈CS

(A ∗ T )R

ÊS(1− ÊS)

so the iso-derived conditional stuffed historical probability distribution sum
sensitivity varies against the unknown size scaled expected component en-
tropy,

sum(sensitivity(U)(Q̂h,d,T,U(E, z))) ∼ −z × entropyComponent(E, T )

Fourth, the denominator of the right hand side,
∏

(R,·)∈T−1(Ê∗T )
(A∗T )R
R , is the

permutorial part of the derived multinomial probability, Q̂m,U(E∗T, z)(A∗T ).
The other part is the multinomial coefficient, z!/

∏
R∈(A∗T )FS(A ∗T )R!, which

does not depend on the distribution histogram, E. So the sum sensitivity of
the denominator of the right hand side varies with the sum sensitivity of the
denominator of the left hand side, which is the derived multinomial probabil-
ity distribution sum sensitivity, sum(sensitivity(U)(Q̂m,U(E ∗ T, z))). Again,
the iso-derived conditional stuffed historical probability distribution sum sen-
sitivity varies with the derived entropy, entropy(E ∗ T ).

In classical modelled induction, where (i) the history probability function is
iso-derived historically distributed, P = PU,X,Hh,d,To , given some substrate
transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is natural, Ao = Ao ∗ To ∗ T †o , then the maximum likelihood
estimate, Ẽo, of the unknown distribution probability histogram, Êo, in the iso-
derived conditional stuffed historical probability distribution, Q̂h,d,To,U(Eo, zo),

is Ẽo = Âo, so, if it is also the case that (iii) the component size cardinality
relative entropy is high, entropyCross(Ao ∗ To, V

C
o ∗ To) > lnw′o, (iv) the dis-

tribution history size is large with respect to the sample size, zh � zo, and
such that (v) the scaled probability sample histogram is integral, Ao,zh ∈ Ai,
then the sum sensitivity of the iso-derived conditional stuffed historical prob-
ability distribution at the maximum likelihood estimate (a) is less than or
equal to the sum sensitivity of the stuffed historical probability distribution
at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))
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(b) varies with the derived entropy,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ zo × entropy(Ao ∗ To)

and (c) varies against the unknown size scaled expected component entropy,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼
−zo × entropyComponent(Ao, To)

The derived entropy varies with the derived classification space, and so varies
with the specialising derived substrate history coder space, CG,V,T,H(T )s(H).
Conjecture that in the case where the sample equals the naturalisation, Ao =
Ao∗To∗T †o , the sum sensitivity of the iso-derived conditional stuffed historical
probability distribution at the maximum likelihood estimate varies with the
specialising derived substrate history coder space,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ space(CG,Vo,T,H(To))(Ho)

Both the iso-derived conditional stuffed historical probability distribution sum
sensitivity and the specialising derived substrate history coder space are min-
imised by varying the transform such that the derived entropy is low.

Also, the specialising-canonical space difference, 2CG,V,T,H(T )s(H)−Cs
H,V (H)−

Cs
G,V (H), varies with derived entropy and against the size scaled expected

component entropy, so conjecture that in the case where the sample is nat-
ural, Ao = Ao ∗ To ∗ T †o , the sum sensitivity of the iso-derived conditional
stuffed historical probability distribution at the maximum likelihood estimate
varies with the specialising-canonical space difference,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼
2CG,Vo,T,H(To)s(Ho)− Cs

H,Vo(Ho)− Cs
G,Vo(Ho)

Both the iso-derived conditional stuffed historical probability distribution sum
sensitivity and the specialising-canonical space difference are minimised by
varying the transform such that (a) the derived entropy is low and (b) the
underlying components have high entropy.

Altogether, in classical modelled induction where the size is less than the
volume, zo < vo, but the sample approximates to the naturalisation, Ao ≈
Ao ∗ To ∗ T †o , and the relative entropy is high, the sum sensitivity has similar
properties as the log-likelihood but with the correlations reversed. Conjecture
that in this case the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ − ln Q̂h,d,To,U(Ao,zh , zo)(Ao)
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That is, in the high relative entropy natural case, the maximisation of the
log-likelihood also tends to minimise the sum sensitivity to the maximum
likelihood estimate. This is opposite to the relationship between the sum
sensitivity and the log-likelihood in classical non-modelled induction, which
was found to be weakly positively correlated.

In the case where there are ineffective possible derived states, |(Ao∗To)F| <
w′o where w′o = |T−1

o |, the distribution histogram is known to be incompletely
effective, EF

o < V C
o . The states known to be ineffective are in the ineffective

components,

∀(R,C) ∈ T−1
o ((Ao ∗ To)R = 0 =⇒ Eo ∗ C = CZ)

Now the classical modelled induction assumption of a completely effective
sample histogram, AF

o = V C
o , can be weakened to requiring only that (i)

there are at least two effective states, |AF
o | > 1, and (ii) the components of

effective derived states are effective, ∀(R,C) ∈ T−1
o ((Ao ∗ To)R > 0 =⇒

(Ao ∗ C)F = C). The maximum likelihood estimate is unchanged, Ẽo = Âo.

Although the coordinate has smaller dimension, (Âo ∗AF
o )[] ∈ R|A

F
o |

(0,1) 6= R
vo
(0,1),

there is no effective normalising factor, 1/size(Ẽo ∗AF
o ) = 1, and both the log

likelihood and the sum sensitivity are the same as for the case of completely
effective derived histogram.

In the case where the requirement of completely effective effective compo-
nents does not hold, ∃(R,C) ∈ T−1

o ((Ao ∗To)R > 0 ∧ (Ao ∗C)F < C), then
there is an unknown effective normalising factor for each of the incompletely
effective components, size(Ẽo ∗ C)/size(Ẽo ∗ C ∗ AF

o ).

Note, however, that the maximisation of the log likelihood or the minimisa-
tion of the sum sensitivity tend to maximise the component size cardinality
relative entropy and so components with larger sizes tend to have smaller
volumes and the cardinality of ineffective component states, C \ (Ao ∗ C)F,
tends to be minimised.

In the case where the histogram is naturalised, Ao = Ao ∗ To ∗ T †o , the ef-
fective components are completely effective, ∀(R,C) ∈ T−1

o ((Ao ∗ To)R >
0 =⇒ (Ao ∗ C)F = C), and so there are no unknown effective normalising
factors.

In the case where there are ineffective possible derived states, but there
are at least two effective derived states, 1 < |(Ao ∗ To)F| < w′o, then the
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derived coordinate has smaller, but not unit, dimension, (Âo ∗ To ∗ (Ao ∗
To)F)[] /∈ {{1},Rw′o

(0,1)}, and the derived multinomial probability distribution
sum sensitivity is,

sum(sensitivity(U)(Q̂m,U(Ao,zh ∗ To ∗ (Ao ∗ To)F, zo))) =∑
R∈(Ao∗To)FS

zo

(Âo ∗ To)R (1− (Âo ∗ To)R)

In the case where the derived histogram is known, the derived effective nor-
malising factor is known to be one, 1/size(Ẽo ∗ To ∗ (Ao ∗ To)F) = 1. If,
however, the knowledge of the derived histogram is less than certain and
there is some doubt about the effectiveness of weakly effective states, it may
be noted that as the effectiveness of the derived states decreases, the derived
entropy decreases and the derived sensitivity increases, tending to infinity in
the limit,

lim
(Ao∗To)R→0

zo

(Ao ∗ To)R (1− (Ao ∗ To)R)
=∞

In this domain of low derived entropy the variation of the derived sensitivity
remains against the derived entropy as ineffectiveness increases. That is,
even in the case of uncertain derived histogram, Âo ∗ To ≈ Êo ∗ To, the iso-
derived conditional stuffed historical probability distribution sum sensitivity
continues to vary with the derived entropy,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ z × entropy(Ao ∗ To)

Just as for non-modelled classical induction the sum sensitivity of the iso-
derived conditional stuffed historical probability distribution at the maximum
likelihood estimate, sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))), can be related
to queries on the maximum likelihood estimate of the distribution histogram,
Ẽo = Âo, in the special case where (i) the sample histogram is natural,
Ao = Ao ∗ To ∗ T †o , and (ii) the component size cardinality relative entropy is
high, entropyCross(Ao ∗To, V

C
o ∗To) > lnw′o. In the case of classical modelled

induction, the given substrate transform must be such that its contraction
has underlying variables that are a subset of the query variables, und(T%

o ) ⊆
K. In the case where the query histogram consists of one effective state,
Q = {(SQ, 1)}, there exists an effective derived state RQ, where {RQ} =
(Q ∗ T%

o )FS. The corresponding underlying component is CQ = T−1
o (RQ). In

this case the application of the query via the model equals the application
via the component directly, (Q ∗ T%

o ∗ his(T%
o ) ∗ Ao)∧ % (Vo \ K) = (Ao ∗

CQ)∧ % (Vo \ K). If the possible derived volume is non singular, w′o > 1,
the query histogram itself cannot be drawn from the distribution history,
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Q̂h,d,To,U(Ao, 1)(Q ∗ {N}U) = 0, where N ∈ (Vo \ K)CS, because the query
derived probability histogram is not equal to the known derived distribution
probability histogram, Q̂ ∗ {N}U ∗ To 6= Âo ∗ To. The application of the query
must be in terms of a modified sample histogram,

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) =

{(N, (Q̂h,d,To,U(Ao,zh , zo)(AQ,N))1/zo) : N ∈ (Vo \K)CS,

AQ,N = Ao − (Ao ∗ CQ) + ((Ao ∗ CQ) % K ∗ {N}U)}∧

where his = histogram. If the sample histogram is completely effective,
AF

o = V C
o , the modified sample histogram, AQ,N , can be drawn from the

distribution, Q̂h,d,To,U(Ao,zh , zo)(AQ,N) > 0, because its derived is equal to
the known derived, AQ,N ∗ To = Ao ∗ To. The modified sample histogram is
in the iso-deriveds, AQ,N ∈ D−1

U,i,To,zo
(Ao ∗ To), and so only the numerator of

the iso-derived conditional stuffed historical probability has changed,

Q̂h,d,To,U(Ao,zh , zo)(AQ,N)

Q̂h,d,To,U(Ao,zh , zo)(Ao)
=
Q̂h,U(Ao,zh , zo)(AQ,N)

Q̂h,U(Ao,zh , zo)(Ao)

In the case of (i) a completely effective histogram, AF
o = V C

o =⇒ QF ≤
(Ao%K)F, and (ii) a self transform with respect to query variables, Ts =
KCS{}VoT, the query application via the model equals the estimated trans-
formed conditional product,

(Q ∗ T%
s ∗ his(T%

s ) ∗ Ao)∧ % (Vo \K) = Q̂ ∗ T ′
Âo,K

∈ A ∩ P

As for non-modelled classical induction, the model application depends on
the geometric scaling of the historical distribution, Q̂h,d,To,U(Ao,zh , zo), so the
query sensitivity to the distribution histogram varies with the sum sensitivity
of the historical distribution at the maximum likelihood estimate divided by
the sample size,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo)))/zo

Although the query application via the model is sometimes not equal to
the estimated transformed conditional product, the query sensitivity to the
distribution histogram is sometimes lower,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo)))/zo

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))/zo

Similarly, where the size is less than the volume, zo < vo, the model likelihood
of the distribution histogram is sometimes higher,

Q̂h,d,To,U(Ao,zh , z)(AQ,N) ≥ Q̂h,U(Ao,zh , z)(AQ,N)
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In other words, querying via the known derived of the model sometimes
reduces the sensitivity to the unknown and increases the likelihood at the
cost of modifying the query.

If it is known that the sample is not natural, Ao 6= Ao∗To∗T †o , for example,
if it is known that the label variables are a function of the query variables

split(K,EFS
o ) ∈ KCS → (Vo \K)CS

then in some cases the states of the modified query, AQ,N , may be ineffective
in the effective sample component,

(AQ,N ∗ CQ)F � (Ao ∗ CQ)F

In these cases there is an unknown normalising factor for the component,

size(Ẽo ∗ CQ)/size(Ẽo ∗ CQ ∗ AF
o )

but there is not necessarily an unknown normalising factor in the query
variables

size(Ẽo ∗ CQ % K)/size(Ẽo ∗ CQ % K ∗ AF
o )

That is, even if the non-modelled query is ineffective, QF ∩ AF
o %K = ∅, if

the derived is effective, (Q ∗ To)F ≤ (Ao ∗ To)F, then it is necessarily the
case that the query, Q, may be carried out via the model by modifying
it to AQ,N , which for some N there exists a drawn history, ∃N ∈ (Vo \
K)CS (Q̂h,d,To,U(Ao,zh , zo)(AQ,N) > 0), subject to the unknown normalising
factor if ((Ao ∗ CQ)%K)F < (CQ%K)F.

5.5.2 Necessary derived functional definition set

So far the discussion of classical modelled induction has considered the
case where the known model is a transform. Consider extending the model
first to functional definition sets and then to fud decompositions.

Given some known substrate fud, Fo ∈ FU,Vo , such that there exists a top
transform, ∃T ∈ Fo (der(T ) = der(Fo)), the derived histogram set of the
distribution probability histogram is {Êh ∗ TFo : T ∈ Fo}, where TF :=
depends(F, der(T ))T. In classical functional definition set induction, while
the distribution probability histogram, Êh, remains unknown, the derived dis-
tribution probability histogram set, {Êh ∗ TFo : T ∈ Fo}, is known and nec-
essary. That is, the history probability function, P , is historically distributed
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but constrained such that all drawn histories have a derived probability his-
togram equal to the known derived distribution probability histogram for each
of the transforms of the fud, ∀T ∈ Fo (ÂH∗TFo = Êh∗TFo). Define the iso-fud
historically distributed history probability function PU,X,Hh,d,Fo ∈ (HU,X :→
Q[0,1]) ∩ P ,

PU,X,Hh,d,Fo :=(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH ,

∀T ∈ Fo (ÂH ∗ TFo = Êh ∗ TFo)}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , ∃T ∈ Fo (ÂH ∗ TFo 6= Êh ∗ TFo)} ∪
{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

In classical functional definition set induction the history probability function
is iso-fud historically distributed, P = PU,X,Hh,d,Fo .

If the fud is a singleton, Fo = {To}, classical functional definition set in-
duction reduces to classical transform induction, PU,X,Hh,d,{To} = PU,X,Hh,d,To .

The iso-fud historical probability may be expressed in terms of a histogram
distribution,

Q̂h,d,Fo,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,d,Fo(G) : G ∈ HU,X , AG = AH)

where the iso-fud conditional stuffed historical probability distribution is de-
fined

Q̂h,d,F,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈D−1

U,i,F,z({A∗TF :T∈F}) Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

which is defined if z ≤ size(E). The derived histogram set valued integral
histogram function DU,i,F,z is defined

DU,i,F,z = {(A, {A ∗ TF : T ∈ F}) : A ∈ AU,i,V,z}

The finite set of iso-fuds of derived histogram set {A ∗ TF : T ∈ F} is

D−1
U,i,F,z({A ∗ TF : T ∈ F}) = {B : B ∈ AU,i,V,z, ∀T ∈ F (B ∗ TF = A ∗ TF )}
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In this case the top transform exists, ∃T ∈ F (der(T ) = der(F )), so the set
of iso-fuds is a law-like subset of the iso-deriveds,

D−1
U,F,z({A ∗ TF : T ∈ F}) ⊆ D−1

U,FT,z
(A ∗ FT)

and therefore necessary derived fud is stricter than necessary derived. That
is, a history can only be drawn in classical functional definition set induction
if it can be drawn in classical transform induction for the transform of the
fud, PU,X,Hh,d,Fo(H) > 0 =⇒ PU,X,Hh,d,FT

o
(H) > 0.

The iso-fud conditional generalised multinomial probability distribution is de-
fined

Q̂m,d,F,U(E, z)

:= {(A, Qm,U(E, z)(A)∑
B∈D−1

U,i,F,z({A∗TF :T∈F}) Qm,U(E, z)(B)
) : A ∈ AU,i,V,z, AF ≤ EF}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, AF � EF}

which is defined if size(E) > 0.

It is assumed that the distribution history size, zh, is large with respect
to the sample size zo = size(Ao), so that, in the limit, the iso-fud historical
probability, Q̂h,d,Fo,U(Eh%Vo, zo)(Ao), approximates to the iso-fud multino-

mial probability, Q̂m,d,Fo,U(Eh%Vo, zo)(Ao). That is, if zo � zh then

Q̂h,d,Fo,U(Eo, zo)(Ao) ≈ Q̂m,d,Fo,U(Eo, zo)(Ao)

where Eo = Eh%Vo.

In the case of completely effective sample histogram, AF
o = V C

o , the maximi-
sation for known fud, Fo, of the iso-fud conditional generalised multinomial
probability parameterised by the complete congruent histograms of unit size
is a singleton of the rational maximum likelihood estimate

{Ẽo} = maxd({(E, Q̂m,d,Fo,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

In the case where the maximisation of the iso-fud conditional generalised
multinomial probability distribution is a singleton, it is equal to the nor-
malised fud-dependent, Ẽo = Â

DF(Fo)
o , where the fud-dependent ADF(F ) ∈

AU,V,z is defined in ‘Likely histograms’, above, as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
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histogram, A, conditional that it is an iso-fud,

{ADF(F )} =

maxd({(E, Qm,U(E, z)(A)∑
Qm,U(E, z)(B) : B ∈ D−1

U,i,F,z(DU,F,z(A))
) : E ∈ AU,V,z})

The independent analogue is the fud-independent, AEF(F ) ∈ AU,V,z, defined,

{AEF(F )} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,F,z(DU,F,z(A)))) : E ∈ AU,V,z})

The fud-independent approximates to the arithmetic average of the natural-
isations,

AEF(F ) ≈ Z1/|F | ∗
∑
T∈F

A ∗ TF ∗ T †F

It is only in the case where the histogram equals the fud-independent that
the maximum likelihood estimate is necessarily equal to the sample probability
histogram,

Ao = AEF(Fo)
o =⇒ ADF(Fo)

o = Ao =⇒ Ẽo = Âo

Otherwise, the overall maximum likelihood estimate, which is the fud-dependent,
is near the histogram, Ẽo ∼ Âo, only in as much as it is far the fud-
independent, Ẽo � Â

EF(Fo)
o .

In classical functional definition set induction, where (i) the history prob-
ability function is iso-fud historically distributed, P = PU,X,Hh,d,Fo , given
some substrate fud in the sample variables Fo ∈ FU,Vo , such that there ex-
ists a top transform, ∃T ∈ Fo (der(T ) = der(Fo)), if it is the case that

(ii) the sample histogram equals the fud-independent, Ao = A
EF(Fo)
o , then

the maximum likelihood estimate, Ẽo, of the unknown distribution probability
histogram, Êo, in the iso-fud conditional stuffed historical probability distri-
bution, Q̂h,d,Fo,U(Eo, zo), is

Ẽo = Âo

Given the known substrate fud, Fo, consider the log likelihood of the iso-
fud conditional generalised multinomial probability distribution, Q̂m,d,Fo,U , at
the maximum likelihood estimate, in the special case where sample histogram
equals the fud-independent, Ao = A

EF(Fo)
o =⇒ Ẽo = Â

DF(Fo)
o = Âo.
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The set of iso-fuds is the intersection of the iso-deriveds of each transform

D−1
U,F,z({A ∗ TF : T ∈ F}) =

⋂
T∈F

D−1
U,TF ,z

(A ∗ TF )

So the cardinality of the set of integral iso-fuds is less than or equal to the
product of the weak compositions of the components for any transform,

∀T ∈ F

|D−1
U,i,F,z(DU,F,z(A))| ≤

∏
(R,C)∈T−1

F

((A ∗ TF )R + |C| − 1)!

(A ∗ TF )R! (|C| − 1)!


and the logarithm of the integral iso-fuds cardinality is less or equal to the
integral iso-deriveds log-cardinality for any transform,

∀T ∈ F
(
ln |D−1

U,i,F,z(DU,F,z(A))| ≤ ln |D−1
U,i,TF ,z

(A ∗ TF )|
)

In the case where the volume is much greater than one, v � 1, the integral
iso-deriveds log-cardinality approximates to the negative size-volume scaled
component size cardinality sum relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ≈
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

In the domain where the size is greater than the volume, z > v, the inte-
gral iso-deriveds log-cardinality varies against the volume scaled component
cardinality size relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −v × entropyRelative(V C ∗ T,A ∗ T )

In the domain where the size is less than or equal to the volume, z ≤ v, the
integral iso-deriveds log-cardinality varies against the size scaled component
size cardinality relative entropy,

ln |D−1
U,i,T,z(A ∗ T )| ∼ −z × entropyRelative(A ∗ T, V C ∗ T )

The log likelihood varies against the log iso-fud cardinality,

ln Q̂m,d,F,U(A, z)(A) ∝ ln
Qm,U(A, z)(A)∑

B∈D−1
U,i,F,z(DU,F,z(A))Qm,U(A, z)(B)

∼ − ln |D−1
U,i,F,z(DU,F,z(A))|
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and so varies against the integral iso-deriveds log-cardinalities for all of the
transforms

∀T ∈ F
(

ln Q̂m,d,F,U(A, z)(A) ∼ − ln |D−1
U,i,TF ,z

(A ∗ TF )|
)

So the log likelihood varies with the sum of the size-volume scaled component
size cardinality sum relative entropies,

ln Q̂m,d,F,U(A, z)(A) ∼∑
T∈F

(
(z + v)× entropy(A ∗ TF + V C ∗ TF )

−z × entropy(A ∗ TF ) − v × entropy(V C ∗ TF )
)

In the domain where the size is greater than the volume, z > v, the log likeli-
hood varies with the sum of the volume scaled substrate component cardinality
size relative entropies,

ln Q̂m,d,F,U(A, z)(A) ∼ v ×
∑
T∈F

entropyRelative(V C ∗ TF , A ∗ TF )

and, in the domain where the size is less than or equal to the volume, z ≤ v,
the log likelihood varies with the sum of the size scaled substrate component
size cardinality relative entropies,

ln Q̂m,d,F,U(A, z)(A) ∼ z ×
∑
T∈F

entropyRelative(A ∗ TF , V C ∗ TF )

In classical functional definition set induction, where (i) the history prob-
ability function is iso-fud historically distributed, P = PU,X,Hh,d,Fo , given
some substrate fud in the sample variables Fo ∈ FU,Vo , such that there ex-
ists a top transform, ∃T ∈ Fo (der(T ) = der(Fo)), if it is the case that

(ii) the sample histogram equals the fud-independent, Ao = A
EF(Fo)
o , then

the maximum likelihood estimate, Ẽo, of the unknown distribution probability
histogram, Êo, in the iso-fud conditional stuffed historical probability distri-
bution, Q̂h,d,Fo,U(Eo, zo), is Ẽo = Âo, so, if it is also the case that (iii) the
distribution history size is large with respect to the sample size, zh � zo, and
such that (iv) the scaled probability sample histogram is integral, Ao,zh ∈ Ai,
then the log likelihood of the iso-fud conditional stuffed historical probabil-
ity distribution at the maximum likelihood estimate varies with the sum of
size-volume scaled component size cardinality sum relative entropies of all
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transforms,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼∑
T∈Fo

(
(zo + vo)× entropy(Ao ∗ TFo + V C

o ∗ TFo)

−zo × entropy(Ao ∗ TFo) − vo × entropy(V C
o ∗ TFo)

)
In the case where the size is greater than the volume, zo > vo, the iso-fud
conditional stuffed historical probability distribution at the maximum likeli-
hood estimate varies with the sum of volume scaled component cardinality
size relative entropies of all transforms,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ vo ×
∑
T∈Fo

entropyRelative(V C
o ∗ TFo , Ao ∗ TFo)

In the case where the size is less than the volume, zo < vo, but the sample
histogram approximates to the fud-independent histogram, Ao ≈ A

EF(Fo)
o , or

spaceRelative(A
EF(Fo)
o )(Ao) ≈ 0, the log likelihood of the iso-fud conditional

stuffed historical probability distribution at the maximum likelihood estimate
varies with sum of the size scaled component size cardinality relative entropies
for all transforms,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ zo ×
∑
T∈Fo

entropyRelative(Ao ∗ TFo , V
C

o ∗ TFo)

In other words, the log likelihood of the iso-fud conditional stuffed histori-
cal probability distribution at the maximum likelihood estimate varies with
the sum of the size scaled component size cardinality cross entropies of all
transforms,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ zo ×
∑
T∈Fo

entropyCross(Ao ∗ TFo , V
C

o ∗ TFo)

and against the sum of the size scaled derived entropies for all transforms

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ −zo ×
∑
T∈Fo

entropy(Ao ∗ TFo)

So, in this case, the log likelihood is maximised when (a) the sum of the de-
rived entropies of all transforms is minimised, and (b) high size components
are low cardinality components and low size components are high cardinality
components for all transforms.
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It is shown in section ‘Necessary derived’, above, that in the case where (i)
the sample is natural, A = A ∗T ∗T †, and (ii) the component size cardinality
cross entropy is greater than the logarithm of the possible derived volume,
entropyCross(A∗T, V C ∗T ) > lnw′, so that the relative entropy is high, then
the logarithm of the iso-derived conditional multinomial probability varies
against the logarithm of the derived multinomial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ − ln Q̂m,U(A ∗ T, z)(A ∗ T )

Extending the model from transform, T , to functional definition set, F ,
conjecture that in the case where (i) the sample histogram equals the fud-
independent, A = AEF(F ), and (ii) the cross entropies are sufficient, ∀T ∈
F (entropyCross(A ∗ TF , V C ∗ TF ) > ln |T−1

F |), the logarithm of the iso-fud
conditional multinomial probability varies against the sum of the logarithms
of the derived multinomial probabilities,

ln Q̂m,d,F,U(A, z)(A) ∼ −
∑
T∈F

ln Q̂m,U(A ∗ TF , z)(A ∗ TF )

In classical functional definition set induction, where (i) the history proba-
bility function is iso-fud historically distributed, P = PU,X,Hh,d,Fo , given some
substrate fud in the sample variables Fo ∈ FU,Vo , such that there exists a
top transform, ∃T ∈ Fo (der(T ) = der(Fo)), if it is the case that (ii) the

sample histogram equals the fud-independent, Ao = A
EF(Fo)
o , then the max-

imum likelihood estimate, Ẽo, of the unknown distribution probability his-
togram, Êo, in the iso-fud conditional stuffed historical probability distribu-
tion, Q̂h,d,Fo,U(Eo, zo), is Ẽo = Âo, so, if it is also the case that (iii) the compo-
nent size cardinality relative entropies are high, ∀T ∈ Fo (entropyCross(Ao ∗
TFo , V

C
o ∗ TFo) > ln |T−1

Fo
|), (iv) the distribution history size is large with re-

spect to the sample size, zh � zo, and such that (v) the scaled probability
sample histogram is integral, Ao,zh ∈ Ai, then the log likelihood of the iso-fud
conditional stuffed historical probability distribution at the maximum likeli-
hood estimate varies against the sum of logarithms of the derived multinomial
probabilities of the transforms,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ −
∑
T∈Fo

ln Q̂m,U(Ao ∗ TFo , zo)(Ao ∗ TFo)

In section ‘Derived history space’, above, the specialising fud substrate
history coder is constructed

CG,V,F,H(F ) =

coderHistorySubstrateFudSpecialising(U,X, F,DS, DX) ∈ coders(HU,V,X)
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In the law-like case where the fud has a top transform, ∃T ∈ F (WT =
der(F )), the space is

space(CG,V,F,H(F ))(H) =

spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A,FT) +

spaceClassification(A ∗ FT) +∑
T∈F

spaceEventsPartition(A ∗ depends(F, VT )T, T )

Let w′ be the possible derived volume of the transform of the fud, w′ =
|(FT)−1|. The space of the specialising fud substrate history coder, CG,V,F,H(F ),
varies (i) with the possible fud derived volume, w′, where the possible fud de-
rived volume is less than the size, w′ < z, otherwise with the size scaled log
possible fud derived volume, z lnw′, (ii) with the size scaled transform fud
derived entropy and (iii) against the sum of the size scaled component size
cardinality cross entropies of the transforms of the fud,

CG,V,F,H(F )s(H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

+ z × entropy(A ∗ FT)

− z ×
∑
T∈F

entropyCross(A ∗ TF , V C
T ∗ T )

So the space of the specialising fud substrate history coder, CG,V,F,H(F ), is
minimised when (a) the possible fud derived volume is minimised, (b) the de-
rived entropy or component size entropy of the fud transform is minimised,
and (c) high size components are low cardinality components and low size
components are high cardinality components for each of the fud transforms.

In the domain where the size is less than or equal to the volume, z ≤ v,
the log likelihood varies with the sum of the size scaled substrate component
size cardinality cross entropies,

ln Q̂m,d,F,U(A, z)(A) ∼ z ×
∑
T∈F

entropyCross(A ∗ TF , V C ∗ TF )

so conjecture that the log likelihood varies with the sum of the size scaled
layer component size cardinality cross entropies,

ln Q̂m,d,F,U(A, z)(A) ∼ z ×
∑
T∈F

entropyCross(A ∗ TF , V C
T ∗ T )
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In addition the log likelihood varies against size scaled fud transform derived
entropy,

ln Q̂m,d,F,U(A, z)(A) ∼ −z × entropy(A ∗ FF)

because the log likelihood varies against all of the transform derived entropies
including that of the top transform. Together, conjecture that in this domain
the log likelihood varies against the specialising space.

Conjecture that in the case where the size is less than the volume, zo < vo,
but the sample approximates to the fud-independent, Ao ≈ A

EF(Fo)
o , the log

likelihood of the iso-fud conditional stuffed historical probability distribution
at the maximum likelihood estimate varies against the specialising fud sub-
strate history coder space,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,F,H(F Vo
o ))(Ho)

where F V is the expansion that adds a unary transform in the remaining un-
derlying variables, F ∪{{(V \ und(F ))CS}T}. The iso-fud conditional stuffed
historical probability distribution log likelihood is maximised and the special-
ising fud substrate history coder space is minimised by varying the fud such
that (i) the fud transform derived entropy is low, and (ii) high counts are in
low cardinality components and high cardinality components have low counts
for all transforms.

In section ‘Derived history space’, above, the specialising-canonical space dif-
ference, 2CG,V,F,H(F )s(H)−Cs

H,V (H)−Cs
G,V (H), is shown to be characterised

by certain properties. The specialising-canonical space difference varies (i)
with twice the total possible derived volume of the transforms, where the
possible derived volumes are less than the size, otherwise with twice the total
size scaled log possible derived volume, (ii) with the sum of the size scaled
derived entropies, (iii) against twice the sum of the size scaled component
size cardinality cross entropies and (iv) against the sum of the size scaled

857



size expected component entropies,

2CG,V,F,H(F )s(H)− Cs
H,V (H)− Cs

G,V (H) ∼∑
T∈F

2
(
(w′T : w′T < z) + (z lnw′T : w′T ≥ z)

)
+
∑
T∈F

z × entropy(A ∗ TF )

−
∑
T∈F

2z × entropyCross(A ∗ TF , V C
T ∗ T )

−
∑
T∈F

z × entropyComponent(A ∗ dep(F, VT )T, T )

where w′T = |T−1| and TF = dep(F,WT )T. So the specialising-canonical space
difference, 2CG,V,F,H(F )s(H) − Cs

H,V (H) − Cs
G,V (H), is minimised when (a)

the total possible derived volume is minimised, (b) the total derived entropy
is minimised, (c) high size components are low cardinality components and
low size components are high cardinality components for each transform, and
(d) the total expected component entropy is maximised. It was also conjec-
tured that when the specialising-canonical space difference is minimised, (i)
the derived entropy decreases up the layers, (ii) the possible derived volume
decreases up the layers, (iii) the expected component entropy increases up the
layers, and (iv) the component size cardinality cross entropy increases up the
layers. The canonical terms, Cs

H,V (H) and Cs
G,V (H), are independent of the

model, so these properties are also the properties of the specialising derived
substrate history coder space, CG,V,F,H(F )s(H).

So conjecture that in classical functional definition set induction where the
size is less than the volume, zo < vo, but the sample approximates to the
fud-independent, Ao ≈ A

EF(Fo)
o , the log likelihood of the iso-fud conditional

stuffed historical probability distribution at the maximum likelihood estimate
varies against the specialising-canonical space difference,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼
−(2CG,Vo,F,H(F Vo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho))

In the special case where (i) the sample histogram equals the fud-independent,
A = AEF(F ) =⇒ Ẽ = ÂDF(F ) = Â, and (ii) the cross entropies are suffi-
cient, ∀T ∈ F (entropyCross(A∗TF , V C ∗TF ) > ln |T−1

F |), so that the relative
entropies are high, conjecture that the iso-fud conditional multinomial prob-
ability at the maximum likelihood estimate varies with the product of the
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underlying-derived relative multinomial probabilities,

Q̂m,U(A, z)(A)∑
B∈D−1

U,i,F,z({A∗TF :T∈F}) Q̂m,U(A, z)(B)
∼ Q̂m,U(A, z)(A)∏

T∈F Q̂m,U(A ∗ TF , z)(A ∗ TF )

Following the reasoning in classical transform induction, above, the sum sen-
sitivity of the iso-fud conditional stuffed historical probability distribution,
Q̂h,d,T,U , is conjectured to vary with the unknown-known multinomial proba-
bility distribution sum sensitivity difference,

sum(sensitivity(U)(Q̂h,d,F,U(E, z))) ∼
sum(sensitivity(U)(Q̂m,U(E, z)))−

∑
T∈F

sum(sensitivity(U)(Q̂m,U(E ∗ TF , z)))

The iso-fud conditional stuffed historical probability distribution sum sensi-
tivity varies against the underlying entropy

sum(sensitivity(U)(Q̂h,d,F,U(E, z))) ∼ −z × entropy(E)

The iso-fud conditional stuffed historical probability distribution sum sensi-
tivity varies with the sum of the derived entropies,

sum(sensitivity(U)(Q̂h,d,F,U(E, z))) ∼
∑
T∈F

z × entropy(E ∗ TF )

The iso-fud conditional stuffed historical probability distribution sum sensi-
tivity varies against the sum of the size scaled expected component entropies,

sum(sensitivity(U)(Q̂h,d,F,U(E, z))) ∼
−
∑
T∈F

z × entropyComponent(E ∗ dep(F, VT )T, T )

where dep = depends. In classical functional definition set induction, where
(i) the history probability function is iso-fud historically distributed, P =
PU,X,Hh,d,Fo , given some substrate fud in the sample variables Fo ∈ FU,Vo , such
that there exists a top transform, ∃T ∈ Fo (der(T ) = der(Fo)), if it is the

case that (ii) the sample histogram equals the fud-independent, Ao = A
EF(Fo)
o ,

then the maximum likelihood estimate, Ẽo, then the maximum likelihood es-
timate, Ẽo, of the unknown distribution probability histogram, Êo, in the iso-
fud conditional stuffed historical probability distribution, Q̂h,d,Fo,U(Eo, zo), is

Ẽo = Âo, so, if it is also the case that (iii) the component size cardinality rela-
tive entropies are high, ∀T ∈ Fo (entropyCross(Ao∗TFo , V

C
o ∗TFo) > ln |T−1

Fo
|),
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(iv) the distribution history size is large with respect to the sample size,
zh � zo, and such that (v) the scaled probability sample histogram is inte-
gral, Ao,zh ∈ Ai, then the sum sensitivity of the iso-fud conditional stuffed
historical probability distribution at the maximum likelihood estimate (a) is
less than or equal to the sum sensitivity of the stuffed historical probability
distribution at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

(b) varies with the total derived entropy,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼
∑
T∈Fo

zo × entropy(Ao ∗ TFo)

and (c) varies against the total size scaled expected component entropy,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼
−
∑
T∈Fo

zo × entropyComponent(Ao ∗ dep(Fo, VT )T, T )

Conjecture that in the natural case the sum sensitivity of the iso-fud con-
ditional stuffed historical probability distribution at the maximum likelihood
estimate varies with the specialising fud substrate history coder space,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼ CG,Vo,F,H(F Vo
o )s(Ho)

Both the iso-fud conditional stuffed historical probability distribution sum
sensitivity and the specialising fud substrate history coder space are min-
imised by varying the fud such that the derived entropy is low.

Also, conjecture that the sum sensitivity of the iso-fud conditional stuffed
historical probability distribution at the maximum likelihood estimate varies
with the specialising-canonical space difference,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼
2CG,Vo,F,H(F Vo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho)

Both the iso-fud conditional stuffed historical probability distribution sum
sensitivity and the specialising-canonical space difference are minimised by
varying the fud such that (a) the derived entropy is low and (b) the under-
lying components have high entropy.
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Altogether, in classical functional definition set induction where the size
is less than the volume, zo < vo, but the sample approximates to the fud-
independent, Ao ≈ A

EF(Fo)
o , and the relative entropies are high, the sum

sensitivity has similar properties as the log-likelihood but with the correla-
tions reversed. Conjecture that in this case the sum sensitivity varies against
the log-likelihood,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

That is, in the natural case, the maximisation of the log-likelihood also tends
to minimise the sum sensitivity to the maximum likelihood estimate.

The sum sensitivity of the iso-fud conditional stuffed historical probability
distribution at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo)))

can be related to queries on the maximum likelihood estimate of the distribu-
tion histogram, Ẽo = Âo, in the special case where (i) the sample histogram

equals the fud-independent, Ao = A
EF(Fo)
o , and (ii) the component size cardi-

nality relative entropies are high, ∀T ∈ Fo (entropyCross(Ao∗TFo , V
C

o ∗TFo) >
ln |T−1

Fo
|). In the case of classical functional definition set induction, the given

substrate fud must be such that its set of underlying variables is a subset of
the query variables, und(Fo) ⊆ K. In the case where the query histogram
consists of one effective state, Q = {(SQ, 1)}, there exists an effective derived
state for each of the transforms, {RQ : T ∈ Fo, {RQ} = (Q ∗ TFo)

FS}. The
corresponding underlying component is the intersection CQ =

⋂
{T−1

Fo
(RQ) :

T ∈ Fo, {RQ} = (Q ∗ TFo)
FS}. This component is a subset of that for

transform induction, CQ ⊆ (FT
o )−1(RQ) where {RQ} = (Q ∗ FT

o )FS. In
this case the application of the query via the model equals the applica-
tion via the component directly,

⋂
{Q ∗ TFo ∗ his(TFo) ∗ Ao % Vo : T ∈

Fo}∧ % (Vo \K) = (Ao ∗ CQ)∧ % (Vo \K). If any possible derived volume is
non singular, |T−1

Fo
| > 1 where T ∈ Fo, the query histogram itself cannot be

drawn from the distribution history, Q̂h,d,Fo,U(Ao, 1)(Q ∗ {N}U) = 0, where
N ∈ (Vo \ K)CS, because at least one query derived probability histogram
is not equal to the corresponding known derived distribution probability his-
togram, ∃T ∈ Fo (Q̂ ∗ {N}U ∗ TFo 6= Âo ∗ TFo). The application of the query
must be in terms of a modified sample histogram,⋂

{Q ∗ TFo ∗ his(TFo) ∗ Ao % Vo : T ∈ Fo}∧ % (Vo \K) =

{(N, (Q̂h,d,Fo,U(Ao,zh , zo)(AQ,N))1/zo) : N ∈ (Vo \K)CS,

AQ,N = Ao − (Ao ∗ CQ) + ((Ao ∗ CQ) % K ∗ {N}U)}∧
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where his = histogram. If the sample histogram is completely effective, AF
o =

V C
o , the modified sample histogram, AQ,N , can be drawn from the distribution,

Q̂h,d,Fo,U(Ao,zh , zo)(AQ,N) > 0, because the modified sample histogram is an
iso-fud, ∀T ∈ Fo (AQ,N ∗TFo = Ao ∗TFo). The model application depends on

the geometric scaling of the historical distribution, Q̂h,d,Fo,U(Ao,zh , zo), so the
query sensitivity to the distribution histogram varies with the sum sensitivity
of the historical distribution at the maximum likelihood estimate divided by
the sample size,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo)))/zo

Although the query application via the model is sometimes not equal to
the estimated transformed conditional product, the query sensitivity to the
distribution histogram is sometimes lower,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo)))/zo

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))/zo

Similarly, where the size is less than the volume, zo < vo, the model likelihood
of the distribution histogram is sometimes higher,

Q̂h,d,Fo,U(Ao,zh , z)(AQ,N) ≥ Q̂h,U(Ao,zh , z)(AQ,N)

In other words, querying via the known derived of the model sometimes
reduces the sensitivity to the unknown and increases the likelihood at the
cost of modifying the query.

5.5.3 Necessary derived functional definition set decomposition

The last section extended the model from transforms to functional defi-
nition sets. Now extend further to functional definition set decompositions.
This discussion is very similar to that of the previous section, except that
now the fuds are contingent on the slice.

Given some non-empty known substrate fud decomposition, Do ∈ DF,U,Vo\{∅},
such that there exists a top transform for all of the fuds, ∀F ∈ fuds(Do) ∃T ∈
F (der(T ) = der(F )), the component derived set of the distribution prob-
ability histogram is {(C, {Êh ∗ C ∗ TF : T ∈ F}) : (C,F ) ∈ cont(Do)},
where cont(D) = elements(contingents(D)) and TF := depends(F, der(T ))T.
In classical functional definition set decomposition induction, while the dis-
tribution probability histogram, Êh, remains unknown, the component de-
rived distribution probability set, {(C, {Êh ∗ C ∗ TF : T ∈ F}) : (C,F ) ∈
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cont(Do)}, is known and necessary. That is, the history probability function,
P , is historically distributed but constrained such that all drawn histories
have a derived probability histogram equal to the known derived distribu-
tion probability histogram for each of the transforms of the fud for each
slice, ∀(C,F ) ∈ cont(Do) ∀T ∈ F (ÂH ∗ C ∗ TF = Êh ∗ C ∗ TF ). Define
the iso-fud-decomposition historically distributed history probability function
PU,X,Hh,d,Do ∈ (HU,X :→ Q[0,1]) ∩ P ,

PU,X,Hh,d,Do :=(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH ,

∀(C,F ) ∈ cont(Do) ∀T ∈ F (ÂH ∗ C ∗ TF = Êh ∗ C ∗ TF )}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X ,

∃(C,F ) ∈ cont(Do) ∃T ∈ F (ÂH ∗ C ∗ TF 6= Êh ∗ C ∗ TF )} ∪
{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

In classical functional definition set decomposition induction the history prob-
ability function is iso-fud-decomposition historically distributed, P = PU,X,Hh,d,Do .

If the decomposition only has a root node, Do = {((∅, Fo), ∅)}, classical func-
tional definition set decomposition induction reduces to classical functional
definition set induction, PU,X,Hh,d,{((∅,Fo),∅)} = PU,X,Hh,d,Fo . If the root fud is a
singleton, Fo = {To}, classical functional definition set decomposition induc-
tion reduces to classical derived induction, PU,X,Hh,d,{((∅,{To}),∅)} = PU,X,Hh,d,To .

The iso-fud-decomposition historical probability may be expressed in terms
of a histogram distribution,

Q̂h,d,Do,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,d,Do(G) : G ∈ HU,X , AG = AH)

where the iso-fud-decomposition conditional stuffed historical probability dis-
tribution is defined

Q̂h,d,D,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈D−1

U,i,D,F,z(DU,D,F,z(A))Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

which is defined if z ≤ size(E). The component-derived-set function valued
function of the substrate histograms DU,D,F,z ∈ AU,V,z → (AU → P(AU)) is
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defined

DU,D,F,z = {(A, {(C, {A∗C ∗TF : T ∈ F}) : (C,F ) ∈ cont(D)}) : A ∈ AU,V,z}

The finite set of iso-fud-decompositions of component-derived-set DU,D,F,z(A)
is

D−1
U,i,D,F,z(DU,D,F,z(A)) =

{B : B ∈ AU,i,V,z, ∀(C,F ) ∈ cont(D) ∀T ∈ F (B ∗ C ∗ TF = A ∗ C ∗ TF )}

In this case the top transform exists for all fuds, ∀F ∈ fuds(D) ∃T ∈
F (der(T ) = der(F )), so the set of iso-fud-decompositions is a law-like subset
of the iso-deriveds,

D−1
U,D,F,z(DU,D,F,z(A)) ⊆ D−1

U,DT,z
(A ∗DT)

and therefore necessary derived fud decomposition is stricter than necessary
derived. That is, a history can only be drawn in classical functional definition
set decomposition induction if it can be drawn in classical transform induc-
tion for the transform of the fud decomposition, PU,X,Hh,d,Do(H) > 0 =⇒
PU,X,Hh,d,DT

o
(H) > 0.

The set of iso-fud-decompositions is also a law-like subset of the iso-fuds
for the root node,

D−1
U,D,F,z(DU,D,F,z(A)) ⊆ D−1

U,F,z({A ∗ TF : T ∈ F})
⊆ D−1

U,FT,z
(A ∗ FT)

where {((∅, F ), ·)} = D.

The iso-fud-decomposition conditional generalised multinomial probability dis-
tribution is defined

Q̂m,d,D,U(E, z)

:= {(A, Qm,U(E, z)(A)∑
B∈D−1

U,i,D,F,z(DU,D,F,z(A))Qm,U(E, z)(B)
) : A ∈ AU,i,V,z, AF ≤ EF}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, AF � EF}

which is defined if size(E) > 0.

It is assumed that the distribution history size, zh, is large with respect to
the sample size zo = size(Ao), so that, in the limit, the iso-fud-decomposition
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historical probability, Q̂h,d,Do,U(Eh%Vo, zo)(Ao), approximates to the iso-fud-

decomposition multinomial probability, Q̂m,d,Do,U(Eh%Vo, zo)(Ao). That is, if
zo � zh then

Q̂h,d,Do,U(Eo, zo)(Ao) ≈ Q̂m,d,Do,U(Eo, zo)(Ao)

where Eo = Eh%Vo.

In the case of completely effective sample histogram, AF
o = V C

o , the max-
imisation for known fud decomposition, Do, of the iso-fud-decomposition con-
ditional generalised multinomial probability parameterised by the complete
congruent histograms of unit size is a singleton of the rational maximum
likelihood estimate

{Ẽo} = maxd({(E, Q̂m,d,Do,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

In the case where the maximisation of the iso-fud-decomposition conditional
generalised multinomial probability distribution is a singleton, it is equal to

the normalised fud-decomposition-dependent, Ẽo = Â
DD,F(Do)
o , where the fud-

decomposition-dependent ADD,F(D) ∈ AU,V,z is defined in ‘Likely histograms’,
above, as the maximum likelihood estimate of the distribution histogram of
the multinomial probability of the histogram, A, conditional that it is an
iso-fud-decomposition,

{ADD,F(D)} =

maxd({(E, Qm,U(E, z)(A)∑
Qm,U(E, z)(B) : B ∈ D−1

U,i,D,F,z(DU,D,F,z(A))
) : E ∈ AU,V,z})

The independent analogue is the fud-decomposition-independent, AED,F(D) ∈
AU,V,z, defined,

{AED,F(D)} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,D,F,z(DU,D,F,z(A)))) : E ∈ AU,V,z})

The fud-decomposition-independent approximates to the scaled sum of the
slice arithmetic average of the naturalisations,

AED,F(D) ≈ Zz ∗

 ∑
(C,F )∈cont(D)

(
Z1/|F | ∗

∑
T∈F

A ∗ C ∗ TF ∗ T †F

)∧

It is only in the case where the histogram equals the fud-decomposition-
independent that the maximum likelihood estimate is necessarily equal to the
sample probability histogram,

Ao = AED,F(Do)
o =⇒ ADD,F(Do)

o = Ao =⇒ Ẽo = Âo
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Otherwise, the overall maximum likelihood estimate, which is the fud decom-
position dependent, is near the histogram, Ẽo ∼ Âo, only in as much as it is

far the fud-decomposition-independent, Ẽo � Â
ED,F(Do)
o .

In classical functional definition set decomposition induction, where (i) the
history probability function is iso-fud-decomposition historically distributed,
P = PU,X,Hh,d,Do , given some substrate fud decomposition in the sample vari-
ables Do ∈ DF,U,Vo \ {∅}, such that there exists a top transform for all of the
fuds, ∀F ∈ fuds(Do) ∃T ∈ F (der(T ) = der(F )), if it is the case that (ii) the

sample histogram equals the fud-decomposition-independent, Ao = A
ED,F(Do)
o ,

then the maximum likelihood estimate, Ẽo, of the unknown distribution proba-
bility histogram, Êo, in the iso-fud-decomposition conditional stuffed historical
probability distribution, Q̂h,d,Do,U(Eo, zo), is

Ẽo = Âo

Given the known substrate fud decomposition, Do, consider the log likeli-
hood in the special case where sample histogram equals the fud-decomposition-

independent, Ao = A
ED,F(Do)
o =⇒ Ẽo = Â

DD,F(Do)
o = Âo.

In classical functional definition set decomposition induction, if it is the
case that (ii) the sample histogram equals the fud-decomposition-independent,

Ao = A
ED,F(Do)
o , then the maximum likelihood estimate, Ẽo, of the unknown

distribution probability histogram, Êo, in the iso-fud-decomposition condi-
tional stuffed historical probability distribution, Q̂h,d,Do,U(Eo, zo), is Ẽo = Âo,
so, if it is also the case that (iii) the distribution history size is large with
respect to the sample size, zh � zo, and such that (iv) the scaled probabil-
ity sample histogram is integral, Ao,zh ∈ Ai, then the log likelihood of the
iso-fud-decomposition conditional stuffed historical probability distribution at
the maximum likelihood estimate varies with the sum of size-volume scaled
component size cardinality sum relative entropies of all transforms for all
slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼∑
(C,F )∈cont(Do)

∑
T∈F

(
(zAo∗C + |C|)× entropy(Ao ∗ C ∗ TF + C ∗ TF )

−zAo∗C × entropy(Ao ∗ C ∗ TF ) − |C| × entropy(C ∗ TF )
)

In the case where the size is greater than the volume, zo > vo, the iso-
fud-decomposition conditional stuffed historical probability distribution at the
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maximum likelihood estimate varies with the sum of volume scaled component
cardinality size relative entropies of all transforms for all slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼∑
(C,F )∈cont(Do)

(
|C| ×

∑
T∈F

entropyRelative(C ∗ TF , Ao ∗ C ∗ TF )
)

In the case where the size is less than the volume, zo < vo, but the sam-
ple histogram approximates to the fud-decomposition-independent histogram,

Ao ≈ A
ED,F(Do)
o , or spaceRelative(A

ED,F(Do)
o )(Ao) ≈ 0, the log likelihood of

the iso-fud-decomposition conditional stuffed historical probability distribu-
tion at the maximum likelihood estimate varies with sum of the size scaled
component size cardinality relative entropies of all transforms for all slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼∑
(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropyRelative(Ao ∗ C ∗ TF , C ∗ TF )
)

So, in this case, the log likelihood is maximised when (a) the sum of the
derived entropies of all transforms for all slices is minimised, and (b) high
size components are low cardinality components and low size components are
high cardinality components for all transforms for all slices.

If it is also the case that the component size cardinality relative entropies
are high, ∀(C,F ) ∈ cont(Do) ∀T ∈ F (entropyCross(Ao ∗ C ∗ TF , C ∗ TF ) >
ln |T−1

F |), then the log likelihood of the iso-fud-decomposition conditional
stuffed historical probability distribution at the maximum likelihood estimate
varies against the sum of logarithms of the derived multinomial probabilities
of the transforms for all slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼
−

∑
(C,F )∈cont(Do)

∑
T∈F

ln Q̂m,U(Ao ∗ C ∗ TF , zAo∗C)(Ao ∗ C ∗ TF )

In section ‘Derived history space’, above, the specialising fud decomposition
substrate history coder CG,V,D,F,H(F ) ∈ coders(HU,V,X) is constructed

CG,V,D,F,H(F ) =

coderHistorySubstrateFudDecompSpecialising(U,X, F,DS, DX)

Conjecture that, in the case where the size is less than the volume, zo < vo,
but the sample approximates to the fud-decomposition-independent, Ao ≈
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A
ED,F(Do)
o , the log likelihood of the iso-fud-decomposition conditional stuffed

historical probability distribution at the maximum likelihood estimate varies
against the specialising fud decomposition substrate history coder space,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,D,F,H(DVo
o ))(Ho)

where DV is the expansion that adds a unary transform in the remaining
underlying variables to the leaf fuds in the decomposition tree such that the
fud of each path of the application tree has complete coverage of the substrate,

∀L ∈ paths(D∗) (
⋃

(·,(F,·))∈L

VF = V )

where VF = und(F ).

Conjecture that, in this case, the log likelihood of the iso-fud-decomposition
conditional stuffed historical probability distribution at the maximum likeli-
hood estimate varies against the specialising-canonical space difference,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼
−(2CG,Vo,D,F,H(DVo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho))

In classical functional definition set decomposition induction, where (i) the
history probability function is iso-fud-decomposition historically distributed,
P = PU,X,Hh,d,Do , given some substrate fud decomposition in the sample vari-
ables Do ∈ DF,U,Vo \ {∅}, such that there exists a top transform for all of the
fuds, ∀F ∈ fuds(Do) ∃T ∈ F (der(T ) = der(F )), if it is the case that (ii) the

sample histogram equals the fud-decomposition-independent, Ao = A
ED,F(Do)
o ,

then the maximum likelihood estimate, Ẽo, then the maximum likelihood es-
timate, Ẽo, of the unknown distribution probability histogram, Êo, in the
iso-fud-decomposition conditional stuffed historical probability distribution,
Q̂h,d,Do,U(Eo, zo), is Ẽo = Âo, so, if it is also the case that (iii) the com-
ponent size cardinality relative entropies are high, ∀(C,F ) ∈ cont(Do) ∀T ∈
F (entropyCross(Ao ∗C ∗TF , C ∗TF ) > ln |T−1

F |), (iv) the distribution history
size is large with respect to the sample size, zh � zo, and such that (v)
the scaled probability sample histogram is integral, Ao,zh ∈ Ai, then the sum
sensitivity of the iso-fud-decomposition conditional stuffed historical probabil-
ity distribution at the maximum likelihood estimate (a) is less than or equal
to the sum sensitivity of the stuffed historical probability distribution at the
maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))
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(b) varies with the total derived entropy,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼∑
(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropy(Ao ∗ C ∗ TF )
)

and (c) varies against the total size scaled expected component entropy,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼
−

∑
(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropyComponent(Ao ∗ C ∗ dep(F, VT )T, T )
)

Conjecture that in the natural case the sum sensitivity of the iso fud decompo-
sition conditional stuffed historical probability distribution at the maximum
likelihood estimate varies with the specialising fud decomposition substrate
history coder space,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼ CG,Vo,D,F,H(DVo
o )s(Ho)

Also, conjecture that the sum sensitivity of the iso-fud-decomposition con-
ditional stuffed historical probability distribution at the maximum likelihood
estimate varies with the specialising-canonical space difference,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼
2CG,Vo,D,F,H(DVo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho)

So conjecture that in the case where the size is less than the volume, zo < vo,

but the sample approximates to the fud-independent, Ao ≈ A
ED,F(Do)
o , the

sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

That is, in the natural case, the maximisation of the log-likelihood also tends
to minimise the sum sensitivity to the maximum likelihood estimate.

The sum sensitivity of the iso-fud-decomposition conditional stuffed histor-
ical probability distribution at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo)))

can be related to queries on the maximum likelihood estimate of the distribu-
tion histogram, Ẽo = Âo, in the special case where (i) the sample histogram
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equals the fud-decomposition-independent, Ao = A
ED,F(Do)
o , and (ii) the com-

ponent size cardinality relative entropies are high, ∀(C,F ) ∈ cont(Do) ∀T ∈
F (entropyCross(Ao ∗ C ∗ TF , C ∗ TF ) > ln |T−1

F |). In the case of classi-
cal functional definition set decomposition induction, the given substrate fud
decomposition must be such that its set of underlying variables is a sub-
set of the query variables, und(Do) ⊆ K. In the case where the query
histogram consists of one effective state, Q = {(SQ, 1)}, there exists an ef-
fective derived state for each of the transforms along one of the slice paths,
{(C,RQ) : (C,F ) ∈ cont(Do), Q ∗C 6= ∅, T ∈ F, {RQ} = (Q ∗ TF )FS}. The
corresponding underlying component is the intersection

CQ =
⋂
{C ∗ T−1

F (RQ) :

(C,F ) ∈ cont(Do), Q ∗ C 6= ∅, T ∈ F, {RQ} = (Q ∗ TF )FS}

This component is a subset of that for transform induction, CQ ⊆ (DT
o )−1(RQ)

where {RQ} = (Q ∗DT
o )FS. In this case the application of the query via the

model equals the application via the component directly,
⋂
{Q∗TF ∗his(TF )∗

(Ao ∗C) % Vo : (C,F ) ∈ cont(Do), Q ∗C 6= ∅, T ∈ F}∧ % (Vo \K) = (Ao ∗
CQ)∧ % (Vo \K). If any possible derived volume is non singular, |T−1

F | > 1,
where (C,F ) ∈ cont(Do), Q ∗ C 6= ∅ and T ∈ F , the query histogram itself
cannot be drawn from the distribution history, Q̂h,d,Do,U(Ao, 1)(Q ∗ {N}U) =
0, where N ∈ (Vo \K)CS, because at least one query derived probability his-
togram is not equal to the corresponding known derived distribution probabil-
ity histogram, ∃(C,F ) ∈ cont(Do) ∃T ∈ F (Q̂∗C ∗{N}U ∗TF 6= Âo ∗C ∗TF ).
The application of the query must be in terms of a modified sample histogram,⋂

{Q ∗ TF ∗ his(TF ) ∗ (Ao ∗ C) % Vo :

(C,F ) ∈ cont(Do), Q ∗ C 6= ∅, T ∈ F}∧ % (Vo \K)

= {(N, (Q̂h,d,Do,U(Ao,zh , zo)(AQ,N))1/zo) : N ∈ (Vo \K)CS,

AQ,N = Ao − (Ao ∗ CQ) + ((Ao ∗ CQ) % K ∗ {N}U)}∧

where his = histogram. If the sample histogram is completely effective, AF
o =

V C
o , the modified sample histogram, AQ,N , can be drawn from the distribution,

Q̂h,d,Do,U(Ao,zh , zo)(AQ,N) > 0, because the modified sample histogram is an
iso-fud-decomposition, ∀(C,F ) ∈ cont(Do) ∀T ∈ F (AQ,N ∗C ∗TF = Ao ∗C ∗
TF ). The model application depends on the geometric scaling of the historical
distribution, Q̂h,d,Do,U(Ao,zh , zo), so the query sensitivity to the distribution
histogram varies with the sum sensitivity of the historical distribution at the
maximum likelihood estimate divided by the sample size,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo)))/zo
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Although the query application via the model is sometimes not equal to
the estimated transformed conditional product, the query sensitivity to the
distribution histogram is sometimes lower,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo)))/zo

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))/zo

Similarly, where the size is less than the volume, zo < vo, the model likelihood
of the distribution histogram is sometimes higher,

Q̂h,d,Do,U(Ao,zh , z)(AQ,N) ≥ Q̂h,U(Ao,zh , z)(AQ,N)

In other words, querying via the known derived of the model sometimes
reduces the sensitivity to the unknown and increases the likelihood at the
cost of modifying the query.

5.5.4 Unknown necessary derived

In the discussion above of classical modelled induction, the iso-set condi-
tional stuffed historical probability distribution likelihood and sum sensitivity
relations are correlations rather than approximations or equivalences. In the
case where the models are transforms, the variation over both (i) the set
of probability distribution substrate histograms, AU,Vo,1, and (ii) the set of
substrate transforms, TU,Vo , has been informally implicit in the correlations.
In the discussion above, the model, To ∈ TU,Vo , is known and the derived,

Êh ∗ To, is both necessary and known. Optimisation can be done to find the
maximum likelihood estimate of the distribution histogram for known model,

{Ẽo} = maxd({(E, Q̂m,d,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

Now consider the case where the derived is still necessary, Âo ∗To = Êh ∗To,
but the model, To, is unknown and so the derived is unknown. Here the
transform, T , is considered to be a parameter of the iso-derived conditional
generalised multinomial probability distribution, Q̂m,d,T,U(E, z), along with
the distribution histogram, E. Note, however, that while the distribution
histogram, E, can be mapped to a real vector, Ê[] ∈ Rv, in the iso-derived
conditional generalised multinomial parameterised probability density func-
tion, mdtppdf(T, z)(Ê[]) ∈ (Rv :→ R), and hence can be a continuous
argument to the iso-derived conditional generalised multinomial likelihood
function, mdtlf(T, z)(A[]) ∈ (Rv → R), there is no straightforward mapping
T̂ [] for the transform. Another problem is that the iso-derived conditional
generalised multinomial probability, Q̂m,d,T,U(E, zo)(Ao), is not explicitly con-

strained so that the derived is necessary, Âo ∗ T = Êh ∗ T . However, the
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maximum likelihood estimate for the pair (Ẽo, T̃o) can be defined as an opti-
misation of the multinomial probability conditional on the iso-derived where
both the distribution histogram and transform are treated as arguments to a
likelihood function,

(Ẽo, T̃o)

∈ maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈D−1
U,i,T,zo

(Ao∗T ) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo})

The sensitivity to parameter is now with respect to the pair, (E, T ), and not
just with respect to the distribution histogram, E. Again, there is no mapping
of the transform to a coordinate, T̂ [], so the sensitivity with respect to the
distribution-transform pair at the maximum likelihood estimate, (Ẽo, T̃o), may
be approximated as the sum of (i) the sum sensitivity of the iso-derived
conditional multinomial probability distribution at the maximum likelihood
estimate,

sum(sensitivity(U)(Q̂m,d,T̃o,U
(Ẽo, zo)))

and (ii) the negative logarithm of the cardinality of the maximum likelihood
estimate models,

− ln |max({(T, Qm,U(Ẽo, zo)(Ao)∑
B∈D−1

U,i,T,zo
(Ao∗T ) Qm,U(Ẽo, zo)(B)

) : T ∈ TU,Vo})|

Although the maximum likelihood estimate and the sensitivity with respect
to the pair, (Ẽo, T̃o), can be defined, there is, however, no singular solution
to the optimisation with respect to the distribution probability histogram, E,

maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈D−1
U,i,T,zo

(Ao∗T ) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo}) ⊇ AU,Vo,1 × {Ts}

where Ts is a self transform, for example the self partition transform, Ts =
V CS{}T or the full functional transform, Ts = {{w}CS{}V T : w ∈ V }T. When
the transform is a self transform the denominator equals the numerator,∑

B∈D−1
U,i,Ts,z

(A∗Ts)Qm,U(E, z)(B) = Qm,U(E, z)(A), and the solution is degen-

erate. That is, the maximisation does not yield a single maximum likelihood
estimate for the distribution probability histogram, Ẽo.

In the case where the derived is necessary but unknown, the maximum like-
lihood estimate for the model, T̃o, is just the self transform, T̃o = Ts, which
is the trivial case where everything is known.
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5.5.5 Uniform possible derived induction

This singular solution for unknown transform can be addressed by making
the transform more like a continuous vector. That is, by avoiding discon-
tinuities in the history probability function. Consider the case where it is
unknown if the given histogram, Ao, is a sample histogram drawn from the
distribution histogram, Eh, so, in some cases PU,X,Hh,d,To(Ho) = 0. That is, it

is known that some derived is necessary, ∃B ∈ AU,i,Vo,zo (B̂ ∗ To = Êh ∗ To),

but not whether the given derived histogram is necessary, Âo ∗ To = Êh ∗ To.

In the necessary given derived case, a probability function Pd ∈ (Ai →
Q[0,1]) ∩ P of the derived can be defined as

Pd = {(Zo ∗ Êh ∗ To, 1)} ∪ ((ran(DU,i,To,zo) \ {Zo ∗ Êh ∗ To})× {0})

where Zo ∗ Êh ∗ To ∈ Ai and Zo = scalar(zo). That is, the sample derived is
certain, Pd(Ao∗To) = Pd(Zo∗Êh∗To) = 1. The expected iso-derived probability
in this probability function, Pd, is that of the necessary iso-derived,

expected(Pd, {(A′,
∑

B∈D−1
U,i,To,zo

(A′)

Qm,U(Eo, zo)(B)) : A′ ∈ ran(DU,i,To,zo)})

=
∑

B∈D−1
U,i,To,zo

(Zo∗Êh∗To)

Qm,U(Eo, zo)(B)

In the not necessary given derived case, the probability of the sample derived
is not certain, Pd,p(Ao ∗ To) /∈ {0, 1}. In the absence of further knowledge it

is assumed that the given derived, Âo ∗ To, is at least possible and that the
probability function Pd,p ∈ (Ai → Q[0,1]) ∩ P of the derived is uniform,

Pd,p = ran(DU,i,To,zo)× {1/|ran(DU,i,To,zo)|}

Now the expected iso-derived probability in this probability function, Pd,p, is

expected(Pd,p, {(A′,
∑

B∈D−1
U,i,To,zo

(A′)

Qm,U(Eo, zo)(B)) : A′ ∈ ran(DU,i,To,zo)})

= 1/|ran(DU,i,To,zo)|

This is to assume that the choice of derived per se is arbitrary. This relaxation
of the constraint that the sample be necessarily drawn from the iso-derived
of the distribution, Pd(Ao ∗ To) = 1, to the constraint that the sample be
possibly drawn from the iso-derived of the distribution, Pd,p(Ao ∗ To) > 0, is
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equivalent to assuming that the sample is drawn from the uniform possible
iso-derived historically distributed history probability function PU,X,Hh,d,p,To ∈
(HU,X :→ Q[0,1]) ∩ P , which is defined as the solution to

PU,X,Hh,d,p,To :=(⋃{
{(H, 1/

∑
(PU,X,Hh,d,p,To(G) :

G ⊆ Hh%VH , |G| = zH , AG ∗ To = AH ∗ To)) :

H ⊆ Hh%VH , |H| = zH}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

All iso-derived subsets of the distribution history for a given set of variables
and size are defined as equally probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(AG ∗ To = AH ∗ To =⇒ PU,X,Hh,d,p,To(G) = PU,X,Hh,d,p,To(H))

The uniform possible iso-derived historically distributed history probability
function is such that given a drawn history H ∈ HU,X

Q̂h,d,To,U(Eh%VH , zH)(AH) =∑
PU,X,Hh,d,p,To(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,d,p,To(G) : G ∈ HU,X , VG = VH , |G| = zH

The possible history probability function, PU,X,Hh,d,p,To , is related to the iso-

derived conditional historical probability distribution, Q̂h,d,To,U(Eh%VH , zH),
in the same way as for the necessary case, PU,X,Hh,d,To , except that the nor-
malising fraction is restored. In the case where all derived are possible the
normalising fraction is 1/|ran(DU,i,To,zH )|,

Q̂h,d,To,U(Eh%VH , zH)(AH) =

1

|ran(DU,i,To,zH )|
Qh,U(Eh%VH , zH)(AH)∑

B∈D−1
U,i,To,zH

(AH∗To) Qh,U(Eh%VH , zH)(B)

Any historically drawn history is possible,

∀H ⊆ Hh%VH (H 6= ∅ =⇒ PU,X,Hh,d,p,To(H) > 0)

but sometimes the probability is lower than in the necessary case,

∀H ⊆ Hh%VH (PU,X,Hh,d,To(H) > 0 ⇐⇒ PU,X,Hh,d,p,To(H) ≤ PU,X,Hh,d,To(H))
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Now it can be seen that the history probability function is more continuous in
the sense that the uniform possible domain may be larger than the necessary
domain,

|{H : H ∈ HU,X , PU,X,Hh,d,p,To(H) > 0}| ≥
|{H : H ∈ HU,X , PU,X,Hh,d,To(H) > 0}|

The uniform possible log likelihood has similar properties to the necessary log
likelihood.

ln Q̂m,d,T,U(E, z)(A) = ln
Qm,U(E, z)(A)∑

B∈D−1
U,i,T,z(A∗T ) Qm,U(E, z)(B)

− ln |ran(DU,i,T,z)|

The cardinality of the derived, |ran(DU,i,T,z)|, is equal to the cardinality of
the possible derived substrate histograms,

|ran(DU,i,T,z)| =
(z + w′ − 1)!

z! (w′ − 1)!

where w′ = |T−1|. So the additional term in the uniform possible log likeli-
hood, − ln |ran(DU,i,T,z)|, varies against the possible derived volume, w′, where
the possible derived volume is less than the size, w′ < z, otherwise against
the size scaled log possible derived volume, z lnw′,

− ln |ran(DU,i,T,z)| = − spaceCountsDerived(U)(A, T )

∼ − ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

In the case where the sample is natural, A = A ∗T ∗T †, the uniform possible
log likelihood varies (i) against the possible derived volume, w′, where the
possible derived volume is less than the size, w′ < z, otherwise against the
size scaled log possible derived volume, z lnw′, and (ii) with the size-volume
scaled component size cardinality sum relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ (z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

Note that the meaning of possible in possible derived volume, w′, is that the
derived state is effective, whereas the meaning of possible in uniform possible
log likelihood, ln Q̂m,d,T,U(A, z)(A), is that the distribution frequency is effec-
tive or non-zero.
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In the case where the cross entropy is greater than the logarithm of the
possible derived volume, entropyCross(A ∗ T, V C ∗ T ) > lnw′, so that the
component size cardinality relative entropy is high, the iso-derived conditional
multinomial probability varies against the derived multinomial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ − ln Q̂m,U(A ∗ T, z)(A ∗ T )

and the sum sensitivity is less than or equal to the multinomial sum sensi-
tivity,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ≤ sum(sensitivity(U)(Q̂m,U(A, z)))

In the case where size is greater than the volume, z > v, the uniform possible
log likelihood varies (i) against the possible derived volume, w′, where the
possible derived volume is less than the size, w′ < z, otherwise against the
size scaled log possible derived volume, z lnw′, and (ii) with the volume scaled
component cardinality size relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ v × entropyRelative(V C ∗ T,A ∗ T )

In the case where the sample is near natural, A ≈ A ∗ T ∗ T †, and the size
is less than or equal to the volume, z ≤ v, the uniform possible log likelihood
varies (i) against the possible derived volume, w′, where the possible derived
volume is less than the size, w′ < z, otherwise against the size scaled log
possible derived volume, z lnw′, and (ii) with the size scaled component size
cardinality relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ z × entropyRelative(A ∗ T, V C ∗ T )

In this case the correlation properties of uniform possible derived induction
relate to the correlation properties of the specialising derived substrate history
coder, CG,V,T,H(T ), more closely than those of necessary derived induction.
The specialising space varies (i) with the possible derived volume, w′, where
the possible derived volume is less than the size, w′ < z, otherwise with the
size scaled log possible derived volume, z lnw′, and (ii) against the size scaled
component size cardinality relative entropy,

CG,V,T,H(T )s(H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyRelative(A ∗ T, V C ∗ T )
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In classical uniform possible modelled induction, where (i) the history prob-
ability function is uniform possible iso-derived historically distributed, P =
PU,X,Hh,d,p,To , given some substrate transform in the sample variables To ∈
TU,Vo , if it is the case that (ii) the sample equals the naturalisation, Ao =
Ao ∗ To ∗ T †o , then the maximum likelihood estimate, Ẽo, of the unknown
distribution probability histogram, Êo, in the iso-derived conditional stuffed
historical probability distribution, Q̂h,d,To,U(Eo, zo), is Ẽo = Âo, so, if it is
also the case that (iii) the distribution history size is large with respect to
the sample size, zh � zo, and such that (iv) the scaled probability sample
histogram is integral, Ao,zh ∈ Ai, then the log likelihood of the iso-derived
conditional stuffed historical probability distribution at the maximum likeli-
hood estimate (a) varies against the possible derived volume, w′o, where the
possible derived volume is less than the size, w′o < zo, otherwise against the
size scaled log possible derived volume, zo lnw′o,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − ((w′o : w′o < zo) + (zo lnw′o : w′ ≥ zo))

and (b) with the size-volume scaled component size cardinality sum relative
entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼
(zo + vo)× entropy(Ao ∗ To + V C

o ∗ To)

−zo × entropy(Ao ∗ To) − vo × entropy(V C
o ∗ To)

So the uniform possible log likelihood is maximised when (a) the possible de-
rived volume is minimised, (b) the component entropy is minimised, and (c)
high size components are low cardinality components and low size compo-
nents are high cardinality components.

If, in addition, the component size cardinality relative entropy is high,

entropyCross(Ao ∗ To, V
C

o ∗ To) > lnw′o

the sum sensitivity of the iso-derived conditional stuffed historical probability
distribution at the maximum likelihood estimate is less than or equal to the
sum sensitivity of the stuffed historical probability distribution at the maxi-
mum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

In the case where the size is greater than the volume, zo > vo, the log like-
lihood of the iso-derived conditional stuffed historical probability distribution
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at the maximum likelihood estimate varies with the volume scaled component
cardinality size relative entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ vo × entropyRelative(V C
o ∗ To, Ao ∗ To)

In the case where the size is less than the volume, zo < vo, but the sample
approximates to the naturalisation, Ao ≈ Ao ∗ To ∗ T †o , the log likelihood of
the iso-derived conditional stuffed historical probability distribution at the
maximum likelihood estimate (a) varies against the possible derived volume,
w′o, where the possible derived volume is less than the size, w′o < zo, otherwise
against the size scaled log possible derived volume, zo lnw′o,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − ((w′o : w′o < zo) + (zo lnw′o : w′ ≥ zo))

(b) varies with the size scaled component size cardinality relative entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ zo × entropyRelative(Ao ∗ To, V
C

o ∗ To)

so (c) varies against the specialising derived substrate history coder space,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

So the uniform possible log likelihood is maximised, in this case, when (a)
the possible derived volume is minimised, (b) the derived entropy is min-
imised, (c) high size components are low cardinality components and low size
components are high cardinality components, and (d) the expected component
entropy is maximised.

Conjecture that, in the case of high component size cardinality relative en-
tropy, the sum sensitivity of the iso-derived conditional stuffed historical
probability distribution at the maximum likelihood estimate varies with the
specialising derived substrate history coder space,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ space(CG,Vo,T,H(To))(Ho)

and so the sum sensitivity of the iso-derived conditional stuffed historical
probability distribution varies against the log-likelihood of the iso-derived con-
ditional stuffed historical probability distribution

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ − ln Q̂h,d,To,U(Ao,zh , zo)(Ao)
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As described in section ‘Necessary derived’, the sum sensitivity of the iso-
derived conditional stuffed historical probability distribution at the maximum
likelihood estimate, sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))), can be related
to queries on the maximum likelihood estimate of the distribution histogram,
Ẽo = Âo, in the special case where (i) the sample histogram is natural,
Ao = Ao ∗ To ∗ T †o , and (ii) the component size cardinality relative entropy is
high, entropyCross(Ao ∗To, V

C
o ∗To) > lnw′o. In the case of classical modelled

induction, the given substrate transform must be such that its contraction
has underlying variables that are a subset of the query variables, und(T%

o ) ⊆
K. In the case where the query histogram consists of one effective state,
Q = {(SQ, 1)}, there exists an effective derived state RQ, where {RQ} =
(Q ∗ T%

o )FS. The corresponding underlying component is CQ = T−1
o (RQ). If

the possible derived volume is non singular, w′o > 1, the query histogram itself
cannot be drawn from the distribution history, Q̂h,d,To,U(Ao, 1)(Q∗{N}U) = 0,
where N ∈ (Vo \ K)CS, because the query derived probability histogram is
not equal to a uniform possible derived distribution probability histogram,
Q̂ ∗ {N}U ∗ To 6= Âo ∗ To. The application of the query must be in terms of
a modified sample histogram,

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) =

{(N, (Q̂h,d,To,U(Ao,zh , zo)(AQ,N))1/zo) : N ∈ (Vo \K)CS,

AQ,N = Ao − (Ao ∗ CQ) + ((Ao ∗ CQ) % K ∗ {N}U)}∧

The model application depends on the geometric scaling of the historical
distribution, Q̂h,d,To,U(Ao,zh , zo), so the query sensitivity to the distribution
histogram varies with the sum sensitivity of the historical distribution at the
maximum likelihood estimate divided by the sample size,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo)))/zo

Now consider the case where the model, To, is unknown. The maximum
likelihood estimate for the pair (Ẽo, T̃o) in the uniform possible case is

(Ẽo, T̃o) ∈ maxd({((E, T ), Q̂m,d,T,U(E, zo)(Ao)) : E ∈ AU,Vo,1, T ∈ TU,Vo})

If there is a unique maximum for the distribution probability histogram, Ẽo,
this can be rewritten in terms of the derived-dependent,

T̃o ∈ maxd({(T, Q̂m,d,T,U(AD(T )
o , zo)(Ao)) : T ∈ TU,Vo})
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Strictly speaking, this is only the case for the subset of substrate transforms,
TU,Vo , for which the derived-dependent histogram, A

D(T )
o , is defined,

{T : T ∈ TU,Vo ,

|max({(D, Qm,U(D, zo)(Ao)∑
Qm,U(D, zo)(B) : B ∈ D−1

U,i,T,zo
(Ao ∗ T )

) : D ∈ AU,Vo,zo})| = 1}

Even if the derived-dependent histogram, A
D(T )
o is defined, the maximum like-

lihood estimate for the model, T̃o, is not necessarily computable because the
derived-dependent histogram, A

D(T )
o , is sometimes not computable.

If the optimisation is restricted to natural transforms, Ao = Ao ∗ T ∗ T † =⇒
A

D(T )
o = Ao, then the optimisation is

T̃o ∈ maxd({(T, Q̂m,d,T,U(Ao, zo)(Ao)) : T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †})

In this case, all the derived are possible because the distribution equals the
sample, so the optimisation is

T̃o ∈ maxd({(T, 1

|ran(DU,i,T,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈D−1
U,i,T,zo

(Ao∗T ) Qm,U(Ao, zo)(B)
) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †})

Now, the set of maximum likelihood estimates for the model, T̃o, is com-
putable.

In this case, the numerator, Qm,U(Ao, zo)(Ao), is constant.

The maximum likelihood estimate for the model is not self, T̃o 6= Ts, if

1

|ran(DU,i,T̃o,zo
)|

Qm,U(Ao, zo)(Ao)∑
B∈D−1

U,i,T̃o,zo
(Ao∗T̃o) Qm,U(Ao, zo)(B)

>
1

|ran(AU,i,Vo,zo)|

which is the case if the iso-derived conditional multinomial probability is
greater than the inverted average iso-derived cardinality,

Qm,U(Ao, zo)(Ao)∑
B∈D−1

U,i,T̃o,zo
(Ao∗T̃o) Qm,U(Ao, zo)(B)

>
|ran(DU,i,T̃o,zo

)|
|dom(DU,i,T̃o,zo

)|

The sample is natural, Ao = Ao ∗To ∗T †o , so the permutorial term is constant
for all iso-derived, and the iso-derived conditional multinomial probability
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simplifies,

Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)∑
B∈D−1

U,i,T,z(A∗T ) Q̂m,U(A ∗ T ∗ T †, z)(B)
= 1/

∑
B∈D−1

U,i,T,z(A∗T )

∏
S∈V CS

AS!

BS!

The maximum likelihood estimate for the model is not self, T̃o 6= Ts, if∑
B∈D−1

U,i,T̃o,zo
(Ao∗T̃o)

∏
S∈V CS

o

Ao(S)!

BS!
<
|dom(DU,i,T̃o,zo

)|
|ran(DU,i,T̃o,zo

)|

The terms of the sum are less than or equal to one,
∏

S∈V CS AS!/BS! ≤ 1, so
the model is not self at least in the case where the iso-derived cardinality is
less than the average iso-derived cardinality,

|D−1

U,i,T̃o,zo
(Ao ∗ T̃o)| <

|dom(DU,i,T̃o,zo
)|

|ran(DU,i,T̃o,zo
)|

The sample is natural, Ao = Ao ∗To ∗T †o , so the maximum likelihood estimate
for the model is not unary, T̃o 6= Tu, if the sample is not cartesian, Âo 6= V̂ C

o .

In some cases the maximum likelihood estimate for the model is neither self
nor unary, T̃o /∈ {Ts, Tu}.

In classical uniform possible modelled induction, where (i) the history prob-
ability function is uniform possible iso-derived historically distributed, P =
PU,X,Hh,d,p,To , given some unknown substrate transform in the sample vari-
ables To ∈ TU,Vo , if it is the case that (ii) the sample histogram is natu-
ral, Ao = Ao ∗ To ∗ T †o , then the maximum likelihood estimate of the dis-
tribution histogram, Ẽo, of the unknown distribution probability histogram,
Êo, in the iso-derived conditional stuffed historical probability distribution,
Q̂h,d,To,U(Eo, zo), is Ẽo = Âo, and, if it is also the case that (iii) the distribu-
tion history size is large with respect to the sample size, zh � zo, and such
that (iv) the scaled probability sample histogram is integral, Ao,zh ∈ Ai, then
the maximum likelihood estimate of the model, T̃o, in the iso-derived con-
ditional stuffed historical probability distribution at the maximum likelihood
estimate of the distribution, Ẽo, is

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †})

and in some cases the maximum likelihood estimate for the model, T̃o, is
non-trivial,

T̃o /∈ {Ts, Tu}
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In the case where the component size cardinality relative entropy is high,
entropyCross(Ao ∗ To, V

C
o ∗ To) > ln |T−1

o |, the sum sensitivity of the iso-
derived conditional stuffed historical probability distribution at the maximum
likelihood estimate of the distribution-model pair is less than or equal to
the sum sensitivity of the stuffed historical probability distribution at the
maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,T̃o,U
(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

In the case where the size is less than the volume, zo < vo, the sample is
sometimes not natural. In this case the search must be constrained, such
that the sample is near natural, by a limit u to the relative space of the
sample with respect to its naturalisation. The maximum likelihood estimate
of the model, T̃o, in the iso-derived conditional stuffed historical probability
distribution at the maximum likelihood estimate of the distribution, Ẽo, is

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo ,
spaceRelative(Ao ∗ T ∗ T †)(Ao) ≤ u})

Note that the choice of the limit, u, is not necessary in the stricter case where
the trimmed sample is unit, trim(Ao) = AF

o . In this case the sample history
is bijective, Ho ∈ X ↔ V CS

o . That is, each event has a unique state. Often,
in these cases, the size is much less than the volume, zo � vo. In this case
of sparse histogram, where Ao ∗AF

o = AF
o , all transforms are near natural, so

the maximum likelihood estimate of the model, T̃o, simplifies to

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo})

In this case, the over-fitted effective self transform is the solution to the
optimisation,

Ao ∗ AF
o = AF

o =⇒ T̃o = (AFS{}
o ∪ {V CS

o \ AFS
o })T

The effective self transform is self only for effective states, A
FS{}
o . It has a

remainder component for all of the ineffective states, V CS
o \AFS

o . The derived
volume is zo + 1.

In the case where the size is less than the volume, zo < vo, the prop-
erties of the maximisation of the log likelihood, ln Q̂m,d,To,U(Ao, z)(Ao), are
consistent with the properties of the minimisation of the sum sensitivity,
sum(sensitivity(U)(Q̂m,d,To,U(Ao, z))). So conjecture that in classical uniform

882



possible modelled induction, where the size is less than the volume, but the
sample is near natural, and the relative entropy is high, the sum sensitivity
varies against the log likelihood, and the optimisation tends to minimise the
sensitivity to the distribution, Ẽo = Âo,

sum(sensitivity(U)(Q̂h,d,T̃o,U
(Ao,zh , zo))) ∼ − ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

Similarly, the query sensitivity to the distribution,

sum(sensitivity(U)(Q̂h,d,T̃o,U
(Ao,zh , zo)))/zo

is also minimised by the optimisation of log-likelihood.

There is no mapping of the transform to a coordinate, T̂ [], so the sensitivity
to the model, T̃o cannot be calculated directly as the Fisher information of
a centrally distributed real likelihood function. Instead the sensitivity to the
model is defined as the negative logarithm of the cardinality of the maximum
likelihood estimate models,

− ln |max({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †})|

Although there is an anti-correlation between the log-likelihood and the sen-
sitivity to the distribution, it is not necessarily the case that there is also an
anti-correlation between the log-likelihood and the sensitivity to the model.

5.5.6 Uniform possible derived functional definition set induction

Again, consider extending the model for uniform possible derived induction
from transforms to functional definition sets.

Given some known substrate fud, Fo ∈ FU,Vo , such that there exists a top
transform, ∃T ∈ Fo (der(T ) = der(Fo)), the derived histogram set of the
distribution probability histogram is {Êh ∗ TFo : T ∈ Fo}, where TF :=
depends(F, der(T ))T. Consider the case where it is unknown if the given his-
togram, Ao, is a sample histogram drawn from the distribution histogram, Eh,
so, in some cases PU,X,Hh,d,Fo(Ho) = 0. That is, it is known that some derived

histogram set is necessary, ∃B ∈ AU,i,Vo,zo ∀T ∈ Fo (B̂ ∗ TFo = Êh ∗ TFo), but

not whether the given derived histogram set is necessary, ∀T ∈ Fo (Â∗TFo =
Êh ∗ TFo). In the absence of further knowledge it is assumed that the given
derived histogram set, {Êh ∗ TFo : T ∈ Fo} is at least possible and that the
probability function of the derived histogram set is uniform. This relaxation
of the constraint that the sample be necessarily drawn from the iso-fud of
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the distribution to the constraint that the sample be possibly drawn from the
iso-fud of the distribution is equivalent to assuming that the sample is drawn
from the uniform possible iso-fud historically distributed history probability
function PU,X,Hh,d,p,Fo ∈ (HU,X :→ Q[0,1])∩P , which is defined as the solution
to

PU,X,Hh,d,p,Fo :=(⋃{
{(H, 1/

∑
(PU,X,Hh,d,p,Fo(G) :

G ⊆ Hh%VH , |G| = zH ,

∀T ∈ Fo (AG ∗ TFo = AH ∗ TFo))) :

H ⊆ Hh%VH , |H| = zH}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

All iso-fud subsets of the distribution history for a given set of variables and
size are defined as equally probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(∀T ∈ Fo (AG ∗ TFo = AH ∗ TFo) =⇒ PU,X,Hh,d,p,Fo(G) = PU,X,Hh,d,p,Fo(H))

The uniform possible iso-fud historically distributed history probability func-
tion is such that given a drawn history H ∈ HU,X

Q̂h,d,Fo,U(Eh%VH , zH)(AH) =∑
PU,X,Hh,d,p,Fo(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,d,p,Fo(G) : G ∈ HU,X , VG = VH , |G| = zH

The possible history probability function, PU,X,Hh,d,p,Fo , is related to the iso-fud

conditional historical probability distribution, Q̂h,d,Fo,U(Eh%VH , zH), in the
same way as for the necessary case, PU,X,Hh,d,Fo , except that the normalising
fraction is restored. In the case where all derived histogram sets are possible
the normalising fraction is 1/|ran(DU,i,Fo,zH )|,

Q̂h,d,Fo,U(Eh%VH , zH)(AH) =

1

|ran(DU,i,Fo,zH )|
Qh,U(Eh%VH , zH)(AH)∑

B∈D−1
U,i,Fo,zH

(DU,Fo,zH
(AH))Qh,U(Eh%VH , zH)(B)

Any historically drawn history is possible,

∀H ⊆ Hh%VH (H 6= ∅ =⇒ PU,X,Hh,d,p,Fo(H) > 0)
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but sometimes the probability is lower than in the necessary case,

∀H ⊆ Hh%VH (PU,X,Hh,d,Fo(H) > 0 ⇐⇒ PU,X,Hh,d,p,Fo(H) ≤ PU,X,Hh,d,Fo(H))

The uniform possible log likelihood has similar properties to the necessary log
likelihood.

ln Q̂m,d,F,U(E, z)(A) =

ln
Qm,U(E, z)(A)∑

B∈D−1
U,i,F,z(DU,F,z(A))Qm,U(E, z)(B)

− ln |ran(DU,i,F,z)|

The cardinality of the derived histogram sets, |ran(DU,i,F,z)|, is greater than
or equal to the cardinality of the possible derived substrate histograms of the
fud transform,

|ran(DU,i,F,z)| ≥ |ran(DU,i,FT,z)|

=
(z + |(FT)−1| − 1)!

z! (|(FT)−1| − 1)!

So the additional term in the uniform possible log likelihood, − ln |ran(DU,i,F,z)|,
varies, for each transform T ∈ F , against the possible derived volume, |T−1

F |,
where the possible derived volume is less than the size, |T−1

F | < z, otherwise
against the size scaled log possible derived volume, z ln |T−1

F |,

− ln |ran(DU,i,F,z)| ∼
−
∑
T∈F

(
(|T−1

F | : |T−1
F | < z) + (z ln |T−1

F | : |T−1
F | ≥ z)

)
The fud-independent, AEF(F ) ∈ AU,V,z, is defined,

{AEF(F )} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,F,z(DU,F,z(A)))) : E ∈ AU,V,z})

The fud-independent approximates to the arithmetic average of the natural-
isations,

AEF(F ) ≈ Z1/|F | ∗
∑
T∈F

A ∗ TF ∗ T †F

In the case where the sample is equal to the fud-independent, A = AEF(F ),
the uniform possible log likelihood varies (i) against the sum of the possible
derived volumes or size scaled log possible derived volumes, and (ii) with
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the sum of the size-volume scaled component size cardinality sum relative
entropies,

ln Q̂m,d,F,U(A, z)(A) ∼
−
∑
T∈F

(
(|T−1

F | : |T−1
F | < z) + (z ln |T−1

F | : |T−1
F | ≥ z)

)
+
∑
T∈F

(
(z + v)× entropy(A ∗ TF + V C ∗ TF )

−z × entropy(A ∗ TF ) − v × entropy(V C ∗ TF )
)

In the case where the cross entropies are sufficient, ∀T ∈ F (entropyCross(A∗
TF , V

C∗TF ) > ln |T−1
F |), the logarithm of the iso-fud conditional multinomial

probability varies against the sum of the logarithms of the derived multinomial
probabilities,

ln Q̂m,d,F,U(A, z)(A) ∼ −
∑
T∈F

ln Q̂m,U(A ∗ TF , z)(A ∗ TF )

and the sum sensitivity is less than or equal to the multinomial sum sensi-
tivity,

sum(sensitivity(U)(Q̂m,d,F,U(A, z))) ≤ sum(sensitivity(U)(Q̂m,U(A, z)))

In the case where size is greater than the volume, z > v, the uniform possible
log likelihood varies (i) against the sum of the possible derived volumes or
size scaled log possible derived volumes, and (ii) with the sum of the volume
scaled component cardinality size relative entropies,

ln Q̂m,d,F,U(A, z)(A) ∼
−
∑
T∈F

(
(|T−1

F | : |T−1
F | < z) + (z ln |T−1

F | : |T−1
F | ≥ z)

)
+ v ×

∑
T∈F

entropyRelative(V C ∗ TF , A ∗ TF )

In the case where the sample is near natural, A ≈ AEF(F ), and the size is
less than or equal to the volume, z ≤ v, the uniform possible log likelihood
varies (i) against the sum of the possible derived volumes or size scaled log
possible derived volumes, and (ii) with the sum of the size scaled component
size cardinality relative entropies,

ln Q̂m,d,F,U(A, z)(A) ∼
−
∑
T∈F

(
(|T−1

F | : |T−1
F | < z) + (z ln |T−1

F | : |T−1
F | ≥ z)

)
+ z ×

∑
T∈F

entropyRelative(A ∗ TF , V C ∗ TF )
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In this case the correlation properties of uniform possible fud induction relate
to the correlation properties of the specialising fud substrate history coder,
CG,V,F,H(F ), more closely than those of necessary fud induction. The special-
ising space varies (i) with the possible fud derived volume, |(FT)−1|, or the
size scaled log possible fud derived volume, z ln |(FT)−1|, (ii) with the size
scaled fud transform derived entropy and (iii) against the sum of the size
scaled component size cardinality cross entropies of the transforms of the
fud,

CG,V,F,H(F )s(H) ∼
(|(FT)−1| : |(FT)−1| < z) + (z ln |(FT)−1| : |(FT)−1| ≥ z)

+ z × entropy(A ∗ FT)

− z ×
∑
T∈F

entropyCross(A ∗ TF , V C
T ∗ T )

In classical uniform possible functional definition set induction, where (i) the
history probability function is uniform possible iso-fud historically distributed,
P = PU,X,Hh,d,p,Fo , given some substrate fud in the sample variables Fo ∈
FU,Vo , such that there exists a top transform, ∃T ∈ Fo (der(T ) = der(Fo)), if

it is the case that (ii) the sample equals the fud-independent, Ao = A
EF(Fo)
o ,

then the maximum likelihood estimate, Ẽo, of the unknown distribution prob-
ability histogram, Êo, in the iso-fud conditional stuffed historical probability
distribution, Q̂h,d,Fo,U(Eo, zo), is Ẽo = Âo, so, if it is also the case that (iii) the
distribution history size is large with respect to the sample size, zh � zo, and
such that (iv) the scaled probability sample histogram is integral, Ao,zh ∈ Ai,
then the log likelihood of the iso-fud conditional stuffed historical probability
distribution at the maximum likelihood estimate (a) varies against the sum
of the possible derived volumes or size scaled log possible derived volumes

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼
−
∑
T∈Fo

(
(|T−1

Fo
| : |T−1

Fo
| < zo) + (zo ln |T−1

Fo
| : |T−1

Fo
| ≥ zo)

)
and (b) with the sum of the size-volume scaled component size cardinality
sum relative entropies,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼
+
∑
T∈Fo

(
(zo + vo)× entropy(Ao ∗ TFo + V C

o ∗ TFo)

−zo × entropy(Ao ∗ TFo) − vo × entropy(V C
o ∗ TFo)

)
887



So the uniform possible log likelihood is maximised when (a) the total pos-
sible derived volume is minimised, (b) the sum of the derived entropy of all
transforms is minimised, and (c) high size components are low cardinality
components and low size components are high cardinality components for all
transforms.

If, in addition, the component size cardinality relative entropies are high,

∀T ∈ Fo (entropyCross(Ao ∗ TFo , V
C

o ∗ TFo) > ln |T−1
Fo
|)

the sum sensitivity of the iso-fud conditional stuffed historical probability dis-
tribution at the maximum likelihood estimate is less than or equal to the sum
sensitivity of the stuffed historical probability distribution at the maximum
likelihood estimate,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

The query sensitivity, sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo)))/zo, is also lower.

In the case where the size is greater than the volume, zo > vo, the log
likelihood of the iso-fud conditional stuffed historical probability distribution
at the maximum likelihood estimate varies with the volume scaled component
cardinality size relative entropies,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ vo ×
∑
T∈Fo

entropyRelative(V C
o ∗ TFo , Ao ∗ TFo)

In the case where the size is less than the volume, zo < vo, but the sample
approximates to the fud-independent, Ao ≈ A

EF(Fo)
o , the log likelihood of the

iso-fud conditional stuffed historical probability distribution at the maximum
likelihood estimate (a) varies against the sum of the possible derived volumes
or size scaled log possible derived volumes,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼
−
∑
T∈Fo

(
(|T−1

Fo
| : |T−1

Fo
| < zo) + (zo ln |T−1

Fo
| : |T−1

Fo
| ≥ zo)

)
(b) varies with the size scaled component size cardinality relative entropies,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ zo ×
∑
T∈Fo

entropyRelative(Ao ∗ TFo , V
C

o ∗ TFo)
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so (c) varies against the specialising fud substrate history coder space,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ − CG,Vo,F,H(F Vo
o )s(Ho)

and (d) varies against the specialising-canonical space difference,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼
−(2CG,Vo,F,H(F Vo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho))

where F V is the expansion that adds a unary transform in the remaining
underlying variables, F ∪ {{(V \ und(F ))CS}T}.

So the uniform possible log likelihood is maximised, in this case, when (a)
the total possible derived volume is minimised, (b) the total derived entropy
is minimised, (c) high size components are low cardinality components and
low size components are high cardinality components for each transform, and
(d) the total expected component entropy is maximised. It is also conjec-
tured that, (i) the derived entropy decreases up the layers, (ii) the possible
derived volume decreases up the layers, (iii) the expected component entropy
increases up the layers, and (iv) the component size cardinality cross entropy
increases up the layers.

Conjecture that, in the case of high component size cardinality relative en-
tropies, the sum sensitivity of the iso-fud conditional stuffed historical prob-
ability distribution at the maximum likelihood estimate varies with the spe-
cialising fud substrate history coder space,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼ CG,Vo,F,H(F Vo
o )s(Ho)

and so the sum sensitivity of the iso-fud conditional stuffed historical prob-
ability distribution varies against the log-likelihood of the iso-fud conditional
stuffed historical probability distribution

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

Now consider the case where the model, Fo, is unknown. The maximum
likelihood estimate for the pair (Ẽo, F̃o) in the uniform possible case is

(Ẽo, F̃o) ∈ maxd({((E,F ), Q̂m,d,F,U(E, zo)(Ao)) :

E ∈ AU,Vo,1, F ∈ FU,Vo , ∃T ∈ F (WT = WF )})

If there is a unique maximum for the distribution probability histogram, Ẽo,
this can be rewritten in terms of the fud-dependent,

F̃o ∈ maxd({(F, Q̂m,d,F,U(ADF(F )
o , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF )})
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If the optimisation is restricted such that the sample is equal to the fud-
independent, Ao = A

EF(F )
o =⇒ A

DF(F )
o = Ao, then the optimisation is

F̃o ∈ maxd({(F, Q̂m,d,F,U(Ao, zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao = AEF(F )
o })

In this case, all of the derived histogram sets are possible because the distri-
bution equals the sample, so the optimisation is

F̃o ∈ maxd({(F, 1

|ran(DU,i,F,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈D−1
U,i,F,zo

(DU,F,zo (Ao))Qm,U(Ao, zo)(B)
) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao = AEF(F )
o })

Now, the set of maximum likelihood estimates for the model, F̃o, is com-
putable, if an approximation is used for the fud-independent, A

EF(F )
o ,

F̃o ∈ maxd({(F, 1

|ran(DU,i,F,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈D−1
U,i,F,zo

(DU,F,zo (Ao))Qm,U(Ao, zo)(B)
) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao = Z1/|F | ∗
∑
T∈F

Ao ∗ TF ∗ T †F})

In some cases the maximum likelihood estimate for the model is neither self
nor unary, F̃o /∈ {{Ts}, {Tu}}.

In classical uniform possible functional definition set induction, where (i)
the history probability function is uniform possible iso-fud historically dis-
tributed, P = PU,X,Hh,d,p,Fo , given some unknown substrate fud in the sam-
ple variables Fo ∈ FU,Vo , such that there exists a top transform, ∃T ∈
Fo (der(T ) = der(Fo)), if it is the case that (ii) the sample histogram equals

the fud-independent, Ao = A
EF(Fo)
o , then the maximum likelihood estimate

of the distribution histogram, Ẽo, of the unknown distribution probability
histogram, Êo, in the iso-fud conditional stuffed historical probability dis-
tribution, Q̂h,d,Fo,U(Eo, zo), is Ẽo = Âo, and, if it is also the case that (iii) the
distribution history size is large with respect to the sample size, zh � zo, and
such that (iv) the scaled probability sample histogram is integral, Ao,zh ∈ Ai,
then the maximum likelihood estimate of the model, F̃o, in the iso-fud con-
ditional stuffed historical probability distribution at the maximum likelihood
estimate of the distribution, Ẽo, is

F̃o ∈ maxd({(F, Q̂h,d,F,U(Ao,zh , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao = AEF(F )
o })
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and in some cases the maximum likelihood estimate for the model, F̃o, is
non-trivial,

F̃o /∈ {{Ts}, {Tu}}

In the case where the component size cardinality relative entropies are high,

∀T ∈ Fo (entropyCross(Ao ∗ TFo , V
C

o ∗ TFo) > ln |T−1
Fo
|)

the sum sensitivity of the iso-fud conditional stuffed historical probability dis-
tribution at the maximum likelihood estimate of the distribution-model pair
is less than or equal to the sum sensitivity of the stuffed historical probability
distribution at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,F̃o,U
(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

In the case where the size is less than the volume, zo < vo, the iso-fud con-
ditional stuffed historical probability distribution at the maximum likelihood
estimate of the distribution, Ẽo, is approximated

F̃o ∈ maxd({(F, Q̂h,d,F,U(Ao,zh , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao ≈ AEF(F )
o })

In this case where the size is less than the volume, zo < vo, the proper-
ties of the maximisation of the log likelihood, ln Q̂m,d,Fo,U(Ao, z)(Ao), are
consistent with the properties of the minimisation of the sum sensitivity,
sum(sensitivity(U)(Q̂m,d,Fo,U(Ao, z))). So conjecture that in classical uni-
form possible functional definition set induction, where the size is less than
the volume, but the sample approximates to the fud-independent, and the rel-
ative entropies are high, the sum sensitivity varies against the log likelihood,
and the optimisation tends to minimise the sensitivity to the distribution,
Ẽo = Âo,

sum(sensitivity(U)(Q̂h,d,F̃o,U
(Ao,zh , zo))) ∼ − ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

Similarly, the query sensitivity to the distribution,

sum(sensitivity(U)(Q̂h,d,F̃o,U
(Ao,zh , zo)))/zo

is also minimised by the optimisation of log-likelihood.

891



5.5.7 Uniform possible derived functional definition set decompo-
sition induction

The last section extended the model from transforms to functional defi-
nition sets. Now extend further to functional definition set decompositions.
This discussion is very similar to that of the previous section, except that
now the fuds are contingent on the slice.

Given some non-empty known substrate fud decomposition, Do ∈ DF,U,Vo\{∅},
such that there exists a top transform for all of the fuds, ∀F ∈ fuds(Do) ∃T ∈
F (der(T ) = der(F )), the component derived set of the distribution proba-
bility histogram is {(C, {Êh ∗ C ∗ TF : T ∈ F}) : (C,F ) ∈ cont(Do)}, where
cont(D) = elements(contingents(D)) and TF := depends(F, der(T ))T. Con-
sider the case where it is unknown if the given histogram, Ao, is a sam-
ple histogram drawn from the distribution histogram, Eh, so, in some cases
PU,X,Hh,d,Do(Ho) = 0. That is, it is known that some component derived set

is necessary, ∃B ∈ AU,i,Vo,zo ∀(C,F ) ∈ cont(Do) ∀T ∈ F (B̂ ∗ C ∗ TF =

Êh ∗ C ∗ TF ), but not whether the given component derived set is neces-
sary, ∀(C,F ) ∈ cont(Do) ∀T ∈ F (Â ∗ C ∗ TF = Êh ∗ C ∗ TF ). In the
absence of further knowledge it is assumed that the given component de-
rived set, {Êh ∗ C ∗ TF : (C,F ) ∈ cont(Do), T ∈ F} is at least possible
and that the probability function of the component derived set is uniform.
This relaxation of the constraint that the sample be necessarily drawn from
the iso-fud-decomposition of the distribution to the constraint that the sam-
ple be possibly drawn from the iso-fud-decomposition of the distribution is
equivalent to assuming that the sample is drawn from the uniform possi-
ble iso-fud-decomposition historically distributed history probability function
PU,X,Hh,d,p,Do ∈ (HU,X :→ Q[0,1]) ∩ P , which is defined as the solution to

PU,X,Hh,d,p,Do :=(⋃{
{(H, 1/

∑
(PU,X,Hh,d,p,Do(G) :

G ⊆ Hh%VH , |G| = zH , ∀(C,F ) ∈ cont(Do)

∀T ∈ F (AG ∗ C ∗ TF = AH ∗ C ∗ TF ))) :

H ⊆ Hh%VH , |H| = zH}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}
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All iso-fud-decomposition subsets of the distribution history for a given set
of variables and size are defined as equally probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(∀(C,F ) ∈ cont(Do) ∀T ∈ F (AG ∗ C ∗ TF = AH ∗ C ∗ TF ) =⇒
PU,X,Hh,d,p,Do(G) = PU,X,Hh,d,p,Do(H))

The uniform possible iso-fud-decomposition historically distributed history
probability function is such that given a drawn history H ∈ HU,X

Q̂h,d,Do,U(Eh%VH , zH)(AH) =∑
PU,X,Hh,d,p,Do(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,d,p,Do(G) : G ∈ HU,X , VG = VH , |G| = zH

The possible history probability function, PU,X,Hh,d,p,Do , is related to the iso-

fud-decomposition conditional historical distribution, Q̂h,d,Do,U(Eh%VH , zH),
in the same way as for the necessary case, PU,X,Hh,d,Do , except that the nor-
malising fraction is restored. In the case where all component derived sets
are possible the normalising fraction is 1/|ran(DU,i,Do,F,zH )|,

Q̂h,d,Do,U(Eh%VH , zH)(AH) =

1

|ran(DU,i,Do,F,zH )|
Qh,U(Eh%VH , zH)(AH)∑

B∈D−1
U,i,Do,F,zH

(DU,Do,F,zH
(AH))Qh,U(Eh%VH , zH)(B)

Any historically drawn history is possible,

∀H ⊆ Hh%VH (H 6= ∅ =⇒ PU,X,Hh,d,p,Do(H) > 0)

but sometimes the probability is lower than in the necessary case,

∀H ⊆ Hh%VH (PU,X,Hh,d,Do(H) > 0 ⇐⇒ PU,X,Hh,d,p,Do(H) ≤ PU,X,Hh,d,Do(H))

The uniform possible log likelihood has similar properties to the necessary log
likelihood.

ln Q̂m,d,D,U(E, z)(A) =

ln
Qm,U(E, z)(A)∑

B∈D−1
U,i,D,F,z(DU,D,F,z(A))Qm,U(E, z)(B)

− ln |ran(DU,i,D,F,z)|

In classical uniform possible functional definition set decomposition induc-
tion, where (i) the history probability function is uniform possible iso-fud-
decomposition historically distributed, P = PU,X,Hh,d,p,Do , given some sub-
strate fud in the sample variables Do ∈ DF,U,Vo \{∅}, such that there exists a
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top transform for all of the fuds, ∀F ∈ fuds(Do) ∃T ∈ F (der(T ) = der(F )),
if it is the case that (ii) the sample equals the fud-decomposition-independent,

Ao = A
ED,F(Do)
o , then the maximum likelihood estimate, Ẽo, of the unknown

distribution probability histogram, Êo, in the iso-fud-decomposition condi-
tional stuffed historical probability distribution, Q̂h,d,Do,U(Eo, zo), is Ẽo = Âo,
so, if it is also the case that (iii) the distribution history size is large with
respect to the sample size, zh � zo, and such that (iv) the scaled probabil-
ity sample histogram is integral, Ao,zh ∈ Ai, then the log likelihood of the
iso-fud-decomposition conditional stuffed historical probability distribution at
the maximum likelihood estimate (a) varies against the sum of the possible
derived volumes or size scaled log possible derived volumes of the slices

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼
−

∑
(C,F )∈cont(Do)

∑
T∈F

(
(|T−1

F | : |T−1
F | < zAo∗C) +

(zAo∗C ln |T−1
F | : |T−1

F | ≥ zAo∗C)
)

and (b) with the sum of the size-volume scaled component size cardinality
sum relative entropies for all slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼∑
(C,F )∈cont(Do)

∑
T∈F

(
(zAo∗C + |C|)× entropy(Ao ∗ C ∗ TF + C ∗ TF )

−zAo∗C × entropy(Ao ∗ C ∗ TF ) − |C| × entropy(C ∗ TF )
)

So the uniform possible log likelihood is maximised when (a) the total pos-
sible derived volume is minimised, (b) the sum of the derived entropy of all
transforms for all slices is minimised, and (c) high size components are low
cardinality components and low size components are high cardinality compo-
nents for all transforms for all slices.

If, in addition, the component size cardinality relative entropies are high,

∀(C,F ) ∈ cont(Do) ∀T ∈ F (entropyCross(Ao ∗ C ∗ TF , C ∗ TF ) > ln |T−1
F |)

the sum sensitivity of the iso-fud-decomposition conditional stuffed historical
probability distribution at the maximum likelihood estimate is less than or
equal to the sum sensitivity of the stuffed historical probability distribution
at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))
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The query sensitivity, sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo)))/zo, is also lower.

In the case where the size is greater than the volume, zo > vo, the log
likelihood of the iso-fud-decomposition conditional stuffed historical probabil-
ity distribution at the maximum likelihood estimate varies with the volume
scaled component cardinality size relative entropies for all slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼∑
(C,F )∈cont(Do)

(
|C| ×

∑
T∈F

entropyRelative(C ∗ TF , Ao ∗ C ∗ TF )
)

In the case where the size is less than the volume, zo < vo, but the sam-
ple histogram approximates to the fud-decomposition-independent histogram,

Ao ≈ A
ED,F(Do)
o , or spaceRelative(A

ED,F(Do)
o )(Ao) ≈ 0, the log likelihood of the

iso-fud-decomposition conditional stuffed historical probability distribution at
the maximum likelihood estimate (a) varies against the sum of the possible
derived volumes or size scaled log possible derived volumes of the slices

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼
−

∑
(C,F )∈cont(Do)

∑
T∈F

(
(|T−1

F | : |T−1
F | < zAo∗C) +

(zAo∗C ln |T−1
F | : |T−1

F | ≥ zAo∗C)
)

(b) varies with sum of the size scaled component size cardinality relative
entropies of all transforms for all slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼∑
(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropyRelative(Ao ∗ C ∗ TF , C ∗ TF )
)

so (c) varies against the specialising fud decomposition substrate history coder
space,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼ − CG,Vo,D,F,H(DVo
o )s(Ho)

and (d) varies against the specialising-canonical space difference,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼
−(2CG,Vo,D,F,H(DVo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho))

where DV is the expansion that adds a unary transform in the remaining
underlying variables to the leaf fuds in the decomposition tree such that the
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fud of each path of the application tree has complete coverage of the substrate,

∀L ∈ paths(D∗) (
⋃

(·,(F,·))∈L

VF = V )

where VF = und(F ).

So the uniform possible log likelihood is maximised, in this case, when (a)
the total possible derived volume is minimised, (b) the total derived entropy
is minimised, (c) high size components are low cardinality components and
low size components are high cardinality components for all transforms for
all slices, and (d) the total expected component entropy is maximised. It is
also conjectured that, for all fuds, (i) the derived entropy decreases up the
layers, (ii) the possible derived volume decreases up the layers, (iii) the ex-
pected component entropy increases up the layers, and (iv) the component
size cardinality cross entropy increases up the layers.

Conjecture that, in the case of high component size cardinality relative en-
tropies, the sum sensitivity of the iso-fud-decomposition conditional stuffed
historical probability distribution at the maximum likelihood estimate varies
with the specialising fud decomposition substrate history coder space,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼ CG,Vo,D,F,H(DVo
o )s(Ho)

and so the sum sensitivity of the iso-fud-decomposition conditional stuffed
historical probability distribution varies against the log-likelihood of the iso-
fud-decomposition conditional stuffed historical probability distribution

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

Now consider the case where the model, Do, is unknown. The maximum
likelihood estimate for the pair (Ẽo, D̃o) in the uniform possible case is

(Ẽo, D̃o) ∈ maxd({((E,D), Q̂m,d,D,U(E, zo)(Ao)) :

E ∈ AU,Vo,1,
D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF )})

If there is a unique maximum for the distribution probability histogram, Ẽo,
this can be rewritten in terms of the fud-decomposition-dependent,

D̃o ∈ maxd({(D, Q̂m,d,D,U(ADD,F(D)
o , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF )})

896



If the optimisation is restricted such that the sample is equal to the fud-

decomposition-independent, Ao = A
ED,F(D)
o =⇒ A

DD,F(D)
o = Ao, then the

optimisation is

D̃o ∈ maxd({(D, Q̂m,d,D,U(Ao, zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao = AED,F(D)
o })

In this case, all of the component derived sets are possible because the dis-
tribution equals the sample, so the optimisation is

D̃o ∈ maxd({(D, 1

|ran(DU,i,D,F,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈D−1
U,i,D,F,zo

(DU,D,F,zo (Ao))Qm,U(Ao, zo)(B)
) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao = AED,F(D)
o })

Now, the set of maximum likelihood estimates for the model, D̃o, is com-
putable, if an approximation is used for the fud-decomposition-independent,

A
ED,F(D)
o ,

D̃o ∈

maxd({(D, 1

|ran(DU,i,D,F,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈D−1
U,i,D,F,zo

(DU,D,F,zo (Ao))Qm,U(Ao, zo)(B)
) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao = Zzo ∗

 ∑
(C,F )∈cont(D)

(
Z1/|F | ∗

∑
T∈F

Ao ∗ C ∗ TF ∗ T †F

)∧})
In some cases the maximum likelihood estimate for the model is neither self
nor unary, D̃o /∈ {{((∅, {Ts}), ∅)}, {((∅, {Tu}), ∅)}}.

In classical uniform possible functional definition set decomposition induc-
tion, where (i) the history probability function is uniform possible iso-fud-
decomposition historically distributed, P = PU,X,Hh,d,p,Do , given some un-
known substrate fud decomposition in the sample variables Do ∈ DF,U,Vo \{∅},
such that there exists a top transform for all of the fuds, ∀F ∈ fuds(Do) ∃T ∈
F (der(T ) = der(F )), if it is the case that (ii) the sample histogram equals

the fud-decomposition-independent, Ao = A
ED,F(Do)
o , then the maximum like-

lihood estimate of the distribution histogram, Ẽo, of the unknown distribution
probability histogram, Êo, in the iso-fud-decomposition conditional stuffed his-
torical probability distribution, Q̂h,d,Do,U(Eo, zo), is Ẽo = Âo, and, if it is also
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the case that (iii) the distribution history size is large with respect to the
sample size, zh � zo, and such that (iv) the scaled probability sample his-
togram is integral, Ao,zh ∈ Ai, then the maximum likelihood estimate of the
model, D̃o, in the iso-fud-decomposition conditional stuffed historical proba-
bility distribution at the maximum likelihood estimate of the distribution, Ẽo,
is

D̃o ∈ maxd({(D, Q̂h,d,D,U(Ao,zh , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao = AED,F(D)
o })

and in some cases the maximum likelihood estimate for the model, D̃o, is
non-trivial,

D̃o /∈ {{((∅, {Ts}), ∅)}, {((∅, {Tu}), ∅)}}

In the case where the component size cardinality relative entropies are high,

∀(C,F ) ∈ cont(Do) ∀T ∈ F (entropyCross(Ao ∗ C ∗ TF , C ∗ TF ) > ln |T−1
F |)

the sum sensitivity of the iso-fud-decomposition conditional stuffed historical
probability distribution at the maximum likelihood estimate of the distribution-
model pair is less than or equal to the sum sensitivity of the stuffed historical
probability distribution at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,d,D̃o,U
(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

In the case where the size is less than the volume, zo < vo, the iso-fud-
decomposition conditional stuffed historical probability distribution at the
maximum likelihood estimate of the distribution, Ẽo, is approximated

D̃o ∈ maxd({(D, Q̂h,d,D,U(Ao,zh , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao ≈ AED,F(D)
o })

In this case where the size is less than the volume, zo < vo, the proper-
ties of the maximisation of the log likelihood, ln Q̂m,d,Do,U(Ao, z)(Ao), are
consistent with the properties of the minimisation of the sum sensitivity,
sum(sensitivity(U)(Q̂m,d,Do,U(Ao, z))). So conjecture that in classical uni-
form possible functional definition set decomposition induction, where the size

898



is less than the volume, but the sample approximates to the fud-decomposition-
independent, and the relative entropies are high, the sum sensitivity varies
against the log likelihood, and the optimisation tends to minimise the sensi-
tivity to the distribution, Ẽo = Âo,

sum(sensitivity(U)(Q̂h,d,D̃o,U
(Ao,zh , zo))) ∼ − ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

Similarly, the query sensitivity to the distribution,

sum(sensitivity(U)(Q̂h,d,D̃o,U
(Ao,zh , zo)))/zo

is also minimised by the optimisation of log-likelihood.

5.5.8 Specialising induction

Although the maximum likelihood estimate for the model, T̃o, is com-
putable for uniform possible derived induction, where the sample histogram
is natural, Ao = Ao ∗ To ∗ T †o , the computation is not tractable. The de-
rived function, DU,i,T,zo ∈ AU,i,Vo,zo :→ AU,i,W,zo , is intractable because its
computation requires the computation of its domain of the substrate his-
tograms, AU,i,Vo,zo . The substrate histograms have cardinality |AU,i,Vo,zo| =
(zo + vo − 1)!/(zo! (vo − 1)!), which is exponential in the dimension, |Vo|. In
addition, in the case for uniform possible derived induction the computation
of the set of substrate transforms, TU,Vo , is intractable. The cardinality of the
substrate transforms is |TU,Vo| = 2bell(vo), which is factorial in the volume, vo.

The discussion of specialising induction, below, considers this issue of in-
tractability, firstly by constructing a somewhat artificial history probability
function explicitly defined by specialising space, and then by showing how
its log likelihood correlates to tractable induction. Whereas in uniform pos-
sible derived induction the natural log likelihood is merely anti-correlated
to the specialising space, here in specialising induction the log likelihood is
strictly proportional to the negative specialising space, whether natural or
not. That is, the induction assumptions are amended by replacing the no-
tion that histories are conditionally drawn from a distribution history, with a
more explicit assertion of a degree of structure with respect to a specialising
coder for arbitrary sample substrate variables and sample size.

Consider the specialising history probability function PU,X,G,To,H ∈ (HU,X :→
Q[0,1])∩P which is defined such that the probability of a history is inversely
proportional to the bounding integer, for which the space is the logarithm,
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of the integer encoding of the history in the specialising coder, given a known
substrate transform in the sample variables To ∈ TU,Vo ,

PU,X,G,To,H :=(⋃{
{(H, exp(−CG,T,H(To)s(H))) :

H ∈ HU,X , vars(H) = VH , |H| = zH}∧ :

VH ⊆ vars(U), zH ∈ {1 . . . |X|}
})∧ ∪

{(∅, 0)}

where the specialising derived substrate history coder is

CG,V,T,H(T ) = coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)

and the expanded specialising derived history coder CG,T,H(T ) ∈ coders(HU,X)
expands the transform to the history variables, VH , where the history vari-
ables is a superset of the underlying variables, V = und(T ), and otherwise
defaults to an index coder,

CG,T,H(T )s(H) = (CG,VH ,T,H(TPVHT)s(H) + s|VH | : VH ⊇ V ) +

(Cs
H(H) : VH + V )

where sn = spaceVariables(U)(n).

All non-empty histories are possible in specialising induction, ∀H ∈ HU,X \
{∅} (PU,X,G,To,H(H) > 0).

All histories having the same specialising space for a given set of variables
and size are defined as equally probable,

∀H,G ∈ HU,V,z,X

(CG,T,H(To)s(G) = CG,T,H(To)s(H) =⇒ PU,X,G,To,H(G) = PU,X,G,To,H(H))

The specialising history probability function, PU,X,G,To,H, may be compared
to a probability function P ∈ P for which there exists an entropy coder C ∈
coders(Y ). Entropy coders need no normalisation, ∀x ∈ Y (Cs(x) = ln 1/Px)
or ∀x ∈ Y (Px = exp(−Cs(x))). The expected space of an entropy coder
is the entropy, expected(P )(Cs) = entropy(P ), so a derived history coder
C ∈ coders(HU,X) that is also an entropy coder is maximally compress-
ing, structure(U,X)(P,C) = 1. The specialising history probability function,
PU,X,G,To,H, may have less than maximum degree of structure because (i) his-
tories having variables which are not a superset of the underlying variables,
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Vo, of the given transform, To, are encoded in a canonical coder, and (ii) there
is a normalisation by variables and size, (VH , zH).

In specialising induction there is no distribution histogram, so the drawn
history is parameterised only by substrate variables and size, (VH , zH). Nor
is any sample constrained to equal its naturalisation, Ao ∗ To ∗ T †o . If a his-
tory is possible in uniform possible derived induction, then it is possible in
specialising induction,

∀H ∈ HU,X (PU,X,Hh,d,p,To(H) > 0 =⇒ PU,X,G,To,H(H) > 0)

The specialising space is the same for all members of an iso-derived, ∀B ∈
D−1
U,i,T,z(A∗T ) (CG,T,H(T )s(HB) = CG,T,H(T )s(HA)), so all iso-derived subsets

of the distribution history for a given set of variables and size are not only
equally iso-derived probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(AG ∗ To = AH ∗ To =⇒ PU,X,Hh,d,p,To(G) = PU,X,Hh,d,p,To(H))

but also equally specialising probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(AG ∗ To = AH ∗ To =⇒ PU,X,G,To,H(G) = PU,X,G,To,H(H))

Given a history H ∈ HU,X , such that H 6= ∅, the specialised historical prob-
ability of histogram AH = histogram(H) + V CZ

H ∈ AU,i,VH ,zH is

Q̂G,To,H,U(zH)(AH) ∝
∑

(PU,X,G,To,H(G) : G ∈ HU,X , AG = AH)

where the specialising probability distribution is defined

Q̂G,T,H,U(z) :=

{(A, z!∏
S∈AFS AS!

× exp(−CG,T,H(T )s(HA))) : A ∈ AU,i,V,z}∧

where V = und(T ) and HA = history(A).

The log likelihood is proportional to the classification space of the under-
lying histogram less the specialising space of the corresponding history,

ln Q̂G,T,H,U(z)(A) ∝ spaceClassification(A) − space(CG,V,T,H(T ))(HA)
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The space of the specialising coder is

space(CG,V,T,H(T ))(H) = spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )

= spaceIds(|X|, |H|) +

ln
(z + w′ − 1)!

z! (w′ − 1)!
+

ln z!−
∑

R∈(A∗T )S

ln(A ∗ T )R! +

∑
(R,C)∈T−1

(A ∗ T )R ln |C|

The space of the specialising derived substrate history coder, CG,V,T,H(T ),
varies (i) with the possible derived volume, w′, where the possible derived
volume is less than the size, w′ < z, otherwise with the size scaled log
possible derived volume, z lnw′, and (ii) against the size scaled component
size cardinality relative entropy,

CG,V,T,H(T )s(H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyRelative(A ∗ T, V C ∗ T )

The specialising-canonical space difference, 2CG,V,T,H(T )s(H) − Cs
H,V (H) −

Cs
G,V (H), varies (i) with twice the possible derived volume, 2w′, where w′ < z,

otherwise with twice the size scaled log possible derived volume, 2z lnw′,
(ii) with the size scaled derived entropy, (iii) against twice the size scaled
component size cardinality cross entropy and (iv) against the size scaled size
expected component entropy,

2CG,V,T,H(T )s(H)− Cs
H,V (H)− Cs

G,V (H) ∼
2
(
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

)
+ z × entropy(A ∗ T )

− 2z × entropyCross(A ∗ T, V C ∗ T )

− z × entropyComponent(A, T )

The canonical term, Cs
H,V (H) +Cs

G,V (H), is independent of the model, T , so
properties of the specialising-canonical space difference, 2CG,V,T,H(T )s(H) −
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Cs
H,V (H)−Cs

G,V (H), are also properties of the specialising space, CG,V,T,H(T )s(H).

The specialising log likelihood varies (i) against twice the possible derived
volume, 2w′, where w′ < z, otherwise against twice the size scaled log pos-
sible derived volume, 2z lnw′, (ii) with the size scaled underlying entropy,
(iii) against the size scaled derived entropy, (iv) with twice the size scaled
component size cardinality cross entropy and (v) with the size scaled size
expected component entropy,

ln Q̂G,T,H,U(z)(A) ∼
− 2

(
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

)
+ z × entropy(A)

− z × entropy(A ∗ T )

+ 2z × entropyCross(A ∗ T, V C ∗ T )

+ z × entropyComponent(A, T )

Let Ho be a sample history of known size zo = |Ho| > 0 in the known sample
variables, Vo, which has a known histogram Ao = histogram(Ho) + V CZ

o ∈
AU,i,Vo,zo . In classical specialising induction, where the history probability
function is the specialising history probability function, P = PU,X,G,To,H, given
some substrate transform in the sample variables To ∈ TU,Vo , the log likeli-
hood of the specialising probability distribution (a) varies with the size scaled
underlying entropy,

ln Q̂G,To,H,U(zo)(Ao) ∼ zo × entropy(Ao)

(b) varies against the possible derived volume where w′o < zo, otherwise
against the size scaled log possible derived volume, zo lnw′o

ln Q̂G,To,H,U(zo)(Ao) ∼ −((w′o : w′o < zo) + (zo lnw′o : w′o ≥ zo)
)

(c) varies against the size scaled derived entropy

ln Q̂G,To,H,U(zo)(Ao) ∼ −zo × entropy(Ao ∗ To)

(d) varies with the size scaled component size cardinality cross entropy

ln Q̂G,To,H,U(zo)(Ao) ∼ zo × entropyCross(Ao ∗ To, V
C

o ∗ To)

and (e) varies with the size scaled size expected component entropy,

ln Q̂G,To,H,U(zo)(Ao) ∼ zo × entropyComponent(Ao, To)
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So the specialising log likelihood is maximised when (a) the possible derived
volume is minimised, (b) the underlying entropy is maximised, (c) the derived
entropy is minimised, (d) high size components are low cardinality compo-
nents and low size components are high cardinality components, and (e) the
expected component entropy is maximised.

In the case where the model is unary, To = Tu, (i) the derived entropy is
zero, entropy(Ao ∗ Tu) = 0, (ii) the cross entropy is zero, entropyCross(Ao ∗
Tu, V

C
o ∗ Tu) = 0, so (iii) the relative entropy is zero. The size expected

component entropy equals the underlying entropy. The log likelihood of the
specialising probability distribution only varies with the size scaled underlying
entropy,

ln Q̂G,Tu,H,U(zo)(Ao) ∼ zo × entropy(Ao)

In the case where the model is self, To = Ts, (i) the derived entropy equals
the underlying entropy, entropy(Ao ∗ Ts) = entropy(Ao), (ii) the cross en-
tropy equals the volume space, entropyCross(Ao ∗ Ts, V

C
o ∗ Ts) = ln vo, so (iii)

the relative entropy varies against the underlying entropy. The size expected
component entropy is zero. The log likelihood of the specialising probabil-
ity distribution only varies against the underlying volume where vo < zo,
otherwise against the size scaled log underlying volume, zo ln vo

ln Q̂G,Ts,H,U(zo)(Ao) ∼ −((vo : vo < zo) + (zo ln vo : vo ≥ zo)
)

Although the specialising history probability function, PU,X,G,To,H, is not
derived from a conditional draw from a distribution history, it does have a
physical analogy in isolated thermodynamic systems.

Let Y ⊂ X be a set of unweighted micro-states. Consider a system of n
distinguishable particles each in a micro-state. The states of the system is
the set of micro-state functions of particle identifier, {1 . . . n} :→ Y . Each
state implies a distribution of particles over micro-states,

I = {(R, {(x, |C|) : (x,C) ∈ R−1}) : R ∈ {1 . . . n} :→ Y }
so the cardinality of states for each distribution is

W = {(N, |D|) : (N,D) ∈ I−1} = {(N, n!∏
(x,·)∈N Nx!

) : (N, ·) ∈ I−1}

Let E be an energy valued function of micro-state, E ∈ Y :→ R≥0. Consider
the subset of the states that have total energy ε,

{R : R ∈ {1 . . . n} :→ Y,
∑

(·,x)∈R

Ex = ε}
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If a state is chosen at random from this subset, the modal distribution Nn,E,ε

has the greatest cardinality,

Nn,E,ε ∈ maxd({(N, n!∏
(x,·)∈N Nx!

) : N ∈ Y → {1 . . . n},∑
(x,·)∈N

Nx = n,
∑

(x,·)∈N

NxEx = ε})

The states of the modal distribution, I−1(Nn,E,ε) ⊆ {1 . . . n} :→ Y , are said
to be at thermodynamic equilibrium. The thermodynamic entropy of these
states is Sn,E,ε = k lnW (Nn,E,ε), where k is the Boltzmann constant. The
logarithm of the multinomial coefficient approximates to the scaled entropy,
so the modal distribution probability function Pn,E,ε is

Pn,E,ε ∈ maxd({(P, entropy(P )) : P ∈ Y :→ R[0,1],
∑
x∈Y

Px = 1,

n
∑
x∈Y

PxEx = ε})

The solution for this probability function is the Boltzmann distribution,

Pn,E,ε = {(x, exp(−Ex/kτn,E,ε)∑
y∈Y exp(−Ey/kτn,E,ε)

) : x ∈ Y }

= {(x, exp(−Ex/kτn,E,ε)) : x ∈ Y }∧

where τn,E,ε is the temperature. The inverted temperature is the sensitivity
of the equilibrium entropy to energy, 1/τn,E,ε = ∂Sn,E,ε/∂ε. The thermody-
namic entropy at equilibrium varies with the probability distribution entropy,
Sn,E,ε ∼ nk×entropy(Pn,E,ε). The Boltzmann distribution is the solution that
maximises the entropy given the energy.

Conversely, let the distribution probability function Pn,s,E be the probability
function that minimises the energy given the entropy,

Pn,s,E ∈ mind({(P,
∑
x∈Y

PxEx) : P ∈ Y :→ R[0,1],
∑
x∈Y

Px = 1,

nk × entropy(P ) = s})

Now the temperature is the sensitivity of the equilibrium energy to entropy,
τn,s,E = ∂εn,s,E/∂s. In the case where the temperature is positive, so that
the energy is monotonic with respect to entropy at equilibrium, these opti-
misations intersect, Pn,s,E = Pn,E,ε, where s = entropy(Pn,E,ε). That is, the
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Boltzmann distribution is also the solution that minimises the energy given
the entropy.

Together the Boltzmann distribution is the solution that minimises the ratio
of (i) the energy to (ii) the temperature times the entropy at equilibrium,

ε

τn,E,ε × Sn,E,ε
=

εn,s,E
τn,s,E × s

Consider the probability of a thermodynamic particle being in micro-state
x2 given it is in either micro-state x1 or x2,

Pn,E,ε(x2)

Pn,E,ε(x1) + Pn,E,ε(x2)
=

1

1 + exp((Ex2 − Ex1)/kτn,E,ε)

As the temperature increases, the probability that the particle will be in the
higher energy micro-state increases to a half. So both the entropy at equi-
librium, Sn,E,ε, and the energy at equilibrium, εn,s,E, vary with temperature,
τn,E,ε = τn,s,E.

Consider treating the micro-state energy divided by the Boltzmann constant,
Ex/k, as a continuous random variable. Let Pn,E,ε,λ = {(u, λ exp(−λu)) : u ∈
R≥0} ∈ R≥0 :→ R≥0 be the exponential distribution parameterised only by λ
that is the nearest fit to the Boltzmann distribution, ∀x ∈ Y (Pn,E,ε,λ(Ex/k) ≈
Pn,E,ε(x)). That is,

∀x ∈ Y
(
λ exp(−λEx/k) ≈ exp(−Ex/kτn,E,ε)∑

y∈Y exp(−Ey/kτn,E,ε)

)
For higher temperatures, 1/λ is between

∑
y∈Y exp(−Ey/kτn,E,ε) and τn,E,ε.

The variance of the exponential distribution, Pn,E,ε,λ, is 1/λ2. Let the corre-
sponding likelihood function be Ln,E,ε(u) = {(λ, λ exp(−λu)) : λ ∈ R≥0} ∈
R≥0 :→ R≥0. The exponential distribution is not centrally distributed, so the
curvature of the likelihood function at the mode, ∂2(Ln,E,ε(0))(λ), is not nega-
tive, and the Fisher information is not a measure of the sensitivity to parame-
ter. Instead its sensitivity to parameter may be approximated by the negative
gradient of the likelihood function at the mode, −∂(Ln,E,ε(0))(λ) = λ2 − 1,
which varies oppositely to the variance. That is, the sensitivity to parameter
varies against up to the temperature squared,

−∂(Ln,E,ε(0))(λ) = λ2 − 1

∼ 1/τ 2
n,E,ε
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Given a set of variables V = und(T ) and a size z, the specialising history
probability function PU,X,G,T,H,z is defined

PU,X,G,T,H,z := {(H, exp(−CG,V,T,H(T )s(H))) : H ∈ HU,V,z,X}∧

where HU,V,z,X = {H : H ∈ HU,X , vars(H) = V, |H| = z}.

Mapping the specialising history probability function, PU,X,G,T,H,z, to the Boltz-
mann distribution, Pn,E,ε, implies that the energy of the micro-state, Ex, is
proportional to the specialising space of the history, CG,V,T,H(T )s(H). The
thermodynamic energy εn,U,X,T,z is proportional to the thermodynamic tem-
perature τn,U,X,T,z times the expected specialising space,

εn,U,X,T,z = nk × τn,U,X,T,z × expected(PU,X,G,T,H,z)(CG,V,T,H(T )s)

The thermodynamic entropy at equilibrium Sn,U,X,T,z is proportional to the
entropy of the specialising history probability function,

Sn,U,X,T,z ∼ nk × entropy(PU,X,G,T,H,z)

The specialising history probability function is such that the thermodynamic
entropy, Sn,U,X,T,z, is maximised for given thermodynamic energy, εn,U,X,T,z,

PU,X,G,T,H,z ∈
maxd({(P, nk × entropy(P )) : P ∈ (HU,V,z,X :→ Q[0,1]) ∩ P ,

nkτn,U,X,T,z × expected(P )(CG,V,T,H(T )s) = εn,U,X,T,z})

and also such that the thermodynamic energy, εn,U,X,T,z, is minimised for
given thermodynamic entropy, Sn,U,X,T,z,

PU,X,G,T,H,z ∈
mind({(P, nkτn,U,X,T,z × expected(P )(CG,V,T,H(T )s)) :

P ∈ (HU,V,z,X :→ Q[0,1]) ∩ P , nk × entropy(P ) = Sn,U,X,T,z})

That is, specialising induction is balanced such that the total specialising
space is minimised while the specialising entropy is maximised.

Physical thermodynamic systems usually define a topology or measure on
the states of the system implied by the interactions between particles that
conserve energy, so that dynamic processes starting in low entropy states
generally evolve towards neighbouring high entropy states. Specialising in-
duction, however, does not have parallels for these physical properties.
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Note that, conversely, the mapping of the energy of the micro-state, Ex,
to the specialising space of the history, CG,V,T,H(T )s(H), suggests that the
micro-state energy, Ex, of any thermodynamical system can be viewed as
the logarithm of the bounding integer of the integer encoding of the micro-
state in some coder C ∈ coders(Y ).

While classical specialising induction, P = PU,X,G,To,H, is completely defined
given a system, (U,X), and a model, To, the definition of classical derived in-
duction, P = PU,X,Hh,d,To , also requires a distribution history, Hh ∈ HU,X . In
derived induction, the sample history is drawn from the distribution history,

Ho ∈ {H : H ∈ P(Hh%Vo), |H| = zo, ÂH ∗ To = Êh ∗ To}

An analogy to the distribution history, Hh, is implied by specialising induc-
tion. Let RG,H be a thermodynamic state, RG,H ∈ {1 . . . n} :→ (HU,X \ {∅}).
The thermodynamic state, RG,H, is at equilibrium for arbitrary draw, (Vo, zo),
so {(H, |C|/n) : (H,C) ∈ R−1

G,H} = PU,X,G,To \ {(∅, 0)}. Now the sample
history is the history of a particle in the thermodynamic state,

Ho ∈ {H : (·, H) ∈ RG,H, VH = Vo, |H| = zo}

The ratio of the thermodynamic energy to the thermodynamic temperature
times the thermodynamic entropy at equilibrium approximates to the ratio
of the expected specialising space to the specialising entropy,

εn,U,X,T,z
τn,U,X,T,z × Sn,U,X,T,z

∼ expected(PU,X,G,T,H,z)(CG,V,T,H(T )s)

entropy(PU,X,G,T,H,z)

This ratio is minimised at equilibrium. As the ratio tends to one, the special-
ising coder tends to an entropy coder and so the degree of structure tends to
one. The specialising structure over all variables and sizes varies (i) against
thermodynamic energy, (ii) with thermodynamic temperature and (iii) with
thermodynamic entropy,

structure(U,X)(PU,X,G,T,H, CG,T,H(T ))

:=
canonical(U,X)(PU,X,G,T,H)− expected(PU,X,G,T,H)(CG,T,H(T )s)

canonical(U,X)(PU,X,G,T,H)− entropy(PU,X,G,T,H)

∼ canonical(U,X)(PU,X,G,T,H)− εn,U,X,T/(nk × τn,U,X,T )

canonical(U,X)(PU,X,G,T,H)− Sn,U,X,T/(nk)

In the case where the model is unary, To = Tu, the expanded specialising
derived substrate history space equals the index space, CG,T,H(Tu)s(H) =
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Cs
H(H), so the degree of structure is zero or negative,

structure(U,X)(PU,X,G,Tu,H, CG,T,H(Tu)) ≤ 0

In the case where the model is self, To = Ts, the expanded specialising derived
substrate history space is at least the index space or the classification space,
CG,T,H(Ts)

s(H) ≥ minimum(Cs
H(H), Cs

G(H)), so the degree of structure is
zero or negative,

structure(U,X)(PU,X,G,Ts,H, CG,T,H(Ts)) ≤ 0

The specialising history probability function, PU,X,G,To,H, is the history proba-
bility function P that maximises the degree of structure with respect to the
expanded specialising derived history coder, CG,T,H(To), given arbitrary draw,
(VH , zH),

PU,X,G,To,H ∈
maxd({(P, structure(U,X)(P,CG,T,H(To))) :

P ∈ (HU,X :→ Q[0,1]) ∩ P ,
|{(
∑

PH : H ∈ HU,X , vars(H) = VH , |H| = zH) :

VH ⊆ vars(U), zH ∈ {1 . . . |X|}}| = 1,

P∅ = 0})

The model, T , may be mapped to the continuous parameter of temperature,
τn,U,X,T , by choosing the micro-states such that the energy divided by the
Boltzmann constant, Ex/k, approximates to the canonical space,

∀H ∈ HU,V,z,X (CG,V,T,H(T )s(H) ≈ minimum(Cs
H,V , C

s
G,V )(H)/τn,U,X,T,z)

Insofar as the approximation holds, the micro-states do not depend on the
model, T , and so all of the dependency on model is encapsulated by the
temperature, τn,U,X,T . Under this mapping, the temperature is the ratio of
the canonical space to the expected specialising space

τn,U,X,T =
canonical(U,X)(PU,X,G,T,H)

expected(PU,X,G,T,H)(CG,T,H(T )s)

and the thermodynamic energy εn,U,X,T is proportional to the canonical space,

εn,U,X,T = nk × canonical(U,X)(PU,X,G,T,H)

Given a modal history H ∈ maxd(PU,X,G,T,H,z), the temperature varies with
the component size cardinality relative entropy,

τn,U,X,T,z ∼ entropyRelative(AH ∗ T, V C ∗ T )
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That is, at high temperatures the modal history, H, is such that high size
components are low cardinality components and low size components are high
cardinality components.

Formally, under the mapping such that the thermodynamic energy is pro-
portional to the canonical space,

εn,U,X,To = nk × canonical(U,X)(PU,X,G,To,H)

the specialising structure varies principally with thermodynamic temperature,

structure(U,X)(PU,X,G,To,H, CG,T,H(To)) ∼ τn,U,X,To

The exponential distribution function, continuously parameterised only by
λo, which is the best fit to the Boltzmann distribution is

Pn,U,X,To,λo = {(u, λo exp(−λou)) : u ∈ R≥0} ∈ R≥0 :→ R≥0

Its corresponding likelihood function at the mode is Ln,U,X,To(0) ∈ R≥0 :→
R≥0. The sensitivity to parameter is defined as the negative gradient of the
likelihood function at the mode, −∂(Ln,U,X,To(0))(λo) = λ2

o − 1, which varies
against up to the temperature squared, −∂(Ln,U,X,To(0))(λo) ∼ 1/τ 2

n,U,X,To
.

The specialising structure varies with thermodynamic temperature,

structure(U,X)(PU,X,G,To,H, CG,T,H(To)) ∼ τn,U,X,To

so the sensitivity to parameter varies against the specialising structure,

−∂(Ln,U,X,To(0))(λo) ∼ − structure(U,X)(PU,X,G,To,H, CG,T,H(To))

Although the specialising entropy, entropy(PU,X,G,T,H), is maximised and
the expected specialising space, expected(PU,X,G,T,H)(CG,T,H(T )s), is minimised
but sometimes not minimal, the modal specialising space, CG,T,H(T )s(H), of
a modal history H ∈ maxd(PU,X,G,T,H), is always minimal.

At high thermodynamic temperatures the sensitivity of thermodynamic en-
tropy to thermodynamic energy is low, 1/τn,U,X,T = ∂Sn,U,X,T/∂εn,U,X,T ≈ 0,
and the degree of structure varies proportionately against the expected spe-
cialising space,

structure(U,X)(PU,X,G,T,H, CG,T,H(T )) ∼ − expected(PU,X,G,T,H)(CG,T,H(T )s)

Let H be a modal history, H ∈ maxd(PU,X,G,T,H). At high thermodynamic
temperatures, as the mean specialising space, expected(PU,X,G,T,H)(CG,T,H(T )s),
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decreases to the modal specialising space, CG,T,H(T )s(H), the degree of struc-
ture tends to maximal, structure(U,X)(PU,X,G,T,H, CG,T,H(T )) ≈ 1. Conjec-
ture that as the mean specialising space decreases, for constant specialising
entropy, the logarithm of the modal probability, or log likelihood, increases,

lnPU,X,G,T,H(H) ∼ − expected(PU,X,G,T,H)(CG,T,H(T )s)

so

lnPU,X,G,T,H(H) ∼ structure(U,X)(PU,X,G,T,H, CG,T,H(T ))

Conjecture further that this correlation is always positive regardless of ther-
modynamic temperature. Formally, in classical specialising induction, where
(i) the history probability function is the specialising history probability func-
tion, P = PU,X,G,To,H, given some substrate transform in the sample variables
To ∈ TU,Vo , and (ii) the sample history is modal, Ho ∈ maxd(PU,X,G,To,H), the
log likelihood of the specialising probability distribution varies with the degree
of structure,

ln Q̂G,To,H,U(zo)(Ao) ∼ structure(U,X)(PU,X,G,To,H, CG,T,H(To))

Note that the degree of structure is a property only of the system and model,
not of the sample. The sample is itself implied by the system and model
because it is modal.

In the case where the model, To, is known, ‘likelihood ’ is an abuse of ter-
minology because there is no distribution histogram nor other unknown pa-
rameterisation of the probability function, Q̂G,To,H,U(zo) ∈ P .

In the case, however, where the model, To, is unknown, the maximum likeli-
hood estimate T̃o can be defined as an optimisation of the specialising prob-
ability given the sample,

T̃o ∈ maxd({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})

That is, the probability function is now parameterised by the unknown model,
To, so a model is the argument to the corresponding likelihood function pa-
rameterised by the sample histogram, Ao.

In specialising induction, which is such that the history probability function
is P = PU,X,G,To,H, given some unknown substrate transform To ∈ TU,Vo , the
maximum likelihood estimate of the model, T̃o, occurs at the minimisation of
the specialising space of the sample history,

T̃o ∈ mind({(T,CG,Vo,T,H(T )s(Ho)) : T ∈ TU,Vo})
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The maximum likelihood estimate for the model, T̃o, is non-trivial, T̃o /∈
{Ts, Tu}, if there exists a model for which the specialising derived substrate
history space is less than either the index space or the classification space,
CG,Vo,T,H(T̃o)s(Ho) < minimum(Cs

H,Vo
(Ho), Cs

G,Vo
(Ho)). This the case if the

degree of structure is greater than zero,

structure(U,X)(PU,X,G,To,H, CG,T,H(T̃o)) > 0

and the component size cardinality relative entropy of the modal sample is
greater than zero,

entropyRelative(Ao ∗ T̃o, V
C

o ∗ T̃o) > 0

An example of a non-trivial model is where the histogram is sparse, trim(Ao) =
AF

o or Ao ∗AF
o = AF

o . In this case, the under-fitted effective binary transform
is the solution to the optimisation,

Ao ∗ AF
o = AF

o =⇒ T̃o = {AFS
o , V CS

o \ AFS
o }T

The effective binary transform has a component for effective states, AFS
o , and

a remainder component for the ineffective states, V CS
o \ AFS

o . The derived
volume is 2.

The sensitivity to model is defined as the negative logarithm of the car-
dinality of the maximum likelihood estimate models,

− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})|

Conjecture that the cardinality of the modes varies against the negative gra-
dient of the likelihood function of the singly parameterised exponential func-
tion fitted to the Boltzmann distribution, so the sensitivity to model varies
with the negative gradient,

− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})| ∼ −∂(Ln,U,X,To(0))(λo)

Hence, given the canonical mapping, the sensitivity to model varies against
the specialising structure,

− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})| ∼
− structure(U,X)(PU,X,G,To,H, CG,T,H(To))

As shown above, the degree of structure varies with the log likelihood of the
specialising probability distribution,

structure(U,X)(PU,X,G,To,H, CG,T,H(To)) ∼ ln Q̂G,To,H,U(zo)(Ao)
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and so the sensitivity to model varies against the log likelihood,

− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})| ∼ − ln Q̂G,To,H,U(zo)(Ao)

That is, maximisation of the log likelihood also tends to minimise the sensi-
tivity to model.

In the cases where there exists a modal transform which is either self or
unary, T̃o ∈ {Ts, Tu}, the degree of structure is negative and the modal special-
ising space is high, CG,Vo,T,H(T̃o)s(Ho) ≥ minimum(Cs

H,Vo
(Ho), Cs

G,Vo
(Ho)), so

the log likelihood is low and the sensitivity to model is high. All trans-
forms must have at least canonical space, ∀T ∈ TU,Vo (CG,Vo,T,H(T )s(Ho) ≥
CG,Vo,T,H(T̃o)s(Ho)).

The conclusion that the sensitivity to model varies against the log likeli-
hood is rather counter-intuitive but has other evidence that is more direct
than the analysis of parameterisation above. Consider a pair of modal trans-
forms T, T ′ ∈ maxd({(T, Q̂G,T,H,U(z)(A)) : T ∈ TU,V }). The two transforms
are equal except that a sub-component C ′1 ⊂ C1 is transferred from compo-
nent C1 to C2 such that (i) the derived counts are unchanged, (A ∗ T ′)R1 =
(A ∗ T )R2 , and (A ∗ T ′)R2 = (A ∗ T )R1 , (ii) the cartesian derived counts are
unchanged, (V C ∗T ′)R1 = (V C ∗T )R2 , and (V C ∗T ′)R2 = (V C ∗T )R1 , and (iii)
the other components are unchanged, ran((T ′)−1) \ {C1, C2} = ran(T−1) \
{C1, C2}, where (R1, C1), (R2, C2) ∈ T−1 and (R1, C1 \ C ′1), (R2, C2 ∪ C ′1) ∈
(T ′)−1. In this case, the specialising spaces are equal, CG,V,T,H(T ′)s(H) =
CG,V,T,H(T )s(H). The cardinality of these pairs with respect to transform T
is the cardinality of

{(C1, C2, C
′
1) : (R1, C1), (R2, C2) ∈ T−1,

R1 6= R2, C
′
1 ⊂ C1, 0 < |C ′1| < |C1|,
(A ∗ T )R1 = (A ∗ T )R2 + size(A ∗ C ′1),

(V C ∗ T )R1 = (V C ∗ T )R2 + |C ′1|}

which is the intersection,

{(C1, C2, C
′
1) : (R1, C1), (R2, C2) ∈ T−1,

R1 6= R2, C
′
1 ⊂ C1, 0 < |C ′1| < |C1|,
(A ∗ T )R1 = (A ∗ T )R2 + size(A ∗ C ′1)}

∩ {(C1, C2, C
′
1) : (R1, C1), (R2, C2) ∈ T−1,

R1 6= R2, C
′
1 ⊂ C1, 0 < |C ′1| < |C1|,
(V C ∗ T )R1 = (V C ∗ T )R2 + |C ′1|}
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The logarithm of the cardinality of the derived term of the intersection varies
against the derived entropy,

ln |{(A ∗ T )R1 − (A ∗ T )R2 : (R1, ·), (R2, ·) ∈ T−1}| ∼ − entropy(A ∗ T )

and the logarithm of the cardinality of the cartesian derived term of the
intersection varies against the cartesian derived entropy,

ln |{V C ∗ T )R1 − (V C ∗ T )R2 : (R1, ·), (R2, ·) ∈ T−1}| ∼ − entropy(V C ∗ T )

Given the derived entropy and cartesian derived entropy, the cardinality of
the intersection decreases as the correlation between the sub-component size,
size(A ∗C ′1), and the sub-component cardinality, |C ′1|, increases. That is, the
intersection is more constrained when the sub-component size and cardinality
are synchronised, so the logarithm of the cardinality of the intersection varies
with the cross entropy, entropy(A ∗ T + V C ∗ T ). Overall, the logarithm of
the cardinality of these pairs varies with the size-volume scaled component
size cardinality sum relative entropy,

ln |{(C1, C2, C
′
1) : (R1, C1), (R2, C2) ∈ T−1,

R1 6= R2, C
′
1 ⊂ C1, 0 < |C ′1| < |C1|,
(A ∗ T )R1 = (A ∗ T )R2 + size(A ∗ C ′1),

(V C ∗ T )R1 = (V C ∗ T )R2 + |C ′1|}|
∼ (z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

Hence the sensitivity to model varies against the size-volume scaled compo-
nent size cardinality sum relative entropy,

− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})| ∼
−
(
(zo + vo)× entropy(Ao ∗ To + V C

o ∗ To)

−zo × entropy(Ao ∗ To) − vo × entropy(V C
o ∗ To)

)
The size scaled component size cardinality relative entropy approximates to
the size-volume scaled component size cardinality sum relative entropy, espe-
cially where the size is less than the volume, zo < vo,

zo × entropyRelative(Ao ∗ To, V
C

o ∗ To) ≈
(zo + vo)× entropy(Ao ∗ To + V C

o ∗ To)

−zo × entropy(Ao ∗ To) − vo × entropy(V C
o ∗ To)
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but the log-likelihood varies with the size scaled component size cardinality
relative entropy,

ln Q̂G,To,H,U(zo)(Ao) ∼ zo × entropyRelative(Ao ∗ To, V
C

o ∗ To)

so, again, the sensitivity to model varies against the log likelihood,

− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})| ∼ − ln Q̂G,To,H,U(zo)(Ao)

It is shown above in classical uniform possible modelled induction, where
the history probability function is uniform possible iso-derived historically
distributed, P = PU,X,Hh,d,p,To , that, in the case where the size is less than
the volume, zo < vo, but the sample approximates to the naturalisation, Ao ≈
Ao ∗ To ∗ T †o , the log likelihood of the iso-derived conditional stuffed historical
probability distribution at the maximum likelihood estimate (a) varies against
the possible derived volume, w′o, where the possible derived volume is less
than the size, w′o < zo, otherwise against the size scaled log possible derived
volume, zo lnw′o,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − ((w′o : w′o < zo) + (zo lnw′o : w′ ≥ zo))

(b) varies with the size scaled component size cardinality relative entropy,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ zo × entropyRelative(Ao ∗ To, V
C

o ∗ To)

so (c) varies against the specialising derived substrate history coder space,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

In classical specialising induction, where the history probability function is
the specialising history probability function, P = PU,X,G,To,H, the specialising
history probability function is specifically defined such that the log likelihood
of the specialising probability distribution is proportional to the classification
space of the underlying histogram less the specialising space of the corre-
sponding history,

ln Q̂G,To,H,U(zo)(Ao) ∝ spaceClassification(Ao) − space(CG,Vo,T,H(To))(Ho)

All iso-derived subsets of the distribution history for a given set of variables
and size are defined as equally iso-derived conditional probable, and, because
the specialising space is the same for all members of an iso-derived, all iso-
derived subsets of the distribution history for a given set of variables and size
are also equally specialising probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(AG ∗ To = AH ∗ To =⇒ PU,X,G,To,H(G) = PU,X,G,To,H(H))
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Therefore, in the near-natural case, insofar as the uniform possible iso-derived
history probability function approximates to the specialising history probabil-
ity function, PU,X,Hh,d,p,To ≈ PU,X,G,To,H, conjecture that (a) the log likelihood
of the iso-derived conditional stuffed historical probability distribution varies
with the log likelihood of the specialising probability distribution,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ ln Q̂G,To,H,U(zo)(Ao)

and (b) the degree of structure of the uniform possible iso-derived history
probability function with respect to the specialising coder varies with special-
ising degree of structure,

structure(U,X)(PU,X,Hh,d,p,To , CG,T,H(To)) ∼
structure(U,X)(PU,X,G,To,H, CG,T,H(To))

So conjecture that, in the case where the sample history is modal, Ho ∈
maxd(PU,X,Hh,d,p,To), the log-likelihood of the iso-derived conditional stuffed
historical probability distribution also varies with its degree of structure,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ structure(U,X)(PU,X,Hh,d,p,To , CG,T,H(To))

In other words, when the iso-derived log-likelihood is high, the expected space
of the specialising coder is low and so the compression of the coder with re-
spect to the iso-derived historically distributed history probability function is
high.

Further, conjecture that the sensitivity to model also varies against the log
likelihood,

− ln |max({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})| ∼
− ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

In the case where the relative entropy is high, entropyCross(Ao∗To, V
C

o ∗To) >
ln |T−1

o |, the sum sensitivity varies against the log likelihood,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ − ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

So in this case, in classical uniform possible modelled induction, both (a) the
sensitivity to distribution histogram,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo)))

and (b) the sensitivity to model,

− ln |max({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})|
vary against the log-likelihood. That is, in classical modelled induction in
some circumstances, the optimisation of the log-likelihood tends to minimise
the sensitivity to parameter.
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5.5.9 Specialising functional definition set induction

Again, consider extending the model for specialising induction from trans-
forms to functional definition sets.

Consider the specialising functional definition set history probability function
PU,X,G,Fo,H ∈ (HU,X :→ Q[0,1])∩P which is defined such that the probability
of a history is inversely proportional to the bounding integer, for which the
space is the logarithm, of the integer encoding of the history in the specialis-
ing fud coder, given a non-empty known substrate fud in the sample variables
Fo ∈ FU,Vo \ {∅},

PU,X,G,Fo,H :=(⋃{
{(H, exp(−CG,F,H(Fo)s(H))) :

H ∈ HU,X , vars(H) = VH , |H| = zH}∧ :

VH ⊆ vars(U), zH ∈ {1 . . . |X|}
})∧ ∪

{(∅, 0)}

where the specialising fud substrate history coder is

CG,V,F,H(F ) = coderHistorySubstrateFudSpecialising(U,X, F,DS, DX)

and the expanded specialising fud history coder CG,F,H(F ) ∈ coders(HU,X) is
derived from the specialising fud substrate history coder, CG,V,F,H,

CG,F,H(F )s(H) = (CG,VH ,F,H(F VH )s(H) + s|VH | : VH ⊇ V ) +

(Cs
H(H) : VH + V )

where F V is the expansion that adds a unary transform in the remaining un-
derlying variables, F ∪{{(V \und(F ))CS}T}, and sn = spaceVariables(U)(n).

All non-empty histories are possible in specialising fud induction, ∀H ∈
HU,X \ {∅} (PU,X,G,Fo,H(H) > 0).

All histories having the same specialising space for a given set of variables
and size are defined as equally probable,

∀H,G ∈ HU,V,z,X

(CG,F,H(Fo)s(G) = CG,F,H(Fo)s(H) =⇒ PU,X,G,Fo,H(G) = PU,X,G,Fo,H(H))

In specialising fud induction there is no distribution histogram, so the drawn
history is parameterised only by substrate variables and size, (VH , zH). Nor
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is any sample constrained to equal its fud-independent, A
EF(Fo)
o . If a history

is possible in uniform possible fud induction, then it is possible in specialising
fud induction,

∀H ∈ HU,X (PU,X,Hh,d,p,Fo(H) > 0 =⇒ PU,X,G,Fo,H(H) > 0)

The specialising space is the same for all members of an iso-fud, ∀B ∈
D−1
U,i,F,z(DU,F,z(A)) (CG,F,H(F )s(HB) = CG,F,H(F )s(HA)), so all iso-fud sub-

sets of the distribution history for a given set of variables and size are not
only equally iso-fud probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(∀T ∈ Fo (AG ∗ TFo = AH ∗ TFo) =⇒ PU,X,Hh,d,p,Fo(G) = PU,X,Hh,d,p,Fo(H))

but also equally specialising probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(∀T ∈ Fo (AG ∗ TFo = AH ∗ TFo) =⇒ PU,X,G,Fo,H(G) = PU,X,G,Fo,H(H))

where TF := depends(F, der(T ))T.

Given a history H ∈ HU,X , such that H 6= ∅, the specialised historical prob-
ability of histogram AH = histogram(H) + V CZ

H ∈ AU,i,VH ,zH is

Q̂G,Fo,H,U(zH)(AH) ∝
∑

(PU,X,G,Fo,H(G) : G ∈ HU,X , AG = AH)

where the specialising fud probability distribution is defined

Q̂G,F,H,U(z) :=

{(A, z!∏
S∈AFS AS!

× exp(−CG,F,H(F )s(HA))) : A ∈ AU,i,V,z}∧

where V = und(F ) and HA = history(A).

The log likelihood is proportional to the classification space of the under-
lying histogram less the specialising space of the corresponding history,

ln Q̂G,F,H,U(z)(A) ∝ spaceClassification(A) − space(CG,V,F,H(F ))(HA)

In the law-like case where the fud has a top transform, ∃T ∈ F (WT =
der(F )), the space of the specialising coder is

space(CG,V,F,H(F ))(H) =

spaceIds(|X|, |H|) +

spaceCountsDerived(U)(A,FT) +

spaceClassification(A ∗ FT) +∑
T∈F

spaceEventsPartition(A ∗ dep(F, VT )T, T )
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where VT = und(T ), WT = der(T ), and dep = depends.

The space of the specialising fud substrate history coder, CG,V,F,H(F ), varies
(i) with the possible fud derived volume, w′ = |(FT)−1|, or the size scaled log
possible fud derived volume, z lnw′, (ii) with the size scaled fud transform
derived entropy and (iii) against the sum of the size scaled component size
cardinality cross entropies of the transforms of the fud,

CG,V,F,H(F )s(H) ∼
(w′ : w′ < z) + (z lnw′ : w′ ≥ z)

+ z × entropy(A ∗ FT)

− z ×
∑
T∈F

entropyCross(A ∗ TF , V C
T ∗ T )

The specialising-canonical space difference, 2CG,V,F,H(F )s(H) − Cs
H,V (H) −

Cs
G,V (H), varies (i) with twice the total possible derived volume or twice

the total size scaled log possible derived volume, (ii) with the sum of the
size scaled derived entropies, (iii) against twice the sum of the size scaled
component size cardinality cross entropies and (iv) against the sum of the
size scaled size expected component entropies,

2CG,V,F,H(F )s(H)− Cs
H,V (H)− Cs

G,V (H) ∼∑
T∈F

2
(
(w′T : w′T < z) + (z lnw′T : w′T ≥ z)

)
+
∑
T∈F

z × entropy(A ∗ TF )

−
∑
T∈F

2z × entropyCross(A ∗ TF , V C
T ∗ T )

−
∑
T∈F

z × entropyComponent(A ∗ dep(F, VT )T, T )

where w′T = |T−1|, and TF = depends(F,WT )T.

The specialising log likelihood varies (a) with the size scaled underlying en-
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tropy and (b) against the specialising-canonical space difference,

ln Q̂G,F,H,U(z)(A) ∼
−
∑
T∈F

2
(
(w′T : w′T < z) + (z lnw′T : w′T ≥ z)

)
+ z × entropy(A)

−
∑
T∈F

z × entropy(A ∗ TF )

+
∑
T∈F

2z × entropyCross(A ∗ TF , V C
T ∗ T )

+
∑
T∈F

z × entropyComponent(A ∗ dep(F, VT )T, T )

Let Ho be a sample history of known size zo = |Ho| > 0 in the known sample
variables, Vo, which has a known histogram Ao = histogram(Ho) + V CZ

o ∈
AU,i,Vo,zo . In classical specialising fud induction, where the history probability
function is the specialising fud history probability function, P = PU,X,G,Fo,H,
given some substrate fud in the sample variables Fo ∈ FU,Vo , the log likelihood
of the specialising fud probability distribution (a) varies with the size scaled
underlying entropy,

ln Q̂G,Fo,H,U(zo)(Ao) ∼ zo × entropy(Ao)

(b) varies against the total possible derived volume or size scaled log possible
derived volume,

ln Q̂G,Fo,H,U(zo)(Ao) ∼ −
∑
T∈Fo

(
(w′T : w′T < zo) + (zo lnw′T : w′T ≥ zo)

)
(c) varies against the total size scaled derived entropy

ln Q̂G,Fo,H,U(zo)(Ao) ∼ − zo ×
∑
T∈Fo

entropy(Ao ∗ TFo)

(d) varies with the total size scaled component size cardinality cross entropy

ln Q̂G,Fo,H,U(zo)(Ao) ∼ zo ×
∑
T∈Fo

entropyCross(Ao ∗ TFo , V
C
T ∗ T )

and (e) varies with the total size scaled size expected component entropy,

ln Q̂G,Fo,H,U(zo)(Ao) ∼ zo ×
∑
T∈Fo

entropyComponent(Ao ∗ dep(Fo, VT )T, T )
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So the specialising log likelihood is maximised when (a) the total possible
derived volume is minimised, (b) the underlying entropy is maximised, (c)
the total derived entropy is minimised, (d) high size components are low
cardinality components and low size components are high cardinality com-
ponents for each transform, and (e) the total expected component entropy is
maximised. It is also conjectured that, (i) the derived entropy decreases up
the layers, (ii) the possible derived volume decreases up the layers, (iii) the
expected component entropy increases up the layers, and (iv) the component
size cardinality cross entropy increases up the layers.

The ratio of the expected specialising space to the specialising entropy,

expected(PU,X,G,F,H,z)(CG,F,H(F )s)

entropy(PU,X,G,F,H,z)

is minimised at equilibrium. As the ratio tends to one, the specialising coder
tends to an entropy coder and so the degree of structure tends to one,

structure(U,X)(PU,X,G,F,H, CG,F,H(F ))

:=
canonical(U,X)(PU,X,G,F,H)− expected(PU,X,G,F,H)(CG,F,H(F )s)

canonical(U,X)(PU,X,G,F,H)− entropy(PU,X,G,F,H)

The specialising fud history probability function, PU,X,G,Fo,H, is the history
probability function P that maximises the degree of structure with respect to
the expanded specialising fud history coder, CG,F,H(Fo), given arbitrary draw,
(VH , zH),

PU,X,G,Fo,H ∈
maxd({(P, structure(U,X)(P,CG,F,H(Fo))) :

P ∈ (HU,X :→ Q[0,1]) ∩ P ,
|{(
∑

PH : H ∈ HU,X , vars(H) = VH , |H| = zH) :

VH ⊆ vars(U), zH ∈ {1 . . . |X|}}| = 1,

P∅ = 0})

Although the specialising entropy, entropy(PU,X,G,F,H), is maximised and
the expected specialising space, expected(PU,X,G,F,H)(CG,F,H(F )s), is minimised
but sometimes not minimal, the modal specialising space, CG,F,H(F )s(H), of
a modal history H ∈ maxd(PU,X,G,F,H), is always minimal. The degree of
structure varies proportionately against the expected specialising space,

structure(U,X)(PU,X,G,F,H, CG,F,H(F )) ∼ −expected(PU,X,G,F,H)(CG,F,H(F )s)
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Conjecture that as the mean specialising space decreases, the log likelihood
increases. So, in classical specialising fud induction, where (i) the history
probability function is the specialising fud history probability function, P =
PU,X,G,Fo,H, given some substrate fud in the sample variables Fo ∈ FU,Vo , and
(ii) the sample history is modal, Ho ∈ maxd(PU,X,G,Fo,H), the log likelihood of
the specialising fud probability distribution varies with the degree of structure,

ln Q̂G,Fo,H,U(zo)(Ao) ∼ structure(U,X)(PU,X,G,Fo,H, CG,F,H(Fo))

In the case where the model, Fo, is known, ‘likelihood ’ is an abuse of ter-
minology because there is no distribution histogram nor other unknown pa-
rameterisation of the probability function, Q̂G,Fo,H,U(zo) ∈ P .

In the case, however, where the model, Fo, is unknown, the maximum likeli-
hood estimate F̃o can be defined as an optimisation of the specialising prob-
ability given the sample,

F̃o ∈ maxd({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})

That is, the probability function is now parameterised by the unknown model,
Fo, so a model is the argument to the corresponding likelihood function pa-
rameterised by the sample histogram, Ao.

In specialising fud induction, which is such that the history probability func-
tion is P = PU,X,G,Fo,H, given some unknown substrate fud Fo ∈ FU,Vo , the
maximum likelihood estimate of the model, F̃o, occurs at the minimisation of
the specialising space of the sample history,

F̃o ∈ mind({(F,CG,Vo,F,H(F Vo)s(Ho)) : F ∈ FU,Vo})

The maximum likelihood estimate for the model, F̃o, is non-trivial, F̃o /∈
{{Ts}, {Tu}}, if there exists a model for which the specialising fud substrate
history space is less than either the index space or the classification space,
CG,Vo,F,H(F̃ Vo

o )s(Ho) < minimum(Cs
H,Vo

(Ho), Cs
G,Vo

(Ho)). This the case if the
degree of structure is greater than zero,

structure(U,X)(PU,X,G,Fo,H, CG,F,H(F̃o)) > 0

In the case where the histogram is sparse, trim(Ao) = AF
o or Ao ∗ AF

o =
AF

o , the maximum likelihood estimate for the model in specialising transform
induction is the under-fitted effective binary transform,

Ao ∗ AF
o = AF

o =⇒ T̃o = {AFS
o , V CS

o \ AFS
o }T
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In specialising fud induction, however, under-fitted or over-fitted models may
sometimes be avoided if there exist reductions that are not sparse, ∃K ⊂
Vo (trim(Ao%K) 6= (Ao%K)F). In these cases the fud contains a trans-
form T ∈ F̃o on a subset of the substrate, und(T ) = K, such that T 6=
{(Ao%K)FS, KCS\(Ao%K)FS}T and T 6= ((Ao%K)FS{}∪{KCS\(Ao%K)FS})T.

The sensitivity to model is defined as the negative logarithm of the car-
dinality of the maximum likelihood estimate models,

− ln |max({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})|

Conjecture that the cardinality of the modes varies against the negative gra-
dient of the likelihood function of the singly parameterised exponential func-
tion fitted to the Boltzmann distribution, so the sensitivity to model varies
with the negative gradient. Hence the sensitivity to model varies against the
specialising structure,

− ln |max({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})| ∼
− structure(U,X)(PU,X,G,Fo,H, CG,F,H(Fo))

As shown above, the the degree of structure varies with the log likelihood of
the specialising fud probability distribution,

structure(U,X)(PU,X,G,Fo,H, CG,F,H(Fo)) ∼ ln Q̂G,Fo,H,U(zo)(Ao)

so the sensitivity to model varies against the log likelihood,

− ln |max({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})| ∼ − ln Q̂G,Fo,H,U(zo)(Ao)

That is, maximisation of the log likelihood also tends to minimise the sensi-
tivity to model.

It is shown above in classical uniform possible fud induction, where the his-
tory probability function is uniform possible iso-fud historically distributed,
P = PU,X,Hh,d,p,Fo , that, in the case where the size is less than the volume,

zo < vo, but the sample approximates to the fud-independent, Ao ≈ A
EF(Fo)
o ,

the log likelihood of the iso-fud conditional stuffed historical probability dis-
tribution at the maximum likelihood estimate (a) varies against the sum of
the possible derived volumes or size scaled log possible derived volumes,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼
−
∑
T∈Fo

(
(w′TFo

: w′TFo
< zo) + (zo lnw′TFo

: w′TFo
≥ zo)

)
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(b) varies with the size scaled component size cardinality relative entropies,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ zo ×
∑
T∈Fo

entropyRelative(Ao ∗ TFo , V
C

o ∗ TFo)

so (c) varies against the specialising fud substrate history coder space,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ − CG,Vo,F,H(F Vo
o )s(Ho)

and (d) varies against the specialising-canonical space difference,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼
−(2CG,Vo,F,H(F Vo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho))

In classical specialising fud induction, where the history probability function
is the specialising fud history probability function, P = PU,X,G,Fo,H, the spe-
cialising fud history probability function is specifically defined such that the
log likelihood of the specialising fud probability distribution is proportional to
the classification space of the underlying histogram less the specialising space
of the corresponding history,

ln Q̂G,Fo,H,U(zo)(Ao) ∝ spaceClassification(Ao) − space(CG,Vo,F,H(Fo))(Ho)

All iso-fud subsets of the distribution history for a given set of variables
and size are defined as equally iso-fud conditional probable, and, because the
specialising space is the same for all members of an iso-fud, all iso-fud subsets
of the distribution history for a given set of variables and size are also equally
specialising probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(∀T ∈ Fo (AG ∗ TFo = AH ∗ TFo) =⇒ PU,X,G,Fo,H(G) = PU,X,G,Fo,H(H))

Therefore, in the near-fud-independent case, insofar as the uniform possible
iso-fud history probability function approximates to the specialising fud his-
tory probability function, PU,X,Hh,d,p,Fo ≈ PU,X,G,Fo,H, conjecture that (a) the
log likelihood of the iso-fud conditional stuffed historical probability distribu-
tion varies with the log likelihood of the specialising fud probability distribu-
tion,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ ln Q̂G,Fo,H,U(zo)(Ao)

and (b) the degree of structure of the uniform possible iso-fud history proba-
bility function with respect to the specialising coder varies with specialising
degree of structure,

structure(U,X)(PU,X,Hh,d,p,Fo , CG,F,H(Fo)) ∼
structure(U,X)(PU,X,G,Fo,H, CG,F,H(Fo))
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So conjecture that, in the case where the sample history is modal, Ho ∈
maxd(PU,X,Hh,d,p,Fo), the log-likelihood of the iso-fud conditional stuffed his-
torical probability distribution also varies with its degree of structure,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ structure(U,X)(PU,X,Hh,d,p,Fo , CG,F,H(Fo))

In other words, when the iso-fud log-likelihood is high, the expected space
of the specialising coder is low and so the compression of the coder with re-
spect to the iso-fud historically distributed history probability function is high.

Further, conjecture that the sensitivity to model also varies against the log
likelihood,

− ln |max({(F, Q̂h,d,F,U(Ao,zh , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao ≈ AEF(F )
o })| ∼

− ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

In the case where the relative entropies are high, ∀T ∈ Fo (entropyCross(Ao∗
TFo , V

C
o ∗TFo) > ln |T−1

Fo
|), the sum sensitivity varies against the log likelihood,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

So in this case, in classical uniform possible modelled induction, both (a) the
sensitivity to distribution histogram,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo)))

and (b) the sensitivity to model,

− ln |max({(F, Q̂h,d,F,U(Ao,zh , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao ≈ AEF(F )
o })|

vary against the log-likelihood. That is, in classical modelled induction in
some circumstances, the optimisation of the log-likelihood tends to minimise
the sensitivity to parameter.

5.5.10 Specialising functional definition set decomposition induc-
tion

Again, consider extending the model for specialising induction from func-
tional definition sets to functional definition set decompositions.
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Consider the specialising functional definition set decomposition history prob-
ability function PU,X,G,Do,H ∈ (HU,X :→ Q[0,1])∩P which is defined such that
the probability of a history is inversely proportional to the bounding integer,
for which the space is the logarithm, of the integer encoding of the history in
the specialising fud decomposition coder, given a non-empty known substrate
fud decomposition in the sample variables Do ∈ DF,U,Vo \ {∅},

PU,X,G,Do,H :=(⋃{
{(H, exp(−CG,D,F,H(Do)s(H))) :

H ∈ HU,X , vars(H) = VH , |H| = zH}∧ :

VH ⊆ vars(U), zH ∈ {1 . . . |X|}
})∧ ∪

{(∅, 0)}

where the specialising fud decomposition substrate history coder is

CG,V,D,F,H(D) =

coderHistorySubstrateFudDecompSpecialising(U,X, F,DS, DX)

and the expanded specialising fud decomposition history coder CG,D,F,H(D) ∈
coders(HU,X) is derived from the specialising fud decomposition substrate his-
tory coder, CG,V,D,F,H,

CG,D,F,H(D)s(H) = (CG,VH ,D,F,H(DVH )s(H) + s|VH | : VH ⊇ V ) +

(Cs
H(H) : VH + V )

where DV is the expansion that adds a unary transform in the remaining
underlying variables to the leaf fuds in the decomposition tree such that the
fud of each path of the application tree has complete coverage of the substrate,

∀L ∈ paths(D∗) (
⋃

(·,(F,·))∈L

VF = V )

where VF = und(D), and sn = spaceVariables(U)(n).

All non-empty histories are possible in specialising fud decomposition induc-
tion, ∀H ∈ HU,X \ {∅} (PU,X,G,Do,H(H) > 0).

All histories having the same specialising space for a given set of variables
and size are defined as equally probable,

∀H,G ∈ HU,V,z,X

(CG,D,F,H(Do)s(G) = CG,D,F,H(Do)s(H) =⇒ PU,X,G,Do,H(G) = PU,X,G,Do,H(H))
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Given a history H ∈ HU,X , such that H 6= ∅, the specialised historical prob-
ability of histogram AH = histogram(H) + V CZ

H ∈ AU,i,VH ,zH is

Q̂G,Do,H,U(zH)(AH) ∝
∑

(PU,X,G,Do,H(G) : G ∈ HU,X , AG = AH)

where the specialising fud decomposition probability distribution is defined

Q̂G,D,H,U(z) :=

{(A, z!∏
S∈AFS AS!

× exp(−CG,D,F,H(D)s(HA))) : A ∈ AU,i,V,z}∧

where V = und(D) and HA = history(A).

The log likelihood is proportional to the classification space of the under-
lying histogram less the specialising space of the corresponding history,

ln Q̂G,D,H,U(z)(A) ∝ spaceClassification(A) − space(CG,V,D,F,H(D))(HA)

Let Ho be a sample history of known size zo = |Ho| > 0 in the known sample
variables, Vo, which has a known histogram Ao = histogram(Ho) + V CZ

o ∈
AU,i,Vo,zo . In classical specialising fud decomposition induction, where the his-
tory probability function is the specialising fud decomposition history proba-
bility function, P = PU,X,G,Do,H, given some substrate fud decomposition in
the sample variables Do ∈ DF,U,Vo , the log likelihood of the specialising fud de-
composition probability distribution (a) varies with the size scaled underlying
entropy,

ln Q̂G,Do,H,U(zo)(Ao) ∼ zo × entropy(Ao)

(b) varies against the total possible derived volume or size scaled log possible
derived volume

ln Q̂G,Do,H,U(zo)(Ao) ∼
−

∑
(C,F )∈cont(Do)

∑
T∈F

(
(|T−1

F | : |T−1
F | < zAo∗C) +

(zAo∗C ln |T−1
F | : |T−1

F | ≥ zAo∗C)
)

(c) varies against the total size scaled derived entropy

ln Q̂G,Do,H,U(zo)(Ao) ∼ −
∑

(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropy(Ao ∗ C ∗ TF )
)
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(d) varies with the total size scaled component size cardinality cross entropy

ln Q̂G,Do,H,U(zo)(Ao) ∼∑
(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropyCross(Ao ∗ C ∗ TF , C ∗ T )
)

and (e) varies with the total size scaled size expected component entropy,

ln Q̂G,Do,H,U(zo)(Ao) ∼∑
(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropyComponent(Ao ∗ C ∗ dep(F, VT )T, T )
)

where cont(D) := elements(contingents(D)) and TF := depends(F, der(T ))T.

So the specialising log likelihood is maximised when (a) the total possible
derived volume is minimised, (b) the underlying entropy is maximised, (c)
the total derived entropy is minimised, (d) high size components are low
cardinality components and low size components are high cardinality compo-
nents for each transform for all slices, and (e) the total expected component
entropy is maximised. It is also conjectured that, for all fuds, (i) the derived
entropy decreases up the layers, (ii) the possible derived volume decreases up
the layers, (iii) the expected component entropy increases up the layers, and
(iv) the component size cardinality cross entropy increases up the layers.

The specialising fud decomposition history probability function, PU,X,G,Do,H,
is the history probability function P that maximises the degree of structure
with respect to the expanded specialising fud decomposition history coder,
CG,D,F,H(Do), given arbitrary draw, (VH , zH),

PU,X,G,Do,H ∈
maxd({(P, structure(U,X)(P,CG,D,F,H(Do))) :

P ∈ (HU,X :→ Q[0,1]) ∩ P ,
|{(
∑

PH : H ∈ HU,X , vars(H) = VH , |H| = zH) :

VH ⊆ vars(U), zH ∈ {1 . . . |X|}}| = 1,

P∅ = 0})

In classical specialising fud decomposition induction, where (i) the history
probability function is the specialising fud decomposition history probability
function, P = PU,X,G,Do,H, given some substrate fud decomposition in the
sample variables Do ∈ DF,U,Vo , and (ii) the sample history is modal, Ho ∈
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maxd(PU,X,G,Do,H), the log likelihood of the specialising fud decomposition
probability distribution varies with the degree of structure,

ln Q̂G,Do,H,U(zo)(Ao) ∼ structure(U,X)(PU,X,G,Do,H, CG,D,F,H(Do))

In the case where the model, Do, is unknown, the maximum likelihood
estimate D̃o can be defined as an optimisation of the specialising probability
given the sample,

D̃o ∈ maxd({(D, Q̂G,D,H,U(zo)(Ao)) : D ∈ DF,U,Vo})

In specialising fud decomposition induction, which is such that the history
probability function is P = PU,X,G,Do,H, given some unknown substrate fud
decomposition Do ∈ DF,U,Vo , the maximum likelihood estimate of the model,
D̃o, occurs at the minimisation of the specialising space of the sample history,

D̃o ∈ mind({(D,CG,Vo,D,F,H(DVo)s(Ho)) : D ∈ DF,U,Vo})

The maximum likelihood estimate for the model, D̃o, is non-trivial, D̃o /∈
{{((∅, {Ts}), ∅)}, {((∅, {Tu}), ∅)}}, if there exists a model for which the spe-
cialising fud decomposition substrate history space is less than either the index
space or the classification space,

CG,Vo,D,F,H(D̃Vo
o )s(Ho) < minimum(Cs

H,Vo(Ho), Cs
G,Vo(Ho))

Conjecture that the sensitivity to model varies against the specialising struc-
ture,

− ln |max({(D, Q̂G,D,H,U(zo)(Ao)) : D ∈ DF,U,Vo})| ∼
− structure(U,X)(PU,X,G,Do,H, CG,D,F,H(Do))

so the sensitivity to model varies against the log likelihood,

− ln |max({(D, Q̂G,D,H,U(zo)(Ao)) : D ∈ DF,U,Vo})| ∼
− ln Q̂G,Do,H,U(zo)(Ao)

That is, maximisation of the log likelihood also tends to minimise the sensi-
tivity to model.

It is shown above in classical uniform possible fud decomposition induction,
where the history probability function is uniform possible iso-fud-decomposition
historically distributed, P = PU,X,Hh,d,p,Do , that, in the case where the size is
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less than the volume, zo < vo, but the sample approximates to the fud-

decomposition-independent, Ao ≈ A
ED,F(Do)
o , the log likelihood of the iso-

fud-decomposition conditional stuffed historical probability distribution at the
maximum likelihood estimate (a) varies against the sum of the possible derived
volumes or size scaled log possible derived volumes of the slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼
−

∑
(C,F )∈cont(Do)

∑
T∈F

(
(|T−1

F | : |T−1
F | < zAo∗C) +

(zAo∗C ln |T−1
F | : |T−1

F | ≥ zAo∗C)
)

(b) varies with the size scaled component size cardinality relative entropies
of all transforms for all slices,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼∑
(C,F )∈cont(Do)

(
zAo∗C ×

∑
T∈F

entropyRelative(Ao ∗ C ∗ TF , C ∗ TF )
)

so (c) varies against the specialising fud decomposition substrate history coder
space,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼ − CG,Vo,D,F,H(DVo
o )s(Ho)

and (d) varies against the specialising-canonical space difference,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼
−(2CG,Vo,D,F,H(DVo

o )s(Ho)− Cs
H,Vo(Ho)− Cs

G,Vo(Ho))

In the near-fud-decomposition-independent case, insofar as the uniform pos-
sible iso-fud-decomposition history probability function approximates to the
specialising fud decomposition history probability function, PU,X,Hh,d,p,Do ≈
PU,X,G,Do,H, conjecture that (a) the log likelihood of the iso-fud-decomposition
conditional stuffed historical probability distribution varies with the log like-
lihood of the specialising fud decomposition probability distribution,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼ ln Q̂G,Do,H,U(zo)(Ao)

and (b) the degree of structure of the uniform possible iso-fud-decomposition
history probability function with respect to the specialising coder varies with
specialising degree of structure,

structure(U,X)(PU,X,Hh,d,p,Do , CG,D,F,H(Do)) ∼
structure(U,X)(PU,X,G,Do,H, CG,D,F,H(Do))
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So conjecture that, in the case where the sample history is modal, Ho ∈
maxd(PU,X,Hh,d,p,Do), the log-likelihood of the iso-fud-decomposition condi-
tional stuffed historical probability distribution also varies with its degree of
structure,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼ structure(U,X)(PU,X,Hh,d,p,Do , CG,D,F,H(Do))

In other words, when the iso-fud-decomposition log-likelihood is high, the ex-
pected space of the specialising coder is low and so the compression of the
coder with respect to the iso-fud-decomposition historically distributed his-
tory probability function is high.

Further, conjecture that the sensitivity to model also varies against the log
likelihood,

− ln |max({(D, Q̂h,d,D,U(Ao,zh , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao ≈ AED,F(D)
o })| ∼

− ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

In the case where the relative entropies are high, ∀(C,F ) ∈ cont(Do) ∀T ∈
F (entropyCross(Ao ∗ C ∗ TF , C ∗ TF ) > ln |T−1

F |), the sum sensitivity varies
against the log likelihood,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

So in this case, in classical uniform possible modelled induction, both (a) the
sensitivity to distribution histogram,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo)))

and (b) the sensitivity to model,

− ln |max({(D, Q̂h,d,D,U(Ao,zh , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao ≈ AED,F(D)
o })|

vary against the log-likelihood. That is, in classical modelled induction in
some circumstances, the optimisation of the log-likelihood tends to minimise
the sensitivity to parameter.
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5.5.11 Tractable transform induction

It was noted at the beginning of section ‘Specialising induction’ that, al-
though the maximum likelihood estimate for the model, T̃o, is computable for
uniform possible derived induction,

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †})

the computation is not tractable. Insofar as the uniform possible iso-derived
history probability function approximates to the specialising history proba-
bility function, PU,X,Hh,d,p,To ≈ PU,X,G,To,H, consider instead computing the
maximum likelihood estimate for the model, T̃o, for specialising induction,

T̃o ∈ maxd({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})

or

T̃o ∈ mind({(T,CG,Vo,T,H(T )s(Ho)) : T ∈ TU,Vo})

This computation is more tractable, because there is no need to compute
the derived function, DU,i,T,zo ∈ AU,i,Vo,zo :→ AU,i,W,zo . However, it is still
necessary to compute the set of substrate transforms, TU,Vo , and so the com-
putation of the minimum coder space is still intractable.

It is conjectured in section ‘Inducers and Compression’, above, that, al-
though the specialising derived substrate history coder, CG,V,T,H, is defined
completely separately of the notions of alignment and independence, the
properties of the minimum coder space are similar in many ways to the prop-
erties of the maximum summed alignment valency-density of the tractable
limited-models summed alignment valency-density substrate aligned non over-
lapping infinite-layer fud decomposition inducer,

I
′

z,Sd,D,F,∞,n,q ∈ inducers(z)

Given non-independent substrate histogram A ∈ Az \ {AX}, the midising,
idealising fud decomposition inducer is defined,

I
′∗
z,Sd,D,F,∞,n,q(A) =

{(D, I∗≈R(algnValDensSum(UA)(A,DD))) :

D ∈ DF,∞,UA,VA ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(A ∗ C ∗ FT) > 0)}

where (i) the limited-models fuds, Fq is the intersection of limited-breadth,
limited-layer, limited-underlying and limited-derived fuds, Fq = Fu ∩ Fd ∩
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Fh ∩ Fb, (ii) cont(D) = elements(contingents(D)), (iii) ()D ∈ DF → D, and
(iv) the summed derived alignment valency density algnValDensSum(U) ∈
A×D → R is defined as

algnValDensSum(U)(A,D) :=∑
(C,T )∈cont(D)

algn(A ∗ C ∗ T )/capacityValency(U)((A ∗ C ∗ T )FS)

The fud decomposition minimum space specialising derived search function
for history H ∈ HU,X is defined in terms of the expanded specialising derived
history coder, CG,T,H(T ) ∈ coders(HU,X), as

ZD,F,P,m,G,T,H(H) = {(D,−CG,T,H(DT)s(H)) : D ∈ DF,U,P}

It is maximised by finding the fud decomposition D ∈ DF,U,P which minimises
the specialising derived substrate history coder space, CG,V,T,H(DPV T)s(H)
where V = vars(H).

The summed alignment valency-density decomposition inducer, I
′

z,Sd,D,F,∞,n,q,
application also defines a fud decomposition search function, but restricted
to the limited-models non-overlapping fud decompositions, DF,U,P∩ trees(S ×
(Fn ∩ Fq)) ⊆ DF,U,P. Define the limited-models summed alignment valency-
density aligned non-overlapping fud decomposition search function

ZD,F,P,n,q,Sd(H) =

{(D, I∗≈R(
∑

algn(A ∗ C ∗ FT)/w
1/mF

F : (C,F ) ∈ cont(D))) :

D ∈ DF,U,P ∩ trees(S × (Fn ∩ Fq)), und(D) ⊆ V,

∀(C,F ) ∈ cont(D) (algn(A ∗ C ∗ FT) > 0)} ∪
{(Du, 0)}

whereWF = der(F ), wF = |WC
F |, mF = |WF |, V = vars(H), A = histogram(H),

the unary fud decomposition Du = {((∅, {Tu}), ∅)}, and the unary transform
Tu = {V CS}T.

The limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd(H), is maximised by search-
ing for the fud decomposition D ∈ maxd(ZD,F,P,n,q,Sd(H)) ⊂ DF,U,P, which
maximises summed alignment valency-density,

algnValDensSum(U)(A,DD) =
∑

(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F
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In section ‘Inducers and Compression’, it is conjectured that for all finite
systems and finite event identifier sets there exists a class of limited-models
fuds such that the search functions are positively correlated for uniform
history probability function,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃Fq ⊂ F (covariance(HU,X × {1/|HU,X |})

(maxr ◦ ZD,F,P,m,G,T,H,maxr ◦ ZD,F,P,n,q,Sd) ≥ 0))

The discussion considers the relations between the summed alignment valency-
density and the specialising space. In particular, it is shown that the summed
alignment valency-density (a) varies against the derived entropy of the nul-
lable transform,

algnValDensSum(U)(A,DD) ∼ − entropy(A ∗DT)

(b) varies against the possible derived volume w′ = |(DT)−1|,

algnValDensSum(U)(A,DD) ∼ 1/w′

(c) varies with the expected component entropy,

algnValDensSum(U)(A,DD) ∼ entropyComponent(A,DT)

and (d) varies with the component size cardinality relative entropy,

algnValDensSum(U)(A,DD) ∼ entropyRelative(A ∗DT, V C ∗DT)

With regard to this last relation, note that although the maximisation of
the midisation alignment tends to minimise the mid component size car-
dinality relative entropy, entropyRelative(A ∗ C ∗ FT, C ∗ FT) ≈ 0 where
(C,F ) ∈ cont(D), the subsequent maximisation of the idealisation alignment
in the super-decomposition tends to increase the overall relative entropy.

Given this evidence for the correlation between the fud decomposition mini-
mum space specialising derived search function, ZD,F,P,m,G,T,H, and the tractable
limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd, conjecture that, in the case
where the model, To, is unknown, the maximum likelihood estimate for the
model for specialising induction,

T̃o ∈ maxd({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})
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or

T̃o ∈ mind({(T,CG,Vo,T,H(T )s(Ho)) : T ∈ TU,Vo})

can be tractably approximated by the maximisation of the tractable limited-
models summed alignment valency-density substrate aligned non-overlapping
infinite-layer fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q,

T̃o ≈ DT
o,Sd

where

Do,Sd ∈ maxd(I
′∗
zo,Sd,D,F,∞,n,q(Ao))

and Ao 6= AX
o . The tractable model, Do,Sd, is defined explicitly,

Do,Sd ∈ maxd({(D, I∗≈R(algnValDensSum(U)(Ao, D
D))) :

D ∈ DF,∞,U,Vo ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(Ao ∗ C ∗ FT) > 0)})

The approximation, DT
o,Sd, can be compared to the maximum likelihood esti-

mate, T̃o, by computing the relative entropy between derived,

entropyRelative(Ao ∗ T̃o, Ao ∗DT
o,Sd)

The approximation improves as the relative entropy decreases.

The accuracy of the approximation can be defined as the ratio of the tractable
model specialising likelihood to the maximum model specialising likelihood,

0 <
Q̂G,DT

o,Sd,H,U
(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

≤ 1

The accuracy is computable, though not tractable and so not necessarily
practicable. The definition of accuracy is consistent with the gradient of the
likelihood function at the mode,

Q̂G,DT
o,Sd,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

∼ ∂(Ln,U,X,To(0))(λo)

So the accuracy varies against the sensitivity to model,

Q̂G,DT
o,Sd,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

∼ −(−∂(Ln,U,X,To(0))(λo))

∼ structure(U,X)(PU,X,G,To,H, CG,T,H(To))

∼ −(− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})|)
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It was noted above that, in specialising induction, where P = PU,X,G,To,H, the
maximisation of the log likelihood also tends to minimise the sensitivity to
model,

− ln |max({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})| ∼ − ln Q̂G,To,H,U(zo)(Ao)

So, although the maximum model specialising likelihood, Q̂G,T̃o,H,U
(zo)(Ao),

appears in the denominator of the accuracy, the accuracy of the tractable
model in fact varies with the log-likelihood,

Q̂G,DT
o,Sd,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

∼ ln Q̂G,To,H,U(zo)(Ao)

That is, although the model obtained from the tractable summed alignment
valency-density inducer is merely an approximation, in the cases where the
log-likelihood is high, and so the sensitivity to model is low, the approximation
may be reasonably close nonetheless.

Consider the tractable model obtained by maximisation of the derived
alignment valency-density of the tractable limited-models derived alignment
valency-density substrate non-overlapping infinite-layer fud inducer,

I
′

z,ad,F,∞,n,q ∈ inducers(z)

Given non-independent substrate histogram A ∈ Az \ {AX}, the midising fud
inducer is defined,

I
′∗
z,ad,F,∞,n,q(A) = {(F, I∗≈R(algn(A ∗ FT)/w1/m)) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

Let the tractable derived alignment valency-density fud be

Fo,ad ∈ maxd(I
′∗
zo,ad,F,∞,n,q(Ao))

In order for the inducer to be alignment-bounded while tractably lifting to
derived transform, it is necessary to maximise formal-abstract equality by
the maximisation of midisation alignment, which is approximated by the
maximisation of derived alignment valency-density. The maximisation of the
midisation alignment, however, tends to minimise the mid component size
cardinality relative entropy,

entropyRelative(A ∗ FT
o,ad, V

C
o ∗ FT

o,ad) ≈ 0
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whereas the fud decomposition, Do,Sd, which has the fud, Fo,ad, in its root,
{((∅, Fo,ad), ·)} = Do,Sd, restores the relative entropy by maximisation of the
idealisation alignment during decomposition,

entropyRelative(A ∗DT
o,Sd, V

C
o ∗DT

o,Sd) > 0

so the tractable derived alignment valency-density fud accuracy is less than
tractable summed alignment valency-density fud decomposition accuracy,

Q̂G,FT
o,ad,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

<
Q̂G,DT

o,Sd,H,U
(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

Consider the tractable model obtained by maximisation of the derived align-
ment of the tractable limited-models derived alignment substrate non-overlapping
infinite-layer fud inducer,

I
′

z,a,F,∞,n,q ∈ inducers(z)

Given non-independent substrate histogram A ∈ Az \ {AX}, the fud inducer
is defined,

I
′∗
z,a,F,∞,n,q(A) = {(F, I∗≈R(algn(A ∗ FT))) : F ∈ F∞,UA,VA ∩ Fn ∩ Fq}

Let the tractable derived alignment fud be

Fo,a ∈ maxd(I
′∗
zo,a,F,∞,n,q(Ao))

The component size cardinality relative entropy of the derived alignment fud
is sometimes higher than that of the derived alignment valency-density fud,

entropyRelative(A ∗ FT
o,ad, V

C
o ∗ FT

o,ad) < entropyRelative(A ∗ FT
o,a, V

C
o ∗ FT

o,a)

although the derived entropy is sometimes higher,

entropy(A ∗ FT
o,ad) < entropy(A ∗ FT

o,a)

so conjecture that the accuracy is sometimes also greater,

Q̂G,FT
o,ad,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

<
Q̂G,FT

o,a,H,U
(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

but the derived alignment fud inducer, I
′
z,a,F,∞,n,q, has limited derived volume

with respect to the summed alignment valency-density fud decomposition in-
ducer, I

′

z,Sd,D,F,∞,n,q, so conjecture that the accuracy is still less than that of
the fud decomposition inducer,

Q̂G,FT
o,a,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

<
Q̂G,DT

o,Sd,H,U
(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)
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Consider the practicable model obtained by maximisation of the summed
shuffle content alignment valency-density of the practicable highest-layer summed
shuffle content alignment valency-density fud decomposition inducer,

I
′

z,Scsd,D,F,∞,q,P,d ∈ inducers(z)

Given substrate histogram A ∈ Az, the practicable fud decomposition inducer
is defined in section ‘Optimisation’, above, as

I
′∗
z,Scsd,D,F,∞,q,P,d(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,d)), {D} = Q

Let the practicable fud decomposition be

Do,Scsd,P ∈ maxd(I
′∗
zo,Scsd,D,F,∞,q,P,d(Ao))

The practicable fud decomposition inducer imposes a sequence on the search
and other constraints that do not apply to the tractable summed alignment
valency-density decomposition inducer, I

′

z,Sd,D,F,∞,n,q, corresponding to the
limited-models summed alignment valency-density aligned non-overlapping
fud decomposition search function, ZD,F,P,n,q,Sd, so conjecture that the ac-
curacy is less than that of the tractable fud decomposition inducer,

Q̂G,DT
o,Scsd,P ,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

<
Q̂G,DT

o,Sd,H,U
(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

It is shown above in classical uniform possible modelled induction, where
the history probability function is uniform possible iso-derived historically
distributed, P = PU,X,Hh,d,p,To , that, in the case where (i) the size is less than
the volume, zo < vo, but the sample approximates to the naturalisation,
Ao ≈ Ao ∗ To ∗ T †o , and (ii) the maximum likelihood estimate relative entropy
is high, entropyCross(Ao ∗ To, V

C
o ∗ To) > ln |T−1

o |, (a) the log likelihood of
the iso-derived conditional stuffed historical probability distribution at the
maximum likelihood estimate varies against the specialising derived substrate
history coder space,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

(b) the sensitivity to distribution varies against the log likelihood,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ − ln Q̂h,d,To,U(Ao,zh , zo)(Ao)
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and (c) the sensitivity to model varies against the log likelihood,

− ln |max({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})| ∼
− ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

Insofar as the uniform possible iso-derived history probability function ap-
proximates to the specialising history probability function, PU,X,Hh,d,p,To ≈
PU,X,G,To,H, conjecture that the model, DT

o,Sd, obtained by the maximisation

of the tractable summed alignment valency-density inducer, I
′

z,Sd,D,F,∞,n,q, is
also a tractable approximation to the maximum likelihood estimate for the
model for uniform possible iso-derived induction,

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})

That is, in the near-natural, high relative entropy case, a tractable maximum
likelihood estimate for the model may be obtained for classical modelled in-
duction by optimisation of the summed alignment valency-density inducer,

T̃o ≈ DT
o,Sd

The accuracy of the approximation can be defined as the ratio of the tractable
model uniform possible iso-derived likelihood to the maximum model uniform
possible iso-derived likelihood,

0 <
Q̂h,d,DT

o,Sd,U
(Ao,zh , zo)(Ao)

Q̂h,d,T̃o,U
(Ao,zh , zo)(Ao)

≤ 1

Just as the tractable model specialising accuracy varies with the log-likelihood,
so too does the tractable model uniform possible iso-derived accuracy,

Q̂h,d,DT
o,Sd,U

(Ao,zh , zo)(Ao)

Q̂h,d,T̃o,U
(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

Again, in the cases where the log-likelihood is high, and so the sensitivity to
model is low, the tractable approximation in the near-natural, high relative
entropy case may be reasonably close.

5.5.12 Tractable functional definition set induction

In section ‘Uniform possible derived functional definition set induction’ it is
shown that the maximum likelihood estimate for the model, F̃o, is computable,
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if an approximation is used for the fud-independent, A
EF(F )
o ,

F̃o ∈ maxd({(F, 1

|ran(DU,i,F,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈D−1
U,i,F,zo

(DU,F,zo (Ao))Qm,U(Ao, zo)(B)
) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao = Z1/|F | ∗
∑
T∈F

Ao ∗ TF ∗ T †F})

However, the computation is not tractable. Insofar as the uniform possi-
ble iso-fud history probability function approximates to the specialising fud
history probability function, PU,X,Hh,d,p,Fo ≈ PU,X,G,Fo,H, consider instead com-
puting the maximum likelihood estimate for the model, F̃o, for specialising fud
induction,

F̃o ∈ maxd({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})

or

F̃o ∈ mind({(F,CG,Vo,F,H(F Vo)s(Ho)) : F ∈ FU,Vo})

This computation is more tractable, because there is no need to compute the
derived set function, DU,i,F,zo . However, it is still necessary to compute the
set of substrate fuds, FU,Vo , and so the computation of the minimum coder
space is still intractable.

It is conjectured in section ‘Artificial neural networks and Compression’,
above, that the properties of the minimum coder space of the specialising
fud substrate history coder, CG,V,F,H, are similar, in some supervised cases of
search parameters P ∈ L(X ) and histogram A ∈ AU,i,V,z, to the properties of
the minimum least squares loss of the least squares gradient descent substrate
net tree searcher, ZP,A,gr,lsq.

Let the set of artificial neural networks be defined

nets := {G : G ∈ L(P(V)× V × L(R)), ∀(·, (V, ·, Q)) ∈ G (|Q| = |V |+ 1)}

Define the graph, graph ∈ nets→ L(P(V)× V) as

graph(G) := {(i, (V,w)) : (i, (V,w, ·)) ∈ G}

Define the real weights, weights ∈ nets→ L(R) as

weights(G) := concat({(i, Q) : (i, (·, ·, Q)) ∈ G})
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Define the set of transforms, fud(σ) ∈ nets→ P(Tf) as

fud(σ)(G) :=

{({SV ∪ {(w, σ(
∑

i∈{1...n}

QiSi + Qn+1))} : S ∈ Rn} × {1}, {w}) :

(·, (V,w,Q)) ∈ G, n = |V |}

where the activation function is σ ∈ R :→ R.

The least squares gradient descent substrate net tree searcher is defined

ZP,A,gr,lsq = searchTreer(nets(U,K, σ), PP,A,gr,lsq, {GR})

where (i) the substrate net set is nets(U, V, σ) = {G : G ∈ nets, fud(σ)(G) ∈
F∞,U,V }, (ii) the initial substrate net is GR ∈ nets(U,K, σ), (iii) the neigh-
bourhood function is

PP,A,gr,lsq(G) = {G′ : lsq(σ)(A,G,K) > t,

G′ ∈ nets(U,K, σ), graph(G′) = graph(G),

Q = weights(G), Q′ = weights(G′),

Q′ = {(i, Qi − r × dlsq(σ)(i)(A,G,K)(Q)) : i ∈ {1 . . . |Q|}}}

(iv) the loss threshold is t ∈ set(P ), (v) the rate of descent is r ∈ set(P ),
(vi) the activation function is σ ∈ set(P ), (vii) the query variables are K ∈
set(P ), (viii) the least squares loss function of the fud lsq ∈ A×F×P(V)→ R
is

lsq(A,F,K) :=
∑

(S,c)∈A∗XF

(
c×

∑
i∈{1...m}

((S%WF )
[]
i − (S%(V \K))

[]
i )

2
)

(ix) the derived dimension is m = |WF | = |(V \ K)|, (x) the least squares
loss function of the net lsq(σ) ∈ A× nets× P(V)→ R is

lsq(σ)(A,G,K) := lsq(A, fud(σ)(G), K)

and (xi) the derivative with respect to the i-th weight is dlsq(σ)(i) ∈ A ×
nets× P(V)→ (L(R)→ R).

The fud minimum space specialising fud search function for history H ∈ HU,X

is defined in terms of the expanded specialising fud history coder, CG,F,H(F ) ∈
coders(HU,X), as

ZF,P,m,G,F,H(H) = {(F,−CG,F,H(F )s(H)) : F ∈ FU,P}
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It is maximised by finding the fud F ∈ FU,P which minimises the special-
ising fud substrate history coder space, CG,V,F,H(F V )s(H) where V = vars(H).

The least squares gradient descent substrate net tree searcher, ZP,A,gr,lsq, also
defines a fud search function, but restricted to the neural net substrate fud
set, F∞,U,V,σ = F∞,U,V ∩ (fud(σ) ◦ nets). Let history H ∈ HU,X be such that
its histogram A = histogram(H) satisfies the supervised constraints, of (i)
real valued variables, (ii) causal histogram, and (iii) a literal frame, imposed
by the search parameters P of the least squares gradient descent substrate net
tree searcher, ZP,A,gr,lsq. Define the least squares gradient descent fud search
function as

ZF,P,P,gr,lsq(H) =

{(fud(σ)(G),−lsq(σ)(A,G,K)) : Q = leaves(tree(ZP,A,gr,lsq)), {G} = Q}

In section ‘Artificial neural networks and Compression’ it is conjectured
that, given search parameters P , there sometimes exists a subset of his-
tories HU,X,P ⊂ HU,X satisfying the constraints of (i) real valued variables,
(ii) causal histogram, (iii) a literal frame, and (iv) clustered histogram such
that there is a positive correlation between the least squares gradient descent
fud search function, ZF,P,P,gr,lsq, and the fud minimum space specialising fud
search function, ZF,P,m,G,F,H,

covariance(PU,X,P )(maxr ◦ ZF,P,m,G,F,H,maxr ◦ ZF,P,P,gr,lsq) ≥ 0

where PU,X,P = HU,X,P ×{1/|HU,X,P |}. The generalisation of a correlation to
all cases of finite systems and finite event identifier sets cannot be made be-
cause the history, H, is not independent of the search parameters, P . Least
squares gradient descent supervised neural net optimisation requires specific
configuration for each history.

The discussion considers the relations between the negative least squares
loss and the specialising space. In the computations of alignment and en-
tropy that follow, the derived variables are discretised to the values of the
label variables, D = ∪{Uv : v ∈ (V \K)}. It is shown that the negative least
squares loss (a) varies against the derived entropy of the fud transform,

− lsq(A,FD, K) ∼ − entropy(A ∗ FT
D)

(b) varies against the effective derived volume

− lsq(A,FD, K) ∼ − |(A ∗ FT
D)F|
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(c) varies with the expected component entropy,

− lsq(A,FD, K) ∼ entropyComponent(A,FT
D)

and (d) varies with the component size cardinality relative entropy,

− lsq(A,FD, K) ∼ entropyRelative(A ∗ FT
D , V

C ∗ FT
D)

This last property only holds where the histogram is clustered by the label
variables, which requires alignment within the query variables, algn(A%K) >
0.

The discussion goes on to consider the relations between the negative least
squares loss and the specialising fud space with regard to the entropy proper-
ties by layer. That is, the least squares gradient descent fud search function
is also such that (a) the derived entropy decreases up the layers,

∀i ∈ {2 . . . l} (entropy(A ∗ FT
{1...i},D) < entropy(A ∗ FT

{1...i−1},D))

(b) the effective derived volume decreases up the layers,

∀i ∈ {2 . . . l} (|(A ∗ FT
{1...i},D)F| < |(A ∗ FT

{1...i−1},D)F|)

(c) the expected component entropy increases up the layers,

∀i ∈ {2 . . . l}
(entropyComponent(A,FT

{1...i},D) > entropyComponent(A,FT
{1...i−1},D))

and (d) the component size cardinality relative entropy increases up the lay-
ers,

∀i ∈ {2 . . . l}
(entropyRelative(A ∗ FT

{1...i},D, V
C
D ∗ FT

{1...i},D) >

entropyRelative(A ∗ FT
{1...i−1},D, V

C
D ∗ FT

{1...i−1},D))

Given this evidence for the correlation in some cases between the fud mini-
mum space specialising fud search function, ZF,P,m,G,F,H, and the least squares
gradient descent fud search function, ZF,P,P,gr,lsq, conjecture that, in the case
where the model, Fo, is unknown, the maximum likelihood estimate for the
model for specialising induction,

F̃o ∈ maxd({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})
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or

F̃o ∈ mind({(F,CG,Vo,F,H(F Vo)s(Ho)) : F ∈ FU,Vo})

can be tractably approximated by the maximisation of the least squares gra-
dient descent fud search function,

F̃o ≈ Fo,gr,lsq

where

Fo,gr,lsq ∈ maxd(ZF,P,Po,gr,lsq(Ho))

and the search parameters, Po, are configured for the given sample history,
Ho.

The tractable model is defined explicitly, Fo,gr,lsq = fud(σ)(G) where {G} =
leaves(tree(ZPo,Ao,gr,lsq)).

The accuracy of the approximation can be defined as the ratio of the tractable
model specialising likelihood to the maximum model specialising likelihood,

0 <
Q̂G,Fo,gr,lsq,H,U(zo)(Ao)

Q̂G,F̃o,H,U
(zo)(Ao)

≤ 1

The accuracy varies against the sensitivity to model,

Q̂G,Fo,gr,lsq,H,U(zo)(Ao)

Q̂G,F̃o,H,U
(zo)(Ao)

∼ −(− ln |max({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})|)

and varies with the log-likelihood,

Q̂G,Fo,gr,lsq,H,U(zo)(Ao)

Q̂G,F̃o,H,U
(zo)(Ao)

∼ ln Q̂G,Fo,H,U(zo)(Ao)

That is, although the model obtained from the least squares gradient descent
fud search function is merely an approximation, in the cases where the log-
likelihood is high, and so the sensitivity to model is low, the approximation
may be reasonably close nonetheless.
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It is shown above in classical uniform possible fud induction, where the
history probability function is uniform possible iso-fud historically distributed,
P = PU,X,Hh,d,p,Fo , that, in the case where (i) the size is less than the volume,

zo < vo, but the sample approximates to the fud-independent, Ao ≈ A
EF(Fo)
o ,

and (ii) the maximum likelihood estimate relative entropies are high, ∀T ∈
Fo (entropyCross(Ao ∗ TFo , V

C
o ∗ TFo) > ln |T−1

Fo
|), (a) the log likelihood of the

iso-fud conditional stuffed historical probability distribution at the maximum
likelihood estimate varies against the specialising fud substrate history coder
space,

ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao) ∼ − CG,Vo,F,H(F Vo
o )s(Ho)

(b) the sensitivity to distribution varies against the log likelihood,

sum(sensitivity(U)(Q̂h,d,Fo,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

and (c) the sensitivity to model varies against the log likelihood,

− ln |max({(F, Q̂h,d,F,U(Ao,zh , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao ≈ AEF(F )
o })| ∼

− ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

Insofar as the uniform possible iso-fud history probability function approxi-
mates to the specialising history probability function, PU,X,Hh,d,p,Fo ≈ PU,X,G,Fo,H,
conjecture that the model, Fo,gr,lsq, obtained by the maximisation of the least
squares gradient descent fud search function, ZF,P,P,gr,lsq, is also a tractable
approximation to the maximum likelihood estimate for the model for uniform
possible iso-fud induction,

F̃o ∈ maxd({(F, Q̂h,d,F,U(Ao,zh , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao ≈ AEF(F )
o })

That is, in the near-natural, high relative entropy case, a tractable maximum
likelihood estimate for the model may be obtained for classical modelled in-
duction by optimisation of the least squares gradient descent fud search,

F̃o ≈ Fo,gr,lsq

The accuracy of the approximation can be defined as the ratio of the tractable
model uniform possible iso-fud likelihood to the maximum model uniform
possible iso-fud likelihood,

0 <
Q̂h,d,Fo,gr,lsq,U(Ao,zh , zo)(Ao)

Q̂h,d,F̃o,U
(Ao,zh , zo)(Ao)

≤ 1
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Just as the tractable model specialising accuracy varies with the log-likelihood,
so too does the tractable model uniform possible iso-fud accuracy,

Q̂h,d,Fo,gr,lsq,U(Ao,zh , zo)(Ao)

Q̂h,d,F̃o,U
(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,Fo,U(Ao,zh , zo)(Ao)

Again, in the cases where the log-likelihood is high, and so the sensitivity to
model is low, the tractable approximation in the near-natural, high relative
entropy case may be reasonably close.

5.5.13 Tractable functional definition set decomposition induction

In section ‘Uniform possible derived functional definition set decomposition
induction’ it is shown that the maximum likelihood estimate for the model,
D̃o, is computable, if an approximation is used for the fud-decomposition-

independent, A
ED,F(D)
o ,

D̃o ∈

maxd({(D, 1

|ran(DU,i,D,F,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈D−1
U,i,D,F,zo

(DU,D,F,zo (Ao))Qm,U(Ao, zo)(B)
) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao = Zzo ∗

 ∑
(C,F )∈cont(D)

(
Z1/|F | ∗

∑
T∈F

Ao ∗ C ∗ TF ∗ T †F

)∧})
However, the computation is not tractable. Insofar as the uniform possi-
ble iso-fud-decomposition history probability function approximates to the
specialising fud decomposition history probability function, PU,X,Hh,d,p,Do ≈
PU,X,G,Do,H, consider instead computing the maximum likelihood estimate for
the model, D̃o, for specialising fud decomposition induction,

D̃o ∈ maxd({(D, Q̂G,D,H,U(zo)(Ao)) : D ∈ DF,U,Vo})

or

D̃o ∈ mind({(D,CG,Vo,D,F,H(DVo)s(Ho)) : D ∈ DF,U,Vo})

This computation is more tractable, because there is no need to compute the
component derived set function, DU,i,D,F,zo . However, it is still necessary to
compute the set of substrate fud decompositions, DF,U,Vo , and so the compu-
tation of the minimum coder space is still intractable.
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Section ‘Tractable transform induction’, above, also considers tractable ap-
proximations to the model for uniform possible derived induction, where the
model is a transform instead of a fud decomposition. There it is shown that
there are tractable and practicable inducers that have entropy properties sim-
ilar to the entropy properties of the specialising coder. The tractable models
then approximate to the maximum likelihood estimate model in specialising
induction and thence uniform possible derived induction.

Section ‘Tractable functional definition set induction’, above, extended the
model from transforms to fuds. Rather than approximating to tractable mod-
els derived from inducers, it is shown that, in some cases, artificial neural
networks can provide approximations to the model in specialising fud induc-
tion and thence uniform possible derived fud induction.

Now the model is extended to fud decompositions. Tractable functional defini-
tion set decomposition induction is more closely related to tractable transform
induction than tractable fud induction because again tractable and practica-
ble inducers are shown to provide approximations to the model in specialising
fud decomposition induction and thence uniform possible derived fud decom-
position induction.

It is conjectured in section ‘Inducers and Compression’, above, that the
properties of the minimum coder space of the specialising fud decomposition
substrate history coder, CG,V,D,F,H, are similar in many ways to the properties
of the maximum summed shuffle content alignment valency-density of the
practicable highest-layer summed shuffle content alignment valency-density
fud decomposition inducer,

I
′

z,Scsd,D,F,∞,q,P,d ∈ inducers(z)

Given parameter tuple P ∈ L(X ) and substrate histogram A ∈ Az, the
practicable fud decomposition inducer is defined in section ‘Optimisation’,
above, as

I
′∗
z,Scsd,D,F,∞,q,P,d(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,d)), {D} = Q

where the summed shuffle content alignment valency-density computer IScsd ∈
computers is defined as

I∗Scsd((A,D)) =∑
(I∗a (A ∗ C ∗ FT)− I∗a ((A ∗ C)R(A∗C) ∗ FT))/I∗cvl(F ) : (C,F ) ∈ cont(D)

947



The fud decomposition minimum space specialising fud decomposition search
function is defined in terms of the expanded specialising fud decomposition
history coder CG,D,F,H(D) ∈ coders(HU,X),

ZD,F,P,m,G,D,F,H(H) = {(D,−CG,D,F,H(D)s(H)) : D ∈ DF,U,P}

The search function is maximised by finding the fud decomposition D ∈
DF,U,P which minimises the specialising fud decomposition substrate history
coder space, CG,V,D,F,H(DV )s(H) where V = vars(H).

The highest-layer summed shuffle content alignment valency-density fud de-
composition inducer, I

′

z,Scsd,D,F,∞,q,P,d, also defines a fud decomposition search
function. Define the practicable highest-layer summed shuffle content align-
ment valency-density fud decomposition search function

ZD,F,P,q,d,P,Scsd(H) =

{(D, I∗Scsd((AH , D))) : Q = leaves(tree(ZP,AH ,D,F,d)), Q 6= ∅, {D} = Q} ∪
{(Du, 0)}

where unary fud decomposition Du = {((∅, {Tu}), ∅)}.

In section ‘Inducers and Compression’, it is conjectured that for all finite
systems and finite event identifier sets there exists a tuple of parameters
such that the search functions are positively correlated for uniform history
probability function,

∀U ∈ U ∀X ⊂ X (|HU,X | <∞ =⇒
∃P ∈ L(X ) (covariance(PU,X)

(maxr ◦ ZD,F,P,m,G,D,F,H,maxr ◦ ZD,F,P,q,d,P,Scsd) ≥ 0))

The discussion considers the relations between the summed shuffle content
alignment valency-density and the specialising space.

Depending on the parameters, P , which imply a set of limited-models, Fq ⊂
F , there is a high correlation between the practicable highest-layer summed
shuffle content alignment valency-density fud decomposition inducer and the
tractable summed alignment valency-density decomposition inducer,

covariance(PU,X)(maxr ◦ ZD,F,P,q,d,P,Scsd,maxr ◦ ZD,F,P,n,q,Sd)

so, given the relations between the summed alignment valency-density and
the specialising space, it is conjectured that the summed shuffle content align-
ment valency-density (a) varies against the derived entropy of the nullable
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transform,

I∗Scsd((A,D)) ∼ − entropy(A ∗DT)

(b) varies against the possible derived volume w′ = |(DT)−1|,

I∗Scsd((A,D)) ∼ 1/w′

(c) varies with the expected component entropy,

I∗Scsd((A,D)) ∼ entropyComponent(A,DT)

and (d) varies with the component size cardinality relative entropy,

I∗Scsd((A,D)) ∼ entropyRelative(A ∗DT, V C ∗DT)

The discussion goes on to consider the relations between the summed shuf-
fle content alignment valency-density and the specialising fud decomposition
space with regard to the entropy properties by layer and slice. That is, the
summed shuffle content alignment valency-density is such that within each
slice, (C,F ) ∈ cont(D), (a) the derived entropy decreases up the layers,

∀i ∈ {2 . . . l} (entropy(A ∗ C ∗ FT
{1...i}) < entropy(A ∗ C ∗ FT

{1...i−1}))

(b) the derived volume decreases up the layers,

∀i ∈ {2 . . . l} (|WC
F,i| < |WC

F,i−1|)

(c) the expected component entropy increases up the layers,

∀i ∈ {2 . . . l}
(entropyComponent(A ∗ C,FT

{1...i}) > entropyComponent(A ∗ C,FT
{1...i−1}))

and (d) the component size cardinality relative entropy increases up the lay-
ers,

∀i ∈ {2 . . . l}
(entropyRelative(A ∗ C ∗ FT

{1...i}, C ∗ FT
{1...i}) >

entropyRelative(A ∗ C ∗ FT
{1...i−1}, C ∗ FT

{1...i−1}))

Given this evidence for the correlation between the fud decomposition min-
imum space specialising fud decomposition search function, ZD,F,P,m,G,D,F,H,
and the practicable highest-layer summed shuffle content alignment valency-
density fud decomposition search function, ZD,F,P,q,d,P,Scsd, conjecture that, in
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the case where the model, Do, is unknown, the maximum likelihood estimate
for the model for specialising fud decomposition induction,

D̃o ∈ maxd({(D, Q̂G,D,H,U(zo)(Ao)) : D ∈ DF,U,Vo})

or

D̃o ∈ mind({(D,CG,Vo,D,F,H(DVo)s(Ho)) : D ∈ DF,U,Vo})

can be tractably approximated by the maximisation of the practicable highest-
layer summed shuffle content alignment valency-density fud decomposition
inducer, I

′

z,Scsd,D,F,∞,q,P,d,

D̃o ≈ Do,Scsd,P

where
Do,Scsd,P ∈ maxd(I

′∗
zo,Scsd,D,F,∞,q,P,d(Ao))

The tractable model is defined explicitly, {Do,Scsd,P} = leaves(tree(ZP,Ao,D,F,d)).

The accuracy of the approximation can be defined as the ratio of the tractable
model specialising likelihood to the maximum model specialising likelihood,

0 <
Q̂G,Do,Scsd,P ,H,U(zo)(Ao)

Q̂G,D̃o,H,U
(zo)(Ao)

≤ 1

The accuracy varies against the sensitivity to model,

Q̂G,Do,Scsd,P ,H,U(zo)(Ao)

Q̂G,D̃o,H,U
(zo)(Ao)

∼ −(− ln |max({(D, Q̂G,D,H,U(zo)(Ao)) : D ∈ DF,U,Vo})|)

and varies with the log-likelihood,

Q̂G,Do,Scsd,P ,H,U(zo)(Ao)

Q̂G,D̃o,H,U
(zo)(Ao)

∼ ln Q̂G,Do,H,U(zo)(Ao)

That is, although the model obtained from the practicable highest-layer summed
shuffle content alignment valency-density fud decomposition inducer is merely
an approximation, in the cases where the log-likelihood is high, and so the sen-
sitivity to model is low, the approximation may be reasonably close nonethe-
less.
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Given that, depending on the parameters, P , there is a high correla-
tion between the practicable highest-layer summed shuffle content alignment
valency-density fud decomposition inducer and the tractable summed align-
ment valency-density decomposition inducer,

covariance(PU,X)(maxr ◦ ZD,F,P,q,d,P,Scsd,maxr ◦ ZD,F,P,n,q,Sd)

consider the tractable model obtained by maximisation of the summed align-
ment valency-density of the tractable summed alignment valency-density de-
composition inducer, I

′

z,Sd,D,F,∞,n,q,

Do,Sd ∈ maxd(I
′∗
zo,Sd,D,F,∞,n,q(Ao))

The tractable model, Do,Sd, is defined explicitly,

Do,Sd ∈ maxd({(D, I∗≈R(algnValDensSum(U)(Ao, D
D))) :

D ∈ DF,∞,U,Vo ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(Ao ∗ C ∗ FT) > 0)})

The entropy properties of the tractable fud decomposition inducer do not
depend directly on the transforms of the fuds of the decomposition, only
on the transform of the decomposition, DT

o,Sd. There is no constraint that
the derived entropy and the possible derived volume decreases up the layers,
nor any constraint that the expected component entropy increases up the
layers. There is no sense that the fuds are built layer by layer in sequence.
Hence conjecture that the accuracy is less than that of the practable fud
decomposition inducer,

Q̂G,Do,Sd,H,U(zo)(Ao)

Q̂G,D̃o,H,U
(zo)(Ao)

<
Q̂G,Do,Scsd,P ,H,U(zo)(Ao)

Q̂G,D̃o,H,U
(zo)(Ao)

It is shown above in classical uniform possible fud decomposition induction,
where the history probability function is uniform possible iso-fud-decomposition
historically distributed, P = PU,X,Hh,d,p,Do , that, in the case where (i) the
size is less than the volume, zo < vo, but the sample approximates to

the fud-decomposition-independent, Ao ≈ A
ED,F(Do)
o , and (ii) the maximum

likelihood estimate relative entropies are high, ∀(C,F ) ∈ cont(Do) ∀T ∈
F (entropyCross(Ao ∗C ∗TF , C ∗TF ) > ln |T−1

F |), (a) the log likelihood of the
iso-fud-decomposition conditional stuffed historical probability distribution at
the maximum likelihood estimate varies against the specialising fud substrate
history coder space,

ln Q̂h,d,Do,U(Ao,zh , zo)(Ao) ∼ − CG,Vo,D,F,H(DVo
o )s(Ho)
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(b) the sensitivity to distribution varies against the log likelihood,

sum(sensitivity(U)(Q̂h,d,Do,U(Ao,zh , zo))) ∼ − ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

and (c) the sensitivity to model varies against the log likelihood,

− ln |max({(D, Q̂h,d,D,U(Ao,zh , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao ≈ AED,F(D)
o })| ∼

− ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

Insofar as the uniform possible iso-fud-decomposition history probability func-
tion approximates to the specialising history probability function, PU,X,Hh,d,p,Do ≈
PU,X,G,Do,H, conjecture that the model, Do,Scsd,P , obtained by the maximisa-
tion of the practicable highest-layer summed shuffle content alignment valency-
density fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d, is also a tractable ap-
proximation to the maximum likelihood estimate for the model for uniform
possible iso-fud-decomposition induction,

D̃o ∈ maxd({(D, Q̂h,d,D,U(Ao,zh , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao ≈ AED,F(D)
o })

That is, in the near-natural, high relative entropy case, a tractable maximum
likelihood estimate for the model may be obtained for classical modelled in-
duction by optimisation of the practicable highest-layer summed shuffle con-
tent alignment valency-density fud decomposition inducer,

D̃o ≈ Do,Scsd,P

The accuracy of the approximation can be defined as the ratio of the tractable
model uniform possible iso-fud-decomposition likelihood to the maximum model
uniform possible iso-fud-decomposition likelihood,

0 <
Q̂h,d,Do,Scsd,P ,U(Ao,zh , zo)(Ao)

Q̂h,d,D̃o,U
(Ao,zh , zo)(Ao)

≤ 1

Just as the tractable model specialising accuracy varies with the log-likelihood,
so too does the tractable model uniform possible iso-fud-decomposition accu-
racy,

Q̂h,d,Do,Scsd,P ,U(Ao,zh , zo)(Ao)

Q̂h,d,D̃o,U
(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,Do,U(Ao,zh , zo)(Ao)

Again, in the cases where the log-likelihood is high, and so the sensitivity to
model is low, the tractable approximation in the near-natural, high relative
entropy case may be reasonably close.
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5.6 Aligned induction

Having considered the case of classical non-modelled induction, where the
history probability function is historically distributed, P = PU,X,Hh

, now con-
sider the special case of aligned non-modelled induction.

In aligned induction, while the distribution probability histogram, Êh, remains
unknown, the independent distribution probability histogram, ÊX

h , is neces-
sary. Now the history probability function, P , is historically distributed but
constrained such that all drawn histories have an independent probability his-
togram equal to the reduced independent distribution probability histogram,
ÂX
H = ÊX

h %VH . Define the iso-independent historically distributed history
probability function PU,X,Hh,y ∈ (HU,X :→ Q[0,1]) ∩ P ,

PU,X,Hh,y :=(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH , Â

X
H = ÊX

h %VH}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , Â
X
H 6= ÊX

h %VH} ∪
{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

That is, drawn histories necessarily have normalised independent histogram
equal to that of the distribution histogram, ∀H ∈ HU,X (PU,X,Hh,y(H) >

0 =⇒ ÂX
H = ÊX

h %VH).

In aligned induction the history probability function is iso-independent his-
torically distributed, P = PU,X,Hh,y.

The independent distribution probability histogram reduced to observation
variables, ÊX

o = ÊX
h %Vo, is known, ÊX

o = ÂX
o .

Given a drawn history H ∈ HU,X , where PU,X,Hh,y(H) > 0, the iso-independent
historical probability of histogram AH = histogram(H) + V CZ

H ∈ AU,i,VH ,zH is
now conditional,

Qh,U(Eh%VH , zH)(AH)∑
B∈Y −1

U,i,Vo,zH
(AX

H) Qh,U(Eh%VH , zH)(B)
=∑

PU,X,Hh,y(G) : G ∈ HU,X , AG = AH∑
PU,X,Hh,y(G) : G ∈ HU,X , VG = VH , |G| = zH

The iso-derived historical probability may be expressed in terms of a histogram
distribution which is not explicitly conditional on the necessary independent,
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ÊX
o ,

Q̂h,y,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,y(G) : G ∈ HU,X , AG = AH)

where the iso-independent conditional stuffed historical probability distribu-
tion is defined

Q̂h,y,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

which is defined if z ≤ size(E). The independent histogram valued integral
histogram function YU,i,V,z is defined

YU,i,V,z = {(A,AX) : A ∈ AU,i,V,z} ⊂ independent

The finite set of iso-independents of independent histogram AX is

Y −1
U,i,V,z(A

X) = {B : B ∈ AU,i,V,z, BX = AX}

In the case where all the independent are possible,

∀A′ ∈ ran(YU,i,V,z) ∃A ∈ AU,i,V,z ((AX = A′) ∧ (A ≤ E))

the normalisation of the iso-derived conditional stuffed historical probability
distribution is a fraction 1/|ran(YU,i,V,z)|,

Q̂h,y,U(E, z)

= {(A, 1

|ran(YU,i,V,z)|
Qh,U(E, z)(A)∑

B∈Y −1
U,i,V,z(AX) Qh,U(E, z)(B)

) : A ∈ AU,i,V,z}

The corresponding iso-independent conditional generalised multinomial prob-
ability distribution is defined

Q̂m,y,U(E, z)

:= {(A, Qm,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Qm,U(E, z)(B)
) : A ∈ AU,i,V,z, AF ≤ EF}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, AF � EF}

which is defined if size(E) > 0.
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The case where all the independent are possible is weaker than for histor-
ical,

∀A′ ∈ ran(YU,i,V,z) ∃A ∈ AU,i,V,z ((AX = A′) ∧ (AF ≤ EF))

In this case the iso-independent conditional generalised multinomial proba-
bility distribution is

Q̂m,y,U(E, z)

= {(A, 1

|ran(YU,i,V,z)|
Qm,U(E, z)(A)∑

B∈Y −1
U,i,V,z(AX) Qm,U(E, z)(B)

) : A ∈ AU,i,V,z}

Assume that the distribution history size, zh, is large with respect to the sam-
ple size zo = size(Ao), so that, in the limit, the iso-independent conditional
stuffed historical probability, Q̂h,y,U(Eh%Vo, zo)(Ao), approximates to the iso-

independent conditional multinomial probability, Q̂m,y,U(Eh%Vo, zo)(Ao). That
is, if zo � zh then

Q̂h,y,U(Eo, zo)(Ao) ≈ Q̂m,y,U(Eo, zo)(Ao)

The iso-independent multinomial parameterised probability density function,
myppdf(z) ∈ ppdfs(v, v), and iso-independent multinomial likelihood func-
tion, mylf(z) ∈ lfs(v, v), corresponding to the iso-independent multinomial
probability distribution, Q̂m,y,U , are not given explicitly here, but are such
that

myppdf(z)(Ê[])(A[]) = mylf(z)(A[])(Ê[]) = Q̂m,y,U(E, z)(A)

Now in the case of aligned induction the real maximum likelihood estimate
Ẽ ′o ∈ Rvo

(0,1) for the parameter of the iso-independent multinomial parame-
terised probability density function is

{Ẽ ′o} = maxd(mylf(zo)(A[]
o))

which is such that ∀i ∈ {1 . . . vo} (∂i(mylf(zo)(A
[]
o))(Ẽ ′o) = 0). The maximum

likelihood estimate Ẽ ′o is only defined in the case where the sample histogram

is completely effective, AF
o = V C

o =⇒ Â
[]
o ∈ Rvo

(0,1), because the binomial

likelihood function is only defined for the open set. That is, d(blf(zo)(0)) is
undefined and so the derivative of the iso-independent multinomial param-
eterised probability density function is undefined where there are ineffective
states.
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In the case of completely effective sample histogram, AF
o = V C

o , the max-
imisation of the iso-independent conditional generalised multinomial proba-
bility parameterised by the complete congruent histograms of unit size is a
singleton of the rational maximum likelihood estimate

{Ẽo} = maxd({(E, Q̂m,y,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

The real maximum likelihood estimate, Ẽ ′o, is not necessarily a rational co-
ordinate, Rvo

(0,1) ⊃ Qvo
(0,1), and so the rational maximum likelihood estimate is

not necessarily equal to the real maximum likelihood estimate. However, it
is conjectured that the maximisation of the distribution approximates to the
maximisation of the likelihood function,

Ẽ[]
o ≈ Ẽ ′o

In the case where the sample histogram is not completely effective, AF
o < V C

o ,
the maximisation of the iso-independent conditional generalised multinomial
probability distribution is well defined, unlike the parameterised probability
density function, but is not necessarily a singleton

|max({(E, Q̂m,y,U(E, zo)(Ao)) : E ∈ AU,Vo,1})| ≥ 1

In the case where the maximisation of the iso-independent conditional gen-
eralised multinomial probability distribution is a singleton, it is equal to the
normalised dependent, Ẽo = ÂY

o , where the dependent AY ∈ AU,V,z is de-
fined in ‘Likely histograms’, above, as the maximum likelihood estimate of
the distribution histogram of the multinomial probability of the histogram, A,
conditional that it is an iso-independent,

{AY} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,V,z(A
X)

) : D ∈ AU,V,z})

The dependent, AY, is sometimes not computable. The finite approximation
to the dependent is

{AY
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ Y −1
U,i,V,z(A

X)
) : D ∈ AU,i,V,kz})

The approximation, AY
k ≈ AY, improves as the scaling factor, k, increases.

Unlike in classical non-modelled induction where the maximum likelihood
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estimate, Ẽo, is equal to the sample probability histogram, Âo, in aligned non-
modelled induction the maximum likelihood estimate is not necessarily equal
to the sample probability histogram. In the case where the sample histogram
is independent the maximum likelihood estimate is necessarily equal to the
sample probability histogram,

Ao = AX
o =⇒ AY

o = Ao =⇒ Ẽo = Âo

In general, the overall maximum likelihood estimate, which is the dependent,
is near the histogram, Ẽo ∼ Âo, only in as much as it is far from the inde-
pendent, Ẽo � ÂX

o .

In section ‘Iso-sets’, above, the degree to which an integral iso-set I ⊆ AU,i,V,z,
where A ∈ I, is said to be aligned-like, or the iso-independence, is defined as

|I ∩ Y −1
U,i,V,z(A

X)|
|I ∪ Y −1

U,i,V,z(A
X)|

In the case of aligned non-modelled induction the integral iso-set is the inte-
gral iso-independents, I = Y −1

U,i,V,z(A
X), and so aligned non-modelled induction

is maximally aligned-like.

The requirement that the distribution history itself be drawable, PU,X,Hh,y(Hh) >
0, has been ignored so far. This requirement modifies the maximisation to
add the constraint that the maximum likelihood estimate be iso-independent,
ẼX

o = ÂX
o ,

{Ẽo} = maxd({(E, Q̂m,y,U(E, zo)(Ao)) : E ∈ AU,Vo,1, EX = ÂX
o })

So, strictly speaking, the maximum likelihood estimate is only approximately
equal to the normalised dependent, Ẽo ≈ ÂY

o , if the dependent is not iso-
independent, AYX

o 6= AX
o .

Consider the maximum likelihood estimate of the iso-independent condi-
tional generalised multinomial probability distribution, Q̂m,y,U . In section
‘Likely histograms’, above, the logarithm of the maximum conditional proba-
bility with respect to the dependent-analogue is conjectured to vary with the
relative space with respect to the independent-analogue, which, in the case
of iso-independent conditional, is the alignment,

ln
Qm,U(AY, z)(A)∑

Qm,U(AY, z)(B) : B ∈ Y −1
U,i,V,z(A

X)
∼ spaceRelative(AX)(A)

= algn(A)
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In aligned induction, where (i) the history probability function is iso-independent
historically distributed, P = PU,X,Hh,y, (ii) the distribution history size is large
with respect to the sample size, zh � zo, and such that (iii) the scaled esti-
mate distribution histogram is integral, Ẽo,zh ∈ Ai, the log likelihood of the
iso-independent conditional stuffed historical probability distribution at the
maximum likelihood estimate varies with the alignment

ln Q̂h,y,U(Ẽo,zh , zo)(Ao) ∼ algn(Ao)

It is conjectured that if the independent is integral, the relative space of
the histogram is positive and less than or equal to the relative space of the
dependent,

AX ∈ Ai =⇒ 0 ≤ spaceRelative(AX)(A) ≤ spaceRelative(AX)(AY)

In ‘Dependent alignment’, above, it is conjectured that in the case where the
independent of the dependent equals the independent, AYX = AX, then the
inequality is

AX ∈ Ai =⇒ 0 ≤ algn(A) ≤ algn(AY)

and that if the histogram is at maximum alignment the dependent equals the
histogram,

algn(A) = algnMax(U)(V, z) =⇒ AY = A

where algnMax = alignmentMaximum.

So conjecture that the scaled maximum likelihood estimate, Zo ∗ Ẽo, is at
least as aligned as the sample histogram, Ao,

algn(Zo ∗ Ẽo) ≥ algn(Ao)

where Zo = scalar(zo).

This may be compared to classical induction in which the alignments are
equal,

Ẽo = Âo =⇒ algn(Zo ∗ Ẽo) = algn(Ao)

It is conjectured that it is also in the case where the sample alignment is max-
imised that the maximum likelihood estimate equals the sample probability
histogram,

algn(Ao) = algnMax(U)(Vo, zo) =⇒ AY
o = Ao =⇒ Ẽo = Âo
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That is, in aligned non-modelled induction there are two cases where the max-
imum likelihood estimate equals the sample probability histogram, Ẽo = Âo,
which are (i) minimum alignment, algn(Ao) = 0, and (ii) maximum align-
ment, algn(Ao) = algnMax(U)(Vo, zo).

In aligned induction, where (i) the history probability function is iso-independent
historically distributed, P = PU,X,Hh,y, (ii) the volume is non-singleton, vo >
1, (iii) the sample histogram is completely effective, AF

o = V C
o , if (iv) the

sample alignment is minimised, algn(Ao) = 0, or maximised, algn(Ao) =
algnMax(U)(Vo, zo), then the maximum likelihood estimate, Ẽo, of the un-
known distribution probability histogram, Êo, in the iso-independent condi-
tional stuffed historical probability distribution, Q̂h,y,U(Eo, zo), is

Ẽo = Âo

Now consider the iso-independent conditional generalised multinomial dis-
tribution sum sensitivity at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂m,y,U(Ẽo, zo)))

In section ‘Iso-sets’, above, it is conjectured that the cardinality of the iso-
independents corresponding to AX varies with the entropy of the independent,
AX

ln |Y −1
U,i,V,z(A

X)| ∼ z × entropy(AX)

so, as the independent entropy, entropy(AX), increases, the set of iso inde-
pendents, Y −1

U,i,V,z(A
X), tends to the set of substrate histograms, AU,i,V,z, and

the sum sensitivity of the denominator decreases, increasing the overall sum
sensitivity. Also, as shown above for classical induction, the sum sensitivity
of the numerator varies against the scaled entropy,

sum(sensitivity(U)(Q̂m,U(E, z))) ∼ −z × entropy(E)

The alignment approximates to the difference in entropies,

algn(A) ≈ z × entropy(AX)− z × entropy(A)

So at low alignments where the maximum likelihood estimate approximates
to the histogram, algn(A) ≈ 0 =⇒ Ẽ ≈ Â, the sum sensitivity varies with
the sample alignment,

algn(A) ≈ 0 =⇒
sum(sensitivity(U)(Q̂m,y,U(Ẽ, z))) ∼ algn(A)
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However, as the alignment of the scaled maximum likelihood estimate, algn(Z∗
Ẽ), increases, the probability of the independent term, Qm,U(Ẽ, z)(AX), de-
creases and the sensitivity of the denominator tends to be correlated with
the numerator, lowering the overall sensitivity. Therefore conjecture that at
high alignments where the maximum likelihood estimate approximates to the
histogram, algn(A) ≈ algnMax(U)(V, z) =⇒ Ẽ ≈ Â, the sum sensitivity
varies against the sample alignment,

algn(A) ≈ algnMax(U)(V, z) =⇒
sum(sensitivity(U)(Q̂m,y,U(Ẽ, z))) ∼ − algn(A)

This implies that there is some intermediate alignment where the sum sen-
sitivity is constant,

0� algn(A)� algnMax(U)(V, z) =⇒
sum(sensitivity(U)(Q̂m,y,U(Ẽ, z))) = c

where c is a constant.

In aligned induction, where (i) the history probability function is iso-independent
historically distributed, P = PU,X,Hh,y, (ii) the volume is non-singleton, vo >
1, (iii) the sample histogram is completely effective, AF

o = V C
o , if (iv) the distri-

bution history size is large with respect to the sample size, zh � zo, and such
that (v) the scaled probability sample histogram is integral, Ao,zh ∈ Ai where

Ao,zh = scalar(zh) ∗ Âo, then (a) the iso-independent conditional stuffed his-
torical distribution sum sensitivity at the maximum likelihood estimate varies
with the sample alignment in the case where the sample alignment is small,

algn(Ao) ≈ 0 =⇒
sum(sensitivity(U)(Q̂h,y,U(Ao,zh , zo))) ∼ algn(Ao)

and (b) the iso-independent conditional stuffed historical distribution sum
sensitivity at the maximum likelihood estimate varies against the sample
alignment in the case where the sample alignment is large,

algn(Ao) ≈ algnMax(U)(Vo, zo) =⇒
sum(sensitivity(U)(Q̂h,y,U(Ao,zh , zo))) ∼ − algn(Ao)

5.7 Idealisation induction

Having considered (i) classical modelled induction, which requires neces-
sary derived, and (ii) aligned non-modelled induction, which requires neces-
sary independent, now consider (iii) idealisation induction, which is a stricter
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intersection between the two, requiring necessary idealisation.

Given some known substrate transform in the sample variables To ∈ TU,Vo ,
the idealisation histogram of the distribution probability histogram is Êh ∗
To ∗ T †Eh

o . In idealisation induction, while the distribution probability his-
togram, Êh, remains unknown, the idealisation distribution probability his-
togram, Êh ∗To ∗T †Eh

o , is known and necessary. That is, the history probabil-
ity function, P , is historically distributed but constrained such that all drawn
histories have a idealisation probability histogram equal to the known ideali-
sation distribution probability histogram, ÂH ∗To∗T †AH

o = Êh∗To∗T †Eh
o %VH .

Define the iso-idealisation historically distributed history probability function
PU,X,Hh,†,To ∈ (HU,X :→ Q[0,1]) ∩ P ,

PU,X,Hh,†,To :=(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH ,

ÂH ∗ To ∗ T †AH
o = Êh ∗ To ∗ T †Eh

o %VH}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , ÂH ∗ To ∗ T †AH
o 6= Êh ∗ To ∗ T †Eh

o %VH} ∪
{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

For drawn histories the idealisation probability histogram is necessary, ∀H ∈
HU,X (PU,X,Hh,†,To(H) > 0 =⇒ ÂH ∗ To ∗ T †AH

o = Êh ∗ To ∗ T †Eh
o %VH).

Not all sizes and sets of variables are necessarily drawable. That is, in some
cases, ∃z ∈ {1 . . . zh} ∃V ⊆ Vh ∀H ∈ HU,X ((zH = z) ∧ (VH = V ) =⇒
PU,X,Hh,†,To(H) = 0). The distribution history can always be drawn, so the
probability function is not a weak probability function,

∑
H∈HU,X

PU,X,Hh,†,To(H) =
1.

All iso-idealisation subsets of the distribution history for a given set of vari-
ables and size are defined as equally probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

(AG ∗ To ∗ T †AG
o = AH ∗ To ∗ T †AH

o =⇒ PU,X,Hh,†,To(G) = PU,X,Hh,†,To(H))

In idealisation induction the history probability function is iso-idealisation
historically distributed, P = PU,X,Hh,†,To .

Given a drawn history H ∈ HU,X , where PU,X,Hh,†,To(H) > 0, the iso-
idealisation historical probability of histogram AH = histogram(H) + V CZ

H ∈
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AU,i,VH ,zH is now conditional,

Qh,U(Eh%VH , zH)(AH)∑
B∈isoi(U)(To,Ao) Qh,U(Eh%VH , zH)(B)

=∑
PU,X,Hh,†,To(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,†,To(G) : G ∈ HU,X , VG = VH , |G| = zH

where isoi(U)(T,A) := Y −1
U,i,T,†,z(A∗T ∗T †A) and the independent components

valued histogram function YU,i,T,†,z is defined

YU,i,T,†,z = {(A,A ∗ T ∗ T †A) : A ∈ AU,i,V,z}

The finite set of iso-idealisations of independent components {(A ∗ CU)X :
C ∈ TP} is

Y −1
U,i,T,†,z(A ∗ T ∗ T

†A) = {B : B ∈ AU,i,V,z, B ∗ T ∗ T †B = A ∗ T ∗ T †A}

The iso-idealisation historical probability may be expressed in terms of a
histogram distribution which is not explicitly conditional on the necessary
idealisation, Êo ∗ To ∗ T †Eo

o ,

Q̂h,†,To,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,†,To(G) : G ∈ HU,X , AG = AH)

where the iso-idealisation conditional stuffed historical probability distribution
is defined

Q̂h,†,T,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈isoi(U)(T,A) Qh,U(E, z)(B)

) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

which is defined if z ≤ size(E).

In the case where all the idealisations are possible,

∀A′ ∈ ran(YU,i,T,†,z) ∃A ∈ AU,i,V,z ((A ∗ T ∗ T †A = A′) ∧ (A ≤ E))

the normalisation of the iso-idealisation conditional stuffed historical proba-
bility distribution is a fraction 1/|ran(YU,i,T,†,z)|,

Q̂h,†,T,U(E, z)

= {(A, 1

|ran(YU,i,T,†,z)|
Qh,U(E, z)(A)∑

B∈isoi(U)(T,A) Qh,U(E, z)(B)
) : A ∈ AU,i,V,z}
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In the case of a full functional transform, Ts = {{w}CS{}V T : w ∈ V }T,
the iso-idealisation is a singleton of the sample histogram, Y −1

U,i,Ts,†,z(A ∗ Ts ∗
T †As ) = {A ∗Ts ∗T †As } = {A}, and so the denominator equals the numerator,∑

(Qh,U(E, z)(B) : B ∈ {A}) = Qh,U(E, z)(A). Thus the iso-idealisation his-

torically distributed history probability is a constant, Q̂h,†,Ts,U(E, z)(Z ∗ Ê) =
1/|AU,i,V,z|, where Z = scalar(z). In this case, the distribution probability his-

togram, Ê, is known, because Ê∗Ts∗T †Es is known, and so everything is known.

At the other extreme of a unary transform, Tu = {V CS}T, the set of iso-
idealisations equals the iso-independents, Y −1

U,i,Tu,†,z(A∗Tu∗T †Au ) = Y −1
U,i,V,z(A

X).
Thus the iso-idealisation conditional stuffed historical probability distribution
equals the iso-independent conditional stuffed historical probability distribu-
tion, Q̂h,†,Tu,U(E, z) = Q̂h,y,U(E, z). In this case idealisation induction re-
duces to aligned non-modelled induction.

The iso-idealisation conditional generalised multinomial probability distri-
bution is defined

Q̂m,†,T,U(E, z)

:= {(A, Qm,U(E, z)(A)∑
B∈isoi(U)(T,A) Qm,U(E, z)(B)

) : A ∈ AU,i,V,z, AF ≤ EF}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, AF � EF}

which is defined if size(E) > 0.

The case where all the idealisations are possible is weaker than for historical,

∀A′ ∈ ran(YU,i,T,†,z) ∃A ∈ AU,i,V,z ((A ∗ T ∗ T †A = A′) ∧ (AF ≤ EF))

In this case the iso-idealisation conditional generalised multinomial probabil-
ity distribution is

Q̂m,†,T,U(E, z)

= {(A, 1

|ran(YU,i,T,†,z)|
Qm,U(E, z)(A)∑

B∈isoi(U)(T,A) Qm,U(E, z)(B)
) : A ∈ AU,i,V,z}

It is assumed that the distribution history size, zh, is large with respect to the
sample size zo = size(Ao), so that, in the limit, the iso-idealisation histori-
cal probability, Q̂h,†,To,U(Eh%Vo, zo)(Ao), approximates to the iso-idealisation

multinomial probability, Q̂m,†,To,U(Eh%Vo, zo)(Ao). That is, if zo � zh then

Q̂h,†,To,U(Eo, zo)(Ao) ≈ Q̂m,†,To,U(Eo, zo)(Ao)
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In the case of completely effective sample histogram, AF
o = V C

o , the maximi-
sation for known transform, To, of the iso-idealisation conditional generalised
multinomial probability parameterised by the complete congruent histograms
of unit size is a singleton of the rational maximum likelihood estimate

{Ẽo} = maxd({(E, Q̂m,†,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

In the case where the sample histogram is not completely effective, AF
o < V C

o ,
the maximisation of the iso-idealisation conditional generalised multinomial
probability distribution for known transform is not necessarily a singleton

|max({(E, Q̂m,†,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})| ≥ 1

In the case where the maximisation of the iso-idealisation conditional gener-
alised multinomial probability distribution is a singleton, it is equal to the nor-
malised idealisation-dependent, Ẽo = Â

†(To)
o , where the idealisation-dependent

A†(T ) ∈ AU,V,z is defined in ‘Likely histograms’, above, as the maximum like-
lihood estimate of the distribution histogram of the multinomial probability
of the histogram, A, conditional that it is an iso-idealisation,

{A†(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isoi(U)(T,A)

) : D ∈ AU,V,z})

The idealisation-dependent, A†(T ), is sometimes not computable. The finite
approximation to the idealisation-dependent is

{A†(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ isoi(U)(T,A)
) : D ∈ AU,i,V,kz})

The approximation, A
†(T )
k ≈ A†(T ), improves as the scaling factor, k, in-

creases.

Unlike in classical non-modelled induction where the maximum likelihood
estimate, Ẽo, is equal to the sample probability histogram, Âo, in idealisation
induction the maximum likelihood estimate is not necessarily equal to the
sample probability histogram. It is only in the case where the sample his-
togram is ideal that the maximum likelihood estimate is necessarily equal to
the sample probability histogram,

Ao = Ao ∗ To ∗ T †Ao
o =⇒ A†(To)

o = Ao =⇒ Ẽo = Âo
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Otherwise, the overall maximum likelihood estimate, which is the idealisation-
dependent, is near the histogram, Ẽo ∼ Âo, only in as much as it is far from
the idealisation, Ẽo � Âo ∗ To ∗ T †Ao

o .

The requirement that the distribution history itself be drawable, PU,X,Hh,†,To(Hh) >
0, has been ignored so far. This requirement modifies the maximisation to
add the constraint that the maximum likelihood estimate be an iso-idealisation,
Ẽo ∗ To ∗ T †Ẽo

o = Âo ∗ To ∗ T †Âo
o ,

{Ẽo} = maxd({(E, Q̂m,†,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1,
E ∗ To ∗ T †Eo = Âo ∗ To ∗ T †Âo

o })

So, strictly speaking, the maximum likelihood estimate is only approximately
equal to the normalised idealisation-dependent, Ẽo ≈ Â

†(To)
o , if the idealisation-

dependent is not an iso-idealisation, A
†(To)
o ∗ To ∗ T †A

†(To)
o

o 6= Âo ∗ To ∗ T †Âo
o . In

the special case, however, where the sample histogram is ideal, the maximum
likelihood estimate is exactly equal to the normalised idealisation-dependent,
Ao = Ao ∗ To ∗ T †Ao

o =⇒ Ẽo = Â
†(To)
o = Âo.

In idealisation induction, where (i) the history probability function is iso-
idealisation historically distributed, P = PU,X,Hh,†,To , given some substrate
transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is ideal, Ao = Ao ∗ To ∗ T †Ao

o , then the maximum like-
lihood estimate, Ẽo, of the unknown distribution probability histogram, Êo,
in the iso-idealisation conditional stuffed historical probability distribution,
Q̂h,†,To,U(Eo, zo), is

Ẽo = Âo

The set of iso-idealisations is a subset of the iso-deriveds, so it is a law-like
iso-set of the histogram, A,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) ⊆ D−1
U,T,z(A ∗ T )

The iso-derivedence or degree of law-likeness is

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|D−1

U,i,T,z(A ∗ T )|
≤ 1

So idealisation induction is not maximally law-like if the iso-deriveds is a
proper superset of the iso-idealisations, D−1

U,T,z(A ∗T ) ⊃ Y −1
U,T,†,z(A ∗T ∗T †A).
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The set of iso-idealisations is a subset of the iso-abstracts, so it is an entity-
like iso-set of the histogram, A,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) ⊆ Y −1
U,T,W,z((A ∗ T )X)

The iso-abstractence or degree of entity-likeness is less than or equal to the
iso-derivedence

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,T,W,z((A ∗ T )X)|

≤
|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|D−1

U,i,T,z(A ∗ T )|

so idealisation induction is less entity-like and more law-like.

The set of iso-idealisations is a subset of the iso-independents, Y −1
U,T,†,z(A ∗

T ∗T †A) ⊆ Y −1
U,V,z(A

X), so the degree to which the iso-idealisations is aligned-

like, or the iso-independence, is |Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|/|Y −1

U,i,V,z(A
X)|.

In some cases the iso-independence of the iso-idealisations is greater than
or equal to the iso-independence of the iso-derived,

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,V,z(A

X)|
≥
|D−1

U,i,T,z(A ∗ T ) ∩ Y −1
U,i,V,z(A

X)|
|D−1

U,i,T,z(A ∗ T ) ∪ Y −1
U,i,V,z(A

X)|

and so idealisation induction may be said to be more aligned-like than clas-
sical modelled induction.

As the iso-independence increases, the maximum likelihood estimate, Ẽo,
which equals the idealisation-dependent, Â

†(To)
o , tends to the dependent, ÂY

o ,
which is independent of the model, To, because the independent analogue,
Ao ∗ To ∗ T †Ao

o , tends to the independent, AX
o , which is also independent of

the model, as the transform becomes more unary.

Given the known substrate transform, To, consider the maximum likelihood
estimate of the iso-idealisation conditional generalised multinomial probabil-
ity distribution, Q̂m,†,To,U . In section ‘Likely histograms’, above, the loga-
rithm of the maximum conditional probability with respect to the dependent-
analogue is conjectured to vary with the relative space with respect to the
independent-analogue. In the case of iso-idealisation conditional,

ln
Qm,U(A†(T ), z)(A)∑

Qm,U(A†(T ), z)(B) : B ∈ isoi(U)(T,A)
∼ spaceRelative(A ∗ T ∗ T †A)(A)
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where the distribution-relative multinomial space is defined, in section ‘Likely
histograms’, above, as

spaceRelative(E)(A) := − ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(E)

In section ‘Transform alignment’, above, because the set of iso-idealisations
is law-like, it is shown that, in the case where the dependent analogue is in
the iso-set, the difference in relative space between the histogram and the
dependent must be in the relative spaces of the components,

A†(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T †A ∗ C)(A ∗ C)

≤
∑

(·,C)∈T−1

spaceRelative(A ∗ T ∗ T †A ∗ C)(A†(T ) ∗ C)

So, in the case of the idealisation-dependent, the component alignments must
be greater than or equal to the component alignments of the histogram,

A†(T ) ∈ D−1
U,T,z(A ∗ T ) =⇒∑

(·,C)∈T−1

algn(A ∗ C) ≤
∑

(·,C)∈T−1

algn(A†(T ) ∗ C)

The idealisation-dependent varies with the histogram, Ẽo ∼ Âo, so conjec-
ture that in the case where the sample is not ideal, A 6= A ∗ T ∗ T †A =⇒
spaceRelative(A ∗ T ∗ T †A)(A) > 0, the log-likelihood varies with the sum of
the component alignments,

ln
Qm,U(A†(T ), z)(A)∑

Qm,U(A†(T ), z)(B) : B ∈ isoi(U)(T,A)
∼

∑
(·,C)∈T−1

algn(A ∗ C)

In idealisation induction, where (i) the history probability function is iso-
idealisation historically distributed, P = PU,X,Hh,†,To , given some substrate
transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is not ideal, Ao 6= Ao ∗ To ∗ T †Ao

o , (iii) the distribution
history size is large with respect to the sample size, zh � zo, and such that
(iv) the scaled estimate distribution histogram is integral, Ẽo,zh ∈ Ai, then the
log likelihood of the iso-idealisation conditional stuffed historical probability
distribution at the maximum likelihood estimate varies with the relative space
of the sample with respect to the idealisation,

ln Q̂h,†,To,U(Ẽo,zh , zo)(Ao) ∼ spaceRelative(Ao ∗ To ∗ T †Ao
o )(Ao)
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and varies with the sum of the component alignments of the sample compo-
nents,

ln Q̂h,†,To,U(Ẽo,zh , zo)(Ao) ∼
∑

(·,C)∈T−1
o

algn(Ao ∗ C)

The set of iso-idealisations is a subset of the intersection of the iso-independents
and iso-deriveds which is a subset of the iso-liftisations which is a subset of
the iso-transform-independents,

Y −1
U,T,†,z(A ∗ T ∗ T

†A)

⊆ Y −1
U,V,z(A

X) ∩D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X)

Since the idealisation entropy is conjectured (i) to be less than or equal to
the independent entropy, entropy(A ∗ T ∗ T †A) ≤ entropy(AX), and (ii) to
be less than or equal to the naturalisation entropy, entropy(A ∗ T ∗ T †A) ≤
entropy(A ∗ T ∗ T †), the idealisation relative space is conjectured (a) to be
less than or equal to the independent relative space, which is the alignment,

spaceRelative(A ∗ T ∗ T †A)(A) ≤ spaceRelative(AX)(A) = algn(A)

and (b) to be less than or equal to the naturalisation relative space,

spaceRelative(A ∗ T ∗ T †A)(A) ≤ spaceRelative(A ∗ T ∗ T †)(A)

Given the known substrate transform, To, consider the log likelihood of the
iso-idealisation conditional generalised multinomial probability distribution,
Q̂m,†,To,U , at the maximum likelihood estimate, in the special case where the

histogram is ideal, Ao = Ao ∗ To ∗ T †Ao
o =⇒ Ẽo = Â

†(To)
o = Âo.

The set of iso-idealisations is a subset of the intersection of the iso-independents
and iso-deriveds,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) ⊆ Y −1
U,V,z(A

X) ∩D−1
U,T,z(A ∗ T )

In section ‘Iso-sets’, above, it is conjectured that the cardinality of the integral
iso-independents varies with the scaled entropy of the independent, AX,

ln |Y −1
U,i,V,z(A

X)| ∼ z × entropy(AX)
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Alignment is approximately the difference in the scaled entropies of the in-
dependent and the histogram,

algn(A) ≈ z × entropy(AX)− z × entropy(A)

so the cardinality of the iso-independents varies with the alignment,

ln |Y −1
U,i,V,z(A

X)| ∼ algn(A)

At high alignments, the integral iso-independents, Y −1
U,i,V,z(A

X), tends to the
integral substrate histograms, AU,i,V,z, so the iso-independence of the set of
iso-idealisations, |Y −1

U,i,T,†,z(A ∗T ∗T †A)|/|Y −1
U,i,V,z(A

X)|, decreases, and the iso-

derivedence, |Y −1
U,i,T,†,z(A∗T ∗T †A)|/|D−1

U,i,T,z(A∗T )|, increases. The sample is
the independent-analogue, so it equals the dependent-analogue and the max-
imum likelihood estimate is just the sample probability histogram, Ẽ = Â. So
the numerator of the iso-idealisation probability for ideal sample equals the
numerator of the iso-derived probability for natural sample, Qm,U(A, z)(A).
At high alignments, the set of iso-idealisations of the denominator approxi-
mates to the iso-deriveds, Y −1

U,T,†,z(A ∗T ∗T †A) ≈ D−1
U,T,z(A ∗T ), so conjecture

that the iso-idealisation conditional generalised multinomial probability varies
with the iso-derived conditional generalised multinomial probability,

ln
Qm,U(A, z)(A)∑

Qm,U(A, z)(B) : B ∈ isoi(U)(T,A)
∼

ln
Qm,U(A, z)(A)∑

Qm,U(A, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T )

and that the iso-idealisation log likelihood varies with the iso-derived log
likelihood,

ln Q̂m,†,T,U(A, z)(A) ∼ ln Q̂m,d,T,U(A, z)(A)

So the log likelihood varies with the size-volume scaled component size car-
dinality sum relative entropy,

ln Q̂m,†,T,U(A, z)(A) ∼
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

The set of iso-idealisations is a subset of the intersection of the iso-independents
and iso-deriveds, Y −1

U,T,†,z(A∗T∗T †A) ⊆ Y −1
U,V,z(A

X)∩D−1
U,T,z(A∗T ), so conjecture
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that the iso-idealisation conditional multinomial distribution sum sensitivity
varies with the iso-independent sum sensitivity,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ∼ sum(sensitivity(U)(Q̂m,y,U(A, z)))

and the iso-derived sum sensitivity,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ∼ sum(sensitivity(U)(Q̂m,d,T,U(A, z)))

In section ‘Aligned induction’, above, it is conjectured that at low alignments,
algn(A) ≈ 0, the sum sensitivity varies with the sample alignment,

algn(A) ≈ 0 =⇒
sum(sensitivity(U)(Q̂m,y,U(A, z))) ∼ algn(A)

but at high alignments, algn(A) ≈ algnMax(U)(V, z), the sum sensitivity
varies against the sample alignment,

algn(A) ≈ algnMax(U)(V, z) =⇒
sum(sensitivity(U)(Q̂m,y,U(A, z))) ∼ − algn(A)

and so there is some intermediate alignment where the sum sensitivity is
independent of the alignment,

0� algn(A)� algnMax(U)(V, z) =⇒
sum(sensitivity(U)(Q̂m,y,U(A, z))) = c

where c is a constant. So in the case of intermediate alignment the iso-
independent sum sensitivity is constant and the iso-idealisation sum sensi-
tivity varies only with the iso-derived sum sensitivity,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ∼ sum(sensitivity(U)(Q̂m,d,T,U(A, z)))

In section ‘Classical modelled induction’, above, it is shown that, given nec-
essary derived, in the special case where the histogram is natural, A =
A ∗ T ∗ T † =⇒ Ẽ = ÂD(T ) = Â, and the component size cardinality
cross entropy is greater than the logarithm of the possible derived volume,
entropyCross(A ∗ T, V C ∗ T ) > lnw′, so the relative entropy is high, the
iso-derived conditional multinomial probability at the maximum likelihood
estimate varies with the underlying-derived relative multinomial probability,

Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)∑
B∈D−1

U,i,T,z(A∗T ) Q̂m,U(A ∗ T ∗ T †, z)(B)
∼ Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

Q̂m,U(A ∗ T, z)(A ∗ T )
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Similarly, given necessary idealisation, if (i) the sample is ideal, A = A ∗ T ∗
T †A =⇒ E = A†(T ) = A, (ii) the relative entropy is high, entropyCross(A ∗
T, V C ∗ T ) > lnw′, and (iii) the alignment is intermediate, algn(A) ≈
algnMax(U)(V, z)/2, then the iso-idealisation conditional multinomial proba-
bility at the maximum likelihood estimate varies with the underlying-derived
relative multinomial probability,

Q̂m,U(A ∗ T ∗ T †A, z)(A ∗ T ∗ T †A)∑
B∈isoi(U)(T,A) Q̂m,U(A ∗ T ∗ T †A, z)(B)

∼ Q̂m,U(A ∗ T ∗ T †A, z)(A ∗ T ∗ T †A)

Q̂m,U(A ∗ T, z)(A ∗ T )

Thus, at intermediate alignments where the sample is ideal, the sum sensi-
tivity of the iso-idealisation conditional multinomial probability distribution,
Q̂m,†,T,U , is conjectured to vary with the unknown-known multinomial proba-
bility distribution sum sensitivity difference,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ∼
sum(sensitivity(U)(Q̂m,U(A, z)))− sum(sensitivity(U)(Q̂m,U(A ∗ T, z)))

and so the sum sensitivity of the iso-idealisation conditional multinomial
probability distribution is sometimes less than or equal to the sum sensitivity
of the multinomial probability distribution,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ≤ sum(sensitivity(U)(Q̂m,U(A, z)))

Note that in classical modelled induction the denominator,∑
B∈D−1

U,i,T,z(A∗T )

Q̂m,U(A ∗ T ∗ T †, z)(B)

is lifted to the derived, Q̂m,U(A ∗ T, z)(A ∗ T ), while in idealisation induction
a rather different denominator,∑

B∈isoi(U)(T,A)

Q̂m,U(A ∗ T ∗ T †A, z)(B)

is lifted to the same derived. It is assumed that, although the set of iso-
idealisations is only a subset of the iso-deriveds because of the intersections
of the iso-independents, these intersections are arbitrary with respect to the
iso-derived at intermediate alignments. That is, the set of iso-idealisations,
isoi(U)(T,A), is assumed to be a representative subset of the set of iso-
derived, D−1

U,i,T,z(A ∗ T ), and so can be lifted.
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The iso-idealisation sum sensitivity varies with the unknown-known sum sen-
sitivity difference similarly to the iso-derived sum sensitivity, and so has sim-
ilar characteristics. However, note that the expected component entropy of
the idealisation components is less than or equal to that of the naturalisation,

entropyComponent(A ∗ T ∗ T †A, T )

= expected(Â ∗ T )({(R, entropy((A ∗ C)X)) : (R,C) ∈ T−1})
≤ expected(Â ∗ T )({(R, entropy(C)) : (R,C) ∈ T−1})
= entropyComponent(A ∗ T ∗ T †, T )

though, because the components are independent, the expected component
entropy of the idealisation is greater than or equal to the expected component
entropy where the sample is not ideal,

entropyComponent(A, T )

= expected(Â ∗ T )({(R, entropy(A ∗ C)) : (R,C) ∈ T−1})
≤ expected(Â ∗ T )({(R, entropy((A ∗ C)X)) : (R,C) ∈ T−1})
= entropyComponent(A ∗ T ∗ T †A, T )

Overall, in the case where the histogram is ideal and the alignment is in-
termediate or higher, the properties of necessary idealisation induction are
expected to be similar to those of necessary derived induction.

In idealisation induction, where (i) the history probability function is iso-
idealisation historically distributed, P = PU,X,Hh,†,To , given some substrate
transform in the sample variables To ∈ TU,Vo , if it is the case that (ii) the
sample histogram is ideal, Ao = Ao ∗ To ∗ T †Ao

o , then the maximum like-
lihood estimate, Ẽo, of the unknown distribution probability histogram, Êo,
in the iso-idealisation conditional stuffed historical probability distribution,
Q̂h,†,To,U(Eo, zo), is Ẽo = Âo, so, if it is also the case that (iii) the alignment
is intermediate or high, algn(Ao) ≥ algnMax(U)(Vo, zo)/2, (iv) the relative
entropy is high, entropyCross(Ao∗To, V

C
o ∗To) > ln |T−1

o |, (v) the distribution
history size is large with respect to the sample size, zh � zo, and such that
(vi) the scaled probability sample histogram is integral, Ao,zh ∈ Ai, then the
iso-idealisation conditional stuffed historical probability distribution at the
maximum likelihood estimate is such that (a) the log likelihood varies with
the iso-derived log likelihood,

ln Q̂h,†,To,U(Ao,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)
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(b) the log likelihood varies with the size-volume scaled component size car-
dinality sum relative entropy,

ln Q̂h,†,To,U(Ao,zh , zo)(Ao) ∼
(zo + vo)× entropy(Ao ∗ To + V C

o ∗ To)

−zo × entropy(Ao ∗ To) − vo × entropy(V C
o ∗ To)

and (c) the sum sensitivity is less than or equal to the sum sensitivity of the
stuffed historical probability distribution at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,†,To,U(Ao,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

If, in addition, (vii) the size is less than the volume, zo < vo, but the sample
approximates to the idealisation, Ao ≈ Ao∗To∗T †Ao

o , then (d) the log likelihood
varies with the scaled component size cardinality relative entropy,

ln Q̂h,†,To,U(Ao,zh , zo)(Ao) ∼ zo × entropyRelative(Ao ∗ To, V
C

o ∗ To)

and (e) the log likelihood varies against the specialising derived substrate
history coder space,

ln Q̂h,†,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

where

CG,V,T,H(T ) = coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)

So (f) the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,†,To,U(Ao,zh , zo))) ∼ − ln Q̂h,†,To,U(Ao,zh , zo)(Ao)

and (g) the sensitivity to model also varies against the log likelihood,

− ln |max({(T, Q̂h,†,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †Ao})| ∼
− ln Q̂h,†,To,U(Ao,zh , zo)(Ao)

Note that the anti-correlation between the log-likelihood and specialising
space,

ln Q̂h,†,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

is conjectured to be weaker than that of classical modelled induction,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

because the expected component entropy of the idealisation is less than or
equal to that of the naturalisation.
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In section ‘Classical modelled induction’, above, it is shown that the iso-
derived conditional stuffed historical probability distribution at the maximum
likelihood estimate, Q̂h,d,To,U(Ao,zh , zo), can be related to queries on the maxi-

mum likelihood estimate of the distribution histogram, Ẽo = Âo, in the special
case where the sample histogram is natural, Ao = Ao ∗ To ∗ T †o . The given
substrate transform must be such that its contraction has underlying vari-
ables that are a subset of the query variables, und(T%

o ) ⊆ K. In the case
where the query histogram consists of one effective state, Q = {(SQ, 1)}, the
application of the query in terms of a modified sample histogram is

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) =

{(N, (Q̂h,d,To,U(Ao,zh , zo)(AQ,N))1/zo) : N ∈ (Vo \K)CS,

AQ,N = Ao − (Ao ∗ CQ) + ((Ao ∗ CQ) % K ∗ {N}U)}∧

where {RQ} = (Q ∗ T%
o )FS, CQ = T−1

o (RQ) and his = histogram ∈ T → A.
If the sample histogram is completely effective, AF

o = V C
o , the modified sample

histogram, AQ,N , can be drawn from the distribution, Q̂h,d,To,U(Ao,zh , zo)(AQ,N) >
0, because its derived is equal to the known derived, AQ,N ∗To = Ao∗To. That
is, the modified sample histogram is in the iso-deriveds, AQ,N ∈ D−1

U,i,To,zo
(Ao∗

To).

However, in the case of idealisation induction, where the idealisation is nec-
essary, the modified sample histogram is not in the iso-idealisations, AQ,N /∈
isoi(U)(To, Ao), if the volume of the label variables is non-singular, |(Vo \
K)C| > 1. That is, strictly speaking, even if the transform is ideal, Ao = Ao∗
To∗T †Ao

o , the application of the query via the model, Q∗T%
o ∗his(T%

o )∗Ao, can-
not be expressed in terms of the iso-idealisation conditional stuffed historical
probability distribution at the maximum likelihood estimate, Q̂h,†,To,U(Ao,zh , zo).

However, it is conjectured that, especially in the case of small label volume,
|(Vo \K)C| ≈ 2, the query sensitivity to the distribution histogram varies as
the iso-idealisation sum sensitivity divided by the size

sum(sensitivity(U)(Q̂h,†,To,U(Ao,zh , zo)))/zo

Although the query application via the model is sometimes not equal to
the estimated transformed conditional product, the query sensitivity to the
distribution histogram is sometimes lower,

sum(sensitivity(U)(Q̂h,†,To,U(Ao,zh , zo)))/zo

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))/zo
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Similarly, the model likelihood of the distribution histogram is sometimes
higher,

Q̂h,†,To,U(Ao,zh , z)(AQ,N) ≥ Q̂h,U(Ao,zh , z)(AQ,N)

In other words, querying via the known derived of the model sometimes
reduces the sensitivity to the unknown and increases the likelihood at the
cost of modifying the query. Note that the degree to which this is case is
lower in idealisation induction than it is in classical modelled induction.

In the discussion above, the model, To ∈ TU,Vo , is known and the ideali-

sation, Êo ∗ To ∗ T †Êo
o , is both necessary and known. Optimisation can be

done to find the maximum likelihood estimate of the distribution histogram
for known model,

{Ẽo} = maxd({(E, Q̂m,†,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

Just as in the discussion above of classical modelled induction, consider the
case where the idealisation, Êo∗To∗T †Êo

o , is still necessary but the model, To,
is unknown and so the idealisation is unknown. Again, the maximum likeli-
hood estimate for the pair (Ẽo, T̃o) can be defined as an optimisation of the
multinomial probability conditional on the iso-idealisations where both the
distribution histogram and transform are treated as arguments to a likelihood
function,

{(Ẽo, T̃o)}

= maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈isoi(U)(T,Ao) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo})

There is, however, no singular solution to this optimisation,

maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈isoi(U)(T,Ao) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo}) ⊇ AU,Vo,1 × {Ts}

where Ts is a self transform. That is, the maximisation does not yield a
single solution for the pair (Ẽo, T̃o). Similarly to classical modelled induction
in the case where the derived is necessary but unknown, in the case where
the idealisation is necessary but unknown, the maximum likelihood estimate
for the model, T̃o, is just the self transform, T̃o = Ts, which is the trivial case
where everything is known.
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Again, this singular solution for unknown transform can be addressed by
relaxing the constraint that the sample be necessarily drawn from the iso-
idealisations of the distribution to the constraint that the sample be possibly
drawn from the iso-idealisations of the distribution. This is equivalent to
assuming that the sample is drawn from the uniform possible iso-idealisation
historically distributed history probability function, PU,X,Hh,†,p,To , which is de-
fined as the solution to

PU,X,Hh,†,p,To :=(⋃{
{(H, 1/

∑
(PU,X,Hh,†,p,To(G) :

G ⊆ Hh%VH , |G| = zH , AG ∗ To ∗ T †AG
o = AH ∗ To ∗ T †AH

o )) :

H ⊆ Hh%VH , |H| = zH}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

The uniform possible iso-idealisation historically distributed history probabil-
ity function is such that given a drawn history H ∈ HU,X

Q̂h,†,To,U(Eh%VH , zH)(AH) = ∑
PU,X,Hh,†,p,To(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,†,p,To(G) : G ∈ HU,X , VG = VH , |G| = zH

The possible history probability function, PU,X,Hh,†,p,To , is related to the iso-

idealisation conditional historical probability distribution, Q̂h,†,To,U(Eh%VH , zH),
in the same way as for the necessary case, PU,X,Hh,†,To , except that the nor-
malising fraction is restored. In the case where all idealisations are possible
the normalising fraction is 1/|ran(YU,i,To,†,zH )|. Any historically drawn history
is possible,

∀H ⊆ Hh%VH (PU,X,Hh,†,p,To(H) > 0)

but sometimes the probability is lower than in the necessary case,

∀H ⊆ Hh%VH (PU,X,Hh,†,To(H) > 0 ⇐⇒ PU,X,Hh,†,p,To(H) ≤ PU,X,Hh,†,To(H))

The uniform possible log likelihood has similar properties to the necessary log
likelihood but restores the normalising fraction,

ln Q̂m,†,T,U(E, z)(A) = ln
Qm,U(E, z)(A)∑

B∈isoi(U)(T,A) Qm,U(E, z)(B)
− ln |ran(YU,i,T,†,z)|

The cardinality of the idealisations, |ran(YU,i,T,†,z)|, varies with the cardinality
of the derived, |ran(DU,i,T,z)|, which is equal to the cardinality of the possible
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derived substrate histograms,

|ran(YU,i,T,†,z)| ∼ |ran(DU,i,T,z)|

=
(z + w′ − 1)!

z! (w′ − 1)!

where w′ = |T−1|. So the additional term in the uniform possible log likeli-
hood, − ln |ran(YU,i,T,†,z)|, varies against the possible derived volume, w′, where
the possible derived volume is less than the size, w′ < z, otherwise against
the size scaled log possible derived volume, z lnw′,

− ln |ran(YU,i,T,†,z)| ∼ − spaceCountsDerived(U)(A, T )

∼ − ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

In uniform possible idealisation induction, where (i) the history probabil-
ity function is uniform possible iso-idealisation historically distributed, P =
PU,X,Hh,†,p,To , given some substrate transform in the sample variables To ∈
TU,Vo , if it is the case that (ii) the sample histogram is ideal, Ao = Ao∗To∗T †Ao

o ,
then the maximum likelihood estimate, Ẽo, of the unknown distribution proba-
bility histogram, Êo, in the iso-idealisation conditional stuffed historical prob-
ability distribution, Q̂h,†,To,U(Eo, zo), is Ẽo = Âo, so, if it is also the case that
(iii) the alignment is intermediate or high, algn(Ao) ≥ algnMax(U)(Vo, zo)/2,
(iv) the relative entropy is high, entropyCross(Ao ∗ To, V

C
o ∗ To) > ln |T−1

o |,
(v) the distribution history size is large with respect to the sample size,
zh � zo, and such that (vi) the scaled probability sample histogram is integral,
Ao,zh ∈ Ai, then the iso-idealisation conditional stuffed historical probability
distribution at the maximum likelihood estimate is such that in addition to
the properties for necessary idealisation induction, formally stated above, the
log likelihood varies against the possible derived volume, w′o, where the possi-
ble derived volume is less than the size, w′o < zo, otherwise against the size
scaled log possible derived volume, zo lnw′o,

ln Q̂h,†,To,U(Ao,zh , zo)(Ao) ∼ − ((w′o : w′o < zo) + (zo lnw′o : w′o ≥ zo))

If, in addition, (vii) the size is less than the volume, zo < vo, but the sample
approximates to the idealisation, Ao ≈ Ao ∗ To ∗ T †Ao

o , then conjecture that,
in the case where the sample history is modal, Ho ∈ maxd(PU,X,Hh,†,p,To), the
log-likelihood of the iso-idealisation conditional stuffed historical probability
distribution varies with its degree of structure with respect to the expanded
specialising derived history coder, CG,T,H,

ln Q̂h,†,To,U(Ao,zh , zo)(Ao) ∼ structure(U,X)(PU,X,Hh,†,p,To , CG,T,H(To))
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Note that this correlation is conjectured to be weaker than that of classical
modelled induction,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ structure(U,X)(PU,X,Hh,d,p,To , CG,T,H(To))

because the correlation between the log-likelihood and the specialising coder
space is weaker.

The maximum likelihood estimate for the pair (Ẽo, T̃o) in the possible case
is

{(Ẽo, T̃o)} = maxd({((E, T ), Q̂m,†,T,U(E, zo)(Ao)) : E ∈ AU,Vo,1, T ∈ TU,Vo})

if there is a unique maximum. This can be rewritten in terms of the idealisation-
dependent,

{T̃o} = maxd({(T, Q̂m,†,T,U(A†(T )
o , zo)(Ao)) : T ∈ TU,Vo})

Strictly speaking, this is only the case for the subset of substrate transforms,
TU,Vo , for which the idealisation-dependent histogram, A

†(T )
o , is defined.

If the optimisation is restricted to ideal transforms, Ao = Ao ∗ T ∗ T †Ao =⇒
A
†(T )
o = Ao, then the optimisation is

{T̃o} = maxd({(T, Q̂m,†,T,U(Ao, zo)(Ao)) : T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao})

In this case, all the idealisations are possible because the distribution equals
the sample, so the optimisation is

{T̃o}

= maxd({(T, 1

|ran(YU,i,T,†,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈isoi(U)(T,Ao) Qm,U(Ao, zo)(B)
) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao})

Now, if the maximum likelihood estimate for the model, T̃o, is unique, it is
computable.

In this case, the numerator, Qm,U(Ao, zo)(Ao), is constant.

The maximum likelihood estimate for the model is not self, T̃o 6= Ts, if

1

|ran(YU,i,T̃o,†,zo)|
Qm,U(Ao, zo)(Ao)∑

B∈isoi(U)(T̃o,Ao) Qm,U(Ao, zo)(B)
>

1

|ran(AU,i,Vo,zo)|
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which is the case if the iso-idealisation conditional multinomial probability is
greater than the inverted average cardinality of the iso-idealisations,

Qm,U(Ao, zo)(Ao)∑
B∈isoi(U)(T̃o,Ao) Qm,U(Ao, zo)(B)

>
|ran(YU,i,T̃o,†,zo)|
|dom(YU,i,T̃o,†,zo)|

The sample is ideal, Ao = Ao ∗To ∗T †Ao
o , so the maximum likelihood estimate

for the model is not unary, T̃o 6= Tu, if the sample is not cartesian, Âo 6= V̂ C
o .

In some cases the maximum likelihood estimate for the model is neither self
nor unary, T̃o /∈ {Ts, Tu}.

In idealisation induction, where (i) the history probability function is uni-
form possible iso-idealisation historically distributed, P = PU,X,Hh,†,p,To , given
some unknown substrate transform in the sample variables To ∈ TU,Vo , if it
is the case that (ii) the sample histogram is ideal, Ao = Ao ∗ To ∗ T †Ao

o , then
the maximum likelihood estimate of the distribution histogram, Ẽo, of the
unknown distribution probability histogram, Êo, in the iso-idealisation condi-
tional stuffed historical probability distribution, Q̂h,†,To,U(Eo, zo), is Ẽo = Âo,
and, if it is also the case that (iii) the distribution history size is large with
respect to the sample size, zh � zo, and such that (iv) the scaled probability
sample histogram is integral, Ao,zh ∈ Ai, then the maximum likelihood es-
timate of the model, T̃o, in the iso-idealisation conditional stuffed historical
probability distribution at the maximum likelihood estimate of the distribu-
tion, Ẽo, is

T̃o ∈ maxd({(T, Q̂h,†,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao})

and in some cases the maximum likelihood estimate for the model, T̃o, is
non-trivial,

T̃o /∈ {Ts, Tu}

5.8 Abstract induction

In classical modelled induction, above, it was shown that if the model,
To ∈ TU,Vo , were unknown then for necessary derived there would be no
unique solution for the maximum likelihood estimate for the pair (Ẽo, T̃o),

maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈D−1
U,i,T,zo

(Ao∗T ) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo}) 6= {(Ẽo, T̃o)}
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If the iso-derived condition is weakened from necessary to possible,

maxd({((E, T ), Q̂h,d,T,U(E, zo)(Ao)) : E ∈ AU,Vo,1, T ∈ TU,Vo})

then in some cases the maximum likelihood estimate for the model, T̃o, is non-
trivial, T̃o /∈ {Ts, Tu}, but at the cost of lower likelihood, PU,X,Hh,d,To(H) >
0 =⇒ PU,X,Hh,d,p,To(H) ≤ PU,X,Hh,d,To(H). Similarly in idealisation induc-
tion, above, where instead of necessary derived the stricter necessary ideali-
sation is required, the iso-idealisation condition must also be weakened from
necessary to possible at the cost of lower likelihood, PU,X,Hh,†,To(H) > 0 =⇒
PU,X,Hh,†,p,To(H) ≤ PU,X,Hh,†,To(H). Now, instead of weakening the condition
from necessary derived to possible derived, consider weakening the condi-
tion to necessary abstract. Now there is a unique solution for the maximum
likelihood estimate for the pair (Ẽo, T̃o).

First, however, consider the case where the given substrate transform in
the sample variables To ∈ TU,Vo , is known.

Given some known substrate transform in the sample variables To ∈ TU,Vo ,
the abstract histogram of the distribution probability histogram is (Êh ∗ To)X.
In abstract induction, while the distribution probability histogram, Êh, re-
mains unknown, the abstract distribution probability histogram, (Êh ∗ To)X,
is known and necessary. That is, the history probability function, P , is his-
torically distributed but constrained such that all drawn histories have a
abstract probability histogram equal to the known abstract distribution proba-
bility histogram, (ÂH ∗ To)X = (Êh ∗ To)X. Define the iso-abstract historically
distributed history probability function PU,X,Hh,w,To ∈ (HU,X :→ Q[0,1]) ∩ P ,

PU,X,Hh,w,To :=(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH ,

(ÂH ∗ To)X = (Êh ∗ To)X}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , (ÂH ∗ To)X 6= (Êh ∗ To)X} ∪
{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

For drawn histories the abstract probability histogram is necessary, ∀H ∈
HU,X (PU,X,Hh,w,To(H) > 0 =⇒ (ÂH ∗ To)X = (Êh ∗ To)X). Not all sizes
and sets of variables are necessarily drawable. That is, in some cases, ∃z ∈
{1 . . . zh} ∃V ⊆ Vh ∀H ∈ HU,X ((zH = z)∧ (VH = V ) =⇒ PU,X,Hh,w,To(H) =
0). The distribution history can always be drawn, so the probability function
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is not a weak probability function,
∑

H∈HU,X
PU,X,Hh,w,To(H) = 1.

All iso-abstract subsets of the distribution history for a given set of vari-
ables and size are defined as equally probable,

∀V ⊆ Vh ∀H,G ⊆ Hh%V

((AG ∗ To)X = (AH ∗ To)X =⇒ PU,X,Hh,w,To(G) = PU,X,Hh,w,To(H))

In abstract induction the history probability function is iso-abstract histori-
cally distributed, P = PU,X,Hh,w,To .

Given a drawn history H ∈ HU,X , where PU,X,Hh,w,To(H) > 0, the iso-abstract
historical probability of histogram AH = histogram(H) + V CZ

H ∈ AU,i,VH ,zH is
now conditional,

Qh,U(Eh%VH , zH)(AH)∑
B∈Y −1

U,i,To,W,zH
((Ao∗To)X) Qh,U(Eh%VH , zH)(B)

=∑
PU,X,Hh,w,To(G) : G ∈ HU,X , AG = AH∑

PU,X,Hh,w,To(G) : G ∈ HU,X , VG = VH , |G| = zH

where the abstract valued histogram function YU,i,T,W,z is defined

YU,i,T,W,z = {(A, (A ∗ T )X) : A ∈ AU,i,V,z}

The finite set of integral iso-abstracts of abstract (A ∗ T )X is

Y −1
U,i,T,W,z((A ∗ T )X) = {B : B ∈ AU,i,V,z, (B ∗ T )X = (A ∗ T )X}

The iso-abstract historical probability may be expressed in terms of a his-
togram distribution which is not explicitly conditional on the necessary ab-
stract, (Êo ∗ To)X,

Q̂h,w,To,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,w,To(G) : G ∈ HU,X , AG = AH)

where the iso-abstract conditional stuffed historical probability distribution is
defined

Q̂h,w,T,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈Y −1

U,i,T,W,z((A∗T )X) Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}
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which is defined if z ≤ size(E).

In the case where all the abstracts are possible,

∀A′ ∈ ran(YU,i,T,W,z) ∃A ∈ AU,i,V,z (((A ∗ T )X = A′) ∧ (A ≤ E))

the normalisation of the iso-abstract conditional stuffed historical probability
distribution is a fraction 1/|ran(YU,i,T,W,z)|,

Q̂h,w,T,U(E, z)

= {(A, 1

|ran(YU,i,T,W,z)|
Qh,U(E, z)(A)∑

B∈Y −1
U,i,T,W,z((A∗T )X) Qh,U(E, z)(B)

) : A ∈ AU,i,V,z}

In the case of a full functional transform, Tf = {{w}CS{}V T : w ∈ V }T, the
iso-abstracts equals the iso-independents, Y −1

U,i,Tf ,W,z((A∗Tf)
X) = Y −1

U,i,V,z(A
X).

Thus the iso-abstract conditional stuffed historical probability distribution
equals the iso-independent conditional stuffed historical probability distribu-
tion, Q̂h,w,Tf ,U(E, z) = Q̂h,y,U(E, z). In this case abstract induction reduces
to aligned non-modelled induction.

At the other extreme of a unary transform, Tu = {V CS}T, the set of iso-
abstracts equals the substrate histograms, Y −1

U,i,Tu,W,z((A ∗ Tu)X) = AU,i,V,z.
Thus the iso-abstract conditional stuffed historical probability distribution
equals the stuffed historical probability distribution, Q̂h,w,Tf ,U(E, z) = Q̂h,U(E, z).
In this case abstract induction reduces to classical non-modelled induction.

The iso-abstract conditional generalised multinomial probability distribu-
tion is defined

Q̂m,w,T,U(E, z)

:= {(A, Qm,U(E, z)(A)∑
B∈Y −1

U,i,T,W,z((A∗T )X) Qm,U(E, z)(B)
) : A ∈ AU,i,V,z, AF ≤ EF}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, AF � EF}

which is defined if size(E) > 0.

The case where all the abstracts are possible is weaker than for historical,

∀A′ ∈ ran(YU,i,T,W,z) ∃A ∈ AU,i,V,z (((A ∗ T )X = A′) ∧ (AF ≤ EF))
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In this case the iso-abstract conditional generalised multinomial probability
distribution is

Q̂m,w,T,U(E, z)

= {(A, 1

|ran(YU,i,T,W,z)|
Qm,U(E, z)(A)∑

B∈Y −1
U,i,T,W,z((A∗T )X) Qm,U(E, z)(B)

) : A ∈ AU,i,V,z}

It is assumed that the distribution history size, zh, is large with respect to
the sample size zo = size(Ao), so that, in the limit, the iso-abstract histor-
ical probability, Q̂h,w,To,U(Eh%Vo, zo)(Ao), approximates to the iso-abstract

multinomial probability, Q̂m,w,To,U(Eh%Vo, zo)(Ao). That is, if zo � zh then

Q̂h,w,To,U(Eo, zo)(Ao) ≈ Q̂m,w,To,U(Eo, zo)(Ao)

In the case of completely effective sample histogram, AF
o = V C

o , the max-
imisation for known transform, To, of the iso-abstract conditional generalised
multinomial probability parameterised by the complete congruent histograms
of unit size is a singleton of the rational maximum likelihood estimate

{Ẽo} = maxd({(E, Q̂m,w,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

In the case where the sample histogram is not completely effective, AF
o <

V C
o , the maximisation of the iso-abstract conditional generalised multinomial

probability distribution for known transform is not necessarily a singleton

|max({(E, Q̂m,w,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})| ≥ 1

In the case where the maximisation of the iso-abstract conditional gener-
alised multinomial probability distribution is a singleton, it is equal to the
normalised abstract-dependent, Ẽo = Â

W(To)
o , where the abstract-dependent

AW(T ) ∈ AU,V,z is defined in ‘Likely histograms’, above, as the maximum
likelihood estimate of the distribution histogram of the multinomial probabil-
ity of the histogram, A, conditional that it is an iso-abstract,

{AW(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,T,W,z((A ∗ T )X)
) : D ∈ AU,V,z})

The abstract-dependent, AW(T ), is sometimes not computable. The finite
approximation to the abstract-dependent is

{AW(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

) : D ∈ AU,i,V,kz})
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The approximation, A
W(T )
k ≈ AW(T ), improves as the scaling factor, k, in-

creases.

Unlike in classical non-modelled induction where the maximum likelihood
estimate, Ẽo, is equal to the sample probability histogram, Âo, in abstract in-
duction the maximum likelihood estimate is not necessarily equal to the sam-
ple probability histogram. It is only in the case where the sample histogram
is naturalised abstract that the maximum likelihood estimate is necessarily
equal to the sample probability histogram,

Ao = (Ao ∗ To)X ∗ T †o =⇒ AW(To)
o = Ao =⇒ Ẽo = Âo

Otherwise, the overall maximum likelihood estimate, which is the abstract-
dependent, is near the histogram, Ẽo ∼ Âo, only in as much as it is far from
the naturalised abstract, Ẽo � (Âo ∗ To)X ∗ T †o .

The requirement that the distribution history itself be drawable, PU,X,Hh,w,To(Hh) >
0, has been ignored so far. This requirement modifies the maximisation to
add the constraint that the maximum likelihood estimate be an iso-abstract,
(Ẽo ∗ To)X = (Âo ∗ To)X,

{Ẽo} = maxd({(E, Q̂m,w,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1,
(E ∗ To)X = (Âo ∗ To)X})

So, strictly speaking, the maximum likelihood estimate is only approximately
equal to the normalised abstract-dependent, Ẽo ≈ Â

W(To)
o , if the abstract-

dependent is not an iso-abstract, (A
W(To)
o ∗ To)X 6= (Ao ∗ To)X. In the spe-

cial case, however, where the sample histogram is naturalised abstract, the
maximum likelihood estimate is exactly equal to the normalised abstract-
dependent, Ao = (Ao ∗ To)X ∗ T †o =⇒ Ẽo = Â

W(To)
o = Âo.

In abstract induction, where (i) the history probability function is iso-abstract
historically distributed, P = PU,X,Hh,w,To , given some substrate transform in
the sample variables To ∈ TU,Vo , if it is the case that (ii) the sample his-
togram is naturalised abstract, Ao = (Ao ∗ To)X ∗ T †o , then the maximum
likelihood estimate, Ẽo, of the unknown distribution probability histogram,
Êo, in the iso-abstract conditional stuffed historical probability distribution,
Q̂h,w,To,U(Eo, zo), is

Ẽo = Âo

Classical modelled induction is termed law-like because the set of iso-
deriveds, D−1

U,T,z(A ∗ T ), where the derived, A ∗ T , is necessary, is defined
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as law-like. All iso-sets that are subsets of the iso-deriveds are also law-
like because the derived is still necessary. So idealisation induction is also
termed law-like, because the set of iso-idealisations is a subset of the set of
iso-deriveds, Y −1

U,T,†,z(A ∗ T ∗ T †A) ⊆ D−1
U,T,z(A ∗ T ).

The iso-derivedence, or degree of law-likeness, of the iso-abstracts equals
the iso-abstractence of the iso-deriveds,

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

≤ 1

So abstract induction is not maximally law-like if the iso-deriveds is a proper
subset of the iso-abstracts, D−1

U,T,z(A ∗ T ) ⊂ Y −1
U,T,W,z((A ∗ T )X).

Abstract induction is termed entity-like because the set of iso-abstracts,
Y −1
U,T,W,z((A ∗ T )X), where the abstract, (A ∗ T )X, is necessary, is defined

as entity-like. That is, the iso-abstractence or degree of entity-likeness of
the iso-abstracts is one, and so abstract induction is maximally entity-like.
Law-like iso-sets are subsets of the set of iso-abstracts, D−1

U,T,z(A ∗ T ) ⊆
Y −1
U,T,W,z((A ∗ T )X), and so are also entity-like. So abstract induction may

be said to be more entity-like and less law-like than either classical modelled
induction or idealisation induction.

As conditions are added to abstract induction that increase the law-likeness,
or the degree to which the derived is necessary, the maximum likelihood
estimate, Ẽo, tends from the abstract-dependent, Â

W(To)
o , to the derived-

dependent, Â
D(To)
o . That is, given iso-set I ⊂ AU,i,V,z, which is such that

D−1
U,i,T,z(A∗T ) ⊆ I ⊆ Y −1

U,i,T,W,z((A∗T )X), as the iso-derivedence increases and
the iso-abstractence decreases, the type of induction moves from entity-like
to law-like, implying a more classical dependent analogue, Â

I(To)
o ≈ Â

D(To)
o ,

and so a more classical maximum likelihood estimate, Ẽo ≈ Â
D(To)
o .

Also, even if there are no additional conditions and the iso-set remains equal
to the iso-abstracts, I = Y −1

U,i,T,W,z((A ∗ T )X), constraints on the sample can

make the denominator,
∑
Qm,U(AW(T ), z)(B) : B ∈ Y −1

U,i,T,W,z((A ∗ T )X),

more approximate to the iso-derived denominator,
∑
Qm,U(AD(T ), z)(B) :

B ∈ D−1
U,i,T,z(A ∗ T ). In this way also abstract induction can sometimes be

more like classical modelled induction even if the iso-derivedence remains
unchanged.

985



The iso-independence of the iso-abstracts is

|Y −1
U,i,T,W,z((A ∗ T )X) ∩ Y −1

U,i,V,z(A
X)|

|Y −1
U,i,T,W,z((A ∗ T )X) ∪ Y −1

U,i,V,z(A
X)|

In some cases the iso-independence of the iso-idealisations is greater than or
equal to the iso-independence of the iso-abstracts,

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,V,z(A

X)|
≥
|Y −1
U,i,T,W,z((A ∗ T )X) ∩ Y −1

U,i,V,z(A
X)|

|Y −1
U,i,T,W,z((A ∗ T )X) ∪ Y −1

U,i,V,z(A
X)|

and so abstract induction may be said to be less aligned-like than idealisation
induction. However, the derived iso-independence of the integral lifted iso-
abstracts is necessarily greater than or equal to the derived iso-independence
of any law-like iso-set,

|{B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}|

|Y −1
U,i,W,z((A ∗ T )X)|

≥ 1

|Y −1
U,i,W,z((A ∗ T )X)|

and so abstract induction may be said to be more derived aligned-like than
either classical modelled induction or idealisation induction.

As the iso-independence increases, the maximum likelihood estimate, Ẽo,
which equals the abstract-dependent, Â

W(To)
o , tends to the dependent, ÂY

o ,
which is independent of the model, To, because the independent analogue,
(Ao ∗ To)X ∗ T †o , tends to the independent, AX

o , which is also independent
of the model, as the transform tends to full functional. As the derived iso-

independence increases, however, the lifted independent analogue, A
U(To)′
o ,

tends to the abstract, (Ao ∗ To)X, which is not independent of the model, To.

Given the known substrate transform, To, consider the maximum likelihood
estimate of the iso-abstract conditional generalised multinomial probability
distribution, Q̂m,w,To,U .

The independent-analogue or naturalised abstract, (A ∗ T )X ∗ T †, is the max-
imum likelihood estimate of the distribution histogram of the multinomial
probability of membership of the iso-abstracts,

{(A ∗ T )X ∗ T †} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X))) : D ∈ AU,V,z})
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The corresponding dependent-analogue or abstract-dependent, AW(T ), is the
maximum likelihood estimate of the distribution histogram of the multinomial
probability of the histogram, A, conditional that it is an iso-abstract,

{(AW(T ),
Qm,U(AW(T ), z)(A)∑

Qm,U(AW(T ), z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

)} =

max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1

U,i,T,W,z((A ∗ T )X)
) : D ∈ AU,V,z})

In section ‘Likely histograms’, above, the logarithm of the maximum condi-
tional probability with respect to the dependent-analogue is conjectured to
vary with the relative space with respect to the independent-analogue. In the
case of iso-abstract conditional,

ln
Qm,U(AW(T ), z)(A)∑

Qm,U(AW(T ), z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

∼

spaceRelative((A ∗ T )X ∗ T †)(A)

where the distribution-relative multinomial space is defined, in section ‘Likely
histograms’, above, as

spaceRelative(E)(A) := − ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(E)

The set of iso-abstracts is entity-like so the derived, A∗T , and the dependent
derived, AW(T ) ∗ T , are not necessarily equal to each other and nor are they
necessarily equal to the abstract, (A∗T )X. In section ‘Transform alignment’,
above, it is conjectured that the relation between the relative spaces,

0 = spaceRelative((A ∗ T )X ∗ T †)((A ∗ T )X ∗ T †)
≤ spaceRelative((A ∗ T )X ∗ T †)(A)

≤ spaceRelative((A ∗ T )X ∗ T †)(AW(T ))

can be lifted and so the dependent analogue derived alignment is conjectured
to be greater than or equal to the derived alignment which in turn is greater
than or equal to the independent analogue derived alignment,

0 = algn((A ∗ T )X) ≤ algn(A ∗ T ) ≤ algn(AW(T ) ∗ T )

The abstract-dependent varies with the histogram, AW(T ) ∼ A, so conjecture
that the log-likelihood varies with the derived alignment,

ln
Qm,U(AW(T ), z)(A)∑

Qm,U(AW(T ), z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

∼ algn(A ∗ T )
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The derivation of this correlation can be seen more clearly in terms of a
decomposition into three separate correlations. First, conjecture that the
logarithm of the iso-abstract conditional multinomial probability of the his-
togram, A, with respect to the dependent analogue or abstract-dependent,
AW(T ), varies against the logarithm of the iso-abstract conditional multi-
nomial probability with respect to the independent analogue or naturalised
abstract, (A ∗ T )X ∗ T †,

ln
Qm,U(AW(T ), z)(A)∑

Qm,U(AW(T ), z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

∼

− ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

This relation is called the dependent-independent anti-correlation. As shown
in ‘Likely histograms’, above, the strength of the dependent-independent anti-
correlation depends on the relative space of the histogram with respect to the
independent analogue, spaceRelative((A ∗ T )X ∗ T †)(A).

Second, conjecture that the negative logarithm of the iso-abstract conditional
multinomial probability of the histogram, A, with respect to the independent
analogue or naturalised abstract, (A ∗ T )X ∗ T †, varies with the negative log-
arithm of the lifted iso-abstract conditional multinomial probability of the
derived, A ∗ T , with respect to the lifted independent analogue or abstract,
(A ∗ T )X,

− ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

∼

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ isowl(U)(T,A)

where the lifted integral iso-abstracts is abbreviated

isowl(U)(T,A) := {B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}

This correlation is called the underlying-lifted correlation. Lifting the iso-
abstracts is functional,

{(A ∗ T, (A ∗ T )X) : A ∈ AU,V,z} ∈ AU,W,z → AU,W,z

and

{(A ∗ T, Y −1
U,T,W,z((A ∗ T )X)) : A ∈ AU,V,z} ∈ AU,W,z → P(AU,V,z)
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so the underlying-lifted correlation is expected to be positive.

Third, conjecture that, in the case where the abstract is integral, (A ∗ T )X ∈
Ai, the denominator of the lifted iso-abstract conditional multinomial proba-
bility is dominated by the abstract term, Qm,U((A ∗ T )X, z)((A ∗ T )X), and
similar terms, and so the negative logarithm of the lifted iso-abstract condi-
tional multinomial probability with respect to the lifted independent analogue
or abstract, (A∗T )X, varies with the negative logarithm of the relative multi-
nomial probability with respect to the abstract, (A∗T )X, which is the relative
space with respect to the abstract, which is the derived alignment,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ isowl(U)(T,A)

∼ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)((A ∗ T )X)

= spaceRelative((A ∗ T )X)(A ∗ T )

= algn(A ∗ T )

This correlation is called the conditional-relative correlation. The strength of
the conditional-relative correlation increases with the derived iso-independence
of the integral lifted iso-abstracts,

|{B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}|

|Y −1
U,i,W,z((A ∗ T )X)|

As the derived iso-independence increases, the lifted abstract-independent,
AU(T )′ , tends to the abstract, (A ∗ T )X, and the lifted abstract-independent
term, Qm,U((A ∗T )X, z)(AU(T )′), tends to equal the abstract term, Qm,U((A ∗
T )X, z)((A ∗ T )X), in the case where both are integral, AU(T )′ , (A ∗ T )X ∈ Ai.
In the limit, the lifted iso-abstract conditional multinomial probability, with
respect to the independent-analogue, (A ∗ T )X, equals the iso-independent
conditional multinomial probability, with respect to the independent, (A∗T )X,
of the layer above, which is where the substrate histogram is the derived
histogram, A ∗ T ,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ isowl(U)(T,A)

∼ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B) : B ∈ Y −1
U,i,W,z((A ∗ T )X)

The corresponding iso-independent conditional multinomial probability, with
respect to the dependent, (A ∗ T )Y, of the derived layer is shown in section
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‘Aligned induction’, above, to vary with the alignment of the derived layer’s
substrate histogram, A ∗ T ,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B) : B ∈ Y −1
U,i,W,z((A ∗ T )X)

∼ ln
Qm,U((A ∗ T )Y, z)(A ∗ T )∑

Qm,U((A ∗ T )Y, z)(B) : B ∈ Y −1
U,i,W,z((A ∗ T )X)

∼ algn(A ∗ T )

That is, in the case where the derived iso-independence is high, abstract in-
duction may be viewed as aligned non-modelled induction of the derived.

In abstract induction, where (i) the history probability function is iso-abstract
historically distributed, P = PU,X,Hh,w,To , given some substrate transform in
the sample variables To ∈ TU,Vo , if it is the case that (ii) the distribution
history size is large with respect to the sample size, zh � zo, and such that
(iii) the scaled estimate distribution histogram is integral, Ẽo,zh ∈ Ai, then
the log likelihood of the iso-abstract conditional stuffed historical probability
distribution at the maximum likelihood estimate varies with the relative space
of the sample with respect to the naturalised abstract,

ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao) ∼ spaceRelative((Ao ∗ To)X ∗ T †o )(Ao)

and varies with the derived alignment,

ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao) ∼ algn(Ao ∗ To)

The derived alignment of the maximum likelihood estimate is greater than or
equal to that of the sample,

algn(Zo ∗ Ẽo ∗ T ) ≥ algn(Ao ∗ To)

In section ‘Classical modelled induction’, above, it is shown that the iso-
derived conditional stuffed historical probability distribution at the maximum
likelihood estimate, Q̂h,d,To,U(Ao,zh , zo), can be related to queries on the maxi-

mum likelihood estimate of the distribution histogram, Ẽo = Âo, in the special
case where the sample histogram is natural, Ao = Ao ∗ To ∗ T †o . The given
substrate transform must be such that its contraction has underlying vari-
ables that are a subset of the query variables, und(T%

o ) ⊆ K. In the case
where the query histogram consists of one effective state, Q = {(SQ, 1)}, the
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application of the query in terms of a modified sample histogram is

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) =

{(N, (Q̂h,d,To,U(Ao,zh , zo)(AQ,N))1/zo) : N ∈ (Vo \K)CS,

AQ,N = Ao − (Ao ∗ CQ) + ((Ao ∗ CQ) % K ∗ {N}U)}∧

where {RQ} = (Q ∗ T%
o )FS, CQ = T−1

o (RQ) and his = histogram ∈ T → A.
If the sample histogram is completely effective, AF

o = V C
o , the modified sample

histogram, AQ,N , can be drawn from the distribution, Q̂h,d,To,U(Ao,zh , zo)(AQ,N) >
0, because its derived is equal to the known derived, AQ,N ∗To = Ao∗To. That
is, the modified sample histogram is in the iso-deriveds, AQ,N ∈ D−1

U,i,To,zo
(Ao∗

To).

However, in the case of abstract induction, where the abstract is neces-
sary, although the modified sample histogram is in the iso-abstracts, AQ,N ∈
Y −1
U,i,To,W,z((Ao∗To)X), the modified derived, ÂQ,N ∗To, is not necessarily equal

to that of the distribution, Êh∗To. That is, in some cases ÂQ,N ∗To 6= Êh∗To.

Only the modified abstract is necessary, (ÂQ,N ∗ To)X = (Êh ∗ To)X. Fur-
thermore, even if the sample is natural, Ao = Ao ∗ To ∗ T †o , the maximum

likelihood estimate of the distribution histogram, Ẽo = Â
W(T )
o , is not nec-

essarily equal to the sample, Ẽo 6= Âo. So it cannot be assumed that ap-
plication of the query via the model of the sample is equal to the query
via the model of the distribution, (Q ∗ T%

o ∗ his(T%
o ) ∗ Ao)∧ % (Vo \ K) 6=

(Q ∗T%
o ∗ his(T%

o ) ∗Eh)∧ % (Vo \K). Nor can the query via the model of the
sample, (Q ∗ T%

o ∗ his(T%
o ) ∗ Ao)∧ % (Vo \ K), be expressed in terms of the

iso-abstract conditional stuffed historical probability distribution at the scaled
naturalised sample, Q̂h,w,To,U(Ao,zh , zo).

Consider the constraints that may be added to abstract induction to in-
crease the resemblance to classical modelled induction, so that queries via
the model of the sample are more approximate to queries via the model of
the distribution, (Q ∗ T%

o ∗ his(T%
o ) ∗Ao)∧ % (Vo \K) ≈ (Q ∗ T%

o ∗ his(T%
o ) ∗

Eh)∧ % (Vo \K).

The set of law-like iso-deriveds are a subset of the set of entity-like iso-
abstracts, D−1

U,T,z(A∗T ) ⊆ Y −1
U,T,W,z((A∗T )X), so conjecture that the logarithm

of the fraction of the sum of the iso-abstract multinomial probabilities, with
respect to the naturalisation, A ∗ T ∗ T †, that are iso-derived varies as the
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relative space of the naturalisation with respect to the naturalised abstract,

ln

∑
Qm,U(A ∗ T ∗ T †, z)(B) : B ∈ D−1

U,i,T,z(A ∗ T )∑
Qm,U(A ∗ T ∗ T †, z)(B) : B ∈ Y −1

U,i,T,W,z((A ∗ T )X)

∼ − spaceRelative(A ∗ T ∗ T †)((A ∗ T )X ∗ T †)
∼ spaceRelative((A ∗ T )X ∗ T †)(A ∗ T ∗ T †)

If the relative space is high, the elements of the iso-abstracts which are not
iso-deriveds and so do not have the same derived as the naturalisation, A ∗
T ∗ T † ∗ T = A ∗ T , have low multinomial probability with respect to the
naturalisation,∑

(Qm,U(A ∗ T ∗ T †, z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X) \D−1

U,i,T,z(A ∗ T )) ≈ 0

If the sample is known to be naturalised, Ao = Ao ∗ To ∗ T †o , then as the
relative space of the sample with respect to the naturalised sample abstract,
spaceRelative((Ao∗To)X∗T †o )(Ao∗To∗T †o ), increases, the maximum likelihood

estimate, Ẽo, which is the abstract-dependent, Â
W(To)
o , tends to the derived-

dependent which equals the naturalisation, Â
D(To)
o = Ao ∗ To ∗ T †o , and away

from the naturalised abstract, (Ao ∗ To)X ∗ T †o . Thus, the maximum likelihood
estimate is more classical if the sample is known to be naturalised and the
relative space is high.

The relative space of the histogram with respect to the naturalised abstract
varies with the lifted relative space, which equals the derived alignment,

spaceRelative((A ∗ T )X ∗ T †)(A)

∼ spaceRelative((A ∗ T )X ∗ T † ∗ T )(A ∗ T )

= spaceRelative((A ∗ T )X)(A ∗ T )

= algn(A ∗ T )

depending on the underlying-lifted correlation and the conditional-relative
correlation.

The conditional-relative correlation improves as the derived iso-independence
increases and the lifted abstract-independent, AU(T )′ , tends to the abstract,
(A∗T )X. In the case where the formal is independent, AX∗T = (AX∗T )X, the
possible derived volume equals the derived volume, w′ = w where w′ = |T−1|
and w = |WC|. As shown in ‘Deltas and Perturbations’, above, any subset of
the integral congruent deltas QA ⊂ Ai×Ai which conserves iso-independence,
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∀(D, I) ∈ QA (A−D+I ∈ Y −1
U,i,V,z(A

X)), is a linear sum of circuit deltas, where
the circuit deltas are defined as the subset of iso-independent deltas having
size less than or equal to two, CA = {(D, I) : (D, I) ∈ QA, size(I) ≤ 2}.
The set of lifted iso-independent deltas, ∀(D′, I ′) ∈ QA′ (A ∗ T − D′ + I ′ ∈
{B ∗ T : B ∈ Y −1

U,i,T,W,z((A ∗ T )X)}), must be smaller than the set of derived

iso-independent deltas, ∀(D′, I ′) ∈ QA∗T (A∗T −D′+I ′ ∈ Y −1
U,i,W,z((A∗T )X)),

if the possible derived volume is less than the derived volume, w′ < w =⇒
|QA′ | < |QA∗T |, because circuit deltas cannot be constructed on impossible
states. Therefore in the case of independent formal, where the possible de-
rived volume equals the derived volume, AX∗T = (AX∗T )X =⇒ w′ = w, the
derived iso-independence is greater than would otherwise be the case, and the
lifted abstract-independent approximates to the abstract, AU(T )′ ≈ (A ∗ T )X.

If the sample is known to have independent formal, AX
o ∗ To = (AX

o ∗ To)X,
the correlation between the relative space of the histogram with respect to
the naturalised abstract and the derived alignment,

spaceRelative((Ao ∗ To)X ∗ T †o )(Ao) ∼ algn(Ao ∗ To)

is higher than would be the case if there was formal alignment, algn(AX
o ∗To) >

0.

So the maximum likelihood estimate is more classical and less formal if (i)
the sample is naturalised, (ii) the sample has independent formal and (iii)
the derived alignment is high.

In abstract induction, where (i) the history probability function is iso-abstract
historically distributed, P = PU,X,Hh,w,To , given some substrate transform in
the sample variables To ∈ TU,Vo , if it is the case that (ii) the sample is natural,
Ao = Ao∗To∗T †o , (iii) the sample formal is independent, AX

o ∗To = (AX
o ∗To)X,

(iv) the derived alignment is high, algn(Ao ∗ To) � 0, (v) the distribution
history size is large with respect to the sample size, zh � zo, and such that
(vi) the scaled estimate distribution histogram is integral, Ẽo,zh ∈ Ai, then
the log likelihood of the iso-abstract conditional stuffed historical probability
distribution at the maximum likelihood estimate varies with the log likelihood
of the iso-derived conditional stuffed historical probability distribution at the
naturalisation,

ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

the formal alignment of the maximum likelihood estimate is small,

algn(Zo ∗ ẼX
o ∗ To) ≈ 0
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and the derived of the maximum likelihood estimate approximates to the
normalised sample derived,

Ẽo ∗ To ≈ Âo ∗ To

In this case queries via the model of the sample approximate to queries via
the model of the distribution,

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) ≈ (Q ∗ T%
o ∗ his(T%

o ) ∗ Eh)∧ % (Vo \K)

That is, at high derived alignments where the sample is known to be natural
and the sample formal is known to be independent, abstract induction has
similar properties to non-formal classical modelled induction.

If the relative entropy is high, entropyCross(Ao ∗ To, V
C

o ∗ To) > ln |T−1
o |,

the sum sensitivity of the iso-derived conditional stuffed historical probability
distribution at the naturalisation varies with the derived entropy,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ zo × entropy(Ao ∗ To)

Note, however, that because the abstract induction is more derived aligned-
like than classical modelled induction,

|{B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}|

|Y −1
U,i,W,z((A ∗ T )X)|

≥ 1

|Y −1
U,i,W,z((A ∗ T )X)|

the sum sensitivity of the iso-abstract conditional stuffed historical probability
distribution at the maximum likelihood estimate may be expected rather to
vary against the derived alignment,

sum(sensitivity(U)(Q̂h,w,To,U(Ẽo,zh , zo)))

∼ zo × entropy(Ao ∗ To)− zo × entropy((Ao ∗ To)X)

≈ − algn(Ao ∗ To)

So the log likelihood of the iso-abstract conditional stuffed historical probabil-
ity distribution at the maximum likelihood estimate varies against the sum
sensitivity of the iso-abstract conditional stuffed historical probability distri-
bution at the maximum likelihood estimate,

ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao) ∼ algn(Ao ∗ To)

∼ − sum(sensitivity(U)(Q̂h,w,To,U(Ẽo,zh , zo)))

In the case of high relative entropy, the sum sensitivity of the iso-derived
conditional stuffed historical probability distribution is conjectured to vary
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with the unknown-known multinomial probability distribution sum sensitivity
difference,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼
sum(sensitivity(U)(Q̂m,U(Ao, zo)))− sum(sensitivity(U)(Q̂m,U(Ao ∗ To, zo)))

so the sum sensitivity of the iso-abstract conditional stuffed historical proba-
bility distribution is also conjectured to vary with the unknown-known multi-
nomial probability distribution sum sensitivity difference,

sum(sensitivity(U)(Q̂h,w,To,U(Ẽo,zh , zo))) ∼
sum(sensitivity(U)(Q̂m,U(Ao, zo)))− sum(sensitivity(U)(Q̂m,U(Ao ∗ To, zo)))

the sum sensitivity of the iso-abstract conditional stuffed historical proba-
bility distribution at the maximum likelihood estimate is less than or equal
to the sum sensitivity of the stuffed historical probability distribution at the
maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,w,To,U(Ẽo,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

and the log likelihood of the iso-abstract conditional stuffed historical prob-
ability distribution at the maximum likelihood estimate is greater than or
equal to the log likelihood of the stuffed historical probability distribution at
the maximum likelihood estimate,

ln Q̂h,w,To,U(Ẽo,zh , z)(Ao) ≥ ln Q̂h,U(Ao,zh , z)(Ao)

In the case where (i) the sample is natural, (ii) the sample formal is indepen-
dent, and (iii) the relative entropy is high, as the derived alignment increases
(a) the non-formal classical log-likelihood increases and (b) the underlying-
derived sum sensitivity difference decreases.

If, in addition, the size is less than the volume, zo < vo, but the sample
approximates to the naturalisation, Ao ≈ Ao ∗ To ∗ T †o , then the log likelihood
varies against the specialising derived substrate history coder space,

ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

where

CG,V,T,H(T ) = coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)
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So the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,w,To,U(Ẽo,zh , zo))) ∼ − ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao)

the sensitivity to model also varies against the log likelihood,

− ln |max({(T, Q̂h,w,T,U(Ẽo,zh , zo)(Ao)) : T ∈ TU,Vo ,
AX

o ∗ T = (AX
o ∗ T )X, Ao ≈ Ao ∗ T ∗ T †})| ∼

− ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao)

and the log-likelihood varies with its degree of structure with respect to the
expanded specialising derived history coder, CG,T,H,

ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao) ∼ structure(U,X)(PU,X,Hh,w,To , CG,T,H(To))

Note that, although the added constraint of known natural sample, Ao =
Ao ∗ To ∗ T †o , can increase the resemblance to classical induction, the in-
duction remains abstract induction because the condition of necessary ab-
stract has not changed and so neither the iso-set, Y −1

U,i,To,W,zo
((Ao ∗ To)X),

nor the iso-derivedence have changed. That is, the maximum likelihood es-
timate, Ẽo, does not move away from the abstract-dependent, Â

W(To)
o , to the

derived-dependent, Â
D(To)
o , but rather both the maximum likelihood estimate

and the abstract-dependent move together towards the derived-dependent,
Ẽo = Â

W(To)
o ≈ Â

D(To)
o .

Note also that the assumption of high derived alignment, algn(Ao ∗ To)� 0,
is not well defined, although there is an upper bound, algnMax(U)(Wo, zo).
A more formal method of expression would be to say that the correlation
between the iso-abstract conditional stuffed historical probability distribution
and the iso-derived conditional stuffed historical probability distribution is
itself correlated to the derived alignment,

[ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)] ∼ algn(Ao ∗ To)

More formal still would be to define this relation in terms of the correlations
of functions of the sized cardinal substrate histograms, Az, given the renor-
malised geometry-weighted probability function, corr(z) ∈ (Az → R)×(Az →
R)→ R, as in section ‘Substrate structures alignment’, above.

In the discussion above, the model, To ∈ TU,Vo , is known, and the abstract,

(Êh∗To)X, is both necessary and known. Optimisation can be done to find the
maximum likelihood estimate of the distribution histogram for known model,

{Ẽo} = maxd({(E, Q̂m,w,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})
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Just as in the discussion above of classical modelled induction, consider the
case where the abstract, (Êh ∗ To)X, is still necessary but the model, To,
is unknown and so the abstract is unknown. Again, the maximum likeli-
hood estimate for the pair (Ẽo, T̃o) can be defined as an optimisation of the
multinomial probability conditional on the iso-abstracts where both the dis-
tribution histogram and transform are treated as arguments to a likelihood
function,

{(Ẽo, T̃o)}

= maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈Y −1
U,i,T,W,zo

((Ao∗T )X) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo})

It is conjectured that in abstract induction there are some cases in which
there is a unique solution for the pair (Ẽo, T̃o). This is because in entity-like
induction, but not law-like induction, the denominator does not necessarily
reduce to equal the numerator, so avoiding degeneracy. In the case where
there is a unique solution then the maximisation can be rewritten in terms
of the abstract-dependent,

{T̃o} = maxd({(T, Qm,U(A
W(T )
o , zo)(Ao)∑

B∈Y −1
U,i,T,W,zo

((Ao∗T )X) Qm,U(A
W(T )
o , zo)(B)

) : T ∈ TU,Vo})

The maximum likelihood estimate for the model, T̃o, is sometimes not com-

putable because the abstract-dependent, A
W(T̃o)
o , is sometimes not computable.

A finite approximation to arbitrary accuracy for the abstract-dependent, A
W(T )
k ≈

AW(T ), is computable. However, even an approximation is not tractable. The
abstract function, YU,i,T,W,z ∈ AU,i,V,z :→ AU,W,z, is intractable because its
computation requires the intractable computation of its domain of the sub-
strate histograms, AU,i,V,z.

In abstract induction, where the history probability function is iso-abstract
historically distributed, P = PU,X,Hh,w,To , given some unknown substrate trans-
form in the sample variables To ∈ TU,Vo , in some cases the maximum likeli-
hood estimate of the model, T̃o, at the maximum likelihood estimate of the
distribution, Ẽo, is non-trivial,

T̃o /∈ {Ts, Tu}

Consider how an approximation to the optimisation may be made more
tractable. It is conjectured in section ‘Likely histograms’, above, that the
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log-likelihood with respect to the dependent-analogue varies with the relative
space with respect to the independent-analogue,

ln
Qm,U(AW(T ), z)(A)∑

Qm,U(AW(T ), z)(B) : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)

∼

spaceRelative((A ∗ T )X ∗ T †)(A)

and conjectured further in section ‘Transform alignment’, above, that the
relative space with respect to the naturalised abstract varies with the derived
alignment,

spaceRelative((A ∗ T )X ∗ T †)(A) ∼ algn(A ∗ T )

This correlation was decomposed in the discussion above into three sep-
arate correlations, (i) the dependent-independent anti-correlation, (ii) the
underlying-lifted correlation and (iii) the conditional-relative correlation. Now
consider how the optimisation of the terms of these relations may form the
definition of induction assumptions.

The maximum likelihood estimate for the unknown model, T̃o, with respect
to the dependent-analogue is

{T̃o} =

maxd({(T, Qm,U(A
W(T )
o , zo)(Ao)∑

Qm,U(A
W(T )
o , zo)(B) : B ∈ Y −1

U,i,T,W,zo
((Ao ∗ T )X)

) :

T ∈ TU,Vo})

First, given the dependent-independent anti-correlation, assume that the max-
imum likelihood estimate of the iso-abstract conditional multinomial proba-
bility with respect to the dependent-analogue or abstract-dependent, A

W(T )
o ,

is also the minimum likelihood estimate of the iso-abstract conditional multi-
nomial probability with respect to the independent-analogue or naturalised
abstract, (Ao ∗ T )X ∗ T †,

{T̃o} =

mind({(T, Qm,U((Ao ∗ T )X ∗ T †, zo)(Ao)∑
Qm,U((Ao ∗ T )X ∗ T †, zo)(B) : B ∈ Y −1

U,i,T,W,zo
((Ao ∗ T )X)

) :

T ∈ TU,Vo})

This assumption is the iso-abstract dependent-independent anti-optimisation
assumption. It relies on the monotonicity of the dependent-independent anti-
correlation.
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Second, given the underlying-lifted correlation, assume that the minimum
likelihood estimate of the iso-abstract conditional multinomial probability with
respect to the independent-analogue or naturalised abstract, (Ao ∗ T )X ∗ T †,
is also the minimum likelihood estimate of the lifted iso-abstract conditional
multinomial probability with respect to the lifted independent-analogue or
abstract, (Ao ∗ T )X,

{T̃o} =

mind({(T, Qm,U((Ao ∗ T )X, zo)(Ao ∗ T )∑
Qm,U((Ao ∗ T )X, zo)(B′) : B′ ∈ isowl(U)(T,Ao)

) : T ∈ TU,Vo})

where the lifted integral iso-abstracts is abbreviated

isowl(U)(T,A) := {B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}

This assumption is the iso-abstract underlying-lifted optimisation assump-
tion. It relies on the monotonicity of the underlying-lifted correlation.

Third, given the conditional-relative correlation, assume that the minimum
likelihood estimate of the lifted iso-abstract conditional multinomial probabil-
ity with respect to the lifted independent-analogue or abstract, (Ao ∗ T )X, is
also the minimum likelihood estimate of the relative multinomial probability
with respect to the lifted independent-analogue or abstract, (Ao ∗ T )X,

{T̃o} = mind({(T, Qm,U((Ao ∗ T )X, zo)(Ao ∗ T )

Qm,U((Ao ∗ T )X, zo)((Ao ∗ T )X)
) : T ∈ TU,Vo})

The negative logarithm of the relative multinomial probability is the rela-
tive space of the derived with respect to the abstract, which is the derived
alignment,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)((A ∗ T )X)
= spaceRelative((A ∗ T )X)(A ∗ T )

= algn(A ∗ T )

So the third assumption is that the minimum likelihood estimate of the lifted
iso-abstract conditional multinomial probability with respect to the abstract,
(Ao∗T )X, is also the maximum likelihood estimate with respect to the derived
alignment,

{T̃o} = maxd({(T, algn(Ao ∗ T )) : T ∈ TU,Vo})
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This assumption is the iso-abstract conditional-relative optimisation assump-
tion. It relies on the monotonicity of the conditional-relative correlation.

A finite approximation to arbitrary accuracy of the derived alignment, algn(Ao∗
T ), is computable by means of an approximation to the gamma function. The
computation of the derived alignment is tractable given limits on the derived
volume, |T−1|. So the optimisation of maximum likelihood estimate of the
model, T̃o, at least for a limited subset of the substrate transforms, is tractable.

In abstract induction, where (i) the history probability function is iso-abstract
historically distributed, P = PU,X,Hh,w,To , given some unknown substrate trans-
form in the sample variables To ∈ TU,Vo , if it is the case that (ii) the iso-
abstract dependent-independent anti-optimisation assumption is true, (iii)
the iso-abstract underlying-lifted optimisation assumption is true, and (iv)
the iso-abstract conditional-relative optimisation assumption is true, then
the maximum likelihood estimate of the model, T̃o, at the maximum likeli-
hood estimate of the distribution, Ẽo, is

{T̃o} = maxd({(T, algn(Ao ∗ T )) : T ∈ TU,Vo})

It is shown in the known transform case above that the maximum likelihood
estimate is more classical and less formal if (i) the sample is naturalised, (ii)
the sample has independent formal and (iii) the derived alignment is high.
This is the case for unknown transform too. In fact, if the three iso-abstract
optimisation assumptions are true, then the maximum likelihood estimate for
the model, T̃o, occurs at the maximisation of the derived alignment, imply-
ing that the derived alignment is as high as possible, ∀T ∈ TU,Vo ((Ao =
Ao ∗ T ∗ T †) ∧ (AX

o ∗ T = (AX
o ∗ T )X) =⇒ algn(Ao ∗ T̃o) ≥ algn(Ao ∗ T )).

In abstract induction, where (i) the history probability function is iso-abstract
historically distributed, P = PU,X,Hh,w,To , given some unknown substrate trans-
form in the sample variables To ∈ TU,Vo , if it is the case that (ii) the iso-
abstract dependent-independent anti-optimisation assumption is true, (iii) the
iso-abstract underlying-lifted optimisation assumption is true, (iv) the iso-
abstract conditional-relative optimisation assumption is true, (v) the sam-
ple is natural, Ao = Ao ∗ To ∗ T †o , (vi) the sample formal is independent,
AX

o ∗ To = (AX
o ∗ To)X, then (a) the maximum likelihood estimate of the

model, T̃o, at the maximum likelihood estimate of the distribution, Ẽo, is

{T̃o} = maxd({(T, algn(Ao ∗ T )) : T ∈ TU,Vo ,
Ao = Ao ∗ T ∗ T †, AX

o ∗ T = (AX
o ∗ T )X})
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(b) the log likelihood of the iso-abstract conditional stuffed historical proba-
bility distribution at the maximum likelihood estimate varies with the derived
alignment,

ln Q̂h,w,T̃o,U
(Ẽo,zh , zo)(Ao) ∼ algn(Ao ∗ To)

(c) the log likelihood of the iso-abstract conditional stuffed historical prob-
ability distribution at the maximum likelihood estimate varies with the log
likelihood of the iso-derived conditional stuffed historical probability distribu-
tion at the naturalisation,

ln Q̂h,w,T̃o,U
(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

(d) the formal alignment of the maximum likelihood estimate is small,

algn(Zo ∗ ẼX
o ∗ T̃o) ≈ 0

and (e) the derived of the maximum likelihood estimate approximates to the
normalised sample derived,

Ẽo ∗ T̃o ≈ Âo ∗ To

In this case queries via the model of the sample approximate to queries via
the model of the distribution,

(Q ∗ T̃%
o ∗ his(T̃%

o ) ∗ Ao)∧ % (Vo \K) ≈ (Q ∗ T%
o ∗ his(T%

o ) ∗ Eh)∧ % (Vo \K)

If, in addition, (vii) the component size cardinality relative entropy of the
maximum likelihood estimate for the model is high, entropyCross(Ao∗To, V

C
o ∗

To) > ln |T−1
o |, then the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,w,T̃o,U
(Ẽo,zh , zo))) ∼ − ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao)

∼ − algn(Ao ∗ To)

If, further, (viii) the size is less than the volume, zo < vo, but the sample
approximates to the naturalisation, Ao ≈ Ao ∗To ∗T †o , then the sensitivity to
model also varies against the log likelihood,

− ln |max({(T, Q̂h,w,T,U(Ẽo,zh , zo)(Ao)) : T ∈ TU,Vo ,
AX

o ∗ T = (AX
o ∗ T )X, Ao ≈ Ao ∗ T ∗ T †})| ∼

− ln Q̂h,w,To,U(Ẽo,zh , zo)(Ao)
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or

− ln |max({(T, algn(Ao ∗ T )) : T ∈ TU,Vo ,
AX

o ∗ T = (AX
o ∗ T )X, Ao ≈ Ao ∗ T ∗ T †})| ∼

− algn(Ao ∗ To)

So (a) by weakening the induction condition from law-like necessary derived
to entity-like necessary abstract and (b) by strengthening the constraints on
the sample to be natural and have independent formal, it is found that in
some cases the abstract induction maximum likelihood estimate of the model
is non-trivial, T̃o /∈ {Ts, Tu}, but retains properties of classical induction
such as allowing query via the model, minimising sensitivity to the unknown
underlying and minimising sensitivity to the model. Furthermore, the opti-
misation is tractable depending on the limits on the searched subset of the
substrate transforms.

5.9 Aligned modelled induction

The case of classical modelled induction, where the derived is necessary,
may be termed law-like because the set of iso-deriveds is law-like. All drawn
histories H ∈ HU,X , where PU,X,Hh,d,To(H) > 0, are such that their nor-

malised derived histograms are fixed, ÂH ∗ To = Êh ∗ To. That is, in law-like
induction the relationship between the derived variables is unchanging,

∀R1, R2 ∈ (AH ∗ To)FS

(
(AH ∗ To)R2

(AH ∗ To)R1

=
(Eh ∗ To)R2

(Eh ∗ To)R1

)
Idealisation induction is also law-like because the derived is still necessary,
ÂH ∗ To = Êh ∗ To where PU,X,Hh,†,To(H) > 0. In fact, idealisation induction
is stricter because it also imposes the constraint that the independent com-
ponents be necessary, ∀C ∈ TP

o ((AH ∗ CU)X∧ = (Eo ∗ CU)X∧).

However, as is shown above, in the case where the model, To, is unknown,
neither of the law-like induction types, necessary derived and necessary ide-
alisation, have a singular solution for the maximum likelihood estimate of
the distribution-model pair, (Ẽo, T̃o). It is necessary to relax the condition
to possible derived and possible idealisation to obtain a singular solution.

Also discussed above is the case of abstract induction. This case, where
the abstract is necessary, may be termed entity-like because the set of iso-
abstracts is entity-like. All drawn histories H ∈ HU,X , where PU,X,Hh,w,To(H) >
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0, are such that their normalised abstract histograms are fixed, (ÂH ∗To)X =
(Êh ∗ To)X. If the model is a substrate transform, To ∈ TU,Vo , then nec-

essary abstract is equivalent to necessary derived variables, (ÂH ∗ To)X =
(Êh ∗To)X ⇐⇒ ∀P ∈ Wo (ÂH ∗PT = Êh ∗PT). In entity-like induction the
relations between the derived variables are not necessary, but only relations
between the values within each derived variable separately are necessary,

∀P ∈ Wo ∀u1, u2 ∈ P(
(AH ∗ To)%{P}({(P, u2)})
(AH ∗ To)%{P}({(P, u1)})

=
(Eh ∗ To)%{P}({(P, u2)})
(Eh ∗ To)%{P}({(P, u1)})

)
That is, the derived variables are separately necessary. In entity-like induc-
tion it is sometimes the case that the sample derived is not equal to the
distribution derived, (ÂH ∗ To)X = (Êh ∗ To)X ⇐= ÂH ∗ To = Êh ∗ To.

In the case of unknown model, To, abstract induction has a singular solution
for the maximum likelihood estimate of the distribution-model pair, (Ẽo, T̃o).
Abstract induction is not law-like but only entity-like, so it is sometimes the
case that the estimated derived does not equal the estimated distribution de-
rived, ÂH ∗ T̃o 6= Êh ∗ T̃o.

However, in the case where (i) the sample is natural, Ao = Ao∗To∗T †o , and (ii)
the sample formal is independent, AX

o ∗ To = (AX
o ∗ To)X, then the estimated

derived alignment is maximised, ∀T ∈ TU,Vo ((Ao = Ao ∗ T ∗ T †)∧ (AX
o ∗ T =

(AX
o ∗ T )X) =⇒ algn(Ao ∗ T̃o) ≥ algn(Ao ∗ T )), and, as derived alignment,

algn(Ao∗T̃o), increases, abstract induction tends to classical induction, where
the normalised sample derived approximates to the derived of the maximum
likelihood estimate, Âo∗ T̃o ≈ Ẽo∗ T̃o. Moreover, the computation of the max-
imum likelihood estimate of the model, T̃o, may be made tractable if limits
are imposed on the optimisation.

Although abstract induction can provide a non-trivial solution for the maxi-
mum likelihood estimate for the model, T̃o, and constrained abstract induction
can do so such that the maximum likelihood estimate for the distribution his-
togram, Ẽo, is approximately classical, Ẽo ≈ Â

D(T̃o)
o , abstract induction is neu-

tral with respect to formal alignment. That is, the set of iso-abstracts is con-
ditional on neither the formal, AX∗T , nor the formal independent, (AX∗T )X,
so the abstract dependent, AW(T ), is neutral with respect to the formal and
the formal independent, and nothing can be said of its formal alignment,
algn(AW(T )X∗T ). Indeed in some cases the abstract dependent may be purely
formal, AW(T ) ∗ T = AW(T )X ∗ T =⇒ algn(AW(T ) ∗ T ) = algn(AW(T )X ∗ T ).
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So, in some cases, the model estimate, T̃o, can be tautological or otherwise
overlapping, overlap(T̃o) =⇒ AX

o ∗ T̃o 6= (AX
o ∗ T̃o)X =⇒ algn(AX

o ∗ T̃o) > 0.
Even in the case of constrained abstract induction where the sample for-
mal is known to be independent, AX

o ∗ To = (AX
o ∗ To)X, the other mem-

bers of the iso-abstracts may have formal alignment, ∀B ∈ Y −1
U,To,W,zo

((Ao ∗
To)X) (algn(BX ∗ To) ≥ 0), and the abstract-dependent may have formal

alignment, algn(A
W(To)X
o ∗ To) ≥ 0. To address this, consider strengthening

abstract induction to partition induction where the condition of necessary
formal independent, (AX

o ∗ To)X, is added to the condition of necessary ab-
stract, (Ao ∗ To)X.

The partition-independent, AP(T ) ∈ AU,V,z, is defined in section ‘Likely
histograms’, above, as

{AP(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ isop(U)(T,A))) : D ∈ AU,V,z})

where the integral iso-partition-independents is abbreviated

isop(U)(T,A) := Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,i,T,W,z((A ∗ T )X)

and the iso-partition-independents is such that

Y −1
U,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,T,W,z((A ∗ T )X)

= {B : B ∈ AU,V,z, (BX ∗ T )X = (AX ∗ T )X, (B ∗ T )X = (A ∗ T )X}

The corresponding dependent analogue is the partition-dependent, AR(T ) ∈
AU,V,z, defined

{AR(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ isop(U)(T,A)

) : D ∈ AU,V,z})

In partition induction the history probability function, P , is historically dis-
tributed but constrained such that all drawn histories, P (H) > 0, have (i)
an formal independent probability histogram equal to the formal indepen-
dent distribution probability histogram, (ÂX

H ∗ To)X = (ÊX
h ∗ To)X, and (ii)

an abstract probability histogram equal to the abstract distribution probabil-
ity histogram, (ÂH ∗ To)X = (Êh ∗ To)X. In the case of known transform,
To, the maximum likelihood estimate for the distribution histogram is the
partition-dependent, Ẽo = Â

R(To)
o . Partition induction is entity-like because

the iso-partition-independents is a subset of the iso-abstracts, so the derived
variables are separately necessary,

∀P ∈ Wo ∀u1, u2 ∈ P(
(AH ∗ To)%{P}({(P, u2)})
(AH ∗ To)%{P}({(P, u1)})

=
(Eh ∗ To)%{P}({(P, u2)})
(Eh ∗ To)%{P}({(P, u1)})

)
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although the iso-abstractence is lower,

|Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∩ Y −1
U,i,T,W,z((A ∗ T )X)|

|Y −1
U,i,T,W,z((A ∗ T )X)|

≤ 1

and so partition induction may be less entity-like than abstract induction.

Now, in addition, formal variables are separately necessary,

∀P ∈ Wo ∀u1, u2 ∈ P(
(AX

H ∗ To)%{P}({(P, u2)})
(AX

H ∗ To)%{P}({(P, u1)})
=

(EX
h ∗ To)%{P}({(P, u2)})

(EX
h ∗ To)%{P}({(P, u1)})

)
That is, the stricter condition of partition induction requires that the parti-
tion derived variables are necessary with respect to both the histogram and
its independent. If the model is a substrate transform, To ∈ TU,Vo , then (i)

necessary abstract is equivalent to necessary derived variables, (ÂH ∗ To)X =
(Êh ∗ To)X ⇐⇒ ∀P ∈ Wo (ÂH ∗ PT = Êh ∗ PT), and (ii) necessary for-
mal independent is equivalent to necessary formal variables, (ÂX

H ∗ To)X =
(ÊX

h ∗ To)X ⇐⇒ ∀P ∈ Wo (ÂX
H ∗ PT = ÊX

h ∗ PT).

Also, partition induction may be more law-like than abstract induction if
the iso-derivedence is greater,

|Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∩ D−1
U,i,T,z(A ∗ T )|

|(Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∪ D−1
U,i,T,z(A ∗ T )) ∩ Y −1

U,i,T,W,z((A ∗ T )X)|
>

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

depending on the relative intersection cardinalities.

It is conjectured in ‘Transform alignment’, above, that the formal alignment
of the independent analogue of the iso-partition-independents, algn(AP(T )X ∗
T ), is less than or equal to the formal alignment, algn(AX ∗ T ), which
in turn is less than or equal to the dependent analogue formal alignment,
algn(AR(T )X ∗ T ),

algn(AP(T )X ∗ T ) ≤ algn(AX ∗ T ) ≤ algn(AR(T )X ∗ T )

That is, the formal alignment of the maximum likelihood estimate of parti-
tion induction, Ẽo = Â

R(To)
o , is greater than or equal to the sample formal
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alignment, algn(Zo ∗ ẼX
o ∗ To) ≥ algn(AX

o ∗ To). So in some cases even if the
sample is not purely formal, Ao ∗ To 6= AX

o ∗ To, the distribution histogram

estimate may be purely formal, A
R(To)
o ∗ To = A

R(To)X
o ∗ To.

If there is no knowledge regarding formal alignment, partition induction
may be preferable to abstract induction because of its possibly higher de-
gree of law-likeness or iso-derivedence. In this case the partition induc-
tion maximum likelihood estimate approximates more closely to classical,
Ẽo = Â

R(To)
o ≈ Â

D(To)
o , than abstract induction.

If, however, the distribution histogram is known to have small formal align-
ment, algn(Zo ∗ ÊX

o ∗To) ≈ 0, then, even if the sample formal is independent,
AX

o ∗ To = (AX
o ∗ To)X, the distribution formal estimate is unconstrained,

algn(Zo ∗ ẼX
o ∗ To) ≥ algn(AX

o ∗ To) = 0

Of course, this is also the case if the distribution formal is known to be in-
dependent, EX

o ∗ To = (EX
o ∗ To)X =⇒ algn(Zo ∗ ÊX

o ∗ To) = 0.

Clearly, in the case of small or zero distribution formal alignment, the parti-
tion induction condition is insufficient. Now consider further strengthening
the condition of necessary formal independent, (ÂX

H ∗ To)X = (ÊX
h ∗ To)X,

to necessary formal, where the history probability function, P , is historically
distributed but constrained such that all drawn histories, P (H) > 0, have
a formal probability histogram equal to the formal distribution probability
histogram, ÂX

H ∗ To = ÊX
h ∗ To.

In aligned modelled induction, also called transform induction, the condi-
tion is necessary transform independent, Â

X(To)
H = Ê

X(To)
o , or necessary formal

and necessary abstract, (ÂX
H ∗ To, (ÂH ∗ To)X) = (ÊX

h ∗ To, (Êh ∗ To)X). The
corresponding iso-set is the iso-transform-independents, which is the inter-
section of the iso-abstracts and the iso-formals, which in turn is a subset of
the iso-partition-independents which in turn is a subset of the iso-abstracts,

Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) = Y −1
U,T,W,z((A ∗ T )X) ∩ Y −1

U,T,V,z(A
X ∗ T )

⊆ Y −1
U,T,W,z((A ∗ T )X) ∩ Y −1

U,T,V,x,z((A
X ∗ T )X)

⊆ Y −1
U,T,W,z((A ∗ T )X)

The transform-independent, AX(T ) ∈ AU,V,z, is defined in section ‘Likely his-
tograms’, above, as

{AX(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})
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where the integral iso-transform-independents is abbreviated

AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

= {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

The corresponding dependent analogue is the transform-dependent, AY(T ) ∈
AU,V,z, defined

{AY(T )} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)

) : D ∈ AU,V,z})

In ‘Transform alignment’, above, it is conjectured that the partition-dependent
formal alignment is greater than or equal to the formal alignment, which in
turn is greater than or equal to the transform-dependent formal alignment

algn(AR(T )X ∗ T ) ≥ algn(AX ∗ T ) ≥ algn(AY(T )X ∗ T )

So if the sample formal alignment is small, the transform-dependent formal
alignment is also small,

algn(AX
o ∗ To) ≈ 0 =⇒ algn(AY(To)X

o ∗ To) ≈ 0

whereas the partition-dependent formal alignment remains unconstrained,

algn(AR(To)X
o ∗ To) ≥ algn(AX

o ∗ To) ≈ 0

Therefore if it is known that the distribution histogram formal alignment is
small, algn(Zo ∗ ÊX

o ∗ To) ≈ 0, then, although partition induction is stricter
than abstract induction, partition induction is still insufficiently constrained
compared to transform induction. Furthermore, if the formal is necessarily
independent, ∀H ∈ HU,X (P (H) > 0 =⇒ AX

H ∗ To = (AX
H ∗ To)X), then this

additional condition may be obtained in transform induction by constraining
the sample to have independent formal, AX

o ∗ To = (AX
o ∗ To)X, because the

iso-transform-independents necessarily have the same formal,

AX ∗ T = (AX ∗ T )X =⇒
∀B ∈ Y −1

U,i,T,z(((A
X ∗ T ), (A ∗ T )X))

(BX ∗ T = AX ∗ T = (AX ∗ T )X = (BX ∗ T )X)

Just as for partition induction, in transform induction the derived variables
and formal variables are separately necessary. If the model is a substrate
transform, To ∈ TU,Vo , then

∀P ∈ Wo ((ÂH ∗ PT = Êh ∗ PT) ∧ (ÂX
H ∗ PT = ÊX

h ∗ PT))
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If the iso-derivedence of the integral iso-transform-independents is greater
than the iso-derivedence of the integral iso-partition-independents,

|Y −1
U,i,T,V,z(A

X ∗ T ) ∩ D−1
U,i,T,z(A ∗ T )|

|(Y −1
U,i,T,V,z(A

X ∗ T ) ∪ D−1
U,i,T,z(A ∗ T )) ∩ Y −1

U,i,T,W,z((A ∗ T )X)|
>

|Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∩ D−1
U,i,T,z(A ∗ T )|

|(Y −1
U,i,T,V,x,z((A

X ∗ T )X) ∪ D−1
U,i,T,z(A ∗ T )) ∩ Y −1

U,i,T,W,z((A ∗ T )X)|

then transform induction is more law-like than partition induction, and so is
more classical.

Like abstract induction and partition induction, in the case of unknown model,
To, transform induction has a unique solution for the maximum likelihood es-
timate for the pair (Ẽo, T̃o).

If, in addition, the sample is considered to be special by assuming it is ideal,
Ao = Ao ∗ To ∗ T †Ao

o , the dependent analogue, A
Y(To)
o , is closer to the derived

dependent, A
D(To)
o , and therefore more law-like. This is analogous to the spe-

cial case in abstract induction where the sample is natural, Ao = Ao ∗To ∗T †o .

Furthermore, if the sample is assumed to be such that the formal equals
the abstract, AX

o ∗ To = (Ao ∗ To)X, then the model estimate optimisation
can be lifted into the derived variables, and so made tractable and thence
practicable. This is analogous to the special case in abstract induction where
the sample has independent formal, AX

o ∗ To = (AX
o ∗ To)X.

First, however, consider the case where the given substrate transform in
the sample variables To ∈ TU,Vo , is known.

In aligned modelled induction, while the distribution probability histogram,
Êh, remains unknown, the formal distribution probability histogram, ÊX

h ∗ To,
and the abstract distribution probability histogram, (Êh ∗To)X, are necessary.
That is, the history probability function, P , is historically distributed but con-
strained such that all drawn histories have (i) a formal probability histogram
equal to the formal distribution probability histogram, ÂX

H ∗ To = ÊX
h ∗ To,

and (ii) an abstract probability histogram equal to the abstract distribution
probability histogram, (ÂH ∗ To)X = (Êh ∗ To)X. Define the iso-transform-
independent historically distributed history probability function PU,X,Hh,y,To ∈
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(HU,X :→ Q[0,1]) ∩ P ,

PU,X,Hh,y,To :=(⋃{
{(H, 1) : H ⊆ Hh%VH , |H| = zH ,

ÂX
H ∗ To = ÊX

h ∗ To, (ÂH ∗ To)X = (Êh ∗ To)X}∧ :

VH ⊆ Vh, zH ∈ {1 . . . zh}
})∧ ∪

{(H, 0) : H ∈ HU,X , Â
X
H ∗ To 6= ÊX

h ∗ To ∨ (ÂH ∗ To)X 6= (Êh ∗ To)X} ∪
{(H, 0) : H ∈ HU,X , H * Hh%VH} ∪ {(∅, 0)}

For drawn histories the formal probability histogram and abstract probability
histogram are necessary, ∀H ∈ HU,X (PU,X,Hh,y,To(H) > 0 =⇒ ÂX

H ∗ To =

ÊX
h ∗ To ∧ (ÂH ∗ To)X = (Êh ∗ To)X). Not all sizes and sets of variables are

necessarily drawable. That is, in some cases, ∃z ∈ {1 . . . zh} ∃V ⊆ Vh ∀H ∈
HU,X ((zH = z) ∧ (VH = V ) =⇒ PU,X,Hh,y,To(H) = 0). The distribution
history can always be drawn, so the probability function is not a weak prob-
ability function,

∑
H∈HU,X

PU,X,Hh,y,To(H) = 1.

In aligned modelled induction the history probability function is iso-transform-
independent historically distributed, P = PU,X,Hh,y,To .

Given a drawn history H ∈ HU,X , where PU,X,Hh,y,To(H) > 0, the iso-
transform-independent probability of histogram AH = histogram(H)+V CZ

H ∈
AU,i,VH ,zH is now conditional,

Qh,U(Eh%VH , zH)(AH)∑
B∈AU,i,y,To,zH

(A) Qh,U(Eh%VH , zH)(B)
=∑

PU,X,Hh,y,To(G) : G ∈ HU,X , AG = AH∑
PU,X,Hh,y,To(G) : G ∈ HU,X , VG = VH , |G| = zH

where the integral iso-transform-independents is abbreviated

AU,i,y,T,z(A) = Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

and the set of integral iso-transform-independents is the intersection of the
iso-formals and iso-abstracts

Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

= Y −1
U,i,T,V,z(A

X ∗ T ) ∩ Y −1
U,i,T,W,z((A ∗ T )X)

= {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}
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The iso-transform-independent historical probability may be expressed in
terms of a histogram distribution which is not explicitly conditional on the
necessary formal and necessary abstract, (ÊX

h ∗ To, (Êh ∗ To)X),

Q̂h,y,To,U(Eh%VH , zH)(AH) ∝
∑

(PU,X,Hh,y,To(G) : G ∈ HU,X , AG = AH)

where the iso-derived conditional stuffed historical probability distribution is
defined

Q̂h,y,T,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈AU,i,y,T,z(A)Qh,U(E, z)(B)

) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

which is defined if z ≤ size(E). In the case where all the formal-abstract
pairs are possible,

∀A′ ∈ ran(YU,i,T,z) ∃A ∈ AU,i,V,z (((AX ∗ T, (A ∗ T )X) = A′) ∧ (A ≤ E))

the normalisation of the iso-transform-independent conditional stuffed his-
torical probability distribution is a fraction 1/|ran(YU,i,T,z)|,

Q̂h,y,T,U(E, z)

= {(A, 1

|ran(YU,i,T,z)|
Qh,U(E, z)(A)∑

B∈AU,i,y,T,z(A) Qh,U(E, z)(B)
) : A ∈ AU,i,V,z}

In the case of a full functional transform, Tf = {{w}CS{}V T : w ∈ V }T,
the iso-transform-independents equals the iso-independents, AU,i,y,Tf ,z(A) =
Y −1
U,i,V,z(A

X), and so the case is the same as for aligned non-modelled induction,
(i) the maximum likelihood estimate varies with the sample probability his-
togram, Ẽo ∼ Âo, and against the independent sample probability histogram,
Ẽo � ÂX

o , and (ii) the sum sensitivity varies with the sample alignment,
algn(Ao), at low alignments and against the sample alignment, − algn(Ao),
at high alignments.

At the other extreme of a unary transform, Tu = {V CS}T, the iso-transform-
independents equals the substrate histograms, AU,i,y,Tu,z(A) = AU,i,V,z, and so
the case is the same as for classical non-modelled induction, (i) the maxi-
mum likelihood estimate equals the sample probability histogram, Ẽo = Âo,
and (ii) the sum sensitivity varies with the negative scaled sample entropy,
−zo × entropy(Ao).
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The iso-transform-independent conditional generalised multinomial proba-
bility distribution is defined

Q̂m,y,T,U(E, z)

:= {(A, Qm,U(E, z)(A)∑
B∈AU,i,y,T,z(A)Qm,U(E, z)(B)

) : A ∈ AU,i,V,z, AF ≤ EF}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, AF � EF}

which is defined if size(E) > 0.

The case where all the formal-abstract pairs are possible is weaker than for
historical,

∀A′ ∈ ran(YU,i,T,z) ∃A ∈ AU,i,V,z (((AX ∗ T, (A ∗ T )X) = A′) ∧ (AF ≤ EF))

In this case the iso-transform-independent conditional generalised multino-
mial probability distribution is

Q̂m,y,T,U(E, z)

= {(A, 1

|ran(YU,i,T,z)|
Qm,U(E, z)(A)∑

B∈AU,i,y,T,z(A) Qm,U(E, z)(B)
) : A ∈ AU,i,V,z}

Assume that the distribution history size, zh, is large with respect to the sam-
ple size zo = size(Ao), so that, in the limit, the iso-transform-independent
conditional stuffed historical probability, Q̂h,y,To,U(Eh%Vo, zo)(Ao), approxi-
mates to the iso-transform-independent conditional multinomial probability,
Q̂m,y,To,U(Eh%Vo, zo)(Ao). That is, if zo � zh then

Q̂h,y,To,U(Eo, zo)(Ao) ≈ Q̂m,y,To,U(Eo, zo)(Ao)

The iso-transform-independent multinomial parameterised probability density
function, mytppdf(T, z) ∈ ppdfs(v, v), and iso-transform-independent multi-
nomial likelihood function, mytlf(T, z) ∈ lfs(v, v), corresponding to the iso-
transform-independent multinomial probability distribution, Q̂m,y,T,U , are not
given explicitly here, but are such that

mytppdf(T, z)(Ê[])(A[]) = mytlf(T, z)(A[])(Ê[]) = Q̂m,y,T,U(E, z)(A)

Now in the case of aligned modelled induction where the transform, To, is
known, the real maximum likelihood estimate Ẽ ′o ∈ Rvo

(0,1) for the parameter of
the iso-transform-independent multinomial parameterised probability density
function is

{Ẽ ′o} = maxd(mytlf(To, zo)(A[]
o))
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which is such that ∀i ∈ {1 . . . vo} (∂i(mytlf(To, zo)(A
[]
o))(Ẽ ′o) = 0). The maxi-

mum likelihood estimate Ẽ ′o is only defined in the case where the sample his-

togram is completely effective, AF
o = V C

o =⇒ Â
[]
o ∈ Rvo

(0,1), because the bino-

mial likelihood function is only defined for the open set. That is, d(blf(zo)(0))
is undefined and so the derivative of the iso-transform-independent multino-
mial parameterised probability density function is undefined where there are
ineffective states.

In the case of completely effective sample histogram, AF
o = V C

o , the maximi-
sation for known transform, To, of the iso-transform-independent conditional
generalised multinomial probability parameterised by the complete congru-
ent histograms of unit size is a singleton of the rational maximum likelihood
estimate

{Ẽo} = maxd({(E, Q̂m,y,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

The real maximum likelihood estimate, Ẽ ′o, is not necessarily a rational co-
ordinate, Rvo

(0,1) ⊃ Qvo
(0,1), and so the rational maximum likelihood estimate is

not necessarily equal to the real maximum likelihood estimate. However, it
is conjectured that the maximisation of the distribution approximates to the
maximisation of the likelihood function,

Ẽ[]
o ≈ Ẽ ′o

In the case where the sample histogram is not completely effective, AF
o < V C

o ,
the maximisation of the iso-transform-independent conditional generalised
multinomial probability distribution for known transform is well defined, un-
like the parameterised probability density function, but is not necessarily a
singleton

|max({(E, Q̂m,y,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})| ≥ 1

In the case where the maximisation of the iso-transform-independent con-
ditional generalised multinomial probability distribution is a singleton, it is
equal to the normalised transform-dependent, Ẽo = Â

Y(To)
o , where the transform-

dependent AY(T ) ∈ AU,V,z is defined in ‘Likely histograms’, above, as the
maximum likelihood estimate of the distribution histogram of the multino-
mial probability of the histogram, A, conditional that it is an iso-transform-
independent,

{AY(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)

) : D ∈ AU,V,z})
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The transform-dependent, AY(T ), is sometimes not computable. The finite
approximation to the transform-dependent is

{AY(T )
k } =

maxd({(D/Zk,
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)
) : D ∈ AU,i,V,kz})

The approximation, A
Y(T )
k ≈ AY(T ), improves as the scaling factor, k, in-

creases.

Unlike in classical non-modelled induction, where the maximum likelihood
estimate, Ẽo, is equal to the sample probability histogram, Âo, in aligned
modelled induction the maximum likelihood estimate is not necessarily equal
to the sample probability histogram. It is only in the case where the sam-
ple histogram equals the transform-independent that the maximum likelihood
estimate is necessarily equal to the sample probability histogram,

Ao = AX(To)
o =⇒ AY(To)

o = Ao =⇒ Ẽo = Âo

where the transform-independent AX(T ) ∈ AU,V,z is defined in ‘Likely his-
tograms’, above, as the maximum likelihood estimate for the distribution his-
togram of the sum of the generalised multinomial probabilities of the integral
iso-transform-independents of the histogram, A,

{AX(T )} = maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})

Otherwise, the overall maximum likelihood estimate, which is the transform-
dependent, is near the histogram, Ẽo ∼ Âo, only in as much as it is far from
the transform-independent, Ẽo � Â

X(To)
o .

The requirement that the distribution history itself be drawable, PU,X,Hh,y,To(Hh) >
0, has been ignored so far. This requirement modifies the maximisation to
add the constraint that the maximum likelihood estimate be an iso-transform-
independent, ((ẼX

h ∗ To), (Ẽh ∗ To)X) = ((ÂX
o ∗ To), (Âo ∗ To)X),

{Ẽo} = maxd({(E, Q̂m,y,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1,
EX ∗ To = ÂX

o ∗ To, (E ∗ To)X = (Âo ∗ To)X})

So, strictly speaking, the maximum likelihood estimate is only approximately
equal to the normalised transform-dependent, Ẽo ≈ Â

Y(To)
o , if the transform-

dependent is not an iso-transform-independent, A
Y(To)
o /∈ AU,y,To,zo(Ao). In
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the special case, however, where the sample histogram equals the transform-
independent, the maximum likelihood estimate is exactly equal to the nor-
malised transform-dependent, Ao = A

X(To)
o =⇒ Ẽo = Â

Y(To)
o = Âo.

In aligned modelled induction, also known as transform induction, where
(i) the history probability function is iso-transform-independent historically
distributed, P = PU,X,Hh,y,To , given some substrate transform in the sample
variables To ∈ TU,Vo , if it is the case that (ii) the sample histogram equals

the transform-independent, Ao = A
X(To)
o , then the maximum likelihood esti-

mate, Ẽo, of the unknown distribution probability histogram, Êo, in the iso-
transform-independent conditional stuffed historical probability distribution,
Q̂h,y,To,U(Eo, zo), is

Ẽo = Âo

The set of iso-transform-independents is a subset of the iso-abstracts,
Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) ⊆ Y −1
U,T,W,z((A ∗ T )X), so transform induction

is entity-like. The iso-abstractence or degree of entity-likeness is

|Y −1
U,i,T,V,z(A

X ∗ T ) ∩ Y −1
U,i,T,W,z((A ∗ T )X)|

|Y −1
U,i,T,W,z((A ∗ T )X)|

≤ 1

If the set of iso-transform-independents is a proper subset of the iso-abstracts,
then transform induction is less entity-like than abstract induction.

The set of iso-transform-independents is not a subset of the iso-deriveds,
Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X)) * D−1
U,T,z(A ∗ T ), so transform induction is not

law-like, unlike classical modelled induction or idealisation induction. How-
ever, transform induction may be more law-like than abstract induction if
the iso-derivedence or degree of law-likeness is greater,

|Y −1
U,i,T,V,z(A

X ∗ T ) ∩ D−1
U,i,T,z(A ∗ T )|

|(Y −1
U,i,T,V,z(A

X ∗ T ) ∪ D−1
U,i,T,z(A ∗ T )) ∩ Y −1

U,i,T,W,z((A ∗ T )X)|
>

|D−1
U,i,T,z(A ∗ T )|

|Y −1
U,i,T,W,z((A ∗ T )X)|

which depends on the relative intersection cardinalities. That is, transform
induction is sometimes less entity-like and more law-like than abstract in-
duction.

Constraints on the sample can make the denominator,
∑
Qm,U(AY(T ), z)(B) :
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B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)), more approximate to the iso-derived de-

nominator,
∑
Qm,U(AD(T ), z)(B) : B ∈ D−1

U,i,T,z(A ∗ T ). In this way trans-
form induction can sometimes approximate to classical modelled induction,
Ẽo = Â

Y(To)
o ≈ Â

D(To)
o .

The degree to which the iso-transform-independents is said to be aligned-
like, or the iso-independence, is

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|
=

|Y −1
U,i,T,W,z((A ∗ T )X) ∩ Y −1

U,i,V,z(A
X)|

|(Y −1
U,i,T,W,z((A ∗ T )X) ∪ Y −1

U,i,V,z(A
X)) ∩ Y −1

U,i,T,V,z(A
X ∗ T )|

In some cases the iso-independence of the iso-idealisations is greater than or
equal to the iso-independence of the iso-transform-independents,

|Y −1
U,i,T,†,z(A ∗ T ∗ T †A)|
|Y −1
U,i,V,z(A

X)|
≥
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|

and so transform induction is sometimes less aligned-like than idealisation
induction. However, the derived iso-independence of the integral lifted iso-
transform-independents is necessarily greater than or equal to the derived
iso-independence of any law-like iso-set,

|{B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}|
|Y −1
U,i,W,z((A ∗ T )X)|

≥ 1

|Y −1
U,i,W,z((A ∗ T )X)|

and so transform induction may be said to be more derived aligned-like than
either classical modelled induction or idealisation induction. However, the
derived iso-independence of the integral lifted iso-transform-independents is
less than or equal to the derived iso-independence of the integral lifted iso-
abstracts,

|{B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}|
|Y −1
U,i,W,z((A ∗ T )X)|

≤

|{B ∗ T : B ∈ Y −1
U,i,T,W,z((A ∗ T )X)}|

|Y −1
U,i,W,z((A ∗ T )X)|

So transform induction is less derived aligned-like than abstract induction.

1015



As the iso-independence increases, the maximum likelihood estimate, Ẽo,
which equals the transform-dependent, Â

Y(To)
o , tends to the dependent, ÂY

o ,
which is independent of the model, To, because the independent analogue,
Â

X(To)
o , tends to the independent, AX

o , which is also independent of the model,
as the transform tends to full functional. As the derived iso-independence

increases, however, the lifted independent analogue, A
X(To)′
o , tends to the ab-

stract, (Ao ∗ To)X, which is not independent of the model, To.

The finite set of integral iso-formals of AX ∗ T is

Y −1
U,i,T,V,z(A

X ∗ T ) = {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T}

The iso-independents are a subset of the iso-formals,

Y −1
U,i,V,z(A

X) ⊆ Y −1
U,i,T,V,z(A

X ∗ T )

so the iso-independent multinomial probability is at least the iso-formal multi-
nomial probability,

Qm,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Qm,U(E, z)(B)
≥ Qm,U(E, z)(A)∑

B∈Y −1
U,i,T,V,z(AX∗T ) Qm,U(E, z)(B)

That is, necessary formal, ÂX
o ∗ To = ÊX

o ∗ To, is a weaker condition on the
drawable histories than necessary independent, ÂX

o = ÊX
o .

The finite set of integral iso-abstracts of (A ∗ T )X is

Y −1
U,i,T,W,z((A ∗ T )X) = {B : B ∈ AU,i,V,z, (B ∗ T )X = (A ∗ T )X}

In general, the iso-independents are neither a subset nor a superset of the
iso-abstracts.

In the case of a full functional transform, Tf = {{w}CS{}V T : w ∈ V }T, both
the iso-formals and the iso-abstracts equal the iso-independents, Y −1

U,i,Tf ,V,z
(AX∗

Tf) = Y −1
U,i,Tf ,W,z((A ∗ Tf)

X) = Y −1
U,i,V,z(A

X), and so the case is the same as for
aligned non-modelled induction. At the other extreme of a unary transform,
Tu = {V CS}T, both the iso-formals and the iso-abstracts equal the substrate
histograms, Y −1

U,i,Tu,V,z
(AX ∗ Tu) = Y −1

U,i,Tu,W,z((A ∗ Tu)X) = AU,i,V,z, and so the
case is the same as for classical non-modelled induction.

This suggests that, in the case of necessary formal, ÂX
o ∗ To = ÊX

o ∗ To,
and necessary abstract, (Âo ∗ To)X = (Êo ∗ To)X, as the transform, To, ranges
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from full functional, Tf , to unary, Tu, the condition weakens from necessary
independent aligned induction to unconditional classical induction, and so (i)
the maximum likelihood estimate tends to the sample probability histogram,
Ẽo → Âo, (ii) the maximum likelihood alignment tends to that of the sample
histogram, algn(Zo ∗ Ẽo) → algn(Ao), and (iii) at low alignments the sum
sensitivity tends to vary less with the sample alignment and more with the
negative scaled sample entropy, algn(Ao)→ −zo × entropy(Ao).

In general, the iso-independents are neither a subset nor a superset of the
iso-transform-independents, so the iso-independent multinomial probability,

Qm,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Qm,U(E, z)(B)

is not bounded by the iso-transform-independent multinomial probability,

Qm,U(E, z)(A)∑
B∈AU,i,y,T,z(A) Qm,U(E, z)(B)

That is, necessary formal and necessary abstract, ÂX
o ∗To = ÊX

o ∗To ∧ (Âo ∗
To)X = (Êo ∗ To)X, is not necessarily a weaker condition on the drawable
histories than necessary independent, ÂX

o = ÊX
o .

In the case of a full functional transform, Tf , the iso-transform-independents
equals the iso-independents, AU,i,y,Tf ,z(A) = Y −1

U,i,V,z(A
X), and so the case is

the same as for aligned non-modelled induction. In the case of unary trans-
form, Tu, the iso-transform-independents equals the substrate histograms,
AU,i,y,Tu,z(A) = AU,i,V,z, and so the case is the same as for classical non-
modelled induction.

The sample histogram is in the intersection of the iso-independents and the
iso-transform-independents,

A ∈ Y −1
U,i,V,z(A

X) ∩ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

so the iso-independence is non-zero,

|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∩ Y −1
U,i,V,z(A

X)|
|Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X)) ∪ Y −1
U,i,V,z(A

X)|
> 0

and the iso-independent multinomial probability is correlated with the iso-
transform-independent multinomial probability

Qm,U(E, z)(A)∑
B∈Y −1

U,i,V,z(AX) Qm,U(E, z)(B)
∼ Qm,U(E, z)(A)∑

B∈AU,i,y,T,z(A) Qm,U(E, z)(B)
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In the case still of necessary formal and necessary abstract, but where the
transform is constrained to be such that the formal independent equals the
abstract, (AX ∗ T )X = (A ∗ T )X, then the independent is an iso-abstract,

(AX ∗ T )X = (A ∗ T )X =⇒ AX ∈ Y −1
U,T,W,z((A ∗ T )X)

If, in addition, the independent is integral, AX ∈ Ai, then both the sample
histogram and the independent sample histogram are in the intersection of
the iso-independents and the iso-transform-independents,

{A,AX} ⊆ Y −1
U,i,V,z(A

X) ∩ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

so the iso-independence may be expected to be higher, and the correlation
between the iso-independent multinomial probability and the iso-transform-
independent multinomial probability may be expected to be stronger.

This is also the case where the constraints on the transform are stricter.
For example, if the formal equals the abstract, AX ∗ T = (A ∗ T )X =⇒
(AX ∗ T )X = (A ∗ T )X.

If the formal histogram equals the abstract histogram then the lifted iso-
transform-independents contains the abstract histogram

(A ∗ T )X = AX ∗ T ∈ {B ∗ T : B ∈ Y −1
U,T,z(((A

X ∗ T ), (A ∗ T )X))}

In this case, if the abstract is also integral, (A ∗ T )X ∈ Ai, the derived iso-
independence of the iso-transform-independents,

|{B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}|
|Y −1
U,i,W,z((A ∗ T )X)|

is greater than would otherwise be the case because the abstract is in the in-
tersection, (A∗T )X ∈ {B∗T : B ∈ Y −1

U,i,T,z(((A
X∗T ), (A∗T )X))}∩Y −1

U,i,W,z((A∗
T )X).

Note that it is only in the subset where the formal histogram equals the ab-
stract histogram, AX∗T = (A∗T )X, that the lifted iso-transform-independent
relation is functional

{(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,W,z → (AU,W,z ×AU,W,z)
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and

{(A ∗ T, Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))) : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,W,z → P(AU,i,V,z)

Similarly it is only in the subset where the formal histogram equals the
abstract histogram, AX ∗ T = (A ∗ T )X, that the formal domained relation of
the iso-transform-independents is functional

{(AX ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,W,z → (AU,W,z ×AU,W,z)

and

{(AX ∗ T, Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))) : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,W,z → P(AU,i,V,z)

Given the known substrate transform, To, consider the maximum likelihood
estimate of the iso-transform-independent conditional generalised multino-
mial probability distribution, Q̂m,y,To,U .

The independent-analogue or transform-independent, AX(T ), is the maximum
likelihood estimate of the distribution histogram of the multinomial probability
of membership of the iso-transform-independents,

{AX(T )} =

maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A))) : D ∈ AU,V,z})

The lifted independent-analogue or the lifted transform-independent, AX(T )′ ,
is defined

{AX(T )′} =

maxd({(D,
∑

(Qm,U(D, z)(B′) : B ∈ A′U,i,y,T,z(A))) : D ∈ AU,W,z})

where the lifted integral iso-transform-independents is abbreviated

A′U,i,y,T,z(A) = {B ∗ T : B ∈ AU,i,y,T,z(A)}

The corresponding dependent-analogue or transform-dependent, AY(T ), is the
maximum likelihood estimate of the distribution histogram of the multino-
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mial probability of the histogram, A, conditional that it is an iso-transform-
independent,

{(AY(T ),
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
)} =

max({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ AU,i,y,T,z(A)

) : D ∈ AU,V,z})

In section ‘Likely histograms’, above, the logarithm of the maximum condi-
tional probability with respect to the dependent-analogue is conjectured to
vary with the relative space with respect to the independent-analogue. In the
case of iso-transform-independent conditional,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼

spaceRelative(AX(T ))(A)

where the distribution-relative multinomial space is defined, in section ‘Likely
histograms’, above, as

spaceRelative(E)(A) := − ln
mpdf(U)(E, z)(A)

mpdf(U)(E, z)(E)

The set of iso-transform-independents is entity-like, not law-like, so the de-
rived, A∗T , and the transform-dependent derived, AY(T )∗T , are not necessar-
ily equal to each other and nor are they necessarily equal to the transform-
independent derived, AX(T ) ∗ T . In section ‘Transform alignment’, above, it
is conjectured that the relation between the relative spaces,

0 = spaceRelative(AX(T ))(AX(T ))

≤ spaceRelative(AX(T ))(A)

≤ spaceRelative(AX(T ))(AY(T ))

can be lifted and so the dependent analogue derived alignment is conjectured
to be greater than or equal to the derived alignment which in turn is greater
than or equal to the independent analogue derived alignment,

algn(AX(T ) ∗ T ) ≤ algn(A ∗ T ) ≤ algn(AY(T ) ∗ T )

The transform-dependent varies with the histogram, AY(T ) ∼ A, so conjecture
that the log-likelihood varies with the derived alignment,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼ algn(A ∗ T )
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The derivation of this correlation can be seen more clearly in terms of a de-
composition into three separate correlations. First, conjecture that the log-
arithm of the iso-transform-independent conditional multinomial probability
of the histogram, A, with respect to the dependent analogue or transform-
dependent, AY(T ), varies against the logarithm of the iso-transform-independent
conditional multinomial probability with respect to the independent analogue
or transform-independent, AX(T ),

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼

− ln
Qm,U(AX(T ), z)(A)∑

Qm,U(AX(T ), z)(B) : B ∈ AU,i,y,T,z(A)

This relation is called the dependent-independent anti-correlation. As shown
in ‘Likely histograms’, above, the strength of the dependent-independent anti-
correlation depends on the relative space of the histogram with respect to the
independent analogue, spaceRelative(AX(T ))(A).

Second, conjecture that the negative logarithm of the iso-transform-independent
conditional multinomial probability of the histogram, A, with respect to the
independent analogue or transform-independent, AX(T ), varies with the neg-
ative logarithm of the lifted iso-transform-independent conditional multino-
mial probability of the derived, A ∗ T , with respect to the lifted independent
analogue or transform-independent derived, AX(T ) ∗ T ,

− ln
Qm,U(AX(T ), z)(A)∑

Qm,U(AX(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼

− ln
Qm,U(AX(T ) ∗ T, z)(A ∗ T )∑

Qm,U(AX(T ) ∗ T, z)(B′) : B′ ∈ A′U,i,y,T,z(A)

This correlation is called the underlying-lifted correlation. As mentioned
above in this section, lifting the iso-transform-independents is not functional,

{(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,V,z} /∈ AU,W,z → (AU,W,z ×AU,W,z)

unless the formal histogram equals the abstract histogram, AX∗T = (A∗T )X.
The underlying-lifted correlation is expected to be weaker if the lift is not
functional.

Third, conjecture that, in the case where the lifted transform-independent is
integral, AX(T )′ ∈ Ai, the denominator of the lifted iso-transform-independent
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conditional multinomial probability is dominated by the lifted transform-
independent term, Qm,U(AX(T ) ∗ T, z)(AX(T )′), and similar terms, and so
the negative logarithm of the lifted iso-transform-independent conditional
multinomial probability with respect to the lifted independent analogue or
transform-independent derived, AX(T ) ∗T , varies with the negative logarithm
of the ratio of (i) the multinomial probability of the derived, A ∗ T , with
respect to the transform-independent derived, AX(T ) ∗ T , and (ii) the multi-
nomial probability of the lifted transform-independent, AX(T )′ , with respect
to the transform-independent derived, AX(T ) ∗ T , which approximates to the
relative space with respect to the abstract, (A ∗ T )X, which is the derived
alignment,

− ln
Qm,U(AX(T ) ∗ T, z)(A ∗ T )∑

Qm,U(AX(T ) ∗ T, z)(B′) : B′ ∈ A′U,i,y,T,z(A)

∼ − ln
Qm,U(AX(T ) ∗ T, z)(A ∗ T )

Qm,U(AX(T ) ∗ T, z)(AX(T )′)

≈ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)((A ∗ T )X)

= spaceRelative((A ∗ T )X)(A ∗ T )

= algn(A ∗ T )

This correlation is called the conditional-relative correlation. The strength of
the conditional-relative correlation increases with the derived iso-independence
of the integral lifted iso-transform-independents,

|{B ∗ T : B ∈ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))}|
|Y −1
U,i,W,z((A ∗ T )X)|

Insofar as the transform-independent derived approximates to the abstract,
AX(T ) ∗ T ≈ (A ∗ T )X, as the derived iso-independence increases, the lifted
transform-independent, AX(T )′ , tends to the abstract, (A ∗ T )X, and the lifted
transform-independent term, Qm,U(AX(T ) ∗ T, z)(AX(T )′), tends to the ab-
stract term, Qm,U((A∗T )X, z)((A∗T )X), in the case where both are integral,
AX(T )′ , (A ∗ T )X ∈ Ai.

In transform induction, where (i) the history probability function is iso-
transform-independent historically distributed, P = PU,X,Hh,y,To , given some
substrate transform in the sample variables To ∈ TU,Vo , if it is the case that
(ii) the distribution history size is large with respect to the sample size,
zh � zo, and such that (iii) the scaled estimate distribution histogram is
integral, Ẽo,zh ∈ Ai, then the log likelihood of the iso-transform-independent

1022



conditional stuffed historical probability distribution at the maximum likeli-
hood estimate varies with the relative space of the sample with respect to the
transform-independent,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ spaceRelative(AX(To)
o )(Ao)

and varies with the derived alignment,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ algn(Ao ∗ To)

The derived alignment of the maximum likelihood estimate is greater than or
equal to that of the sample,

algn(Zo ∗ Ẽo ∗ T ) ≥ algn(Ao ∗ To)

In section ‘Classical modelled induction’, above, it is shown that the iso-
derived conditional stuffed historical probability distribution at the maximum
likelihood estimate, Q̂h,d,To,U(Ao,zh , zo), can be related to queries on the maxi-

mum likelihood estimate of the distribution histogram, Ẽo = Âo, in the special
case where the sample histogram is natural, Ao = Ao ∗ To ∗ T †o . The given
substrate transform must be such that its contraction has underlying vari-
ables that are a subset of the query variables, und(T%

o ) ⊆ K. In the case
where the query histogram consists of one effective state, Q = {(SQ, 1)}, the
application of the query in terms of a modified sample histogram is

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) =

{(N, (Q̂h,d,To,U(Ao,zh , zo)(AQ,N))1/zo) : N ∈ (Vo \K)CS,

AQ,N = Ao − (Ao ∗ CQ) + ((Ao ∗ CQ) % K ∗ {N}U)}∧

where {RQ} = (Q ∗ T%
o )FS, CQ = T−1

o (RQ) and his = histogram ∈ T → A.
If the sample histogram is completely effective, AF

o = V C
o , the modified sample

histogram, AQ,N , can be drawn from the distribution, Q̂h,d,To,U(Ao,zh , zo)(AQ,N) >
0, because its derived is equal to the known derived, AQ,N ∗To = Ao∗To. That
is, the modified sample histogram is in the iso-deriveds, AQ,N ∈ D−1

U,i,To,zo
(Ao∗

To).

However, in the case of transform induction, where the transform-independent
is necessary, the modified sample histogram is not necessarily in the iso-
transform-independents, AQ,N /∈ Y −1

U,i,To,z
((AX

o ∗ To, (Ao ∗ To)X)). Although

the modified sample histogram is necessarily an iso-abstract, (AQ,N ∗ To)X =
(Ao ∗To)X, in some cases the modified sample histogram is not an iso-formal,
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AX
Q,N ∗ To 6= AX

o ∗ To. Even if the modified derived is an iso-transform-

independent, the modified derived, ÂQ,N ∗ To, is not necessarily equal to

that of the distribution, Êh ∗ To. That is, in some cases ÂQ,N ∗ To 6=
Êh ∗ To. So it cannot be assumed that application of the query via the
model of the sample is equal to the query via the model of the distribution,
(Q∗T%

o ∗his(T%
o )∗Ao)∧ % (Vo\K) 6= (Q∗T%

o ∗his(T%
o )∗Eh)∧ % (Vo\K). Nor

can the query via the model of the sample, (Q∗T%
o ∗his(T%

o )∗Ao)∧ % (Vo\K),
be expressed in terms of the iso-transform-independent conditional stuffed
historical probability distribution at the scaled sample, Q̂h,y,To,U(Ao,zh , zo).

Consider the constraints that may be added to transform induction to in-
crease the resemblance to classical modelled induction, so that queries via
the model of the sample are more approximate to queries via the model of
the distribution, (Q ∗ T%

o ∗ his(T%
o ) ∗Ao)∧ % (Vo \K) ≈ (Q ∗ T%

o ∗ his(T%
o ) ∗

Eh)∧ % (Vo \K).

In abstract induction, above, it is conjectured that, because the law-like iso-
deriveds are a subset of the set of entity-like iso-abstracts, D−1

U,T,z(A ∗ T ) ⊆
Y −1
U,T,W,z((A∗T )X), the maximum likelihood estimate is more classical if (i) the

sample is known to be equal to the independent analogue, or naturalisation,
Ao = Ao ∗To ∗T †o , and (ii) the relative space of the sample with respect to the
naturalised sample abstract, spaceRelative((Ao∗To)X∗T †o )(Ao∗To∗T †o ), is high.

For transform induction, however, the set of iso-deriveds is not necessar-
ily a subset of the entity-like iso-transform-independents, |D−1

U,i,T,z(A ∗ T ) \
Y −1
U,i,T,z(((A

X∗T ), (A∗T )X)| ≥ 0. The set of iso-liftisations is a law-like subset
of the iso-transform-independents,

Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T ) ⊆ Y −1

U,T,V,z(A
X ∗ T ) ∩ Y −1

U,T,W,z((A ∗ T )X)

but the independent analogue, which is the liftisation, AK(T ), is sometimes
not computable. So consider instead the set of iso-idealisations which is a
further law-like subset of the iso-transform-independents,

Y −1
U,T,†,z(A ∗ T ∗ T

†A) = C−1
U,T,x,z({(A ∗ C

U)X∧ : C ∈ TP}) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩ D−1
U,T,z(A ∗ T )

⊆ Y −1
U,T,V,z(A

X ∗ T ) ∩ Y −1
U,T,W,z((A ∗ T )X)

Conjecture that the logarithm of the fraction of the sum of the iso-transform-
independent multinomial probabilities, with respect to the idealisation, A∗T ∗
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T †A, that are iso-idealisations varies as the relative space of the idealisation
with respect to the transform-independent,

ln

∑
Qm,U(A ∗ T ∗ T †A, z)(B) : B ∈ Y −1

U,i,T,†,z(A ∗ T ∗ T †A)∑
Qm,U(A ∗ T ∗ T †A, z)(B) : B ∈ AU,i,y,T,z(A)

∼ − spaceRelative(A ∗ T ∗ T †A)(AX(T ))

∼ spaceRelative(AX(T ))(A ∗ T ∗ T †A)

If the relative space is high, the elements of the iso-transform-independents
which are not iso-idealisations and which sometimes do not have the same
derived as the idealisation, A ∗ T ∗ T †A ∗ T = A ∗ T , have low multinomial
probability with respect to the idealisation,∑

(Qm,U(A ∗ T ∗ T †A, z)(B) : B ∈ AU,i,y,T,z(A) \ Y −1
U,i,T,†,z(A ∗ T ∗ T

†A)) ≈ 0

If the sample is known to be ideal, Ao = Ao∗To∗T †Ao
o , then with the increase

of the relative space of the sample with respect to the transform-independent,
spaceRelative(A

X(To)
o )(Ao ∗ To ∗ T †Ao

o ), the maximum likelihood estimate, Ẽo,

which is the transform-dependent, Â
Y(To)
o , tends to the idealisation-dependent

which equals the idealisation, Â
†(To)
o = Ao ∗ To ∗ T †Ao

o , and away from the

transform-independent, Â
X(To)
o . Consequently, ideal sample increases the cor-

relation between the log likelihood of the iso-transform-independent condi-
tional stuffed historical probability distribution at the maximum likelihood
estimate and the log likelihood of the iso-idealisation conditional stuffed his-
torical probability distribution at the idealisation,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,†,To,U(Ao,zh , zo)(Ao)

Thus, the maximum likelihood estimate is more classical if the sample is
known to be ideal and the relative space is high. That is, transform in-
duction is analogous to abstract induction in this respect except that the
stricter ideal sample, Ao = Ao ∗ To ∗ T †Ao

o , is required instead of natural sam-
ple, Ao = Ao ∗ To ∗ T †o .

Even if the sample is ideal, Ao = Ao ∗ To ∗ T †Ao
o , the maximum likeli-

hood estimate of the distribution histogram, Ẽo = Â
Y(T )
o , is not necessar-

ily equal to the sample, Ẽo 6= Âo. So it still cannot be assumed that ap-
plication of the query via the model of the sample is equal to the query
via the model of the distribution, (Q ∗ T%

o ∗ his(T%
o ) ∗ Ao)∧ % (Vo \ K) 6=

(Q ∗T%
o ∗ his(T%

o ) ∗Eh)∧ % (Vo \K). Nor can the query via the model of the
sample, (Q ∗ T%

o ∗ his(T%
o ) ∗ Ao)∧ % (Vo \ K), be expressed in terms of the
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iso-transform-independent conditional stuffed historical probability distribu-
tion at the scaled idealised sample, Q̂h,y,To,U(Ao,zh , zo).

The relative space of the histogram with respect to the independent ana-
logue, or transform-independent, AX(T ), varies with the lifted relative space,
which varies with the derived alignment,

spaceRelative(AX(T ))(A) ∼ spaceRelative(AX(T ) ∗ T )(A ∗ T )

≈ spaceRelative((A ∗ T )X)(A ∗ T )

= algn(A ∗ T )

depending on the underlying-lifted correlation and the conditional-relative
correlation.

The conditional-relative correlation improves as the derived iso-independence
increases and the lifted transform-independent, AX(T )′ , tends to the abstract,
(A ∗ T )X. As shown in ‘Deltas and Perturbations’ and ‘Abstract induction’,
above, in the case where the formal is independent, AX ∗ T = (AX ∗ T )X, the
possible derived volume equals the derived volume, w′ = w where w′ = |T−1|
and w = |WC|. In this case the derived iso-independence is greater than
it would be otherwise, improving the approximation of the lifted transform-
independent to the abstract, AX(T )′ ≈ (A ∗ T )X.

In the stricter case where the formal equals the abstract, AX ∗ T = (A ∗ T )X,
the lifted iso-transform-independents contains the abstract histogram

(A ∗ T )X ∈ Y −1
U,W,z((A ∗ T )X) ∩ {B ∗ T : B ∈ Y −1

U,T,z(((A
X ∗ T ), (A ∗ T )X))}

and again the derived iso-independence is greater than it would be otherwise,
strengthening the conditional-relative correlation.

Incidentally, the case where the formal equals the abstract, AX∗T = (A∗T )X,
implies that the formal independent equals the abstract, (AX∗T )X = (A∗T )X,
which implies that the independent is an iso-transform-independent,

AX ∈ Y −1
U,V,z(A

X) ∩ Y −1
U,i,T,z(((A

X ∗ T ), (A ∗ T )X))

and so the underlying iso-independence is also greater than it would be oth-
erwise.

Furthermore, in the case where the formal histogram equals the abstract
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histogram, AX ∗ T = (A ∗ T )X, the lifted iso-transform-independent relation
is functional

{(A ∗ T, ((AX ∗ T ), (A ∗ T )X)) : A ∈ AU,V,z, AX ∗ T = (A ∗ T )X}
∈ AU,W,z → (AU,W,z ×AU,W,z)

and so the underlying-lifted correlation is also strengthened.

In the case where the formal histogram equals the abstract histogram, the
independent analogue, or transform-independent, equals the computable nat-
uralised abstract,

AX ∗ T = (A ∗ T )X =⇒ AX(T ) = (A ∗ T )X ∗ T †

So the three correlations now simplify. First, the dependent-independent
anti-correlation between the logarithm of the iso-transform-independent con-
ditional multinomial probability of the histogram, A, with respect to the de-
pendent analogue or transform-dependent, AY(T ), and the logarithm of the
iso-transform-independent conditional multinomial probability with respect
to the naturalised abstract, (A ∗ T )X ∗ T †, is,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼

− ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ AU,i,y,T,z(A)

Second, the underlying-lifted correlation between the negative logarithm of
the iso-transform-independent conditional multinomial probability of the his-
togram, A, with respect to the naturalised abstract, (A ∗ T )X ∗ T †, and the
negative logarithm of the lifted iso-transform-independent conditional multi-
nomial probability of the derived, A∗T , with respect to the abstract, (A∗T )X,
is,

− ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ AU,i,y,T,z(A)
∼

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ A′U,i,y,T,z(A)

Third, the conditional-relative correlation between the negative logarithm of
the lifted iso-transform-independent conditional multinomial probability with
respect to the abstract, (A ∗ T )X, and the negative logarithm of the relative
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multinomial probability with respect to the abstract, (A ∗ T )X, which is the
derived alignment, is,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ A′U,i,y,T,z(A)

∼ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)(AX(T )′)

≈ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)((A ∗ T )X)

= spaceRelative((A ∗ T )X)(A ∗ T )

= algn(A ∗ T )

That is, if the sample is known to have formal-abstract equivalence, AX
o ∗To =

(Ao ∗ To)X, the correlation between the relative space of the histogram with
respect to the naturalised abstract and the derived alignment,

spaceRelative((Ao ∗ To)X ∗ T †o )(Ao) ∼ algn(Ao ∗ To)

is higher than would otherwise be the case. So the correlation between the
logarithm of the iso-transform-independent conditional multinomial probabil-
ity with respect to the transform-dependent, and the derived alignment,

ln
Qm,U(A

Y(To)
o , zo)(Ao)∑

Qm,U(A
Y(To)
o , zo)(B) : B ∈ AU,i,y,To,zo(Ao)

∼ algn(Ao ∗ To)

is also higher. Consequently, formal-abstract equivalence increases the corre-
lation between the log likelihood of the iso-transform-independent conditional
stuffed historical probability distribution at the maximum likelihood estimate
and the derived alignment,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ algn(Ao ∗ To)

Sample formal-abstract equivalence, AX
o ∗To = (Ao∗To)X, implies stricter con-

ditions for transform induction, (i) necessary formal, ÂX
H ∗To = ÊX

h ∗To, and
necessary independence of formal, ÂX

H ∗ To = (ÂX
H ∗ To)X, and (ii) necessary

abstract, (ÂH ∗ To)X = (Êh ∗ To)X, and necessary abstraction of independent,
(ÂX

H ∗ To)X = (ÂH ∗ To)X. Sample formal-abstract equivalence also implies
(i) necessary independence of distribution formal, ÊX

h ∗ To = (ÊX
h ∗ To)X, and

(ii) necessary abstraction of distribution independent, (ÊX
h ∗To)X = (Êh∗To)X.

If the sample is known to be both (i) ideal, Ao = Ao ∗ To ∗ T †Ao
o , and (ii)
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formal-abstract equivalent, AX
o ∗ To = (Ao ∗ To)X, then the logarithm of the

fraction of the sum of the iso-transform-independent multinomial probabil-
ities, with respect to the idealisation, that are iso-idealisations also varies
with the derived alignment,

ln

∑
Qm,U(Ao, zo)(B) : B ∈ Y −1

U,i,To,†,zo(Ao)∑
Qm,U(Ao, zo)(B) : B ∈ AU,i,y,To,zo(Ao)

∼ spaceRelative((Ao ∗ To)X ∗ T †o )(Ao)

∼ algn(Ao ∗ To)

So the maximum likelihood estimate becomes more classical as the derived
alignment increases. As the derived alignment increases the more the query
via the model of the sample approximates to the query via the model of the
distribution, (Q ∗ T%

o ∗ his(T%
o ) ∗ Ao)∧ % (Vo \ K) ≈ (Q ∗ T%

o ∗ his(T%
o ) ∗

Eh)∧ % (Vo \K).

Now transform induction is analogous to abstract induction except that (i)
the stricter ideal sample, Ao = Ao ∗ To ∗ T †Ao

o , is required instead of natural
sample, Ao = Ao ∗ To ∗ T †o , and (ii) the stricter sample formal-abstract equal-
ity, AX

o ∗ To = (Ao ∗ To)X, is required instead of independent sample formal,
AX

o ∗ To = (AX
o ∗ To)X.

The set of iso-idealisations is a subset of the intersection of the iso-independents
and iso-deriveds, Y −1

U,T,†,z(A ∗ T ∗ T †A) ⊆ Y −1
U,V,z(A

X) ∩ D−1
U,T,z(A ∗ T ). In sec-

tion ‘Idealisation induction’, above, it is shown that the cardinality of the
iso-independents varies with the alignment,

ln |Y −1
U,i,V,z(A

X)| ∼ algn(A)

At high alignments, the iso-independence of the iso-idealisations, |Y −1
U,i,T,†,z(A∗

T ∗ T †A)|/|Y −1
U,i,V,z(A

X)|, decreases, and the iso-derivedence, |Y −1
U,i,T,†,z(A ∗ T ∗

T †A)|/|D−1
U,i,T,z(A ∗ T )|, increases. So the iso-idealisation log likelihood varies

with the iso-derived log likelihood,

ln Q̂m,†,T,U(A, z)(A) ∼ ln Q̂m,d,T,U(A, z)(A)

The iso-idealisation conditional multinomial distribution sum sensitivity varies
with the iso-independent sum sensitivity,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ∼ sum(sensitivity(U)(Q̂m,y,U(A, z)))

and the iso-derived sum sensitivity,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ∼ sum(sensitivity(U)(Q̂m,d,T,U(A, z)))
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It is conjectured above that at intermediate alignments, 0 � algn(A) �
algnMax(U)(V, z), the iso-independent sum sensitivity is constant and the
iso-idealisation sum sensitivity varies only with the iso-derived sum sensitiv-
ity,

sum(sensitivity(U)(Q̂m,†,T,U(A, z))) ∼ sum(sensitivity(U)(Q̂m,d,T,U(A, z)))

In transform induction, where (i) the history probability function is iso-
transform-independent historically distributed, P = PU,X,Hh,y,To , given some
substrate transform in the sample variables To ∈ TU,Vo , if it is the case that
(ii) the sample is ideal, Ao = Ao ∗ To ∗ T †Ao

o , (iii) the sample formal equals
the sample abstract, AX

o ∗ To = (Ao ∗ To)X, (iv) the alignment is at least
intermediate, algn(Ao) > algnMax(U)(Vo, zo)/2, (v) the derived alignment
is high, algn(Ao ∗ To) � 0, (vi) the distribution history size is large with
respect to the sample size, zh � zo, and such that (vii) the scaled estimate
distribution histogram is integral, Ẽo,zh ∈ Ai, then (a) the log likelihood of
the iso-transform-independent conditional stuffed historical probability dis-
tribution at the maximum likelihood estimate varies with the log likelihood
of the iso-idealisation conditional stuffed historical probability distribution at
the idealisation which, in turn, varies with the log likelihood of the iso-derived
conditional stuffed historical probability distribution at the sample,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,†,To,U(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

(b) so the log likelihood varies with the size-volume scaled component size
cardinality sum relative entropy,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼
(zo + vo)× entropy(Ao ∗ To + V C

o ∗ To)

−zo × entropy(Ao ∗ To) − vo × entropy(V C
o ∗ To)

(c) the formal alignment of the maximum likelihood estimate is zero,

ẼX
o ∗ To = ÂX

o ∗ To

= (ÂX
o ∗ To)X

= (ẼX
o ∗ To)X

and (d) the maximum likelihood estimate derived approximates to the nor-
malised sample derived,

Ẽo ∗ To ≈ Âo ∗ To
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In this case queries via the model of the sample approximate to queries via
the model of the distribution,

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) ≈ (Q ∗ T%
o ∗ his(T%

o ) ∗ Eh)∧ % (Vo \K)

That is, at high derived alignments, and intermediate or high underlying
alignment, where the sample is known to be ideal and the sample formal is
known to be equal to the sample abstract, aligned modelled induction has
similar properties to classical modelled induction.

If the relative entropy is high, entropyCross(Ao ∗ To, V
C

o ∗ To) > ln |T−1
o |,

the sum sensitivity of the iso-derived conditional stuffed historical probability
distribution at the naturalisation varies with the derived entropy,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ zo × entropy(Ao ∗ To)

Note, however, that because the transform induction is more derived aligned-
like than classical modelled induction,

|{B ∗ T : B ∈ AU,i,y,T,z(A)}|
|Y −1
U,i,W,z((A ∗ T )X)|

≥ 1

|Y −1
U,i,W,z((A ∗ T )X)|

the sum sensitivity of the iso-transform-independent conditional stuffed his-
torical probability distribution at the maximum likelihood estimate may be
expected rather to vary against the derived alignment,

sum(sensitivity(U)(Q̂h,y,To,U(Ẽo,zh , zo)))

∼ zo × entropy(Ao ∗ To)− zo × entropy((Ao ∗ To)X)

≈ − algn(Ao ∗ To)

So the sum sensitivity of the iso-transform-independent conditional stuffed
historical probability distribution at the maximum likelihood estimate varies
against the log likelihood of the iso-transform-independent conditional stuffed
historical probability distribution at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,y,To,U(Ẽo,zh , zo))) ∼ − algn(Ao ∗ To)

∼ − ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

In the case of high relative entropy the sum sensitivity of the iso-derived
conditional stuffed historical probability distribution is conjectured to vary
with the unknown-known multinomial probability distribution sum sensitivity
difference,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼
sum(sensitivity(U)(Q̂m,U(Ao, zo)))− sum(sensitivity(U)(Q̂m,U(Ao ∗ To, zo)))
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so the sum sensitivity of the iso-transform-independent conditional stuffed
historical probability distribution is also conjectured to vary with the unknown-
known multinomial probability distribution sum sensitivity difference,

sum(sensitivity(U)(Q̂h,y,To,U(Ẽo,zh , zo))) ∼
sum(sensitivity(U)(Q̂m,U(Ao, zo)))− sum(sensitivity(U)(Q̂m,U(Ao ∗ To, zo)))

the sum sensitivity of the iso-transform-independent conditional stuffed his-
torical probability distribution at the maximum likelihood estimate is less than
or equal to the sum sensitivity of the stuffed historical probability distribution
at the maximum likelihood estimate,

sum(sensitivity(U)(Q̂h,y,To,U(Ẽo,zh , zo)))

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))

and the log likelihood of the iso-transform-independent conditional stuffed his-
torical probability distribution at the maximum likelihood estimate is greater
than or equal to the log likelihood of the stuffed historical probability distri-
bution at the maximum likelihood estimate,

ln Q̂h,y,To,U(Ẽo,zh , z)(Ao) ≥ ln Q̂h,U(Ao,zh , z)(Ao)

That is, in the case where (i) the sample is ideal, (ii) the sample formal equals
the sample abstract, and (iii) the relative entropy is high, as the derived align-
ment increases, (a) the log-likelihood increases and (b) the underlying-derived
sum sensitivity difference decreases.

If, in addition, the size is less than the volume, zo < vo, then the log likelihood
varies with the scaled component size cardinality relative entropy,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ zo × entropyRelative(Ao ∗ To, V
C

o ∗ To)

and varies against the specialising derived substrate history coder space,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

where

CG,V,T,H(T ) = coderHistorySubstrateDerivedSpecialising(U,X, T,DS, DX)

Note that this correlation is conjectured to be weaker than that of classical
modelled induction,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)
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because the expected component entropy of the idealisation is less than or
equal to that of the naturalisation.

Also note that, in the case where the size is less than the volume, zo < vo, the
integral idealisation can be exactly equal to the sample, Ao = Ao ∗ To ∗ T †Ao

o ,
but the integral naturalisation cannot, Ao ≈ Ao ∗ To ∗ T †o .

The iso-transform-independent conditional stuffed historical probability dis-
tribution log-likelihood is maximised and the specialising derived substrate
history coder space is minimised by varying the transform such that (i) the
derived entropy is low, (ii) the possible derived volume is small, (iii) the
underlying components have high entropy and (iv) high counts are in low
cardinality components and high cardinality components have low counts.

In the high relative entropy case, entropyCross(Ao ∗ To, V
C

o ∗ To) > ln |T−1
o |,

the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,y,To,U(Ẽo,zh , zo))) ∼ − ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

In the case where the size is less than the volume, zo < vo, the sensitivity to
model also varies against the log likelihood,

− ln |max({(T, Q̂h,y,T,U(Ẽo,zh , zo)(Ao)) : T ∈ TU,Vo ,
AX

o ∗ T = (Ao ∗ T )X, Ao ≈ Ao ∗ T ∗ T †Ao})| ∼
− ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

and the log-likelihood varies with its degree of structure with respect to the
expanded specialising derived history coder, CG,T,H,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ structure(U,X)(PU,X,Hh,y,To , CG,T,H(To))

Although (i) it cannot be assumed that the application of the query via the
model of the sample is equal to the query via the model of the distribution,
(Q∗T%

o ∗his(T%
o )∗Ao)∧ % (Vo\K) 6= (Q∗T%

o ∗his(T%
o )∗Eh)∧ % (Vo\K), and

(ii) the query via the model of the sample, (Q ∗ T%
o ∗ his(T%

o ) ∗Ao)∧ % (Vo \
K), cannot be expressed in terms of the iso-transform-independent condi-
tional stuffed historical probability distribution at the scaled ideal sample,
Q̂h,y,To,U(Ao,zh , zo), in the case where the sample is ideal and the sample
formal equals the sample abstract the maximum likelihood estimate approx-
imates to the normalised sample derived,

Ẽo ∗ To ≈ Âo ∗ To
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and so queries via the model of the sample approximate to queries via the
model of the distribution,

(Q ∗ T%
o ∗ his(T%

o ) ∗ Ao)∧ % (Vo \K) ≈ (Q ∗ T%
o ∗ his(T%

o ) ∗ Eh)∧ % (Vo \K)

So it may be conjectured that (a) the query sensitivity to the distribution
histogram varies as the iso-transform-independent sum sensitivity divided by
the size

sum(sensitivity(U)(Q̂h,y,To,U(Ẽo,zh , zo)))/zo

(b) although the query application via the model is sometimes not equal to
the estimated transformed conditional product, the query sensitivity to the
distribution histogram is sometimes lower,

sum(sensitivity(U)(Q̂h,y,To,U(Ẽo,zh , zo)))/zo

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))/zo

and (c) the model likelihood of the distribution histogram is sometimes higher,

Q̂h,y,To,U(Ẽo,zh , z)(AQ,N) ≥ Q̂h,U(Ao,zh , z)(AQ,N)

In other words, querying via the known derived of the model sometimes re-
duces the sensitivity to the unknown and increases the likelihood at the cost
of modifying the query. Note that the degree to which this is case is lower
in aligned modelled induction than it is in classical modelled induction.

Note that, although the added constraint of known ideal sample, Ao =
Ao ∗To ∗T †Ao

o , can increase the resemblance to classical induction, the induc-
tion remains transform induction because the condition of necessary for-
mal and necessary abstract has not changed and so neither the iso-set,
Y −1
U,i,To,zo

(((AX
o ∗To), (Ao ∗To)X)), nor the iso-derivedence have changed. That

is, the maximum likelihood estimate, Ẽo, does not move away from the
transform-dependent, Â

Y(To)
o , to the idealisation-dependent, Â

†(To)
o , but rather

both the maximum likelihood estimate and the transform-dependent move to-
gether towards the idealisation-dependent, Ẽo = Â

Y(To)
o ≈ Â

†(To)
o , and so both

the maximum likelihood estimate the transform-dependent move together to-
wards the derived-dependent, Ẽo = Â

Y(To)
o ≈ Â

D(To)
o .

Note also that the assumption of high derived alignment, algn(Ao ∗ To)� 0,
is not well defined, although there is an upper bound, algnMax(U)(Wo, zo).
A more formal method of expression would be to say that the correlation be-
tween the iso-transform-independent conditional stuffed historical probability
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distribution and the iso-derived conditional stuffed historical probability dis-
tribution is itself correlated to the derived alignment,

[ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)] ∼ algn(Ao ∗ To)

More formal still would be to define this relation in terms of the correlations
of functions of the sized cardinal substrate histograms, Az, given the renor-
malised geometry-weighted probability function, corr(z) ∈ (Az → R)×(Az →
R)→ R, as in section ‘Substrate structures alignment’, above.

Similarly, the assumption of intermediate underlying alignment, 0� algn(Ao)�
algnMax(U)(Vo, zo), is also ill-defined. Note, however, that the two assump-
tions are linked. Intermediate underlying alignment tends to imply at least
intermediate derived alignment, 0 � algn(Ao ∗ To) < algnMax(U)(Wo, zo),
because the formal alignment is zero, AX

o ∗ To = (AX
o ∗ To)X. The relation is

stronger as the transform tends to full functional.

In the discussion above, the model, To ∈ TU,Vo , is known, and both the

formal, ÊX
h ∗ To, and the abstract, (Êh ∗ To)X, are necessary and known.

Optimisation can be done to find the maximum likelihood estimate of the
distribution histogram for known model,

{Ẽo} = maxd({(E, Q̂m,y,To,U(E, zo)(Ao)) : E ∈ AU,Vo,1})

Just as in the discussion above of classical modelled induction, consider the
case where both the formal, ÊX

h ∗ To, and the abstract, (Êh ∗ To)X, are still
necessary but the model, To, is unknown and so both the formal and the
abstract are unknown. Again, the maximum likelihood estimate for the pair
(Ẽo, T̃o) can be defined as an optimisation of the multinomial probability
conditional on the iso-transform-independents where both the distribution
histogram and transform are treated as arguments to a likelihood function,

{(Ẽo, T̃o)}

= maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈AU,i,y,T,zo (Ao) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo})

It is conjectured that in transform induction there are some cases in which
there is a unique solution for the pair (Ẽo, T̃o). This is because in entity-like
induction, but not law-like induction, the denominator does not necessarily
reduce to equal the numerator, so avoiding degeneracy. In the case where
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there is a unique solution then the maximisation can be rewritten in terms
of the transform-dependent,

{T̃o} = maxd({(T, Qm,U(A
Y(T )
o , zo)(Ao)∑

B∈AU,i,y,T,zo (Ao) Qm,U(A
Y(T )
o , zo)(B)

) : T ∈ TU,Vo})

The maximum likelihood estimate for the model, T̃o, is sometimes not com-

putable because the transform-dependent, A
Y(T̃o)
o , is sometimes not com-

putable. A finite approximation to arbitrary accuracy for the transform-
dependent, A

Y(T )
k ≈ AY(T ), is computable. However, even an approxima-

tion is not tractable. The formal-abstract pair valued function, YU,i,T,z ∈
AU,i,V,z :→ (AU,W,z ×AU,W,z), is intractable because its computation requires
the intractable computation of its domain of the substrate histograms, AU,i,V,z.

In transform induction, where the history probability function is iso-transform-
independent historically distributed, P = PU,X,Hh,y,To , given some unknown
substrate transform in the sample variables To ∈ TU,Vo , in some cases the
maximum likelihood estimate of the model, T̃o, at the maximum likelihood
estimate of the distribution, Ẽo, is non-trivial,

T̃o /∈ {Ts, Tu}

Note that the optimisation is not the same as the optimisation of the iso-
transform-independent conditional generalised multinomial probability,

maxd({(T, Q̂m,y,T,U(AY(T )
o , zo)(Ao)) : T ∈ TU,Vo})

because the normalising factor, 1/|ran(YU,i,T,zo)|, implies uniform possible in-
duction rather than necessary induction. Recall that in classical induction
the maximum likelihood estimate for the model in the necessary derived case
is degenerate. Only in the uniform possible case are there non-trivial solu-
tions. In abstract induction, however, there are non-trivial solutions where
the condition is necessary abstract. In aligned induction, there are non-trivial
solutions where the condition is necessary abstract and necessary formal.

Consider how an approximation to the optimisation may be made more
tractable. It is conjectured in section ‘Likely histograms’, above, that the
log-likelihood with respect to the dependent-analogue varies with the relative
space with respect to the independent-analogue,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ AU,i,y,T,z(A)
∼ spaceRelative(AX(T ))(A)
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and conjectured further in section ‘Transform alignment’, above, that the rel-
ative space with respect to the transform-independent varies with the derived
alignment,

spaceRelative(AX(T ))(A) ∼ algn(A ∗ T )

This correlation was decomposed in the discussion above into three sep-
arate correlations, (i) the dependent-independent anti-correlation, (ii) the
underlying-lifted correlation and (iii) the conditional-relative correlation. Now
consider how the optimisation of the terms of these relations may form the
definition of induction assumptions.

The maximum likelihood estimate for the unknown model, T̃o, with respect
to the dependent-analogue is

{T̃o} =

maxd({(T, Qm,U(A
Y(T )
o , zo)(Ao)∑

Qm,U(A
Y(T )
o , zo)(B) : B ∈ AU,i,y,T,zo(Ao)

) : T ∈ TU,Vo})

First, given the dependent-independent anti-correlation, assume that the max-
imum likelihood estimate of the iso-transform-independent conditional multi-
nomial probability with respect to the dependent-analogue or transform-dependent,
A

Y(T )
o , is also the minimum likelihood estimate of the iso-transform-independent

conditional multinomial probability with respect to the independent-analogue
or transform-independent, A

X(T )
o ,

{T̃o} =

mind({(T, Qm,U(A
X(T )
o , zo)(Ao)∑

Qm,U(A
X(T )
o , zo)(B) : B ∈ AU,i,y,T,zo(Ao)

) : T ∈ TU,Vo})

This assumption is the iso-transform-independent dependent-independent anti-
optimisation assumption. It relies on the monotonicity of the dependent-
independent anti-correlation.

Second, given the underlying-lifted correlation, assume that the minimum
likelihood estimate of the iso-transform-independent conditional multinomial
probability with respect to the independent-analogue or transform-independent,
A

X(T )
o , is also the minimum likelihood estimate of the lifted iso-transform-

independent conditional multinomial probability with respect to the lifted
independent-analogue or transform-independent derived, A

X(T )
o ∗ T ,

{T̃o} =

mind({(T, Qm,U(A
X(T )
o ∗ T, zo)(Ao ∗ T )∑

Qm,U(A
X(T )
o ∗ T, zo)(B′) : B′ ∈ A′U,i,y,T,zo(Ao)

) : T ∈ TU,Vo})
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This assumption is the iso-transform-independent underlying-lifted optimisa-
tion assumption. It relies on the monotonicity of the underlying-lifted corre-
lation.

Third, given the conditional-relative correlation, assume that the minimum
likelihood estimate of the lifted iso-transform-independent conditional multi-
nomial probability with respect to the lifted independent-analogue or transform-
independent derived, A

X(T )
o ∗ T , is also the minimum likelihood estimate of

the relative multinomial probability with respect to the abstract, (Ao ∗ T )X,

{T̃o} = mind({(T, Qm,U((Ao ∗ T )X, zo)(Ao ∗ T )

Qm,U((Ao ∗ T )X, zo)((Ao ∗ T )X)
) : T ∈ TU,Vo})

The negative logarithm of the relative multinomial probability is the rela-
tive space of the derived with respect to the abstract, which is the derived
alignment,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)((A ∗ T )X)
= spaceRelative((A ∗ T )X)(A ∗ T )

= algn(A ∗ T )

So the third assumption is that the minimum likelihood estimate of the lifted
iso-transform-independent conditional multinomial probability with respect
to the transform-independent derived, A

X(T )
o ∗ T , is also the maximum likeli-

hood estimate for the derived alignment,

{T̃o} = maxd({(T, algn(Ao ∗ T )) : T ∈ TU,Vo})

This assumption is the iso-transform-independent conditional-relative optimi-
sation assumption. It relies on the monotonicity of the conditional-relative
correlation.

A finite approximation to arbitrary accuracy of the derived alignment, algn(Ao∗
T ), is computable by means of an approximation to the gamma function. The
computation of the derived alignment is tractable given limits on the derived
volume, |T−1|. So the optimisation of maximum likelihood estimate of the
model, T̃o, at least for a limited subset of the substrate transforms, is tractable.

In transform induction, where (i) the history probability function is iso-
transform-independent historically distributed, P = PU,X,Hh,y,To , given some
unknown substrate transform in the sample variables To ∈ TU,Vo , if it is
the case that (ii) the iso-transform-independent dependent-independent anti-
optimisation assumption is true, (iii) the iso-transform-independent underlying-
lifted optimisation assumption is true, and (iv) the iso-transform-independent
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conditional-relative optimisation assumption is true, then the maximum like-
lihood estimate of the model, T̃o, at the maximum likelihood estimate of the
distribution, Ẽo, is

{T̃o} = maxd({(T, algn(Ao ∗ T )) : T ∈ TU,Vo})

It is shown in the known transform case above that the maximum likeli-
hood estimate is more classical and not formal if (i) the sample is idealised,
(ii) the sample formal equals the sample abstract and (iii) the derived align-
ment is high. This is the case for unknown transform too. In fact, if the
three iso-transform-independent optimisation assumptions are true, then the
maximum likelihood estimate for the model, T̃o, occurs at the maximisation
of the derived alignment, implying that the derived alignment is as high as
possible, ∀T ∈ TU,Vo ((Ao = Ao ∗ T ∗ T †Ao) ∧ (AX

o ∗ T = (Ao ∗ T )X) =⇒
algn(Ao ∗ T̃o) ≥ algn(Ao ∗ T )).

Now the independent analogue, or transform-independent, equals the com-
putable naturalised abstract,

AX ∗ T = (A ∗ T )X =⇒ AX(T ) = (A ∗ T )X ∗ T †

so the three optimisation assumptions are modified as follows:

The maximum likelihood estimate for the unknown model, T̃o, with respect
to the dependent-analogue is

{T̃o} =

maxd({(T, Qm,U(A
Y(T )
o , zo)(Ao)∑

Qm,U(A
Y(T )
o , zo)(B) : B ∈ AU,i,y,T,zo(Ao)

) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao , AX
o ∗ T = (Ao ∗ T )X})

First, given the dependent-independent anti-correlation, assume that the max-
imum likelihood estimate of the iso-transform-independent conditional multi-
nomial probability with respect to the dependent-analogue or transform-dependent,
A

Y(T )
o , is also the minimum likelihood estimate of the iso-transform-independent

conditional multinomial probability with respect to the independent-analogue
or naturalised abstract, (Ao ∗ T )X ∗ T †,

{T̃o} =

mind({(T, Qm,U((Ao ∗ T )X ∗ T †, zo)(Ao)∑
Qm,U((Ao ∗ T )X ∗ T †, zo)(B) : B ∈ AU,i,y,T,zo(Ao)

) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao , AX
o ∗ T = (Ao ∗ T )X})
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This assumption is the iso-transform-independent dependent-independent anti-
optimisation assumption. It relies on the monotonicity of the dependent-
independent anti-correlation.

Second, given the underlying-lifted correlation, assume that the minimum
likelihood estimate of the iso-transform-independent conditional multinomial
probability with respect to the independent-analogue or transform-independent,
(Ao ∗ T )X ∗ T †, is also the minimum likelihood estimate of the lifted iso-
transform-independent conditional multinomial probability with respect to
the lifted independent-analogue or abstract, (Ao ∗ T )X,

{T̃o} =

mind({(T, Qm,U((Ao ∗ T )X, zo)(Ao ∗ T )∑
Qm,U((Ao ∗ T )X, zo)(B′) : B′ ∈ A′U,i,y,T,zo(Ao)

) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao , AX
o ∗ T = (Ao ∗ T )X})

This assumption is the iso-transform-independent underlying-lifted optimisa-
tion assumption. It relies on the monotonicity of the underlying-lifted corre-
lation.

Third, given the conditional-relative correlation, assume that the minimum
likelihood estimate of the lifted iso-transform-independent conditional multi-
nomial probability with respect to the lifted independent-analogue or abstract,
(Ao ∗ T )X, is also the minimum likelihood estimate of the relative multino-
mial probability with respect to the lifted independent-analogue or abstract,
(Ao ∗ T )X,

{T̃o} =

mind({(T, Qm,U((Ao ∗ T )X, zo)(Ao ∗ T )

Qm,U((Ao ∗ T )X, zo)((Ao ∗ T )X)
) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao , AX
o ∗ T = (Ao ∗ T )X})

So the third assumption is that the minimum likelihood estimate of the lifted
iso-transform-independent conditional multinomial probability with respect
to the abstract, (Ao ∗ T )X, is also the maximum likelihood estimate for the
derived alignment,

{T̃o} = maxd({(T, algn(Ao ∗ T )) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao , AX
o ∗ T = (Ao ∗ T )X})

In transform induction, where (i) the history probability function is iso-
transform-independent historically distributed, P = PU,X,Hh,y,To , given some
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unknown substrate transform in the sample variables To ∈ TU,Vo , if it is
the case that (ii) the iso-transform-independent dependent-independent anti-
optimisation assumption is true, (iii) the iso-transform-independent underlying-
lifted optimisation assumption is true, (iv) the iso-transform-independent
conditional-relative optimisation assumption is true, (v) the sample is ideal,
Ao = Ao ∗ To ∗ T †Ao

o , (vi) the sample formal equals the sample abstract,
AX

o ∗To = (Ao ∗To)X, (vii) the alignment is at least intermediate, algn(Ao) >
algnMax(U)(Vo, zo)/2, (viii) the distribution history size is large with respect
to the sample size, zh � zo, and such that (ix) the scaled estimate distribution
histogram is integral, Ẽo,zh ∈ Ai, then (a) the maximum likelihood estimate
of the model, T̃o, at the maximum likelihood estimate of the distribution, Ẽo,
is

{T̃o} = maxd({(T, algn(Ao ∗ T )) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao , AX
o ∗ T = (Ao ∗ T )X})

(b) the log likelihood of the iso-transform-independent conditional stuffed his-
torical probability distribution at the maximum likelihood estimate varies with
the derived alignment,

ln Q̂h,y,T̃o,U
(Ẽo,zh , zo)(Ao) ∼ algn(Ao ∗ To)

(c) the log likelihood of the iso-transform-independent conditional stuffed his-
torical probability distribution at the maximum likelihood estimate varies with
the log likelihood of the iso-derived conditional stuffed historical probability
distribution at the sample,

ln Q̂h,y,T̃o,U
(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,†,To,U(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

(d) so the log likelihood varies with the size-volume scaled component size
cardinality sum relative entropy,

ln Q̂h,y,T̃o,U
(Ẽo,zh , zo)(Ao) ∼

(zo + vo)× entropy(Ao ∗ To + V C
o ∗ To)

−zo × entropy(Ao ∗ To) − vo × entropy(V C
o ∗ To)

(e) the formal alignment of the maximum likelihood estimate is zero,

ẼX
o ∗ T̃o = ÂX

o ∗ T̃o

= (ÂX
o ∗ T̃o)X

= (ẼX
o ∗ T̃o)X
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and (f) the derived of the maximum likelihood estimate approximates to the
normalised sample derived,

Ẽo ∗ T̃o ≈ Âo ∗ To

In this case queries via the model of the sample approximate to queries via
the model of the distribution,

(Q ∗ T̃%
o ∗ his(T̃%

o ) ∗ Ao)∧ % (Vo \K) ≈ (Q ∗ T%
o ∗ his(T%

o ) ∗ Eh)∧ % (Vo \K)

That is, given unknown model where (i) the underlying alignment is inter-
mediate, (ii) the sample is known to be ideal and (iii) the sample formal is
known to be equal to the sample abstract, the maximisation of the derived
alignment tends to make the properties of aligned modelled induction similar
to those of classical modelled induction.

If, in addition, (x) the component size cardinality relative entropy of the max-
imum likelihood estimate for the model is high, entropyCross(Ao ∗ To, V

C
o ∗

To) > ln |T−1
o |, then the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,y,T̃o,U
(Ẽo,zh , zo))) ∼ − ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

∼ − algn(Ao ∗ To)

so the query sensitivity to the distribution histogram is sometimes lower,

sum(sensitivity(U)(Q̂h,y,T̃o,U
(Ẽo,zh , zo)))/zo

≤ sum(sensitivity(U)(Q̂h,U(Ao,zh , zo)))/zo

and the model likelihood of the distribution histogram is sometimes higher,

Q̂h,y,T̃o,U
(Ẽo,zh , z)(AQ,N) ≥ Q̂h,U(Ao,zh , z)(AQ,N)

If, further, (xi) the size is less than the volume, zo < vo, then the sensitivity
to model also varies against the log likelihood,

− ln |max({(T, Q̂h,y,T,U(Ẽo,zh , zo)(Ao) : T ∈ TU,Vo ,
AX

o ∗ T = (Ao ∗ T )X, Ao = Ao ∗ T ∗ T †Ao})| ∼
− ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

or

− ln |max({(T, algn(Ao ∗ T )) : T ∈ TU,Vo ,
AX

o ∗ T = (Ao ∗ T )X, Ao = Ao ∗ T ∗ T †Ao})| ∼
− algn(Ao ∗ To)
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So (a) by weakening the induction condition from law-like necessary derived
to entity-like necessary abstract, (b) by strengthening the induction condi-
tion with necessary formal and (c) by strengthening the constraints on the
sample to be ideal and to have formal-abstract equivalence, it is found that
in some cases the aligned modelled induction maximum likelihood estimate
of the model is non-trivial, T̃o /∈ {Ts, Tu}, but retains properties of classical
modelled induction such as allowing query via the model, minimising sensi-
tivity to the unknown underlying and minimising sensitivity to the model.
Furthermore, the optimisation is tractable depending on the limits on the
searched subset of the substrate transforms.

Now consider the definition of inducers in the light of the preceding dis-
cussion. The set of inducers is defined in section ‘Tractable alignment-
bounding’, and reviewed in section ‘Induction’. The inducers are computers
Iz ∈ inducers(z) ⊂ computers such that (i) the domain is a set of sub-
strate histograms which are at least a superset of the integral-independent
substrate histograms, Az,xi ⊆ domain(Iz) ⊆ Az, (ii) the finite time and space
application returns a rational-valued function of the substrate models set,
I∗z (A) ∈ MUA,VA → Q, and (iii) the maximum of the inducer applica-
tion, maxr ◦ I∗z , is positively correlated with the finite alignment-bounded
iso-transform space ideal transform maximum function, maxr ◦Xz,xi,T,y,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I∗z ) ≥ 0)

where cov(z)(F,G) := covariance(R̂z)(F,G) and the renormalised geometry-
weighted probability function is R̂z = normalise({(A, 1/(|VA|!

∏
w∈VA |UA(w)|!)) :

A ∈ dom(F )}). The set of sized cardinal substrate histograms Az is defined,

Az = {A : A ∈ Ac ∩ Ai, size(A) = z, |VA| ≤ z, AU = AXF = AC}

where ACS = cartesian(UA)(VA) and UA = implied(implied(A)) and VA =
vars(A). The set of integral-independent substrate histograms Az,xi is defined,

Az,xi = {A : A ∈ Az, AX ∈ Ai}

The independent-sample-distributed iso-transform-independent conditional de-
pendent multinomial space integral-independent substrate ideal formal-abstract
transform search set, also known as the alignment-bounded iso-transform
space ideal transform search set, is defined Xz,xi,T,y,fa,j ∈ Az,xi → (Tf →
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ln Q>0) as

Xz,xi,T,y,fa,j(A) =

{(T,− ln
Q̂m,UA

(AX, z)(A)∑
Q̂m,UA

(AX, z)(B) : B ∈ AUA,i,y,T,z(A)
) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

The maximum likelihood estimate for the model is,

{T̃} = maxd(Xz,xi,T,y,fa,j(A))

= mind({(T, e−x) : (T, x) ∈ Xz,xi,T,y,fa,j(A)})

= mind({(T, Qm,UA
(AX, z)(A)∑

Qm,UA
(AX, z)(B) : B ∈ AUA,i,y,T,z(A)

) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A})

This may be compared to the case in aligned modelled induction where the
iso-transform-independent dependent-independent anti-optimisation assump-
tion is true, the histogram is ideal, A = A ∗ T ∗ T †A, and the formal equals
the abstract, AX ∗ T = (A ∗ T )X,

{T̃} =

mind({(T, Qm,UA
((A ∗ T )X ∗ T †, z)(A)∑

Qm,UA
((A ∗ T )X ∗ T †, z)(B) : B ∈ AUA,i,y,T,z(A)

) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A})

The independent-analogue is the naturalised abstract which equals the nat-
uralised formal, (A ∗ T )X ∗ T † = AX ∗ T ∗ T †. As the transform, T , tends
to full functional, Tf = {{w}CS{}VAT : w ∈ VA}T, the naturalised abstract
tends to the independent, (A ∗ Tf)

X ∗ T †f = AX ∗ Tf ∗ T †f = AX. This suggests
a revised definition of inducers. The naturalised-abstract-sample-distributed
iso-transform-independent conditional dependent multinomial space integral-
independent substrate ideal formal-abstract transform search set, is defined
Xz,xi,T,yx,fa,j ∈ Az,xi → (Tf → ln Q>0) as

Xz,xi,T,yx,fa,j(A) =

{(T,− ln
Q̂m,UA

((A ∗ T )X ∗ T †, z)(A)∑
Q̂m,UA

((A ∗ T )X ∗ T †, z)(B) : B ∈ AUA,i,y,T,z(A)
) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

Here the independent, AX, is replaced by the independent-analogue, which is
the naturalised abstract, (A∗T )X∗T †, so the numerator is no longer constant,
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Q̂m,UA
(AX, z)(A), but depends on the model, Q̂m,UA

((A ∗ T )X ∗ T †, z)(A). In
this revised definition of inducers, which is more consistent with ideal formal-
abstract aligned induction, the maximum of the inducer application, maxr◦I∗z ,
is instead constrained to be positively correlated with the finite naturalised-
abstract-sample-distributed iso-transform-independent conditional dependent
multinomial space integral-independent substrate ideal formal-abstract trans-
form maximum function, maxr ◦Xz,xi,T,yx,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yx,fa,j,maxr ◦ I∗z ) ≥ 0)

In section ‘Substrate structures alignment’, above, it is conjectured that
the alignment-bounded iso-transform space ideal transform maximum func-
tion, maxr ◦ Xz,xi,T,y,fa,j, is correlated with the derived alignment integral-
independent substrate ideal formal-abstract transform maximum function,
maxr ◦X ′z,xi,T,a,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥ 0)

where the derived alignment integral-independent substrate ideal formal-abstract
transform search set is defined,

X ′z,xi,T,a,fa,j(A) = {(T, algn(A ∗ T )) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

As shown above, in ‘Derived alignment and conditional probability’, given the
minimum alignment conjecture, the alignment-bounded lifted iso-transform
space is bounded

algn(A ∗ T )

≤

(
− ln

Q̂m,UA
(AX ∗ T, z)(A ∗ T )∑

Q̂m,UA
(AX ∗ T, z)(B′) : B′ ∈ A′UA,i,y,T,z(A)

:

AX ∈ Ai, A
X ∗ T = (A ∗ T )X

)
≤ algn(A ∗ T ) + ln |A′UA,i,y,T,z(A)|

The alignment-bounded iso-transform space is functionally related to the
alignment-bounded lifted iso-transform space, although it is not always the
case that the alignment-bounded iso-transform space is bounded by the de-
rived alignment, algn(A∗T ), so, strictly speaking, it is a misnomer. The cor-
relation between the alignment-bounded iso-transform space ideal transform
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maximum function, maxr ◦ Xz,xi,T,y,fa,j, and the derived alignment integral-
independent substrate ideal formal-abstract transform maximum function,
maxr ◦X ′z,xi,T,a,fa,j, is conjectured nonetheless.

Similarly, for the revised definition of inducers, conjecture that the naturalised-
abstract-sample-distributed iso-transform-independent conditional dependent
multinomial space integral-independent substrate ideal formal-abstract trans-
form maximum function, maxr ◦ Xz,xi,T,yx,fa,j, is also correlated with the
derived alignment integral-independent substrate ideal formal-abstract trans-
form maximum function, maxr ◦X ′z,xi,T,a,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yx,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥ 0)

It is not obvious, however, whether this correlation is greater than that for
the existing inducer definition,

cov(z)(maxr ◦Xz,xi,T,yx,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥
cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦X ′z,xi,T,a,fa,j)

It is possible to go a step further and drop the iso-transform-independent
dependent-independent anti-optimisation assumption. Now the maximum
likelihood estimate for the unknown model, T̃ , is with respect to the dependent-
analogue, which is the transform-dependent, AY(T ),

{T̃} =

maxd({(T, Qm,UA
(AY(T ), z)(A)∑

Qm,UA
(AY(T ), z)(B) : B ∈ AUA,i,y,T,z(A)

) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A})

The corresponding transform-dependent-sample-distributed iso transform in-
dependent conditional dependent multinomial space integral-independent sub-
strate ideal formal-abstract transform search set, is defined Xz,xi,T,yy,fa,j ∈
Az,xi → (Tf → ln Q>0) as

Xz,xi,T,yy,fa,j(A) =

{(T, ln Q̂m,UA
(AY(T ), z)(A)∑

Q̂m,UA
(AY(T ), z)(B) : B ∈ AUA,i,y,T,z(A)

) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

In this further revision of the definition of inducers, the maximum of the
inducer application, maxr ◦ I∗z , is constrained to be positively correlated
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with the transform-dependent-sample-distributed iso-transform-independent
conditional dependent multinomial space integral-independent substrate ideal
formal-abstract transform maximum function, maxr ◦Xz,xi,T,yy,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yy,fa,j,maxr ◦ I∗z ) ≥ 0)

Again, for the further revision of the definition of inducers, conjecture that
the transform-dependent-sample-distributed iso-transform-independent con-
ditional dependent multinomial space integral-independent substrate ideal for-
mal abstract transform maximum function, maxr ◦Xz,xi,T,yy,fa,j, is also corre-
lated with the derived alignment integral-independent substrate ideal formal-
abstract transform maximum function, maxr ◦X ′z,xi,T,a,fa,j,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yy,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≥ 0)

Conjecture, however, that the dependent-analogue correlation is less than
that for the independent-analogue,

cov(z)(maxr ◦Xz,xi,T,yy,fa,j,maxr ◦X ′z,xi,T,a,fa,j) ≤
cov(z)(maxr ◦Xz,xi,T,yx,fa,j,maxr ◦X ′z,xi,T,a,fa,j)

Note that the transform-dependent, AY(T ), is sometimes not computable. The
finite approximation to the transform-dependent is

{AY(T )
k } =

maxd({(D/Zk,
Qm,UA

(D, z)(A)∑
Qm,UA

(D, z)(B) : B ∈ AUA,i,y,T,z(A)
) : D ∈ AUA,i,VA,kz})

A literal finite approximation for an inducer for the transform-dependent-
sample-distributed iso-transform-independent conditional dependent multino-
mial space integral-independent substrate ideal formal-abstract transform search
set, Xz,xi,T,yy,fa,j(A), requires the finite approximation to the transform-dependent,

A
Y(T )
k . Define the finite transform-dependent-sample-distributed iso-transform-

independent conditional dependent multinomial space integral-independent
substrate ideal formal-abstract transform search set,

Xz,xi,T,yy,fa,j,k(A) =

{(T, ln Q̂m,UA
(A

Y(T )
k , z)(A)∑

Q̂m,UA
(A

Y(T )
k , z)(B) : B ∈ AUA,i,y,T,z(A)

) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

Let the literal finite transform-dependent-sample-distributed iso-transform-
independent conditional dependent multinomial space ideal formal-abstract
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transform inducer Iz,yy,l,k ∈ inducers(z) be a literal implementation of the
transform-dependent-sample-distributed iso-transform-independent conditional
dependent multinomial space integral-independent substrate ideal formal ab-
stract transform search set, Xz,xi,T,yy,fa,j,k ∈ Az,xi → (Tf → ln Q>0),

∀A ∈ Az,xi (I∗z,yy,l,k(A) = {(T, I∗≈lnQ(y)) : (T, y) ∈ Xz,xi,T,yy,fa,j,k(A)})

In ideal formal-abstract transform induction the maximum likelihood es-
timate for the unknown model, T̃o, with respect to the dependent-analogue
is

{T̃o} =

maxd({(T, Qm,U(A
Y(T )
o , zo)(Ao)∑

Qm,U(A
Y(T )
o , zo)(B) : B ∈ AU,i,y,T,zo(Ao)

) :

T ∈ TU,Vo , Ao = Ao ∗ T ∗ T †Ao , AX
o ∗ T = (Ao ∗ T )X})

The computation of the dependent-analogue, AY(T ), is sometimes incom-
putable, but even with a computable approximation, A

Y(T )
k , in the literal fi-

nite transform-dependent-sample-distributed iso-transform-independent con-
ditional dependent multinomial space ideal formal-abstract transform inducer,
Iz,yy,l,k,

T̃o ∈ maxd(I∗zo,yy,l,k(Ao))

in the case where Ao ∈ Azo,xi, the computation of the maximum likelihood
estimate for the unknown model, T̃o, remains intractable.

The literal derived alignment integral-independent substrate ideal formal ab-
stract transform inducer I

′

z,a,l ∈ inducers(z) is a literal finite approximation
to the derived alignment integral-independent substrate ideal formal-abstract
transform search set, X ′z,xi,T,a,fa,j(A),

I
′∗
z,a,l(A) = {(T, I∗≈lnQ(algn(A ∗ T ))) :

T ∈ TUA,VA , A
X ∗ T = (A ∗ T )X, A = A ∗ T ∗ T †A}

The induction correlation of the literal derived alignment inducer is conjec-
tured to be positive, regardless of the definition of inducers,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,y,fa,j,maxr ◦ I ′∗z,a,l) ≥ 0)

and
∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yx,fa,j,maxr ◦ I ′∗z,a,l) ≥ 0)
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and
∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yy,fa,j,maxr ◦ I ′∗z,a,l) ≥ 0)

Although the literal derived alignment inducer, I
′

z,a,l, is faster than the lit-
eral finite transform-dependent-sample-distributed iso-transform-independent
conditional dependent multinomial space ideal formal-abstract transform in-
ducer, Iz,yy,l,k, it is also intractable unless some limits are imposed on the
substrate models.

Section ‘Tractable alignment-bounding’ discusses the various intractabilities
and the classes of limits and constraints on the structures of more tractable
inducers. There the tractable limited-models summed alignment valency-
density substrate aligned non-overlapping infinite-layer fud decomposition in-
ducer is defined as an inducer,

I
′

z,Sd,D,F,∞,n,q ∈ inducers(z)

Given non-independent substrate histogram A ∈ Az \ {AX}, the midising,
idealising fud decomposition inducer is defined,

I
′∗
z,Sd,D,F,∞,n,q(A) =

{(D, I∗≈R(algnValDensSum(UA)(A,DD))) :

D ∈ DF,∞,UA,VA ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(A ∗ C ∗ FT) > 0)}

where (i) the limited-models fuds, Fq is the intersection of limited-breadth,
limited-layer, limited-underlying and limited-derived fuds, Fq = Fu ∩ Fd ∩
Fh ∩ Fb, (ii) cont(D) = elements(contingents(D)), (iii) ()D ∈ DF → D, and
(iv) the summed derived alignment valency density algnValDensSum(U) ∈
A×D → R is defined as

algnValDensSum(U)(A,D) :=∑
(C,T )∈cont(D)

algn(A ∗ C ∗ T )/capacityValency(U)((A ∗ C ∗ T )FS)

The maximum of the fud decomposition, max(I
′∗
z,Sd,D,F,∞,n,q(A)), is obtained

by searching for the fud decomposition D ∈ DF which maximises the summed
alignment valency-density,

algnValDensSum(U)(A,DD) =
∑

(C,F )∈cont(D)

algn(A ∗ C ∗ FT)/w
1/mF

F
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where WF = der(F ), wF = |WC
F | and mF = |WF |.

Section ‘Tractable alignment-bounding’ shows that the limited-models summed
alignment valency-density substrate aligned non-overlapping infinite-layer fud
decomposition inducer, I

′

z,Sd,D,F,∞,n,q, is tractable in all respects. There is a
summary of the removal of intractabilities in section ‘Inducers’.

It is conjectured that the summed alignment valency-density decomposition
inducer, I

′

z,Sd,D,F,∞,n,q, is positively correlated with the literal derived align-

ment inducer, I
′

z,a,l,

∀z ∈ N>0 (cov(z)(maxr ◦ I ′∗z,a,l,maxr ◦ I ′∗z,Sd,D,F,∞,n,q) ≥ 0)

So the summed alignment inducer, I
′

z,Sd,D,F,∞,n,q, is also positively correlated
with the literal finite transform-dependent-sample-distributed iso-transform-
independent conditional dependent multinomial space ideal formal-abstract
transform inducer, Iz,yy,l,k,

∀z ∈ N>0 (cov(z)(maxr ◦ I∗z,yy,l,k,maxr ◦ I ′∗z,Sd,D,F,∞,n,q) ≥ 0)

and positively correlated with the finite transform-dependent-sample dis-
tributed iso-transform-independent conditional dependent multinomial space
integral-independent substrate ideal formal-abstract transform search set,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yy,fa,j,k,maxr ◦ I ′∗z,Sd,D,F,∞,n,q) ≥ 0)

Conjecture that, in the case where the model, To, is unknown, the maximum
likelihood estimate for the model for transform induction,

T̃o ∈ maxd(I∗zo,yy,l,k(Ao))

can be tractably approximated by the maximisation of the tractable limited-
models summed alignment valency-density substrate aligned non-overlapping
infinite-layer fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q,

T̃o ≈ DT
o,Sd

where

Do,Sd ∈ maxd(I
′∗
zo,Sd,D,F,∞,n,q(Ao))

and Ao 6= AX
o . The tractable model, Do,Sd, is defined explicitly,

Do,Sd ∈ maxd({(D, I∗≈R(algnValDensSum(U)(Ao, D
D))) :

D ∈ DF,∞,U,Vo ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(D) (algn(Ao ∗ C ∗ FT) > 0)})
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The accuracy of the approximation can be defined as the ratio of the tractable
model transform likelihood to the maximum model transform likelihood,

0 <
exp(Xzo,xi,T,yy,fa,j,k(Ao)(DT

o,Sd))

exp(Xzo,xi,T,yy,fa,j,k(Ao)(T̃o))
≤ 1

or, in terms of the literal inducer,

0 <
I∗exp(I∗zo,yy,l,k(Ao)(DT

o,Sd))

I∗exp(I∗zo,yy,l,k(Ao)(T̃o))
≤ 1

The accuracy is defined explicitly,

Qm,U(A
Y(DT

o,Sd)

o,k , zo)(Ao)∑
Qm,U(A

Y(DT
o,Sd)

o,k , zo)(B) : B ∈ AU,i,y,DT
o,Sd,zo

(Ao)

/
Qm,U(A

Y(T̃o)
o,k , zo)(Ao)∑

Qm,U(A
Y(T̃o)
o,k , zo)(B) : B ∈ AU,i,y,T̃o,zo(Ao)

The accuracy is computable, though not tractable and so not necessarily
practicable.

In the case where (i) the iso-transform-independent dependent-independent
anti-optimisation assumption is true, (ii) the iso-transform-independent un-
derlying lifted optimisation assumption is true, and (iii) the iso-transform-
independent conditional-relative optimisation assumption is true, then the
maximum likelihood estimate for the model can be obtained from the literal
derived alignment inducer, I

′

z,a,l,

T̃o ∈ maxd(I
′∗
zo,a,l(Ao))

and a definition of accuracy can be made in terms of derived alignment,

I∗exp(I
′∗
zo,a,l

(Ao)(DT
o,Sd))

I∗exp(I
′∗
zo,a,l

(Ao)(T̃o))
=

I∗exp(I∗a (Ao ∗DT
o,Sd))

I∗exp(I∗a (Ao ∗ T̃o))

In the case of integral independent, AX ∈ Ai, the exponential of the alignment
is rational, exp(algn(A)) ∈ Q≥0, and there is no need for numeric approx-
imation. In this case, the derived alignment accuracy is the exponential of
the difference in derived alignments,

0 <
exp(algn(Ao ∗DT

o,Sd))

exp(algn(Ao ∗ T̃o))
≤ 1

1051



This definition of accuracy is consistent with the gradient of the likelihood
function at the mode, so the derived alignment accuracy varies against the
sensitivity to model,

exp(algn(Ao ∗DT
o,Sd))

exp(algn(Ao ∗ T̃o))
∼

−(− ln |max({(T, algn(Ao ∗ T )) : T ∈ TU,Vo ,
AX

o ∗ T = (Ao ∗ T )X, Ao = Ao ∗ T ∗ T †Ao})|)

If the alignment is at least intermediate, algn(Ao) > algnMax(U)(Vo, zo)/2,
then the log likelihood of the iso-transform-independent conditional stuffed
historical probability distribution at the maximum likelihood estimate varies
with the log likelihood of the iso-derived conditional stuffed historical proba-
bility distribution at the sample,

ln Q̂h,y,T̃o,U
(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,†,To,U(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

If, in addition, the component size cardinality relative entropy of the max-
imum likelihood estimate for the model is high, entropyCross(Ao ∗ To, V

C
o ∗

To) > ln |T−1
o |, then the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,y,T̃o,U
(Ẽo,zh , zo))) ∼ − ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

∼ − algn(Ao ∗ To)

If, further, the size is less than the volume, zo < vo, then the sensitivity to
model also varies against the log likelihood,

− ln |max({(T, algn(Ao ∗ T )) : T ∈ TU,Vo ,
AX

o ∗ T = (Ao ∗ T )X, Ao = Ao ∗ T ∗ T †Ao})|
∼ − ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

∼ − algn(Ao ∗ To)

So, although the maximum model derived alignment, algn(Ao ∗ T̃o), appears
in the denominator of the derived alignment accuracy, the tractable model
accuracy in fact varies with the derived alignment,

exp(algn(Ao ∗DT
o,Sd))

exp(algn(Ao ∗ T̃o))
∼ algn(Ao ∗ To)

or

algn(Ao ∗DT
o,Sd)− algn(Ao ∗ T̃o) ∼ algn(Ao ∗ To)
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That is, although the model obtained from the tractable summed alignment
valency-density inducer is merely an approximation, in the cases where the
log-likelihood or derived alignment is high, and so both the sensitivity to
model and the sensitivity to distribution are low, the approximation may be
reasonably close nonetheless.

Consider the practicable model obtained by maximisation of the summed
shuffle content alignment valency-density of the practicable highest-layer summed
shuffle content alignment valency-density fud decomposition inducer,

I
′

z,Scsd,D,F,∞,q,P,d ∈ inducers(z)

Given substrate histogram A ∈ Az, the practicable fud decomposition inducer
is defined in section ‘Optimisation’, above, as

I
′∗
z,Scsd,D,F,∞,q,P,d(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,d)), {D} = Q

Let the practicable fud decomposition be

Do,Scsd,P ∈ maxd(I
′∗
zo,Scsd,D,F,∞,q,P,d(Ao))

The practicable fud decomposition inducer imposes a sequence on the search
and other constraints that do not apply to the tractable summed alignment
valency-density decomposition inducer, I

′

z,Sd,D,F,∞,n,q, so conjecture that the
practicable derived alignment is less than or equal to the tractable derived
alignment,

algn(Ao ∗DT
o,Scsd,P ) ≤ algn(Ao ∗DT

o,Sd)

So conjecture, in the case where (i) the iso-transform-independent dependent-
independent anti-optimisation assumption is true, (ii) the iso-transform in-
dependent underlying lifted optimisation assumption is true, and (iii) the iso-
transform-independent conditional-relative optimisation assumption is true,
that the derived alignment accuracy with respect to the practicable fud de-
composition inducer is less than or equal to that of the tractable fud decom-
position inducer,

exp(algn(Ao ∗DT
o,Scsd,P ))

exp(algn(Ao ∗ T̃o))
≤

exp(algn(Ao ∗DT
o,Sd))

exp(algn(Ao ∗ T̃o))

and, in general, the accuracy is such that

exp(Xzo,xi,T,yy,fa,j,k(Ao)(DT
o,Scsd,P ))

exp(Xzo,xi,T,yy,fa,j,k(Ao)(T̃o))
≤

exp(Xzo,xi,T,yy,fa,j,k(Ao)(DT
o,Sd))

exp(Xzo,xi,T,yy,fa,j,k(Ao)(T̃o))
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It is shown above in classical uniform possible modelled induction, where
the history probability function is uniform possible iso-derived historically
distributed, P = PU,X,Hh,d,p,To , that, in the case where (i) the size is less than
the volume, zo < vo, but the sample approximates to the naturalisation,
Ao ≈ Ao ∗ To ∗ T †o , and (ii) the maximum likelihood estimate relative entropy
is high, entropyCross(Ao ∗ To, V

C
o ∗ To) > ln |T−1

o |, (a) the log likelihood of
the iso-derived conditional stuffed historical probability distribution at the
maximum likelihood estimate varies against the specialising derived substrate
history coder space,

ln Q̂h,d,To,U(Ao,zh , zo)(Ao) ∼ − space(CG,Vo,T,H(To))(Ho)

(b) the sensitivity to distribution varies against the log likelihood,

sum(sensitivity(U)(Q̂h,d,To,U(Ao,zh , zo))) ∼ − ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

and (c) the sensitivity to model varies against the log likelihood,

− ln |max({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})| ∼
− ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

It is shown above in aligned modelled induction, where the history prob-
ability function is iso-transform-independent historically distributed, P =
PU,X,Hh,y,To , that, in the case where (i) the sample is ideal, Ao = Ao∗To∗T †Ao

o ,
(ii) the sample formal equals the sample abstract, AX

o ∗ To = (Ao ∗ To)X, (iii)
the alignment is at least intermediate, algn(Ao) > algnMax(U)(Vo, zo)/2,
(iv) the size is less than the volume, zo < vo, and (v) the component size
cardinality relative entropy of the maximum likelihood estimate for the model
is high, entropyCross(Ao ∗ To, V

C
o ∗ To) > ln |T−1

o |, (a) the log likelihood of
the iso-transform-independent conditional stuffed historical probability dis-
tribution at the maximum likelihood estimate varies with the log likelihood
of the iso-derived conditional stuffed historical probability distribution at the
sample,

ln Q̂h,y,T̃o,U
(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

(b) the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂h,y,T̃o,U
(Ẽo,zh , zo))) ∼ − ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)

and (c) the sensitivity to model varies against the log likelihood,

− ln |max({(T, Q̂h,y,T,U(Ẽo,zh , zo)(Ao) : T ∈ TU,Vo ,
AX

o ∗ T = (Ao ∗ T )X, Ao = Ao ∗ T ∗ T †Ao})| ∼
− ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao)
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So (a) by weakening the induction condition from law-like necessary derived
to entity-like necessary abstract, (b) by strengthening the induction condi-
tion with necessary formal and (c) by strengthening the constraints on the
sample to be ideal and have formal-abstract equivalence, the likelihood and
sensitivity properties of aligned modelled induction approximate to those of
classical modelled induction.

Insofar as the uniform possible iso-derived history probability function ap-
proximates to the necessary iso-transform-independent history probability
function, PU,X,Hh,d,p,To ≈ PU,X,Hh,y,To,H, conjecture that the model, DT

o,Sd,
obtained by the maximisation of the tractable summed alignment valency-
density inducer, I

′

z,Sd,D,F,∞,n,q, is also a tractable approximation to the max-
imum likelihood estimate for the model for uniform possible iso-derived in-
duction,

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})

That is, in the aligned, formal-abstract, ideal, high relative entropy case,
a tractable maximum likelihood estimate for the model may be obtained
for classical modelled induction by optimisation of the summed alignment
valency-density inducer,

T̃o ≈ DT
o,Sd

The accuracy of the approximation can be defined as the ratio of the tractable
model uniform possible iso-derived likelihood to the maximum model uniform
possible iso-derived likelihood,

0 <
Q̂h,d,DT

o,Sd,U
(Ao,zh , zo)(Ao)

Q̂h,d,T̃o,U
(Ao,zh , zo)(Ao)

≤ 1

Just as the tractable model iso-transform-independent accuracy varies with
the log-likelihood, so too does the tractable model uniform possible iso-derived
accuracy,

Q̂h,d,DT
o,Sd,U

(Ao,zh , zo)(Ao)

Q̂h,d,T̃o,U
(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

Again, in the cases where the log-likelihood is high, and so the sensitivity
to model is low, the tractable approximation in the aligned, formal-abstract,
ideal, high relative entropy case may be reasonably close.
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This positive correlation between the tractable model uniform possible iso-
derived accuracy and the log-likelihood,

Q̂h,d,DT
o,Sd,U

(Ao,zh , zo)(Ao)

Q̂h,d,T̃o,U
(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

has already been established indirectly in section ‘Tractable transform induc-
tion’, above, by comparing the entropy properties of the tractable summed
alignment valency-density inducer, I

′

z,Sd,D,F,∞,n,q, and the specialising fud de-
composition substrate history coder, CG,V,D,F,H. These properties are de-
scribed in section ‘Inducers and Compression’ which considers the relations
between the summed alignment valency-density and the specialising space. In
particular, it is shown that the summed alignment valency-density (a) varies
against the derived entropy of the nullable transform,

algnValDensSum(U)(A,DD) ∼ − entropy(A ∗DT)

(b) varies against the possible derived volume w′ = |(DT)−1|,

algnValDensSum(U)(A,DD) ∼ 1/w′

(c) varies with the expected component entropy,

algnValDensSum(U)(A,DD) ∼ entropyComponent(A,DT)

and (d) varies with the component size cardinality relative entropy,

algnValDensSum(U)(A,DD) ∼ entropyRelative(A ∗DT, V C ∗DT)

Given these relations it is conjectured in section ‘Tractable transform in-
duction’ that the maximum likelihood estimate for the model for specialising
induction,

T̃o ∈ maxd({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})

or

T̃o ∈ mind({(T,CG,Vo,T,H(T )s(Ho)) : T ∈ TU,Vo})

can be tractably approximated by the maximisation of the tractable limited-
models summed alignment valency-density substrate aligned non-overlapping
infinite-layer fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q,

T̃o ≈ DT
o,Sd
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and the accuracy of the tractable model varies with the specialising log-
likelihood,

Q̂G,DT
o,Sd,H,U

(zo)(Ao)

Q̂G,T̃o,H,U
(zo)(Ao)

∼ ln Q̂G,To,H,U(zo)(Ao)

Then it is conjectured that, insofar as the uniform possible iso-derived history
probability function approximates to the specialising history probability func-
tion, PU,X,Hh,d,p,To ≈ PU,X,G,To,H, the model, DT

o,Sd, obtained by the maximisa-

tion of the tractable summed alignment valency-density inducer, I
′

z,Sd,D,F,∞,n,q,
is also a tractable approximation to the maximum likelihood estimate for the
model for uniform possible iso-derived induction,

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})

That is, in the near-natural, high relative entropy case, a tractable maximum
likelihood estimate for the model may be obtained for classical modelled in-
duction by optimisation of the summed alignment valency-density inducer,

T̃o ≈ DT
o,Sd

Just as the tractable model specialising accuracy varies with the log-likelihood,
so too does the tractable model uniform possible iso-derived accuracy,

Q̂h,d,DT
o,Sd,U

(Ao,zh , zo)(Ao)

Q̂h,d,T̃o,U
(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

This indirect derivation of the relation between the tractable model uniform
possible iso-derived accuracy and the log-likelihood via the entropy properties
of the tractable inducer and specialising coder in natural classical modelled
induction provides corroboration for the more direct derivation in formal-
abstract ideal aligned modelled induction. The tractable summed alignment
valency-density inducer, I

′

z,Sd,D,F,∞,n,q, is directly derived from the aligned
induction assumptions by removing the intractabilities from the literal de-
rived alignment integral-independent substrate ideal formal-abstract trans-
form inducer, I

′

z,a,l, while maintaining the positive correlation with the fi-
nite transform-dependent-sample distributed iso-transform-independent con-
ditional dependent multinomial space integral-independent substrate ideal for-
mal abstract transform search set,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,T,yy,fa,j,k,maxr ◦ I ′∗z,Sd,D,F,∞,n,q) ≥ 0)
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Then, given the formal-abstract ideal constraints on the sample in aligned
modelled induction it is conjectured that the log likelihood of the iso-transform-
independent conditional stuffed historical probability distribution at the max-
imum likelihood estimate varies with the log likelihood of the iso-derived con-
ditional stuffed historical probability distribution at the sample,

ln Q̂h,y,T̃o,U
(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

leading to the relation between the tractable model uniform possible iso-
derived accuracy and the log-likelihood,

Q̂h,d,DT
o,Sd,U

(Ao,zh , zo)(Ao)

Q̂h,d,T̃o,U
(Ao,zh , zo)(Ao)

∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

That is, the indirect derivation via the entropy properties is separate evi-
dence for the conjecture that the formal-abstract ideal aligned induction log-
likelihood varies with the natural classical induction log-likelihood.

In the discussion of classical modelled induction, above, consideration is
given to the case where the model is extended from a transform first to a
functional definition set and then to a fud decomposition. Now consider an
outline for the same in aligned modelled induction.

In section ‘Necessary derived functional definition set’ the model is extended
to a functional definition set from the transform of section ‘Necessary de-
rived’. Given some known substrate fud, Fo ∈ FU,Vo , such that there ex-
ists a top transform, ∃T ∈ Fo (der(T ) = der(Fo)), the derived histogram
set of the distribution probability histogram is {Êh ∗ TFo : T ∈ Fo}, where
TF := depends(F, der(T ))T. In classical functional definition set induction,
while the distribution probability histogram, Êh, remains unknown, the derived
distribution probability histogram set, {Êh ∗TFo : T ∈ Fo}, is known and nec-
essary. That is, the history probability function, P , is historically distributed
but constrained such that all drawn histories have a derived probability his-
togram equal to the known derived distribution probability histogram for each
of the transforms of the fud, ∀T ∈ Fo (ÂH ∗ TFo = Êh ∗ TFo). The iso-fud
historically distributed history probability function PU,X,Hh,d,Fo ∈ (HU,X :→
Q[0,1]) ∩ P is defined and the corresponding iso-fud conditional stuffed his-
torical probability distribution is now conditional on the set of iso-fuds,

Q̂h,d,F,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈D−1

U,i,F,z({A∗TF :T∈F}) Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

1058



where the finite set of iso-fuds of derived histogram set {A ∗ TF : T ∈ F} is

D−1
U,i,F,z({A ∗ TF : T ∈ F}) = {B : B ∈ AU,i,V,z, ∀T ∈ F (B ∗ TF = A ∗ TF )}

Similarly, in aligned functional definition set induction, while the distribu-
tion probability histogram, Êh, remains unknown, the formal-abstract-pair
distribution probability histogram set, {(ÊX

h ∗ TFo , (Êh ∗ TFo)
X) : T ∈ Fo}, is

known and necessary. That is, the history probability function, P , is his-
torically distributed but constrained such that all drawn histories have a
formal probability histogram equal to the known formal distribution proba-
bility histogram and an abstract probability histogram equal to the known
abstract distribution probability histogram for each of the transforms of the
fud, ∀T ∈ Fo (ÂX

H ∗TFo = ÊX
h ∗TFo ∧ (ÂH ∗TFo)

X = (Êh ∗TFo)
X). The iso-fud-

independent historically distributed history probability function PU,X,Hh,y,Fo ∈
(HU,X :→ Q[0,1]) ∩ P can be defined analogously to the iso-fud historically
distributed history probability function, PU,X,Hh,d,Fo , and the corresponding
iso-fud-independent conditional stuffed historical probability distribution is
now conditional on the set of iso-fud-independents,

Q̂h,y,F,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈Y −1

U,i,F,z(YU,F,z(A))Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

where the finite set of integral iso-fud-independents of formal-abstract-pair
histogram set {(AX ∗ TF , (A ∗ TF )X) : T ∈ F} is

Y −1
U,i,F,z({(A

X ∗ TF , (A ∗ TF )X) : T ∈ F}) =

{B : B ∈ AU,i,V,z, ∀T ∈ F (BX ∗ TF = AX ∗ TF ∧ (B ∗ TF )X = (A ∗ TF )X)}

which is the intersection of the iso-fud-formals and the iso-fud-abstracts

Y −1
U,i,F,z({(A

X ∗ TF , (A ∗ TF )X) : T ∈ F}) =

Y −1
U,i,F,V,z({A

X ∗ TF : T ∈ F}) ∩ Y −1
U,i,F,W,z({(A ∗ TF )X : T ∈ F})

In classical transform induction the special case is considered where the sam-
ple is constrained to be equal to the independent analogue, which is the nat-
uralisation, Ao = Ao ∗ To ∗ T †o . In this case, the maximum likelihood estimate
is necessarily equal to the sample probability histogram,

Ao = Ao ∗ To ∗ T †o =⇒ AD(To)
o = Ao =⇒ Ẽo = Âo
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The naturalisation is the likely histogram of the iso-derived,

{A ∗ T ∗ T †} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) : E ∈ AU,V,z})

The fud independent analogue corresponding to the naturalisation is the fud-
independent, AEF(F ) ∈ AU,V,z, defined,

{AEF(F )} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,F,z(DU,F,z(A)))) : E ∈ AU,V,z})

The fud-independent approximates to the arithmetic average of the natural-
isations,

AEF(F ) ≈ Z1/|F | ∗
∑
T∈F

A ∗ TF ∗ T †F

In classical fud induction, it is only in the case where the histogram equals the
fud-independent that the maximum likelihood estimate is necessarily equal to
the sample probability histogram,

Ao = AEF(Fo)
o =⇒ ADF(Fo)

o = Ao =⇒ Ẽo = Âo

In aligned transform induction, however, the sample is not constrained to
be equal to the independent analogue, A

X(To)
o , but instead (a) the sample

formal equals the sample abstract, AX
o ∗ To = (Ao ∗ To)X, and (b) the sample

is ideal, Ao = Ao ∗ To ∗ T †Ao
o . In this case the log likelihood of the iso-

transform-independent conditional stuffed historical probability distribution
at the maximum likelihood estimate varies with the log likelihood of the iso-
derived conditional stuffed historical probability distribution at the sample,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

The corresponding likely histogram in aligned fud induction is the solution
to

{AXF,fa,j(F )} ∈
maxd({(E,

∑
(Qm,U(E, z)(B) : B ∈ Y −1

U,i,F,z(YU,F,z(A)),

∀T ∈ F (BX ∗ TF = (B ∗ TF )X ∧ B ∗ TF ∗ T †BF = A ∗ TF ∗ T †AF )) :

E ∈ AU,V,z})

1060



Then, in section ‘Unknown necessary derived’, the case is considered where
the model, To, is unknown and it is found that there is no singular solution
to the optimisation,

maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈D−1
U,i,T,zo

(Ao∗T ) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo}) ⊇ AU,Vo,1 × {Ts}

where Ts is a self transform. The discussion of classical induction goes on
to consider a weakening of necessary derived to uniform possible derived in
section ‘Uniform possible derived induction’ and the corresponding extension
of the model to fud in section ‘Uniform possible derived functional definition
set induction’. This is not required in aligned modelled induction, however,
because it is conjectured that in transform induction there are some cases in
which there is a unique solution for the pair (Ẽo, T̃o), where the optimisation
is

{(Ẽo, T̃o)}

= maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈AU,i,y,T,zo (Ao) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo})

The corresponding optimisation in aligned fud induction is

{(Ẽo, F̃o)}

= maxd({((E,F ),
Qm,U(E, zo)(Ao)∑

B∈Y −1
U,i,F,zo

(YU,F,zo (Ao))Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, F ∈ FU,Vo})

The discussion of classical induction goes on, in section ‘Specialising induc-
tion’, to consider induction assumptions that do not depend on the multino-
mial probability given a distribution histogram, Q̂h,d,To,U(Ao,zh , zo), but instead
are based on specialising coder space, CG,T,H(To)s. The corresponding exten-
sion of the model to fud, based on specialising fud coder space, CG,F,H(Fo)s,
is discussed in section ‘Specialising functional definition set induction’.

Then the discussion of classical induction goes on to consider tractable in-
duction in section ‘Tractable transform induction’. There it is conjectured
that the model, DT

o,Sd, obtained by the maximisation of the tractable summed

alignment valency-density inducer, I
′

z,Sd,D,F,∞,n,q, is a tractable approximation
to the maximum likelihood estimate for the model for specialising induction,

T̃o ∈ maxd({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})
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or

T̃o ∈ mind({(T,CG,Vo,T,H(T )s(Ho)) : T ∈ TU,Vo})

and so a tractable approximation to the maximum likelihood estimate for the
model for uniform possible iso-derived induction,

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})

The discussion of the corresponding extension of the model to fud, in section
‘Tractable functional definition set induction’, does not depend on tractable
inducers but rather conjectures that the model, Fo,gr,lsq, obtained by the max-
imisation of the least squares gradient descent fud search function, ZF,P,P,gr,lsq,
is a tractable approximation to the maximum likelihood estimate for the
model for specialising induction,

F̃o ∈ maxd({(F, Q̂G,F,H,U(zo)(Ao)) : F ∈ FU,Vo})

or

F̃o ∈ mind({(F,CG,Vo,F,H(F Vo)s(Ho)) : F ∈ FU,Vo})

and so is a tractable approximation to the maximum likelihood estimate for
the model for uniform possible iso-fud induction,

F̃o ∈ maxd({(F, Q̂h,d,F,U(Ao,zh , zo)(Ao)) :

F ∈ FU,Vo , ∃T ∈ F (WT = WF ), Ao ≈ AEF(F )
o })

where the least squares gradient descent fud search function is defined

ZF,P,P,gr,lsq(H) =

{(fud(σ)(G),−lsq(σ)(A,G,K)) : Q = leaves(tree(ZP,A,gr,lsq)), {G} = Q}

and the least squares gradient descent substrate net tree searcher, ZP,A,gr,lsq,
is, in turn, defined in terms of the neural net substrate fud set, F∞,U,V,σ =
F∞,U,V ∩ (fud(σ) ◦ nets). The accuracy of the approximation is defined as
the ratio of the tractable model uniform possible iso-fud likelihood to the
maximum model uniform possible iso-fud likelihood,

0 <
Q̂h,d,Fo,gr,lsq,U(Ao,zh , zo)(Ao)

Q̂h,d,F̃o,U
(Ao,zh , zo)(Ao)

≤ 1

The corresponding aligned accuracy is defined as the ratio of the tractable
model iso-fud-independent likelihood to the maximum model iso-fud-independent
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likelihood. The accuracy, defined with respect to the finite fud-dependent-
sample-distributed iso-fud-independent conditional dependent multinomial space
integral-independent substrate ideal formal-abstract fud search set, Xz,xi,F,yy,fa,j,k,
may be stated explicitly,

Qm,U(A
YF(Fo,gr,lsq)

o,k , zo)(Ao)∑
Qm,U(A

YF(Fo,gr,lsq)

o,k , zo)(B) : B ∈ Y −1
U,i,Fo,gr,lsq,zo

(YU,Fo,gr,lsq,zo(Ao))

/
Qm,U(A

YF(F̃o)
o,k , zo)(Ao)∑

Qm,U(A
YF(F̃o)
o,k , zo)(B) : B ∈ Y −1

U,i,F̃o,zo
(YU,F̃o,zo

(Ao))

Now consider the outline of aligned modelled induction for the extension
of the model to a functional definition set.

In section ‘Necessary derived functional definition set decomposition’ the
model is extended to a functional definition set decomposition from the func-
tional definition set of section ‘Necessary derived functional definition set’.
Given some non-empty known substrate fud decomposition, Do ∈ DF,U,Vo\{∅},
such that there exists a top transform for all of the fuds, ∀F ∈ fuds(Do) ∃T ∈
F (der(T ) = der(F )), the component derived set of the distribution prob-
ability histogram is {(C, {Êh ∗ C ∗ TF : T ∈ F}) : (C,F ) ∈ cont(Do)},
where cont(D) = elements(contingents(D)) and TF := depends(F, der(T ))T.
In classical functional definition set decomposition induction, while the dis-
tribution probability histogram, Êh, remains unknown, the component de-
rived distribution probability set, {(C, {Êh ∗ C ∗ TF : T ∈ F}) : (C,F ) ∈
cont(Do)}, is known and necessary. That is, the history probability func-
tion, P , is historically distributed but constrained such that all drawn histo-
ries have a derived probability histogram equal to the known derived dis-
tribution probability histogram for each of the transforms of the fud for
each slice, ∀(C,F ) ∈ cont(Do) ∀T ∈ F (ÂH ∗ C ∗ TF = Êh ∗ C ∗ TF ).
The iso-fud-decomposition historically distributed history probability function
PU,X,Hh,d,Do ∈ (HU,X :→ Q[0,1]) ∩ P is defined and the corresponding iso-
fud-decomposition conditional stuffed historical probability distribution is now
conditional on the set of iso-fud-decompositions,

Q̂h,d,D,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈D−1

U,i,D,F,z(DU,D,F,z(A))Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}
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where the finite iso-fud-decompositions of component-derived-set DU,D,F,z(A)
is

D−1
U,i,D,F,z(DU,D,F,z(A)) =

{B : B ∈ AU,i,V,z, ∀(C,F ) ∈ cont(D) ∀T ∈ F (B ∗ C ∗ TF = A ∗ C ∗ TF )}

Similarly, in aligned functional definition set decomposition induction, while
the distribution probability histogram, Êh, remains unknown, the component
formal-abstract-pair set distribution probability histogram set, {(C, {((Êh ∗
C)X ∗ TF , (Êh ∗C ∗ TF )X) : T ∈ F}) : (C,F ) ∈ cont(Do)}, is known and nec-
essary. That is, the history probability function, P , is historically distributed
but constrained such that all drawn histories have a formal probability his-
togram equal to the known formal distribution probability histogram and an
abstract probability histogram equal to the known abstract distribution proba-
bility histogram for each of the transforms of the fud for each slice, ∀(C,F ) ∈
cont(Do) ∀T ∈ F ((ÂH ∗C)X ∗TF = (Êh ∗C)X ∗TF ∧ (ÂH ∗C ∗TF )X = (Êh ∗
C∗TF )X). The iso-fud-decomposition-independent historically distributed his-
tory probability function PU,X,Hh,y,Do ∈ (HU,X :→ Q[0,1]) ∩ P can be defined
analogously to the iso-fud-decomposition historically distributed history prob-
ability function, PU,X,Hh,d,Do , and the corresponding iso-fud-decomposition-
independent conditional stuffed historical probability distribution is now con-
ditional on the set of iso-fud-decomposition-independents,

Q̂h,y,D,U(E, z)

:= {(A, Qh,U(E, z)(A)∑
B∈Y −1

U,i,D,F,z(YU,D,F,z(A))Qh,U(E, z)(B)
) : A ∈ AU,i,V,z, A ≤ E}∧ ∪

{(A, 0) : A ∈ AU,i,V,z, A � E}

where the finite set of integral iso-fud-decomposition-independents of compo-
nent formal-abstract-pair set YU,D,F,z(A) is

Y −1
U,i,D,F,z(YU,D,F,z(A)) =

{B : B ∈ AU,i,V,z, ∀(C,F ) ∈ cont(D) ∀T ∈ F
((B ∗ C)X ∗ TF = (A ∗ C)X ∗ TF ∧ (B ∗ C ∗ TF )X = (A ∗ C ∗ TF )X)}

In classical transform induction the special case is considered where the sam-
ple is constrained to be equal to the independent analogue, which is the nat-
uralisation, Ao = Ao ∗ To ∗ T †o . In this case, the maximum likelihood estimate
is necessarily equal to the sample probability histogram,

Ao = Ao ∗ To ∗ T †o =⇒ AD(To)
o = Ao =⇒ Ẽo = Âo
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The naturalisation is the likely histogram of the iso-derived,

{A ∗ T ∗ T †} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,T,z(A ∗ T ))) : E ∈ AU,V,z})

The fud-decomposition-independent analogue corresponding to the naturali-
sation is the fud-decomposition-independent, AED,F(D) ∈ AU,V,z, defined,

{AED,F(D)} =

maxd({(E,
∑

(Qm,U(E, z)(B) : B ∈ D−1
U,i,D,F,z(DU,D,F,z(A)))) : E ∈ AU,V,z})

The fud-decomposition-independent approximates to the scaled sum of the
slice arithmetic average of the naturalisations,

AED,F(D) ≈ Zz ∗

 ∑
(C,F )∈cont(D)

(
Z1/|F | ∗

∑
T∈F

A ∗ C ∗ TF ∗ T †F

)∧

In classical fud decomposition induction, it is only in the case where the
histogram equals the fud-decomposition-independent that the maximum like-
lihood estimate is necessarily equal to the sample probability histogram,

Ao = AED,F(Do)
o =⇒ ADD,F(Do)

o = Ao =⇒ Ẽo = Âo

In aligned transform induction, however, the sample is not constrained to
be equal to the independent analogue, A

X(To)
o , but instead (a) the sample

formal equals the sample abstract, AX
o ∗ To = (Ao ∗ To)X, and (b) the sample

is ideal, Ao = Ao ∗ To ∗ T †Ao
o . In this case the log likelihood of the iso-

transform-independent conditional stuffed historical probability distribution
at the maximum likelihood estimate varies with the log likelihood of the iso-
derived conditional stuffed historical probability distribution at the sample,

ln Q̂h,y,To,U(Ẽo,zh , zo)(Ao) ∼ ln Q̂h,d,To,U(Ao,zh , zo)(Ao)

The corresponding likely histogram in aligned fud decomposition induction is
the solution to

{AXD,F,fa,j(D)} ∈
maxd({(E,

∑
(Qm,U(E, z)(B) : B ∈ Y −1

U,i,D,F,z(YU,D,F,z(A)),

∀(C,F ) ∈ cont(D) ∀T ∈ F
((B ∗ C)X ∗ TF = (B ∗ C ∗ TF )X ∧

B ∗ C ∗ TF ∗ T †B∗CF = A ∗ C ∗ TF ∗ T †A∗CF )) :

E ∈ AU,V,z})
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Then, in section ‘Unknown necessary derived’, the case is considered where
the model, To, is unknown and it is found that there is no singular solution
to the optimisation,

maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈D−1
U,i,T,zo

(Ao∗T ) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo}) ⊇ AU,Vo,1 × {Ts}

where Ts is a self transform. The discussion of classical induction goes on
to consider a weakening of necessary derived to uniform possible derived in
section ‘Uniform possible derived induction’ and the corresponding extension
of the model to fud decomposition in section ‘Uniform possible derived func-
tional definition set decomposition induction’. This is not required in aligned
modelled induction, however, because it is conjectured that in transform in-
duction there are some cases in which there is a unique solution for the pair
(Ẽo, T̃o), where the optimisation is

{(Ẽo, T̃o)}

= maxd({((E, T ),
Qm,U(E, zo)(Ao)∑

B∈AU,i,y,T,zo (Ao) Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, T ∈ TU,Vo})

The corresponding optimisation in aligned fud decomposition induction is

{(Ẽo, D̃o)}

= maxd({((E,D),
Qm,U(E, zo)(Ao)∑

B∈Y −1
U,i,D,F,zo

(YU,D,F,zo (Ao))Qm,U(E, zo)(B)
) :

E ∈ AU,Vo,1, D ∈ DF,U,Vo})

The discussion of classical induction goes on, in section ‘Specialising induc-
tion’, to consider induction assumptions that do not depend on the multi-
nomial probability given a distribution histogram, Q̂h,d,To,U(Ao,zh , zo), but in-
stead are based on specialising coder space, CG,T,H(To)s. The corresponding
extension of the model to fud decomposition, based on specialising fud de-
composition coder space, CG,D,F,H(Do)s, is discussed in section ‘Specialising
functional definition set decomposition induction’.

Then the discussion of classical induction goes on to consider tractable in-
duction in section ‘Tractable transform induction’. There it is conjectured
that the model, DT

o,Sd, obtained by the maximisation of the tractable summed
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alignment valency-density inducer, I
′

z,Sd,D,F,∞,n,q, is a tractable approximation
to the maximum likelihood estimate for the model for specialising induction,

T̃o ∈ maxd({(T, Q̂G,T,H,U(zo)(Ao)) : T ∈ TU,Vo})

or

T̃o ∈ mind({(T,CG,Vo,T,H(T )s(Ho)) : T ∈ TU,Vo})

and so a tractable approximation to the maximum likelihood estimate for the
model for uniform possible iso-derived induction,

T̃o ∈ maxd({(T, Q̂h,d,T,U(Ao,zh , zo)(Ao)) : T ∈ TU,Vo , Ao ≈ Ao ∗ T ∗ T †})

The discussion of the corresponding extension of the model to fud decomposi-
tion, in section ‘Tractable functional definition set decomposition induction’,
does not depend so much on the tractable inducer but rather conjectures that
the model, Do,Scsd,P , obtained by the maximisation of the practicable highest-
layer summed shuffle content alignment valency-density fud decomposition
inducer, I

′

z,Scsd,D,F,∞,q,P,d, is a practicable approximation to the maximum
likelihood estimate for the model for specialising induction,

D̃o ∈ maxd({(D, Q̂G,D,H,U(zo)(Ao)) : D ∈ DF,U,Vo})

or

D̃o ∈ mind({(D,CG,Vo,D,F,H(DVo)s(Ho)) : D ∈ DF,U,Vo})

and so is a practicable approximation to the maximum likelihood estimate
for the model for uniform possible iso-fud-decomposition induction,

D̃o ∈ maxd({(D, Q̂h,d,D,U(Ao,zh , zo)(Ao)) :

D ∈ DF,U,Vo \ {∅}, ∀F ∈ fuds(D) ∃T ∈ F (WT = WF ),

Ao ≈ AED,F(D)
o })

where, given parameter tuple P ∈ L(X ), the practicable fud decomposition
inducer is defined as

I
′∗
z,Scsd,D,F,∞,q,P,d(A) =

if(Q 6= ∅, {(D, I∗Scsd((A,D)))}, {(D∅, 0)}) :

Q = leaves(tree(ZP,A,D,F,d)), {D} = Q
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and the summed shuffle content alignment valency-density computer IScsd ∈
computers is defined as

I∗Scsd((A,D)) =∑
(I∗a (A ∗ C ∗ FT)− I∗a ((A ∗ C)R(A∗C) ∗ FT))/I∗cvl(F ) : (C,F ) ∈ cont(D)

and ZP,A,D,F,d is the highest-layer limited-models infinite-layer substrate fud
decompositions tree searcher.

The accuracy of the approximation is defined as the ratio of the tractable
model uniform possible iso-fud-decomposition likelihood to the maximum model
uniform possible iso-fud-decomposition likelihood,

0 <
Q̂h,d,Do,Scsd,P ,U(Ao,zh , zo)(Ao)

Q̂h,d,D̃o,U
(Ao,zh , zo)(Ao)

≤ 1

The corresponding aligned accuracy is defined as the ratio of the tractable
model iso-fud-decomposition-independent likelihood to the maximum model
iso-fud-decomposition-independent likelihood. The accuracy, with respect to
the finite fud-decomposition-dependent-sample-distributed iso-fud-decomposition-
independent conditional dependent multinomial space integral-independent
substrate ideal formal-abstract fud decomposition search set, Xz,xi,D,F,yy,fa,j,k,
may be stated explicitly,

Qm,U(A
YD,F(Do,Scsd,P )

o,k , zo)(Ao)∑
Qm,U(A

YD,F(Do,Scsd,P )

o,k , zo)(B) : B ∈ Y −1
U,i,Do,Scsd,P ,F,zo

(YU,Do,Scsd,P ,F,zo(Ao))

/
Qm,U(A

YD,F(D̃o)
o,k , zo)(Ao)∑

Qm,U(A
YD,F(D̃o)
o,k , zo)(B) : B ∈ Y −1

U,i,D̃o,F,zo
(YU,D̃o,F,zo

(Ao))

This definition of accuracy can be derived more directly by considering the
definition of fud decomposition inducers. The fud-decomposition-dependent-
sample-distributed iso-fud-decomposition-independent conditional dependent
multinomial space integral-independent substrate ideal formal-abstract fud de-
composition search set is defined,

Xz,xi,D,F,yy,fa,j(A) =

{(D, ln Q̂m,UA
(AYD,F(D), z)(A)∑

Q̂m,UA
(AYD,F(D), z)(B) : B ∈ Y −1

UA,i,D,F,z
(YUA,D,F,z(A))

) :

D ∈ DF,UA,VA , A = AXD,F,fa,j(D)}
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The fud decomposition induction correlation of inducer Iz must be positive,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,D,F,yy,fa,j,maxr ◦ I∗z ) ≥ 0)

Conjecture that, for some parameter tuples, P , the fud decomposition induc-
tion correlation of the practicable highest-layer summed shuffle content align-
ment valency-density fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d, is positive,

∀z ∈ N>0 (cov(z)(maxr ◦Xz,xi,D,F,yy,fa,j,maxr ◦ I ′∗z,Scsd,D,F,∞,q,P,d) ≥ 0)

Evidence for this conjecture may be seen by considering (a) the extension
of the aligned induction assumptions for fud decompositions and (b) the ap-
proximation made by the practicable inducer.

In aligned transform induction, where (i) the history probability function
is iso-transform-independent historically distributed, P = PU,X,Hh,y,To , given
some unknown substrate transform in the sample variables To ∈ TU,Vo , if it is
the case that (ii) the iso-transform-independent dependent-independent anti-
optimisation assumption is true, (iii) the iso-transform-independent underlying-
lifted optimisation assumption is true, and (iv) the iso-transform-independent
conditional-relative optimisation assumption is true, then the maximum like-
lihood estimate of the model, T̃o, at the maximum likelihood estimate of the
distribution, Ẽo, is

{T̃o} = maxd({(T, algn(Ao ∗ T )) : T ∈ TU,Vo})
So, in aligned functional definition set decomposition induction, where (i) the
history probability function is iso-fud-decomposition-independent historically
distributed, P = PU,X,Hh,y,Do , given some unknown substrate fud decompo-
sition in the sample variables Do ∈ DF,U,Vo , if it is the case that (ii) the
iso-fud-decomposition-independent dependent-independent anti-optimisation
assumption is true, (iii) the iso-fud-decomposition-independent underlying-
lifted optimisation assumption is true, and (iv) the iso-fud-decomposition-
independent conditional-relative optimisation assumption is true, then the
maximum likelihood estimate of the model, D̃o, at the maximum likelihood
estimate of the distribution, Ẽo, depends on a maximisation of the set of
derived alignments for each transform for each fud of the decomposition,

{(C, {(T, algn(Ao ∗ C ∗ TF )) : T ∈ F}) : (C,F ) ∈ cont(Do)}
As shown in section ‘Inducers and Compression’, above, in the case of the
practicable search function, ZD,F,P,q,d,P,Scsd, defined,

ZD,F,P,q,d,P,Scsd(H) =

{(D, I∗Scsd((AH , D))) : Q = leaves(tree(ZP,AH ,D,F,d)), Q 6= ∅, {D} = Q} ∪
{(Du, 0)}
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the fuds of the decomposition are built layer by layer,

∀(i, F ) ∈ L (layer(F, der(F )) = i)

where {L} = paths(tree(ZP,B,BR,L,d)), slice B = A ∗ C and the highest-layer
limited-layer limited-underlying limited-breadth fud tree searcher is

ZP,B,BR,L,d = searchTreer(F∞,UB ,VB ∩ Fu ∩ Fb ∩ Fh, PP,B,BR,L,d, {∅})

So the properties of the fuds of the decomposition also depend on layer. In
particular the highest-layer fud tree searcher, ZP,B,BR,L,d, is constrained such
that the shuffle content alignment valency-density of the derived variables
set increases in each layer. The shuffle content alignment valency-density
increases in each layer, so, in general, the derived alignment increases up the
layers,

∀i ∈ {2 . . . l} (algn(B ∗ FT
{1...i}) > algn(B ∗ FT

{1...i−1}))

and so

∀i ∈ {2 . . . l} (algn(A ∗ C ∗ FT
{1...i}) > algn(A ∗ C ∗ FT

{1...i−1}))

The limited-layer limited-underlying limited-breadth fud tree searcher neigh-
bourhood function is

PP,B,BR,L(F ) = {G :

G = F ∪ {T : K ∈ topd(bbmax/mmaxc)(elements(ZP,B,BR,F,B)),

H ∈ topd(pmax)(elements(ZP,B,BR,F,n,−,K)),

w ∈ der(H), I = depends(explode(H), {w}), T = ITPT},
layer(G, der(G)) ≤ lmax}

where ZP,B,BR,F,n,−,K is the contracted decrementing linear non-overlapping
fuds list maximiser. The decrementing maximiser optimiser function is

XP,B,BR,F,n,−,K = {(H, I∗csd((B,BR, G
′))) :

H ∈ FUB ,n,−,K,b,mmax,2, G
′ = depends(F ∪H, der(H))}

The shuffle content alignment valency-density increases in each layer because
the decrementing maximiser, ZP,B,BR,F,n,−,K , maximises the shuffle content
alignment valency-density, I∗csd((B,BR, G

′)), by value rolling the underlying
tuple, K. Conjecture, therefore that the derived alignment for the transform
for the fud, algn(A ∗ C ∗ G′T), also tends to be maximised. In fact, the
fud tree searcher, ZP,B,BR,L,d, explodes the resultant fud, explode(H), so the

1070



cardinality of the set of iso-fud-independents, Y −1
U,i,G,zB

(YU,G,zB(B)), is larger
than it otherwise would be. This, however, is merely a detail of the imple-
mentation, and a practicable inducer can easily be defined with the stricter
iso-set, Y −1

U,i,F∪{HT},zB
(YU,F∪{HT},zB(B)).

To conclude, conjecture that for all model types there is a definition of aligned
modelled induction corresponding to every definition of classical modelled in-
duction. That is, both classical induction and aligned induction may be
regarded as special cases of induction in general.
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A Miscellaneous

A.1 Algebra of history

The multiply (∗) and reduce(V ) functions are more obviously dual, in the
sense that they increase or decrease the cardinality of the set of variables,
when defined for history. These functions do not require equality to be
determined for the event identifier. For multiplication we can simply put the
event identifiers in a pair to preserve uniqueness, (∗) ∈ H ×H → H,

H ∗G := {((X, Y ), S ∪ T ) : (X,S) ∈ H, (Y, T ) ∈ G, |vars(S ∪ T )| = |S ∪ T |}

In the case of reduction the event identifiers are left entirely alone, reduce ∈
P(V)→ (H → H)

reduce(V )(H) := {(X, filter(V, S)) : (X,S) ∈ H}

By contrast, addition and particularly subtraction are more awkward for
histories because we must concern ourselves with the equality of the event
identifiers. The natural definition for addition would be H + G := H ∪ G,

1071



but only where dom(H)∩ dom(G) = ∅. If this condition does not hold, then
we must prefix the event identifiers with positional identifiers, for example,

H +G := {((l, X), S) : (X,S) ∈ H} ∪ {((r, Y ), T ) : (Y, T ) ∈ G}

where vars(H) = vars(G). Similarly, the natural definition for subtraction
would be H−G := H\G, but only where G ⊆ H. This would be the case if G
is drawn from H, thus appearing in the support of the historical distribution.
If not, however, we must map the event identifiers with an outer dot product
and then do the set minus, for example,

H −G := H \ {(DX , S) : (X,S) ∈ G}

where D ∈ H · = G and ∀((X,S), (Y, T )) ∈ D (S = T ).

The reciprocal (1/) is not easy to implement for history at all. Division
of histories may be best left as quotient pair H×H, similar to the definition
of the rational numbers Q.

A.2 Histogram expressions

The set of operators OU on histograms in system U is defined

OU = {(+), (−), (∗), (1/)} ∪ {reduce(V ) : V ∈ P(vars(U))}

A histogram expression in system U is an ordered tree where the nodes are (i)
histograms, AU , or (ii) free variable identifiers which are pairs of (a) a natural
number and (b) a set of variables, N×P(V) , or (iii) pairs of (a) an operator
and (b) a non-empty recursive list of histogram expressions, OU×L(EU). The
arity of the operator-expression list pair (op, L) ∈ OU × L(EU) is the length
of the list, |L|. The reduction operators are unary. There are 2|U | reduction
operators. The reciprocal operator is unary. The subtraction operator is bi-
nary. The addition and multiplication operators are n-ary, with notation

∑
and

∏
respectively, where they are not specifically binary.

The set of all histogram expressions EU in system U is recursively defined
as

EU = AU ∪ (N× P(V)) ∪ (OU × L(EU))

where L is the generic list. The set of histogram expressions is a special case
of a lambda calculus.
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The function vars ∈ EU → P(V) returns the variables of the root of a his-
togram expression. Histogram expressions are constrained such that the free
variable identifier pairs, N × P(V), in the expression tree form a list. The
function free ∈ EU → L(P(V)) returns the list of free variable identifiers.
The function paths ∈ EU → P(L(EU)) returns all paths in the tree between
a free variable identifier and the root.

The function substitute ∈ L(A) × EU → EU substitutes the free variables
in the expression tree. The substitution substitute(L,N) is defined if |L| =
|free(N)| and ∀i ∈ {1 . . . |L|} (vars(Li) = free(N)(i)). The substituted ex-
pression has no free variables, free(substitute(L,N)) = ∅.

The function evaluate ∈ EU → AU evaluates an expression. It is defined
only for expressions without free variables free(N) = ∅.

Define a notation of a histogram expression N ∈ EU followed by an argument
list of histograms in round brackets, N(A), N(A,B), etc, for the substitution
of the argument list and evaluation of the substituted histogram expression.
That is, the histogram expression application is

N(A) = evaluate(substitute({(1, A)}, N))

and
N(A,B) = evaluate(substitute({(1, A), (2, B)}, N))

and so on.

The implementation of the substitution and evaluation steps are not de-
scribed here, except to note that there are a number of ways in which an
expression can be simplified before substitution. Operators are left associa-
tive, but multiplications are commutative and additions are commutative.
For example, a sequence of multiplications on histograms in an expression
can be reduced to a single histogram, for example, A ∗ B ∗ C ∗ D = A ∗ E
where A is the free variable. A sequence of reductions is equivalent to the
reduction of the intersection of the variables A % W % V = A % (W ∩ V ).
An addition followed by a reduction can be split into the addition of reduc-
tions (A+B) % W = (A % W )+(B % W ) where A and B are free variables.

The set of models MU in system U are a subset of histogram expressions,
MU ⊂ EU . A model M ∈ MU in variables V , (i) is a histogram expression
which has a single free variable histogram, free(M) = {(1, V )}, (ii) evaluates
to a histogram in the same variables, vars(M) = vars(M(A)) = V where
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V = vars(A), and (iii) is constrained such that all paths at some point are
reduced to exclude the argument variables

∀P ∈ paths(M) ∃E ∈ set(P ) (vars(E) ∩ V = ∅)

Models are frames between M(A) and A such that at some point there is
an internal representation in variables exclusive of the variables of start and
end nodes of the graph of the histogram expression.

The application notation can be extended to lists of histogram expressions.
A histogram expression list R ∈ L(EU) may be applied to an argument his-
togram A ∈ AU in sequence to produce a list of histograms. Define his-
togram expression list application R(A) ∈ L(AU) such that R(A)1 = A,
|R(A)| = |R| + 1 and ∀i ∈ {1 . . . |R|} (R(A)i+1 = Ri(R(A)i)). Each of
the expressions in the expression list has exactly one free variable, ∀N ∈
set(R) (|free(N)| = 1), which has the same variables as the previous ex-
pression, ∀i ∈ {1 . . . |R| − 1} (free(Ri+1) = {(1, vars(Ri))}). The histogram
expression list, R, and its application, R(A), together resemble a Markov
chain if the histogram expression list is independent of the application. The
application, R(A), is size conserving if the histograms have the same size
as the argument, ∀B ∈ set(R(A)) (size(B) = size(A)). The application,
R(A), is variables conserving if the histograms have the same variables as
the argument, ∀B ∈ set(R(A)) (vars(B) = vars(A)). The application,
R(A), is congruent if the histograms are congruent to the argument, ∀B ∈
set(R(A)) (congruent(B,A)).

Similarly, the application notation can be extended to trees of histogram
expressions. A histogram expression tree R ∈ trees(EU) may be applied to
an argument histogram A ∈ AU recursively to produce a tree of histograms.
Define histogram expression tree application R(A) ∈ trees(AU) such that
dom(roots(R(A))) = {A} and R(A) = {(A,R′(N(A))) : (N,R′) ∈ R} where
∅(A) = ∅. Each of the expressions in the expression tree has exactly one free
variable, ∀N ∈ elements(R) (|free(N)| = 1).

Let N(D,I) ∈ EU be a histogram expression of delta (D, I) ∈ A × A having
variables vars(D) = vars(I) = V . The expression application to histogram
A in variables V is such that N(D,I)(A) = A−D + I ∈ A. Define

N(D,I) = ((+), {(1, ((−), {(1, (1, V )), (2, D)})), (2, I)})

Let NR ∈ EU be a histogram expression of roll R ∈ rolls having variables
V . The expression application to histogram A in variables V is such that
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NR(A) = A ∗ R ∈ A. The roll histogram expression can be defined in terms
of a delta histogram expression, NR = N(ND,NI). The delta is defined as ∑

S∈AS∩dom(R)

{(S,AS)},
∑

S∈AS∩dom(R)

{(RS, AS)}


which equals ∑

S∈AS∩dom(R)

A ∗ {S}U,
∑

S∈AS∩dom(R)

A ∗ {S}U %∅ ∗ {RS}U


so define

ND = ((Σ), {(QS, NS) : S ∈ dom(Q)})
NI = ((Σ), {(QS, NS,R) : S ∈ dom(Q)})

where
NS = ((∗), {(1, (1, V )), (2, {S}U)})

and
NS,R = ((∗), {(1, (reduce(∅), {(1, NS)})), (2, {RS}U)})

and Q ∈ enums(AS ∩ dom(R)).

Let NT ∈ EU be a histogram expression of transform T ∈ T having un-
derlying variables und(T ) = V . The expression application to histogram A
in variables V is such that NT (A) = A∗T = A∗X % W where (X,W ) = T .
Define

NT = (reduce(W ), {(1, ((∗), {(1, (1, V )), (2, X)}))})

A.3 Cardinality of the power functional definition set

We can calculate an upper bound on the cardinality of the power functional
definition set on variables V in system U . Let the dimension of the zeroth
layer n = |V | and the maximum valency d = maxr({|Uv| : v ∈ V }). The
number of layers l = bell(dn). Let N,D,C ∈ L(N) and |N | = |D| = |C| =
l + 1. Let N1 = n and D1 = d. Let Ci =

∑
j∈{1...i}Nj.

Let D be such that
∀i ∈ {1 . . . l} (Di+1 = DCi

i )
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Let N be such that

∀i ∈ {1 . . . l} (Ni+1 = 2Ci bell(Di+1))

Then
|power(U)(V )| < Cl+1 − n

A.4 Constructing states order from variables and val-
ues orders

Let DV be an order on the variables in system U , DV ∈ enums(vars(U)).
Let DW ∈ V → (W ↔ N) be a set of orders on the values on each of the
variables, such that

∀(v, Y ) ∈ DW (Y ∈ enums(Uv))

then we can construct an order DS on the states, DS ∈ enums(SU)

DS = order({(S,
∑

(tji : (v, w) ∈ S, j = DV(v), i = DW(v)(w))) : S ∈ SU},SU)

where t = maxr({(v, |W |) : (v,W ) ∈ U}) + 1.

A.5 Coders

A code is an algorithm or type which defines a code domain, an encode
method and a decode method such that there is a bijection between the
code domain and the natural numbers. Define the set of codes as codes.
Define X as the universal set. Define domain ∈ codes → P(X ). Define
encode ∈ codes → (X → N) such that encode(C) ∈ domain(C) :→ N. De-
fine decode ∈ codes → (N → X ) such that decode(C) ∈ N →: domain(C).
Finally constrain codes such that

∀C ∈ codes ∀x ∈ domain(C) (decode(C)(encode(C)(x)) = x)

A subset of the codes are list codes, codeLists ⊂ codes, for which the code
domains are lists of objects in a non-empty listable domain. Define listable ∈
codeLists→ P(X ).

∀C ∈ codeLists ♦Y = listable(C) ∀i ∈ N ∀Q ∈ Y i (list(Q) ∈ domain(C))

An example of a list code is C ∈ codeLists which is parameterised by
some bijection KC ⊂ L(X ) ↔ N . This bijection maps lists of objects
to natural numbers. Here the code domain domain(C) = dom(KC) and the
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listable domain Y = listable(C) is such that dom(KC) = {list(Q) : i ∈
N, Q ∈ Y i}. Define encode for C as encode(C)(L) := KC(L) and decode as
decode(C)(n) := flip(KC)(n). Thus C encodes any list of objects L ∈ L(Y )
into a natural number KC(L) ∈ N and decodes the natural number n back
to the original list (L, n) ∈ KC . Here the encode and decode functions of this
list code are easily defined in terms of the relation KC .

Now consider a subset of list codes, called coders, coders ⊂ codeLists, which
are not parameterised by straightforward relations, but instead are defined
by the code and space of each object of the list domain. In this con-
text list domains are called coder domains. Coders also define the en-
code and decode methods in terms of code and space rather than by in-
dexing a relation with a list of objects. Coders redefine the decode method
to add an extra argument which specifies the length of the list to be de-
coded. Consider a coder C ∈ coders which is parameterised by a tuple
QC ∈ (X ↔ N)× (X → N>0)× (N→ X ). Coder definition QC is a tuple of
(i) a code represented by a bijection between objects and natural numbers,
(ii) a space function of the objects and (iii) a function which decodes the
head object of an encoded list. Define the parameterisation of coders

definition ∈ coders→ (X ↔ N)× (X → N>0)× (N→ X )

such that

∀C ∈ coders ♦(E, S,D) = def(C) (dom(E) = dom(S) = ran(D) = listable(C))

and

∀C ∈ coders ♦(E, S,D) = def(C) ∀x ∈ listable(C) (Ex < Sx)

and
∀C ∈ coders ♦(E, S,D) = def(C) (flip(E) ⊂ D)

Define encode ∈ coders→ (L(X )→ N) and encode(C) ∈ L(Y ) :→ N as

encode(C)(L) := encode(C)(sequence(L))

where Y = listable(C).

Define encode(C) ∈ K(Y ) :→ N

encode(C)((x,K)) := encode(C)(K)× Sx + Ex

encode(C)(∅) := 0
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where (E, S,D) = definition(C).

Define decode ∈ coders → (N ×N → L(X )) and decode(C) ∈ N ×N →:
L(Y ) as

decode(C)(l, n) := list(decode(C)(l, n))

Define decode(C) ∈ N×N→: K(Y )

decode(C)(l, n) := (Dn, decode(C)(l − 1, n/S(Dn)))

decode(C)(0, n) := ∅

The divide operator is the natural number operator.

Now we constrain coders to be list codes

∀C ∈ coders ♦Y = listable(C)

∀i ∈ N ∀Q ∈ Y i ♦L = list(Q) (decode(C)(|L|, encode(C)(L)) = L)

If the coder domain is finite then E and S are finite. However D is always
infinite because its domain is the encoding of any list of the coder domain.

This definition of coder allows us to define space for each of the elements
of the coder domain, space(C) ∈ Y :→ ln N>0, where Y = listable(C),

space(C)(x) := lnSx

where (E, S,D) = definition(C).

The space required to encode a list L ∈ L(Y ) is the sum of the spaces
of the list elements,∑

i∈{1...|L|}

space(C)(Li) ≥ ln(encode(C)(L) + 1)

In the case where the space is constant, |ran(S)| = 1, the decode method can
be implemented generically. This is called the fixed-width case. All other
cases are variable-width coders. In the fixed-width case, where {s} = ran(S),
we can define a decode function in terms of the code parameter E and the
space parameter Y × {s} of the coder definition

decode(C)(l, n) := (flip(E)(n%s), decode(C)(l − 1, n/s))

decode(C)(0, n) := ∅
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Modulus and divide are the natural number operators.

The decode parameter D, where (E, S,D) = definition(C), for variable-width
coders must have an algorithm that is explicitly defined for the coder.

Define the subset of coders having some particular listable domain Y with a
convenient construct, coders(Y ) ⊂ coders

coders(Y ) = {C : C ∈ coders, listable(C) = Y }

The total space of a coder of a non-empty finite coder domain, Y , is the space
of any of the lists of Y , {flip(N) : N ∈ enums(Y )}. By Gibbs’ inequality,∑

x∈Y

space(C)(x) ≥ |Y | ln |Y |

where C ∈ coders(Y ). A minimal coder is a member of the subset of the
coders which are such that the total space is equal to |Y | ln |Y |. Contrast
this to an enumeration of Y which cannot itself be the space in a valid coder
∀S ∈ enums(Y ) ((E, S,D) 6= definition(C)), because∑

x∈Y

lnSx =
∑

i∈{1...|Y |}

ln i = ln |Y |! < |Y | ln |Y |

where S ∈ enums(Y ). We can see that such a coder which had an enumera-
tion of Y as the definition of the space would have total space equal to that
required for a permutation of Y , but not a list, and hence Y would not be
listable by the coder.

Consider a non-empty list L ∈ L(Y ) of a coder domain Y . The list, L,
implies a probability function P ∈ (Y :→ Q>0) ∩ P which is such that
dom(P ) = Y and sum(P ) = 1. Let Q = count(flip(L)) in

P = {(x, f/sum(Q)) : (x, f) ∈ Q} ∪ ((Y \ dom(Q))× {0})

Let coder C have domain Y so that decode(|L|, encode(C)(L)) = L. The
expected space of coder C of an element in Y in probability function P is

expected(P )(space(C)) =
∑
x∈Y

Px × space(C)(x)

The scaled expected space in the uniform probability function P = Y ×{1/|Y |}
where flip(L) ∈ enums(Y ) equals the total space

|Y | × expected(Y × {1/|Y |})(space(C)) = sum(space(C))
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See the discussion ‘Coders and entropy’, below, for the case where the ex-
pected space equals the entropy of the probability function.

One can go on to consider coders of coders. That is, coders that encode
and decode by means of nested coders. An example is of the variable coder
of histories which has an entropy coder of states for each history. See ap-
pendix ‘Entropy encoding of states’, below. Another example is where the
coder domain consists of lists or trees. See appendix ‘List and tree coders’,
below.

A.5.1 List and tree coders

Consider the subset coders(L(Z)) of coders where the coder domains are
lists of some underlying type, Z, which itself has a coder in coders(Z). The
underlying coder is specified in the parameters of the coders of lists. Here
we shall define two kinds of coder where the coder domain consists of lists.
The first kind, called the limited coder of lists has a maximum list length
also specified in the parameters, so that the limited coder domain is finite
if the underlying coder domain is also finite. The second kind, called the
unlimited coder of lists, needs no such parameter, using a termination flag
instead. The coder domain of the unlimited coder of lists is by definition
infinite, regardless of whether the underlying coder domain is infinite.

Define the limited coder of lists

coderListLimited ∈ coders(Z)×N→ coders(L(Z))

Let CZ ∈ coders(Z) in

CL = coderListLimited(CZ, y) ∈ coders(Ly(Z))

where Ly(Z) is the set of all lists of the underlying coder domain of length
less than or equal to y, Ly(Z) = {L : L ∈ L(Z), |L| ≤ y}. Ly(Z) is a finite
set if Z is finite.

The code EL of the coder definition of CL, (EL, SL, DL) = definition(CL),
is defined such that a list L ∈ Ly(Z) is encoded as a pair of its length and
the list itself (|L|, L)

EL(L) := encode(CZ)(L)× (y + 1) + |L|
EL(∅) := 0
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The space is defined

SL(L) := (y + 1)
∏

(i,x)∈L

SZ(x)

SL(∅) := (y + 1)

where (EZ, SZ, DZ) = definition(CZ). Define the decode parameter

DL(n) := decode(CZ)(n%(y + 1), n/(y + 1))

DL(0) := ∅

If we take the core space of a list L as
∑

(i,x)∈L space(CZ)(x), then the addi-

tional overhead space to encode the list in coder CL is ln(y + 1).

In the case of a fixed-width underlying coder, SZ = Z × {s}, then we can
simplify. Define decLim(EZ, s) ∈ N×N→ K(Z).

DL(n) := list(decLim(EZ, s)(n%(y + 1), n/(y + 1)))

DL(0) := ∅

and

decLim(EZ, s)(i, n) := (flip(EZ)(n%s), decLim(EZ, s)(i− 1, n/s))

decLim(EZ, s)(0, n) := ∅

The space parameter of a list is SL(L) := (y + 1)s|L| and so space(CL)(L) =
ln(y + 1) + |L| ln s.

A closely related limited list coder CL,N allows only non-empty lists in the
coder domain

CL,N = coderListNonEmptyLimited(CZ, y) ∈ coders(Ly(Z) \ {∅})

The code EL,N is defined EL,N(L) := encode(CZ)(L)× y + |L| − 1, the space
SL,N is defined SL,N(L) := y

∏
(i,x)∈L SZ(x) and the decode DL,N parameter

is defined DL,N(n) := list(decLim(SZ, DZ)(n%y + 1, n/y)). The difference
between CL and CL,N is that the space of a non-empty list is smaller in CL,N.
The overhead space to encode the list in coder CL,N is ln y.

Also related to limited list coders are set coders where the coder domain
is not a list of some underlying coder domain, L(Z) but instead a set, P(Z).
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Set coder domains are finite and their underlying coder domains are also
finite.

CS = coderSet(CZ) ∈ coders(P(Z))

CS encodes a subset Q ⊂ Z by first encoding the subset cardinality |Q|,
then the combination. The combination maps to a list of the underlying
objects ordered by the encode parameter of the underlying coder definition,
order(EZ, Q). The space is space(CS)(Q) = ln(y+1)+ln(y!/(z!(y−z)!) where
y = |Z| and z = |Q|. Note that there is no need to encode the underlying
directly. An alternative method is to encode a list of bits which signify set
membership. In this method the space comes to y ln 2.

The second kind of coder, which is the unlimited coder of lists, uses a ter-
mination flag to stop the decode iteration. The coder domain is infinite,
whether the underlying coder domain is finite or not. Define the unlimited
coder of lists

coderListTerminating ∈ coders(Z)→ coders(L(Z))

Let CZ ∈ coders(Z) in

CU = coderListTerminating(CZ) ∈ coders(L(Z))

The code EU of the coder definition of CU, (EU, SU, DU) = definition(CU), is
defined such that a list L ∈ L(Z) is encoded as a list of pairs of a continuation
code 0 ∈ bits and the element of the list itself, or the termination code
1 ∈ bits, L(({0} × Z) ∪ {1})

EU(L) := encTerm(EZ, SZ)(sequence(L))

where (EZ, SZ, DZ) = definition(CZ). Define encTerm(EZ, SZ) ∈ K(Z) → N
as

encTerm(EZ, SZ)((x,K)) := (encTerm(EZ, SZ)(K)× SZ(x) + EZ(x))× 2

encTerm(EZ, SZ)(∅) := 1

The space is defined

SU(L) := 2
∏

(i,x)∈L

2SZ(x) = 2(|L|+1)
∏

(i,x)∈L

SZ(x)

SU(∅) := 2
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Define the decode parameter

DU(n) := list(decTerm(SZ, DZ)(n))

DU(1) := ∅
DU(0) := ∅

Define decTerm(SZ, DZ) ∈ N→ K(Z) as

decTerm(SZ, DZ)(n) := (DZ(n/2), decTerm(SZ, DZ)(n/(2SZ(DZ(n/2)))))

where n%2 = 0, otherwise decTerm(SZ, DZ)(n) := ∅.

The overhead space to encode the list in coder CU is (|L|+ 1) ln 2.

In the case of a fixed-width underlying coder, SZ = Z × {s}, that by def-
inition must have a finite coder domain Z, we can replace the termination
flag with a terminating code number s, L(Z ∪ {s})

CU,F = coderListTerminatingFixed(CZ) ∈ coders(L(Z))

Then
EU,F(L) := encTerm(EZ, s)(sequence(L))

Define encTerm(EZ, s) ∈ K(Z)→ N as

encTerm(EZ, s)((x,K)) := encTerm(EZ, s)(K)× (s+ 1) + EZ(x)

encTerm(EZ, s)(∅) := s

The space is defined
SU,F(L) := (s+ 1)|L|+1

Define the decode parameter

DU,F(n) := list(decTerm(EZ, s)(n))

DU,F(s) := ∅

Define decTerm(EZ, s) ∈ N→ K(Z) as

decTerm(EZ, s)(n) := (flip(EZ)(n%(s+ 1)), decTerm(EZ, s)(n/(s+ 1)))

where n%(s+ 1) 6= s, otherwise decTerm(EZ, s)(n) := ∅.

The overhead space to encode the list in coder CU,F is (|L| + 1) ln(s + 1) −
|L| ln s.
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Another unlimited list coder, CU,N, allows only non-empty lists in the coder
domain

CU,N = coderListNonEmptyTerminating(CZ) ∈ coders(L(Z) \ {∅})

The code EU,N of the coder definition of CU,N is defined such that a non-
empty list L ∈ L(Z \ {∅}) is encoded as a list of pairs of a termination flag
and the element of the list itself, L(bits×Z). The overhead space to encode
the list in coder CU,N is |L| ln 2.

In some cases the underlying coder depends on the list so far. In order
to implement this requirement we define a function of the list which returns
the underlying coder. These list coders are called lookback list coders. For
example the lookback unlimited list coder

coderListTerminatingLookback ∈ (L(Z)→ coders(Z))→ coders(L(Z))

Let BZ ∈ L(Z)→ coders(Z) in

CU,B = coderListTerminatingLookback(BZ) ∈ coders(L(Z))

The coder CU,B is defined exactly as CU above except that we replace (EZ, SZ, DZ) =
definition(CZ) with (EZ, SZ, DZ) = definition(BZ(M)) where M ∈ L(Z) is
the list already encoded or decoded. For example

EU,B(L) := encTerm(BZ)(∅, sequence(L))

Define encTerm(BZ) ∈ K(Z)×K(Z)→ N as

encTerm(BZ)(M, (x,K)) := (encTerm(BZ)((x,M), K)× SZ(x) + EZ(x))× 2

encTerm(BZ)(M, ∅) := 1

where (EZ, SZ, DZ) = definition(BZ(reverse(list(M)))).

The underlying coder function BZ is infinite, but the space of CU,B is well
defined given a finite argument list.

Consider the coder of trees, trees(Z), of some underlying type Z. Trees
are functions and hence are sets, so it is possible to define a limited coder, as
above, say by defining the maximum depth and cardinality of tree. There are
a number of different ways in which limits could be imposed. However, here
we shall consider unlimited trees with the constraint that circularities are
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excluded. Sets can only be encoded as sets if they are finite, so to encode an
unlimited tree T ∈ trees(Z) we must first convert it to a list tree listTrees(Z)
with an order D ∈ Z ↔ N, listTree(D,T ) ∈ listTrees(Z), and then use an
unlimited list tree coder

coderListTree ∈ coders(Z)→ coders(listTrees(Z))

Let CZ ∈ coders(Z) in

CU,T = coderListTree(CZ) ∈ coders(listTrees(Z))

The code EU,T of the coder definition of CU,T, where (EU,T, SU,T, DU,T) =
definition(CU,T), is defined similarly to the encode of an unlimited list coder
CU, except that recursion excludes the current list tree to prevent circularities

EU,T(L) := encListTree(C ′U,T, EZ, SZ)(sequence(L))

where C ′U,T ∈ coders(listTrees(Z) \ {L}) and (EZ, SZ, DZ) = definition(CZ).
C ′U,T is equal to CU,T except that it is undefined for list tree L, L /∈ dom(E ′U,T).
Define encListTree(CU,T, EZ, SZ) ∈ K(Z)→ N as

encListTree(CU,T, EZ, SZ)(((x,M), K)) :=

((encListTree(C ′U,T, EZ, SZ)(K)× SZ(x) + EZ(x))× SU,T(M) + EU,T(M))× 2

where encListTree(CU,T, EZ, SZ)(∅) := 1 and (EU,T, SU,T, DU,T) = definition(CU,T)
and listable(C ′U,T) = listable(CU,T) \ {list(((x,M), K))}.

The space is defined

SU,T(L) := 2
∏

(i,(x,M))∈L

2× SZ(x)× S ′U,T(M)

SU,T(∅) := 2

Define the decode parameter

DU,T(n) := list(decListTree(C ′U,T, SZ, DZ)(n))

DU,T(1) := ∅
DU,T(0) := ∅

C ′U,T is equal to C ′U,T except that n /∈ dom(D′U,T). Define decListTree(CU,T, SZ, DZ) ∈
N→ K(Z) as

decListTree(CU,T, SZ, DZ)(n) := ((x,M), decListTree(C ′U,T, SZ, DZ)(m/SZ(x)))
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where M = DU,T(n/2), m = n/(2SU,T(M)), x = DZ(m) if n%2 = 0 other-
wise decListTree(CU,T, SZ, DZ)(n) := ∅.

If we take the core space of a list tree L as
∑

(i,x)∈Q space(CZ)(x), where

Q = concat(L) is the depth-first traversal concatenation, then the additional
overhead space to encode the list tree in coder CU,T is (2|Q|+ 1) ln 2.

We can define a lookback unlimited list tree coder in a similar manner to
the lookback unlimited list coder above. Again we supply a function return-
ing underlying coders but here it has two arguments. The first argument is
the previous sibling list tree and the second is the sub list tree for this node

coderListTreeLookback ∈
(listTrees(Z)× listTrees(Z)→ coders(Z))→ coders(listTrees(Z))

Let BZ ∈ listTrees(Z)× listTrees(Z)→ coders(Z) in

CU,T,B = coderListTreeLookback(BZ) ∈ coders(listTrees(Z))

Then the encode and decode methods are as above except that (EZ, SZ, DZ) =
definition(BZ(L,M)) in the definition of encListTree(CU,T,B, EZ, SZ)(L, ((x,M), K))
where L is the previous sibling list tree and M is the child list tree.

If a list L contains the same object in more than place, |ran(L)| < |L|,
we can possibly reduce the space of a list coder by using references to the
objects. A reference is a position in the list, dom(L) ⊂ N>0. A referencing
list coder, having coder domain of lists, seeks to use references rather than
encoding objects in order to reduce space. Encoding a referencing coder re-
quires a check on each object in the list to see if it already exists elsewhere in
the list and if so creating a reference pointing to the existing object. Decod-
ing a reference is dereferencing. Although the overhead space of a referencing
list coder is larger than for a non-referencing list coder, requiring space for a
flag to indicate whether the head object is a reference or a literal object and
also space for the position in a reference, the space of highly redundant lists
having large space of objects may be lower.

Referencing list tree coders can be constructed too, for example by defin-
ing a reference as a position in the concatenated tree. The position is in
dom(concat(listTree(D,T ))) ⊂ N>0 for some tree T and order D. Another
method would be to define the reference as a tuple in

⋃
{Ni

>0 : i ∈ N>0}
of the node position in the list tree. Note that these references refer to the
objects of the nodes. That is, the first of the pair.
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A graph is a tree that contains the same node at more than one position
in the tree, |nodes(T )| < |concat(listTree(D,T ))| for some tree T and any
order D. If a duplicate node has children and the recursive set of descen-
dants contains the node, then there is a circularity. We can encode graphs
by using node references. A node reference is similar to a reference except
that it refers to the entire node. That is, the pair of the object and children.
If the children of a node is empty then a node reference is equivalent to a
reference.

A.5.2 Coders and entropy

If a finite coder domain Y has some probability function P ∈ (Y :→ Q>0)∩P ,
which is such that dom(P ) = Y and sum(P ) = 1, associated with it, then
we may be able to construct an entropy coder C ∈ coders(Y ) such that

∀x ∈ Y (space(C)(x) = ln
1

Px
)

That is, the space of an element of the coder domain is the logarithm of the
surprisal. In most cases of probability functions an entropy coder cannot be
constructed. The coder requires that

∀x ∈ Y (
1

Px
∈ N)

at least. Also there are constraints on the parameters of the coder definition
(E, S,D) = definition(C).

If the entropy coder exists, the expected space of an element in the coder
domain is

expected(P )(space(C)) =∑
x∈Y

Px × space(C)(x) =
∑
x∈Y

Px ln
1

Px
= −

∑
x∈Y

Px lnPx = entropy(P )

The scaled expected space |Y | × entropy(P ) is greater than or equal to the
minimal space of the coder domain |Y | ln |Y |, with equality only for the uni-
form probability function P = Y × {1/|Y |}.

An entropy coder Ce has the smallest expected space of all coders given
the probability function, P , because the relative entropy of any other coder
is positive by Gibbs’ Inequality,

∀C ∈ coders(dom(P )) (expected(P )(Cs) ≥ expected(P )(Cs
e))

1087



where expected(P )(Cs
e) = entropy(P ).

A.5.3 Binary coders

An example of a fixed-width coder is

coderBitstringShortest ∈ coders(bits)

Let CB = coderBitstringShortest and (E, S,D) = definition(CB). Let E =
{(0, 0), (1, 1)}, S = bits × {2} and D(n) := n%2. A bits coder implies a
bijection N↔ L(bits). In this case it provides a means to map any number
to the shortest bitstring that can contain it. Obviously this is useful in a
physical implementation in computer memory.

We can apply bits coder CB to the encode method of coder C ∈ coders(Y )
to produce a bitstring, decode(CB)(encode(C)(L)) ∈ L(bits) where L ∈
L(Y ). If it is also the case that the space parameter S, where (E, S,D) =
definition(C), is always a multiple of two, ∀x ∈ Y (Sx ∈ {2n : n ∈ N}) then
C is a binary coder and the maximum length of any bitstring is constrained

∀L ∈ L(Y ) (|decode(CB)(|L|, encode(C)(L))| ≤
∑

(i,x)∈L

log2(Sx))

This means that, for binary coders, the space required for implementation in
a bitstring is no greater than the space required for the coder itself. (Note
that the function space(C) ∈ Y → ln N>0 is defined as the natural logarithm
rather than the base 2 logarithm.)

A prefix-free coder C is a binary coder constrained such that∑
(

1

Sx
: (x, i) ∈ E) ≤ 1

where (E, S,D) = definition(C). If it is the case that the sum is 1 and there
is a probability mass function on the coder domain, P ∈ Y → Q>0, such that
P = {(x, 1/Sx) : x ∈ Y }, then C is also an entropy coder for P . However,
no prefix-free coder can be a minimal coder because the sum of a fixed-width
prefix-free coder, required for a uniform probability mass function, must be
less than 1.

A.6 Entropy encoding of states

The index coder CH which encodes a history’s events space into a list of
states, L(S), and thence to a list of natural numbers, L(N), above, is a fixed-
width coder of the states because the space required is proportional to the
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size, spaceEvents(U)(H) := z ln v. However, a variable-width coder of the
states may require less space. Define a theoretical variable-width coder CE of
histories

CE = coderHistoryVariable(U,X,DV, DS, DX) ∈ coders(HU,X)

This coder contains a nested entropy coder of states which is constructed
separately for the histogram A of each given history of the listable domain
H ∈ HU,X , where A = histogram(A). The entropy coder of states enables us
to encode a variable-width list of states which is ordered in the same way as
the event identifiers of the given history H. Let C ∈ coders(states(A)), hav-
ing definition (E, S,D) = definition(C), be defined such that S = (A%∅)/A,
where S ∈ states(A)→ N>0. Here we assume that the histogram A happens
to define an entropy coder

∀R ∈ states(A) (space(C)(R) = ln
1

PR
= ln

z

AR
)

where P = A/(A%∅) and z = size(A). Of course, this is rarely the case,
but we shall assume that it is true in order to determine the minimum space
of variable coder CE. The space parameter, S ∈ states(A) → N>0, of the
entropy coder of states, C, is defined by A, so the space to encode S itself is
the same as the coder of histograms, CA previously defined as the sum of the
variables space, size space and counts space

space(CA)(A) = spVar(U)(|vars(A)|) + space(|X|+ 1) + spCt(U)(A)

where spVar = spaceVariables, and spCt = spaceCounts. We shall not define
the encode parameter E ∈ states(A) → N, but merely determine the space
required for a definition. Define spaceCodeEntropy ∈ Ai → ln N>0 so that

spaceCodeEntropy(A) =
∑
R∈AS

lnSR

as
spaceCodeEntropy(A) :=

∑
R∈AS

ln
z

AR

where z = size(A), z > 0 andA = trim(A). The space of E is spaceEntropy(A).

Not only shall we not define the infinite relation D ∈ L(states(A)) → N,
we shall completely ignore the space required to define it. In practice we can
define coders of states using algorithms, such as the Huffman binary coder,
which can be entropy coders. For these the decode algorithm can be consid-
ered part of the definition of the coder.
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Having defined the minimum space of the entropy coder of states, C, for
the history H we can define the variable events space spaceEventsVariable ∈
Ai → ln N>0 so that

spaceEventsVariable(A) =
∑
R∈AS

AR lnSR

as
spaceEventsVariable(A) :=

∑
R∈AS

AR ln
z

AR

where z = size(A), z > 0 and A = trim(A). The variable events space is the
sized entropy, spaceEventsVariable(A) = z × entropy(A).

The total minimum space of a theoretical variable coder of a history H is the
sum of the variables space, ids space, histogram counts space, entropy code
space and variable events space

space(CE)(H) =

spVar(U)(|vars(H)|) + spId(|X|, |H|) + spCt(U)(A) + spEnt(A) + spEvVar(A)

where A = histogram(H), spVar = spaceVariables, spId = spaceIds, spCt =
spaceCounts, spEnt = spaceCodeEntropy and spEvVar = spaceEventsVariable.

If we compare the space of the variable coder to that of the classification
coder of histories we find that the former is always greater than or equal to
the latter

space(CE)(H)− space(CG)(H) =

spEnt(A) + spEvVar(A)− spCl(A)

=
∑
R∈AS

(AR + 1) ln
z

AR
−

(
ln z!−

∑
R∈AS

lnAR!

)
= (z + |A|) ln z − ln z!−

∑
R∈AS

((AR + 1) lnAR − lnAR!)

≥ 0

where spCl = spaceClassification. Even if we ignore spaceCodeEntropy(A),
for example in the case of a variable-width history coder of the subset of
histories having a constant parameter histogram, CE ∈ coders({H : H ∈
HU,X , histogram(H) = A}), the space of the variable coder is still greater
than or equal to that of the classification coder because the log unit-translated
gamma function, ln Γ!x, is convex with respect to the log-linear function,
x lnx.
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A.7 Independent histogram space

The integral congruent support of the multinomial distribution in variables
V and size z in system U is defined above as

AU,i,V,z = {A : A ∈ AU,i, AU = V C, size(A) = z}

The cardinality of which is that of the weak compositions |C′(V C, z)|

|AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!

where v = volume(U)(V ).

Define the subset of the integral congruent support that consists of inde-
pendent histograms as

AU,i,V,z,x = {A : A ∈ AU,i,V,z, A = AX}

So

|AU,i,V,z,x| ≤
(z + v − 1)!

z! (v − 1)!

As defined above, the subset of the independent function, YU,i,V,z = {(A,AX) :
A ∈ AU,i,V,z} ⊂ independent, partitions the integral congruent support,
ran(inverse(YU,i,V,z)) ∈ B(AU,i,V,z). The cardinality of its range is

|ran(YU,i,V,z)| =
∏
u∈V

(z + |Uu| − 1)!

z! (|Uu| − 1)!

Now AU,i,V,z,x ⊆ ran(YU,i,V,z) and so

|AU,i,V,z,x| ≤
∏
u∈V

(z + |Uu| − 1)!

z! (|Uu| − 1)!

Consider an independent coder of histograms CA,x

CA,x = coderHistogramIndependent(U, y,DV, DS) ∈ coders(AU,i,≤y)

where y = |X| and X ⊂ X is a finite subset of event identifiers. The
coder domain is the set of trimmed histograms of size less than or equal to
y in system U , AU,i,≤y. So the independent coder can encode all histograms
whether independent or not. However, it is defined to require less space for
independent histograms, A = AX. The coder CA,x adds a flag b ∈ bits = {0, 1}
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to indicate whether the histogram is independent or not. The coder CA,x has
intermediate tuple ((n,NV ), z, b, RA) ∈ N2 ×N × bits ×N. If independent,
then the space of the encoding of the histogram in RA is possibly smaller
depending on the variables’ valencies

RA ∈ {1 . . . |AU,i,V,z,x|}

instead of

RA ∈ {1 . . .
(z + v − 1)!

z! (v − 1)!
}

If not independent, then the space of the encoding of the histogram in RA is
possibly smaller too

RA ∈ {1 . . . |AU,i,V,z \ AU,i,V,z,x|}

The addition of the flag reduces the counts space of independent histograms,
but the total space of this modification, CA,x, of the histogram coder, CA,
increases because of the cost of the additional bit for each histogram in the
coder domain, |AU,i,≤y| ln 2. The additional total space is

|AU,i,≤y| ln 2 +∑
(ln |AU,i,VA,zA,x| : A ∈ AU,i,≤y, A = AX) +∑
(ln |AU,i,VA,zA \ AU,i,VA,zA,x| : A ∈ AU,i,≤y, A 6= AX)−∑

(ln |AU,i,VA,zA| : A ∈ AU,i,≤y)

where z = size and V = vars.

The remaining terms of the intermediate tuple, (n,NV ) and z, are encoded
in exactly the same way as for the histogram coder, CA.

The total space of the independent coder, CA,x, is conjectured to be greater
than or equal to the total space of the histogram coder, CA, sum(space(CA,x)) ≥
sum(space(CA)), and so CA,x is not a minimal coder. The difference in total
space between the two coders depends on the system, U , which defines the
coder domain, AU,i,≤y. For example, if |vars(U)| = 1 then all of the his-
tograms of the support must be independent because they are mono-variate.
In this case the flag is pure overhead.

The generic independent classification coder of histories CG,A,x takes the
independent coder, CA,x, as the underlying coder of histograms

CG,A,x = coderClassificationGeneric(CA,x, X,DX) ∈ coders(HU,X)

1092



The coder domain isHU,X , so the generic independent classification coder can
encode all histories in a system U and identifier set X whether independent
or not.

Now consider instead a coder CA,p, similar to the independent coder CA,x,
that encodes the perimeter histogram expression that is equivalent to the
independent histogram. If histogram A is independent A = AX then by
definition

AX = ZA ∗
∏
{ A
ZA

% {u} : u ∈ V }

where ZA = A%∅ and V = vars(A). This is equivalent to

scalar(z−(n−1)) ∗
∏
{A%{u} : u ∈ V }

where z = size(A) and n = |V |. This histogram expression is a scaled prod-
uct of the reduced histograms for each variable in V .

Construct the perimeter coder of histograms CA,p

CA,p = coderHistogramPerimeter(U, y,DV, DS) ∈ coders(AU,i,≤y)

The intermediate tuple ((n,NV ), z, b, L) ∈ N2 × N × bits × L(N) adds a
flag b to indicate whether the histogram is independent or not. If it is not
independent, A 6= AX, then the flag b is reset (or false), 0, and the next
argument L will be a list containing only the encoding of the histogram
L = {(1, RA)} where RA is defined as in the histogram coder, CA

RA ∈ {1 . . .
(z + v − 1)!

z! (v − 1)!
}

where v = |V C|. If the histogram is independent, A = AX, then the flag b is
set (or true), 1, and the list consists of encodings of the perimeter of reduced
histograms for each variable. The perimeter histograms are integral because
the histogram is integral, A = AX ∈ Ai. Given order DA choose enumerations
R

∀u ∈ V (Ru ∈ enums({trim(B) : B ∈ AU,i,{u},z}))
which are such that

∀u ∈ V (Ru(A
X%{u}) ∈ {1 . . . (z + |Uu| − 1)!

z! (|Uu| − 1)!
})

Given order DV let W = order(DV, V ) and so

L = {(Wu, Ru(A
X%{u})) : u ∈ V }
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The decoding can rely on the fact that all the histograms in the list have the
same size z. The list itself is a limited list and so its space is the sum of the
counts space for each reduction of the histogram∑

u∈V

spaceCounts(U)(AX%{u}) =
∑
u∈V

ln
(z + |Uu| − 1)!

z! (|Uu| − 1)!

Define the space of the encoding of the perimeter as spacePerimeter(U) ∈
AU,i → ln N>0

spacePerimeter(U)(A) :=
∑
u∈V

ln
(z + |Uu| − 1)!

z! (|Uu| − 1)!

When compared to the histogram coder, CA, the counts space of the his-
tograms in the histogram expression of an independent history decreases by

ln |AU,i,V,z| −
∑
u∈V

ln |AU,i,{u},z|

or

ln
(z + v − 1)!

z! (v − 1)!
−
∑
u∈V

ln
(z + |Uu| − 1)!

z! (|Uu| − 1)!

That is, spaceCounts(U)(A) − spacePerimeter(U)(A). As shown in the sec-
tion ‘Iso-independents’ above, it is the case that

(z + v − 1)!

z! (v − 1)!
≥
∏
u∈V

(z + |Uu| − 1)!

z! (|Uu| − 1)!

and so the difference is always positive

spaceCounts(U)(A)− spacePerimeter(U)(A) ≥ 0

The space of an independent histogram, A = AX, in the perimeter coder, CA,p,
is greater than or equal to the space of the same histogram in the independent
coder, CA,x, that calculates the congruent independent histograms, AU,i,V,z,x =
{B : B ∈ AU,i,V,z, B = BX}, explicitly because

|AU,i,V,z,x| ≤
∏
u∈V

|AU,i,{u},z| =
∏
u∈V

(z + |Uu| − 1)!

z! (|Uu| − 1)!

Also, unlike CA,x, there is not a symmetrical reduction in the space of non-
independent histograms that corresponds to the histogram expression encap-
sulation of the space of independent histograms. Hence the total space of CA,p
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is greater than that of CA,x, sum(space(CA,p)) ≥ sum(space(CA,x)), which is
greater than the total space of a minimal coder. However, depending on
implementation, CA,p may be more practicable than CA,x. In exchange for
the larger space of both independent and non-independent histograms, an im-
plementation of CA,p may only require a little more computation time than
CA, less than that required by CA,x, depending on the calculation of AU,i,V,z,x.

If the independent histogram A = AX is also regular such that ∃d ∈ N ∀u ∈
V (|Uu| = d) then the decrease in counts space between CA and CA,p is

ln
(z + dn − 1)!

z! (dn − 1)!
− n ln

(z + d− 1)!

z! (d− 1)!

where z = size(A) and n = |V |. If z > d, then the counts space in CA,p is
at most nd ln z. If z ≥ v2, where v = dn, the counts space in CA is at least
(dn− 1) ln dn and so the space decrease is at least (v− 1) ln v−nd ln z. If the
decrease is greater than the cost of the independent flag, space(|bits|) = ln 2,
then there is an overall decrease in space. One can think of the perimeter
coder as encoding the perimeter rather than the volume of histograms when
they are independent.

The generic perimeter classification coder of histories CG,A,p takes the
perimeter coder, CA,p, as the underlying histogram coder

CG,A,p = coderClassificationGeneric(CA,p, X,DX) ∈ coders(HU,X)

The coder domain is HU,X , so the generic perimeter classification coder can
encode all histories in a system U and identifier set X whether independent
or not.

Now consider the history H, in variables V = vars(H) and size z = |H|
in system U , which is such that its histogram A = histogram(H) is not
necessarily independent. The dimensional classification coder reduces the
history to a set of histories, one for each variable, regardless of whether the
histogram is independent or not,

{(u, {(x, S%{u}) : (x, S) ∈ H}) : u ∈ V } ∈ V → HU,X

Define the constructor of the dimensional classification coder of histories

CG,n = coderClassificationDimensional(U,X,DV, DS, DX) ∈ coders(HU,X)
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The intermediate tuple is ((n,NV ), (z, ZI), L,M) ∈ N2×N2×L(N)×L(N).
The first pair encodes the set of variables in the same way as the classifica-
tion coder, CG, above. The space is spaceVariables(U)(n). The second pair
encodes the set of event identifiers also in the same way as the classification
coder. The space is spaceIds(y, z) where y = |X|.

The third element of the intermediate tuple, L, encodes the list of reduced
perimeter histograms, {(u,A%{u}) : u ∈ V } ∈ V → AU,i. The method used
is the same as that for the perimeter coder, CA,p, above, in the special case
of independent histogram. Here, however, the histogram, A, is reduced in all
cases. Given order DA choose enumerations

∀u ∈ V (Ru ∈ enums({trim(B) : B ∈ AU,i,{u},z}))

which is such that

∀u ∈ V (Ru(A%{u}) ∈ {1 . . . (z + |Uu| − 1)!

z! (|Uu| − 1)!
})

Given order DV let W = order(DV, V ) and so

L = {(Wu, Ru(A%{u})) : u ∈ V }

The list itself is a limited list and so its space is the sum of the counts space
for each reduction of the histogram, spacePerimeter(U)(A).

The last element of the intermediate tuple, M , encodes the list of reduced
classifications, {(u, classification({(x, S%{u}) : (x, S) ∈ H})) : u ∈ V } ∈
V → GU,X . The method is the same as for the classification coder, CG,
above, applied to each reduced classification in sequence. That is

∀u ∈ V (Fu(Qu) ∈ {1 . . .
z!∏

S∈dom(Gu) |Gu(S)|!
})

where Gu = classification({(x, S%{u}) : (x, S) ∈ H}) and Qu = ran(Gu). So

M = {(Wu, Fu(Qu)) : u ∈ V }

Again, the list itself is a limited list and so its space is the sum of the
classification space for each reduction of the histogram∑
u∈V

spaceClassification(A%{u}) = n ln z!−
∑
u∈V

∑
S∈(A%{u})S

ln(A%{u})(S)!
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where n = |V |. The total classification space can be approximated by Stir-
ling’s approximation

nz ln z −
∑
u∈V

∑
S∈(A%{u})S

A%{u}(S) lnA%{u}(S)

The dimensional classification coder decodes by joining the reduced histories,
{(x,

⋃
{Ni(x) : i ∈ {1 . . . n}}) : x ∈ dom(H)} = H where N ∈ L(HU,X).

In the case of a regular history of dimension n = |V | and valency {d} =
{|Uu| : u ∈ V } the counts space may be less than that of the classification
coder, CG, depending on the size z and the volume dn as can be seen above for
the perimeter classification coder when encoding an independent histogram.
The total classification space of the dimensional classification coder, CG,n, in
the case of uniform history, A = resize(z, V C), approximates to

nz ln z − ndz
d

ln
z

d
= nz ln d

which may be compared to that of the classification coder, CG

z ln z − dn z
dn

ln
z

dn
= z ln dn = nz ln d

Conjecture that in some high entropy cases the space of a history in the
dimensional classification coder, CG,n, is less than that of the classification
coder, CG. Conversely, conjecture that in some low entropy cases the space
in the dimensional classification coder, CG,n, is greater than that of the clas-
sification coder, CG.

Unlike the generic independent classification coder, CG,A,x, and the generic
perimeter classification coder, CG,A,p, the dimensional classification coder,
CG,n, does modify the calculation of the events classification space. There-
fore there is no underlying coder of histograms which encapsulates all the
differences in encoding logic between the dimensional classification coder,
CG,n, and the classification coder, CG.

Now consider a coder of histograms based on the iso-independent set. Each
complete histogram, AU = V C, has an associated finite set of integral iso-
independents. This set is the equivalence class component of the partition
of the trimmed integral histograms, AU,i,≤y, implied by the subset of the in-
dependent function, YU,i,≤y = {(A,AX) : A ∈ AU,i,≤y} ⊂ independent. That
is, the partition ran(Y −1

U,i,≤y) ∈ B(AU,i,≤y). The set of iso-independents of
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histogram A is Y −1
U,i,≤y(A

X) ⊆ AU,i,≤y.

Define the constructor of the iso-independent coder of histograms

CA,y = coderHistogramIsoIndependent(U, y,DV, DS) ∈ coders(AU,i,≤y)

The intermediate tuple is ((n,NV ), z, L, JA) ∈ N2×N×L(N)×N. The first
pair encodes the set of variables in the same way as the histogram coder, CA,
above. The space is spaceVariables(U)(n). The second element encodes the
size, also in the same way as the histogram coder. The space is spaceSize(y)
where y = |X|. The third element of the intermediate tuple, L, encodes
the list of reduced perimeter histograms, {(u,A%{u}) : u ∈ V } ∈ V → AU,i.
The method used is the same as that for the dimensional classification coder,
CG,n, above. The histogram is encoded as a perimeter regardless of whether
it is independent or not. The space of the list L is the sum of the counts
space for each reduction of the histogram, spacePerimeter(U)(A).

The fourth element, JA, is the position of the histogram, A, in an order-
ing of the trimmed iso-independents. When the perimeter has been de-
coded from L the trimmed independent histogram, AX, is known, where
AX = scalar(z−(n−1)) ∗

∏
u∈V L(Wu) and W = order(DV, V ). Given order

DA choose J ∈ enums(Y −1
U,i,≤y(A

X)). Thus

JA ∈ {1 . . . |Y −1
U,i,≤y(A

X)|}

So the space of the iso-independent position, JA, is ln |Y −1
U,i,≤y(A

X)|. Define
the space of the encoding of the iso-independent position

spaceIsoIndependentPosition(U) ∈ AU → ln N>0

as
spaceIsoIndependentPosition(U)(A) := ln |Y −1

U,i,≤y(A
X)|

which is defined if AX ∈ ran(YU,i,≤y).

The space of the iso-independent coder CA,y of a trimmed histogram A ∈
AU,i,≤y is the sum of the variables space, size space, perimeter space and
iso-independent position space

space(CA,y)(A) = spaceVariables(U)(|vars(A)|) +

spaceSize(y) +

spacePerimeter(U)(A) +

spaceIsoIndependentPosition(U)(A)
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As conjectured above, the cardinality of the iso-independents corresponding
to A varies with the entropy of AX

ln |Y −1
U,i,V,z(A

X)| ∼ z × entropy(AX)

Therefore, those histograms that have low entropy independent histogram
will require less space to encode the iso-independent position, JA, in the
iso-independent coder, CA,y. The average iso-independent position space of
the subset of the coder domain having variables V and size z, {A : A ∈
AU,i,≤y, vars(A) = V, size(A) = z}, is

ln
|AU,i,V,z|
|ran(YU,i,V,z)|

= ln
(z + v − 1)!

z! (v − 1)!

∏
u∈V

z! (|Uu| − 1)!

(z + |Uu| − 1)!

The generic iso-independent classification coder of histories CG,A,y takes the
iso-independent coder, CA,y, as the underlying histogram coder

CG,A,y = coderClassificationGeneric(CA,y, X,DX) ∈ coders(HU,X)

The space of the generic iso-independent classification coder CG,A,y of a his-
tory H ∈ HU,X is the sum of the variables space, ids space, perimeter space,
iso-independent position space and classification space

space(CG,A,y)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spacePerimeter(U)(A) +

spaceIsoIndependentPosition(U)(A) +

spaceClassification(A)

where A = histogram(H).

There are non-generic classification coders of histories that are based
on the iso-independent set. Define the constructor of the superposed iso-
independent classification coder of histories

CG,y,u = coderClassificationIsoSuperposed(U,X,DV, DS, DX) ∈ coders(HU,X)

The intermediate tuple is ((n,NV ), (z, ZI), L, JA, FQ) ∈ N2 ×N2 × L(N) ×
N × N. The tuple is calculated exactly as for the generic iso-independent
classification coder, CG,A,y. In particular, the last element, FQ, of the inter-
mediate tuple encodes the classification of the events of history H ∈ HU,X .
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Given DX, choose enumeration F of the enumerations of the partitions of
the event identifiers corresponding to the classification

F ∈ enums({P : P ∈ B(ids(G)), ∃X ∈ P :↔: Q ∀(Y, Z) ∈ X (|Y | = |Z|)})

where G = classification(H) and Q = ran(G) ∈ B(ids(G)) is the partition of
the event identifiers. The classification is such that

FQ ∈ {1 . . .
z!∏

S∈dom(G) |GS|!
}

In the generic iso-independent classification coder, CG,A,y, the events clas-
sification space of histogram A = histogram(H) is spaceClassification(A).
Here, however, the space is fixed to the largest classification space of the
iso-independents. That is,

ln maxr({(B, z!∏
S∈BS BS!

) : B ∈ Y −1
U,i,≤y(A

X)})

= maxr({(B, spaceClassification(B)) : B ∈ Y −1
U,i,≤y(A

X)})

Define the space of the encoding of the iso-independent superposed classifi-
cation as spaceClassificationIsoSuperposed(U) ∈ AU → ln N>0

spaceClassificationIsoSuperposed(U)(A) :=

maxr({(B, spaceClassification(B)) : B ∈ Y −1
U,i,≤y(A

X)})

which is defined if AX ∈ ran(YU,i,≤y). This space is always large enough to
encode FQ

spaceClassificationIsoSuperposed(U)(A) ≥ spaceClassification(A)

The space of the superposed iso-independent classification coder CG,y,u of a
history H ∈ HU,X is the sum of the variables space, ids space, perimeter space,
iso-independent position space and iso-independent superposed classification
space

space(CG,y,u)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spacePerimeter(U)(A) +

spaceIsoIndependentPosition(U)(A) +

spaceClassificationIsoSuperposed(U)(A)
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where A = histogram(H).

The space of a history H in the superposed iso-independent classification
coder, CG,y,u, is always greater than or equal to the space of the history in
the generic iso-independent classification coder, CG,A,y

∀H ∈ HU,X (space(CG,y,u)(H) ≥ space(CG,A,y)(H))

So the total space is larger, sum(space(CG,y,u)) ≥ sum(space(CG,A,y)). How-
ever, the coder CG,y,u has the property that all of the histories in any given
iso-independent set parameterised by V and z have equal space

∀AX ∈ ran(YU,i,≤y)

(|{space(CG,y,u)(H) : H ∈ HU,X , B = histogram(H), BX = AX}| = 1)

In addition, if the independent histogram is integral, AX ∈ Ai, and hence
an iso-independent, AX ∈ Y −1

U,i,≤y(A
X), then it is conjectured that its clas-

sification space is greater than or equal to the classification space of the
iso-independents

∀B ∈ Y −1
U,i,≤y(A

X) (spaceClassification(B) ≤ spaceClassification(AX))

See the discussion of alignment where the independent histogram is integral
in the section ‘Minimum alignment’, below. In this case the iso-independent
superposed classification space equals the classification space of the indepen-
dent histogram

spaceClassificationIsoSuperposed(U)(A) = spaceClassification(AX)

Note that the classification space of the independent histogram does not de-
pend on system U .

Next consider another non-generic classification coder of histories. Define
the constructor of the parallel iso-independent classification coder of histories

CG,y,p = coderClassificationIsoParallel(U,X,DV, DS, DX) ∈ coders(HU,X)

The intermediate tuple is ((n,NV ), (z, ZI), L,KQ) ∈ N2 ×N2 × L(N) ×N.
The first three elements of the tuple are calculated as for the generic iso-
independent classification coder, CG,A,y. The last element, KQ, encodes the
position of the partition of the event identifiers, Q = ran(G) where G =
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classification(H), in an enumeration of the partitions corresponding to the
iso-independent histograms of AX. Given DX, choose enumeration K

K ∈ enums({P : P ∈ B(ids(G)), B ∈ Y −1
U,i,≤y(A

X),

∃X ∈ P :↔: BS ∀(Y, S) ∈ X (|Y | = BS)})

The enumeration is such that

KQ ∈ {1 . . .
∑

B∈Y −1
U,i,≤y(AX)

z!∏
S∈BS BS!

}

Define the space of the encoding of the parallel iso-independent classification
as spaceClassificationIsoParallel(U) ∈ AU → ln N>0

spaceClassificationIsoParallel(U)(A) := ln
∑

B∈Y −1
U,i,≤y(AX)

z!∏
S∈BS BS!

which is defined ifAX ∈ ran(YU,i,≤y). The space of the parallel iso-independent
classification coder CG,y,p of a history H ∈ HU,X is the sum of the variables
space, ids space, perimeter space, and parallel iso-independent classification
space

space(CG,y,u)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spacePerimeter(U)(A) +

spaceClassificationIsoParallel(U)(A)

where A = histogram(H).

Although the parallel iso-independent classification coder, CG,y,p, does not en-
code the iso-independent position space, spaceIsoIndependentPosition(U)(A),
the space of a history in the parallel iso-independent classification coder,
CG,y,p, is always greater than or equal to the space of the history in the
superposed iso-independent classification coder, CG,y,u

∀H ∈ HU,X (space(CG,y,p)(H) ≥ space(CG,y,u)(H))

The coder CG,y,p also has the property that all of the histories in any given
iso-independent set parameterised by V and z have equal space

∀AX ∈ ran(YU,i,≤y)

(|{space(CG,y,p)(H) : H ∈ HU,X , B = histogram(H), BX = AX}| = 1)
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Following the parallel iso-independent classification coder, define the con-
structor of the sequential iso-independent classification coder of histories

CG,y,s = coderClassificationIsoSequential(U,X,DV, DS, DX) ∈ coders(HU,X)

The intermediate tuple is ((n,NV ), (z, ZI), L,M) ∈ N2×N2×L(N)×L(N).
The first three elements of the tuple are calculated as for the generic iso-
independent classification coder, CG,A,y. The last element, M , encodes a
list whose elements correspond to the iso-independent histograms of AX,
|M | = |Y −1

U,i,≤y(A
X)|. Each element of M encodes the partitions of the event

identifiers corresponding to the iso-independent histogram. Given order DA

choose J ∈ enums(Y −1
U,i,≤y(A

X)). Thus

JA ∈ {1 . . . |Y −1
U,i,≤y(A

X)|}

Then

MJA(Q) ∈ {1 . . . z!∏
S∈dom(G) |GS|!

}

where A = histogram(H), G = classification(H) and Q = ran(G). Define
the space of the encoding of the sequential iso-independent classification in
the enumeration, M , as spaceClassificationIsoSequential(U) ∈ AU → ln N>0

spaceClassificationIsoSequential(U)(A) :=
∑

B∈Y −1
U,i,≤y(AX)

ln
z!∏

S∈BS BS!

which is defined if AX ∈ ran(YU,i,≤y). Thus

spaceClassificationIsoSequential(U)(A) =
∑

B∈Y −1
U,i,≤y(AX)

spaceClassification(B)

The space of the sequential iso-independent classification coder CG,y,s of a
history H ∈ HU,X is the sum of the variables space, ids space, perimeter
space, and sequential iso-independent classification space

space(CG,y,s)(H) = spaceVariables(U)(|vars(H)|) +

spaceIds(|X|, |H|) +

spacePerimeter(U)(A) +

spaceClassificationIsoSequential(U)(A)

where A = histogram(H).
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The space of a history H in the sequential iso-independent classification
coder, CG,y,s, is always greater than or equal to the space of the history
in the parallel iso-independent classification coder, CG,A,p

∀H ∈ HU,X (space(CG,y,s)(H) ≥ space(CG,A,p)(H))

Thus
sum(Cs

G,y,s) ≥ sum(Cs
G,y,p) ≥ sum(Cs

G,y,u) ≥ sum(Cs
G,A,y)

where Cs := space(C). The coder CG,y,s also has the property that all of the
histories in any given iso-independent set parameterised by V and z have
equal space

∀AX ∈ ran(YU,i,≤y)

(|{space(CG,y,s)(H) : H ∈ HU,X , B = histogram(H), BX = AX}| = 1)

There are other examples of history coders, C ∈ coders(HU,X), that use the
independent histogram, AX, or related concepts to modify the space function,
space(C) ∈ HU,X → ln N>0, in order to minimise the space of expected histo-
ries, expected(P )(space(C)) ∈ Q≥0 ln N>0, which depend on the probability
function, P ∈ (HU,X → Q≥0) ∩ P .

For example, if there exists an integral independent histogram BX which is
such that BX ≤ A and the difference in size between the integral independent
histogram and the history’s histogram, size(A−BX), is small, then the space
of the size of the perimeter plus space of a perimeter encoding of BX plus
the counts space of the encoding of the difference, A−BX, may be less than
the counts space of the histogram, A

space(z) + spacePerimeter(U)(BX) + spaceCounts(U)(A−BX)

≤ spaceCounts(U)(A)

Another example is the ideal transform coder, described in the section ‘Induc-
ers and Compression’ below, which searches for an ideal transform T , which
is such that A∗T ∗T †A = A. The resultant transform partitions the volume,
TP ∈ B(V CS), into independent components, ∀C ∈ TP (A∗CU = (A∗CU)X),
which can be individually encoded as perimeters given the derived histogram,
A ∗ T , that encodes their sizes.

A.8 Distribution space

The various history coders, above, have coder domain HU,X . The expected
space of coder C, expected(P )(space(C)), depends on the probability function
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P of the coder domain, P ∈ (HU,X → Q≥0) ∩ P . As can be seen above, the
classification coder, CG, requires least space for low entropy histories. In
contrast, the index history coder, CH, uses less space than the classification
coder, CG, where the entropy is high. Thus the coder can be chosen such that
the probability in P of low space encodings is high and the probability of high
space encodings is low. That is, such that the space varies inversely with the
probability, space(C) ∼ {(H, 1/PH) : H ∈ HU,X}. For example, an entropy
coder is defined such that space(C)(H) = − lnPH . See appendix ‘Coders
and entropy’. Minimal coders, where the probability function is uniform,
P = HU,X × {1/|HU,X |}, imply an absolute standard of the expected space
of ln |HU,X |, by which coders may be compared. However, the calculation of
the cardinality of HU,X depends on the variables of the histories.

Consider a special case of history coders where the variables V of the his-
tories are fixed. Parameterise the coders with some non-empty distribution
history HE ∈ HU \{∅}, of size zE = |HE| in variables V , from which a subset
H ⊆ HE is drawn without replacement. The coder domain is the powerset
of the distribution history, P(HE). The cardinality of the distribution coder
domain is |P(HE)| = 2zE which implies a minimal space per history of zE ln 2.

An example of a minimal distribution coder C ∈ coders(P(HE)) is such that
the code is in enums(P(HE)). The space ofH ⊆ HE is space(C)(H) = zE ln 2.

Consider the fixed width analogue for the index coder of histories, CH,
where the distribution history, HE, is known. The index distribution coder,
CQ,l, is constructed

CQ,l = coderDistributionIndex(HE, DX) ∈ coders(P(HE))

The index distribution coder is parameterised by (i) the distribution history,
HE, and (ii) the order on the event identifiers, DX ∈ enums(X), where X is
some set of event identifiers such that ids(HE) ⊆ X.

The intermediate tuple is (z, L) ∈ N × L(N). The first element of the
tuple encodes the size of the drawn history, z = |H|. The space is ln(zE +1).

The second element of the tuple encodes a list of the subset of the events
of HE indexed by the enumeration order(DX, ids(HE)) ∈ enums(ids(HE)).
That is, set(L) ⊆ {1 . . . zE} and |set(L)| = |L| = z, where zE = |HE|. The
space of the element L is z ln zE.
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The space of the index distribution coder is

space(CQ,l)(H) := spaceSize(zE) + z × space(zE)

A similar coder of histories where the distribution history, HE, is known,
is the subset distribution coder, CQ,p. It is constructed from the same pa-
rameters as CQ,l. The intermediate tuple is (z,NH) ∈ N × N. The first
element of the tuple encodes the size of the drawn history, z = |H|. The
space is ln(zE + 1). The second element of the tuple encodes the subset of
the events of HE. Given order DX choose an enumeration N ∈ enums({R :
R ∈ P(HE), |R| = z}). The space of the element NH is

spaceSubset(zE, z) = ln
zE!

z! (zE − z)!
= z ln zE − z ln z

where xy is falling factorial. The notation is abused such that y lnx = lnxy.

The space of the subset distribution coder is

space(CQ,p)(H) := spaceSize(zE) + spaceSubset(zE, z)

The space of the subset distribution coder is less than the space of the index
distribution coder because H is drawn without replacement from HE. That
is, H is a subset, H ⊆ HE,

space(CQ,l)(H)− space(CQ,p)(H) = z ln zE − (z ln zE − z ln z) > 0

Neither the index distribution coder, CQ,l, nor the subset distribution coder,
CQ,p, are defined in terms of distributions of histograms, Q ⊂ Ai → Q≥0.
The historical distribution of histograms, Qh ∈ Ai×N→ Q, forms the basis
for the historical distribution coder of histories CQ,h constructed

CQ,h = coderDistributionHistorical(U,HE, DV, DS, DX) ∈ coders(P(HE))

The historical distribution coder is parameterised by (i) the system, U , (ii)
the non-empty distribution history, HE, (iii) the order on the variables, DV,
(iv) the order on the states, DS, and (v) the order on the event identifiers, DX.

The intermediate tuple is (z,RA, JH) ∈ N × N × N. The first element
of the tuple encodes the size of the drawn history, z = |H|. The space is
ln(zE + 1).
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The second element of the tuple encodes the set of counts of the histogram
of the drawn history, A = histogram(H). The space of the element RA is
spaceCounts(U)(A).

The third element of the intermediate tuple, JH , encodes the position in a
list of the histories which are subsets of HE having histogram A. Given order
DA, constructed from DV and DS, and order DX choose the enumeration

J ∈ enums({G : G ⊆ HE, histogram(G) = A})

which is such that JH ∈ {1 . . . Qh(E, z)(A)} where E = histogram(HE) and
the set of historical distributions Qh ∈ Ai ×N→ Q is defined

Qh(E, z)(A) =
∏
S∈AS

ES!

AS! (ES − AS)!
∈ N>0

Define historical distribution space spaceDistributionHistorical ∈ Ai ×N →
(Ai → ln N>0) as

spaceDistributionHistorical(E, z)(A) := lnQh(E, z)(A)

The space of the historical distribution coder is

space(CQ,h)(H) = spaceSize(zE) +

spaceCounts(U)(A) +

spaceDistributionHistorical(E, z)(A)

where zE = |HE|, E = histogram(HE), A = histogram(H) and z = |H|.
Here the variables V are known from the parameters of the constructor and so
there is no need to encode them. The space required to encode the event iden-
tifiers is incorporated into the historical distribution space, lnQh(E, z)(A).
The counts space only depends on the volume and size of the history,

spaceCounts(U)(A) = spaceCompositionWeak(v, z)

where v = volume(U)(HE). The space of the empty history is defined
space(CQ,h)(∅) := spaceSize(zE).

The space of the historical distribution coder may be compared to a min-
imal coder. In the case of a high entropy uniform cartesian histogram,
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A = scalar(z/v) ∗ V C ∈ Ai where v = |V C|, and a uniform cartesian distri-
bution histogram, E = scalar(zE/v) ∗ V C ∈ Ai, the space is

space(CQ,h)(H)

= ln(zE + 1) + ln
(z + v − 1)!

z! (v − 1)!
+ ln

∏
S∈AS

ES!

AS! (ES − AS)!

= ln(zE + 1) + v ln z − v ln v − ln(z/v)−
∑
S∈AS

AS lnAS +
∑
S∈AS

AS lnES

= ln(zE + 1) + v ln z − v ln v − ln(z/v)− v(z/v) ln(z/v) + v(z/v) ln(zE/v)

< v(z/v) ln(zE/v) + v ln z + ln(zE + 1)

where xy is rising factorial and xy is falling factorial. The notation is abused
such that y lnx = ln xy and y lnx = ln xy. It can be seen that in some
cases, if v ≤ z � zE, the space is less than that for a minimal coder,
space(CQ,h)(H) < zE ln 2.

The space of a history in the historical distribution coder in the low en-
tropy case of a singleton histogram A = {(S, z)} and distribution histogram
such that ES = z is

space(CQ,h)(H)

= ln(zE + 1) + v ln z − v ln v − ln(z/v)− z ln z +−z ln z

< v ln z + ln(zE + 1)

For v < z < zE the space is less than that for an index distribution coder,
space(CQ,h)(H) < space(CQ,l)(H) = z ln zE + ln(zE + 1).

As shown above, the historical distribution can be rewritten in terms of the
multinomial coefficient

Qh(E, z)(A) =
∏
S∈AS

ES!

AS! (ES − AS)!
=

z!∏
S∈AS AS!

1

z!

∏
S∈AS

E
AS

S

Compare this to a multinomial distribution in Qm ∈ Ai ×N→ Q defined

Qm(E, z)(A) =
z!∏

S∈AS AS!

∏
S∈AS

EAS
S ∈ N>0

The coder domain of the powerset of the distribution histogram, P(HE),
can be encoded by means of the multinomial distribution, albeit requiring
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more space than the historical distribution coder, CQ,h. The multinomial
distribution coder of histories CQ,m is defined

CQ,m = coderDistributionMultinomial(U,HE, DV, DS, DX) ∈ coders(P(HE))

The multinomial distribution coder, CQ,m, is constructed with the same pa-
rameters as the historical distribution coder, CQ,h.

The intermediate tuple is (z,RA, KH) ∈ N × N × N. The first and sec-
ond elements of the tuple encodes the size z = |H| and the histogram
A = histogram(H) in the same way as the historical distribution coder, CQ,h.

The third element of the intermediate tuple, KH , encodes the position in
a list of the histories which have histogram A. The histories are constructed
from subsets of Hz

E = {L : L ∈ L(HE), |L| = z} by modifying the event
identifiers. Given order DA, constructed from DV and DS, and order DX

choose the enumeration

K ∈ enums({G : L ∈ L(HE), G = {((i, x), S) : (i, (x, S)) ∈ L}, his(G) = A})

where his = histogram. The enumeration of modified histories K ∈ H → N
is such that

∃G ∈ dom(K) (({(x, S) : ((i, x), S) ∈ G} = H)∧(KG ∈ {1 . . . Qm(E, z)(A)}))

where E = histogram(HE). Any of the modified histories, G ∈ dom(K), for
which {(x, S) : ((i, x), S) ∈ G} = H, can be chosen to encode H. Given KH

the decode is {(x, S) : ((i, x), S) ∈ flip(K)(KH)} = H.

Define multinomial distribution space spaceDistributionMultinomial ∈ Ai ×
N→ (Ai → ln N>0) as

spaceDistributionMultinomial(E, z)(A) := lnQm(E, z)(A)

The space of the multinomial distribution coder is

space(CQ,m)(H) = spaceSize(zE) +

spaceCounts(U)(A) +

spaceDistributionMultinomial(E, z)(A)

where zE = |HE|, E = histogram(HE), A = histogram(H) and z = |H|. The
space of the empty history is defined space(CQ,m)(∅) := spaceSize(zE).
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The space of a history H ⊆ HE in the multinomial distribution coder is
greater than or equal to the space in the historical distribution coder

space(CQ,m)(H) ≥ space(CQ,h)(H)

The space is sometimes larger because

|Hz
E| = zzE ≥ |{H : H ⊆ HE, |H| = z}| = zzE/z!

There are modified histories in the multinomial distribution coder that do
not correspond to elements of the coder domain, P(HE), because some con-
tain replaced events and because there are up to z! permutations depending
on the number of replaced events. See the discussion, above, comparing his-
torical distributions and multinomial distributions.

In fact, the multinomial distribution would be a more efficient method if
the coder domain was {L : L ∈ L(HE), |L| ≤ zE} rather than P(HE). In
this case, each KG ∈ {1 . . . Qm(E, z)(A)} would encode a different element
of the coder domain and there would be no unused space.

Also the multinomial distribution could be used to encode lists of cardi-
nality greater than |HE|. In this case the coder domain would be {L :
L ∈ L(HE), |L| ≤ y} where y ∈ N. Here y would be a parameter of the
constructor of a multinomial distribution coder, (U,HE, y,DV, DS), and ad-
ditional space would be required for (i) the length of a limited list, ln(y+ 1),
or (ii) the termination flag space of an unlimited list.

In order to compare the distribution coders to the classification coders, let
CG,V be a special case of the classification coder of histories, CG, such that
the variables, V , are fixed. The coder domain is X → V CS = {H : H ∈
HU,X , vars(H) = V } ⊃ P(HE) where X = dom(HE). Thus

space(CG,V )(H) = space(CG)(H)− spaceVariables(U)(V )

where history H ⊆ HE. The space of the substrate classification coder, CG,V ,
is

space(CG,V )(H) = spaceIds(zE, z) +

spaceCounts(U)(A) +

spaceClassification(A)

where zE = |HE|, A = histogram(H) and z = |H|. The events classification
space of the histogram, spaceClassification(A), is defined as the logarithm of
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the multinomial coefficient

spaceClassification(A) := ln
z!∏

S∈AS AS!

As shown above, the events classification space approximates to the sized
entropy of the histogram

spaceClassification(A) ≈ z × entropy(A)

The space of a history H ⊆ HE in the multinomial distribution coder,
space(CQ,m)(H), varies as the frequency Qm(E, z)(A). This in turn varies
as the multinomial coefficient, z!/

∏
S∈AS AS!. Thus the space of both the

classification coder and the multinomial distribution coder varies with the
entropy of the histogram, entropy(A). Low entropy histories tends to require
less space than high entropy.

However, the frequencies of the multinomial distribution, Qm(E, z), depend
on the permutorial part,

∏
S∈AS E

AS
S , as well as the multinomial coefficient,

z!/
∏

S∈AS AS!. As shown above, the logarithm of the multinomial probability
distribution approximates to the negative sized relative entropy between the
complete sample histogram, A+ V CZ, and the distribution histogram, E,

ln Q̂m,U(E, z)(A+ V CZ) ≈
∑

S∈AFS, PS>0

AS ln
PS
NS

= −z
∑

S∈AFS, PS>0

NS ln
NS

PS

= −z × entropyRelative(N,P )

where P = resize(1, E) and N = resize(1, A). So the space of the multi-
nomial distribution coder, space(CQ,m)(H), varies inversely with the relative
entropy. In the case of the classification coder, CG,V , there is no distribu-
tion histogram. It is equivalent to the multinomial distribution where the
distribution histogram is uniform cartesian, E = V C

spaceClassification(A) = lnQm(V C, z)(A)

= ln
z!∏

S∈AS AS!

∏
S∈AS

1AS

= ln
z!∏

S∈AS AS!
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The space of a history in the multinomial distribution coder, space(CQ,m)(H),
is maximised when the relative entropy is minimised. That occurs when the
sample histogram equals the scaled distribution histogram, A = scalar(z/zE)∗
E. In probabilistic terms, this is when the sample histogram equals the mean,
A = mean(Q̂m,U(E+V CZ, z)). Sample histograms that are far from the mean

with respect to the variance, var(U)(Q̂m,U(E + V CZ, z)), have lower space.
Note that, as shown above, variance varies as the entropy of the distribution
histogram, entropy(E).

The space of a history in the multinomial distribution coder in the case of a
high entropy uniform cartesian histogram, A = scalar(z/v) ∗ V C ∈ Ai where
v = |V C|, and a uniform cartesian distribution histogram, E = scalar(zE/v)∗
V C ∈ Ai is

space(CQ,m)(H)

= ln(zE + 1) + ln
(z + v − 1)!

z! (v − 1)!
+ ln

z!∏
S∈AS AS!

∏
S∈AS

EAS
S

= ln(zE + 1) + v ln z − v ln v − ln(z/v) + z ln z −
∑
S∈AS

AS lnAS +
∑
S∈AS

AS lnES

= ln(zE + 1) + v ln z − v ln v − ln(z/v) + z ln z − v(z/v) ln(z/v) + z ln(zE/v)

< z ln(zE/v) + z ln z + v ln z + ln(zE + 1)

It can be seen that even in some high entropy cases the space is less than
that for a minimal coder, space(CQ,m)(H) < zE ln 2, if v ≤ z � zE.

The space of a history in the multinomial distribution coder in the low en-
tropy case of a singleton histogram A = {(S, z)} and distribution histogram
such that ES = z is

space(CQ,m)(H)

= ln(zE + 1) + v ln z − v ln v − ln(z/v) + z ln z − z ln z + z ln z

< z ln z + v ln z + ln(zE + 1)

For some v < z the space is less than that for an index distribution coder,
space(CQ,m)(H) < space(CQ,l)(H) = z ln zE + ln(zE + 1).

The space of a history in the classification coder is

space(CG,V )(H)

= ln(zE + 1) + ln
zE!

z! (zE − z)!
+ ln

(z + v − 1)!

z! (v − 1)!
+ ln

z!∏
S∈AS AS!
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The difference between the two coders is

space(CG,V )(H)− space(CQ,m)(H) = ln
zE!

z! (zE − z)!
− ln

∏
S∈AS

EAS
S

In the case of uniform cartesian histogram, A = scalar(z/v)∗V C, and uniform
cartesian distribution histogram, E = scalar(zE/v) ∗ V C ∈ Ai, the difference
is

space(CG,V )(H)− space(CQ,m)(H) = z ln zE + z ln v − z ln z − z ln zE

Thus the space of the multinomial distribution coder is greater than that
of the classification coder, space(CQ,m)(H) > space(CG,V )(H), in the high
entropy case.

Compare the low entropy case of a singleton histogram A = {(S, z)} and
distribution histogram such that ES = z

space(CG,V )(H)− space(CQ,m)(H) = z ln zE − z ln z − z ln z

In the low entropy case the space of the multinomial distribution coder is
less than that of the classification coder, space(CQ,m)(H) < space(CG,V )(H),
if zE � z2. Thus the parameterisation of the distribution coders, CQ,h and
CQ,m, by the distribution history, HE, reduces the space in some cases.

The historical distribution and the multinomial distribution of the distri-
bution coders naturally imply a probability function. For example, let P =
{(H, Q̂m,U(E, |H|)(A)) : H ⊆ HE, A = his(H) +V CZ} where E = his(HE) +

V CZ then P̂ ∈ (P(HE)→ Q≥0)∩P is the conditional multinomial probability
given the size. Of course, the expected space of the multinomial distribu-
tion coder in this implied probability function, expected(P̂ )(space(CQ,m)) ∈
Q≥0 ln N>0, is high because the space varies with the implied probability,

space(CQ,m) ∼ P̂ , rather than inversely as would be the case in an entropy

coder of P̂ .

In the discussion above the alignment has been derived in terms of relative
probability. It may equally be derived in terms of relative space. Let HE be
some non-empty distribution history, HE ∈ HU,X \{∅}, of size zE = |HE| and
variables V = vars(HE) in system U and event identifiers set X. The subset
sample history H ⊂ HE, of size z = |H|, is drawn from the distribution
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history without replacement. Consider the distribution coder domain P(HE).
The multinomial distribution coder of histories CQ,m is defined above, as

CQ,m = coderDistributionMultinomial(U,HE, DV, DS, DX) ∈ coders(P(HE))

whereDV, DS andDX are orders on the variables, states and event identifiers.
The space of the multinomial distribution coder is

space(CQ,m)(H) = spaceSize(zE) +

spaceCounts(U)(A) +

spaceDistributionMultinomial(E, z)(A)

where E = histogram(HE), A = histogram(H) and multinomial distribution
space is

spaceDistributionMultinomial(E, z)(A) := lnQm(E, z)(A)

Here the sample histogram is trimmed, A ∈ {trim(B) : B ∈ AU,i,V,z}.

In the case where the independent sample histogram is in the histograms
of the coder domain, AX ∈ {histogram(G) : G ⊆ HE}, and is therefore in-
tegral, AX ∈ Ai, then the multinomial distribution coder space of history H
may be decomposed into (i) the independent multinomial distribution coder
space and (ii) relative dependent multinomial distribution coder space

space(CQ,m)(H) = spaceSize(zE) +

spaceCounts(U)(AX) +

spaceDistributionMultinomial(E, z)(AX) +

(spaceDistributionMultinomial(E, z)(A)−
spaceDistributionMultinomial(E, z)(AX))

The counts space of the independent sample equals the counts space of the
sample histogram, spaceCounts(U)(AX) = spaceCounts(U)(A), because the
counts space only depends on the size, z, and volume, v = |V C|, and the
independent is congruent, congruent(A,AX).

Let HX be any history drawn from the distribution history such that it’s
histogram equals the independent sample histogram,

HX ∈ {G : G ⊆ HE, histogram(G) = AX}
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The independent multinomial distribution coder space equals the space of HX

space(CQ,m)(HX) = spaceSize(zE) +

spaceCounts(U)(AX) +

spaceDistributionMultinomial(E, z)(AX)

The relative dependent multinomial distribution coder space of history H is

spaceDistMult(E, z)(A)− spaceDistMult(E, z)(AX)

= lnQm(E, z)(A)− lnQm(E, z)(AX)

= ln
z!∏

S∈AS AS!

∏
S∈AS

EAS
S − ln

z!∏
S∈AXS AS!

∏
S∈AXS

E
AX

S
S

where spaceDistMult = spaceDistributionMultinomial. Thus the negative
relative dependent multinomial distribution coder space equals the alignment
minus the mis-alignment

−(spaceDistMult(E, z)(A)− spaceDistMult(E, z)(AX))

=
∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S !−

∑
S∈AXS

(AS − AX
S ) lnES

= alignment(A)−
∑
S∈AXS

(AS − AX
S ) lnES

In the case where the sample histogram is independent, A = AX, the negative
relative dependent multinomial distribution coder space is 0

−(spaceDistMult(E, z)(AX)− spaceDistMult(E, z)(AX)) = 0

In the case where the distribution history is independent, E = EX, the mis-
alignment is zero and the negative independently-distributed relative depen-
dent multinomial distribution coder space equals the alignment

−(spaceDistMult(EX, z)(A)− spaceDistMult(EX, z)(AX)) = alignment(A)

Similarly, the historical distribution coder of histories CQ,h is constructed

CQ,h = coderDistributionHistorical(U,HE, DV, DS, DX) ∈ coders(P(HE))

The space of the multinomial distribution coder is

space(CQ,h)(H) = spaceSize(zE) +

spaceCounts(U)(A) +

spaceDistributionHistorical(E, z)(A)
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where E = histogram(HE), A = histogram(H) and historical distribution
space is

spaceDistributionHistorical(E, z)(A) := lnQh(E, z)(A)

In the case where the independent sample histogram is in the histograms of
the coder domain, AX ∈ {histogram(G) : G ⊆ HE}, then the historical distri-
bution coder space of history H may be decomposed into (i) the independent
historical distribution coder space and (ii) relative dependent historical dis-
tribution coder space

space(CQ,h)(H) = spaceSize(zE) +

spaceCounts(U)(AX) +

spaceDistributionHistorical(E, z)(AX) +

(spaceDistributionHistorical(E, z)(A)−
spaceDistributionHistorical(E, z)(AX))

The relative dependent historical distribution coder space of history H is

spaceDistHist(E, z)(A)− spaceDistHist(E, z)(AX)

= lnQh(E, z)(A)− lnQh(E, z)(AX)

= ln
∏
S∈AS

ES!

AS! (ES − AS)!
− ln

∏
S∈AXS

ES!

AX
S ! (ES − AX

S )!

= ln
z!∏

S∈AS AS!

1

z!

∏
S∈AS

E
AS

S − ln
z!∏

S∈AXS AX
S !

1

z!

∏
S∈AXS

E
AX

S

S

where spaceDistHist = spaceDistributionHistorical. Thus the negative rela-
tive dependent historical distribution coder space equals the alignment minus
the historical mis-alignment

−(spaceDistHist(E, z)(A)− spaceDistHist(E, z)(AX))

=
∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S !−

∑
S∈AXS

(AS − AX
S ) lnES

= alignment(A)−
∑
S∈AXS

(AS − AX
S ) lnES

where the falling factorial notation is abused such that y lnx = lnxy. The
historical mis-alignment depends on the distribution histogram, E, and its
size, zE. In the case where the distribution history is independent, E = EX,
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conjecture that the historical mis-alignment tends to zero as the distribution
history size, zE, tends to infinity

lim
zE→∞

∑
S∈AXS

(AS − AX
S ) lnEX

S = 0

Thus in the limit the negative independently-distributed relative dependent
historical distribution coder space equals the alignment

lim
zE→∞

−(spaceDistHist(EX, z)(A)− spaceDistHist(EX, z)(AX)) = alignment(A)

As shown above the space in the multinomial distribution coder is greater
than or equal to that of the space in the historical distribution coder be-
cause of the unused codes in the multinomial distribution coder that are not
needed to represent the coder domain, P(HE). However, for independent
distribution histogram, E = EX, in the limit as the size zE tends to infin-
ity, the independently-distributed relative dependent multinomial distribution
coder space equals the independently-distributed relative dependent historical
distribution coder space which equals the alignment.

A.9 Transform and partition space

Let the coder domain TU,i,≤y ⊂ AU,i,≤y×P(VU) be the set of transforms in
system U having trimmed integral histograms of maximum size y ∈ N

TU,i,≤y = {(X,W ) : (X,W ) ∈ TU , X ∈ AU,i,≤y}

where the finite set of trimmed integral histograms having size less than or
equal to y is

AU,i,≤y = {trim(A) : A ∈ AU,i, size(A) ≤ y}

In the case of a regular system U , having dimension n = |U | and such that
all the variables have the same valency d, ∀u ∈ vars(U) (|Uu| = d), the
cardinality of the coder domain TU,i,≤y is such that |TU,i,≤y| < 2n|AU,i,≤y|.
Hence

|TU,i,≤y| < y22n (y + dn − 1)!

y! (dn − 1)!

The coder domain TU,i,≤y is finite so a minimal coder CT,m ∈ coders(TU,i,≤y)
can be constructed by enumeration of the coder domain in a similar fashion
to the minimal histogram coder, CA,m, above. The space of the minimal coder
is space(CT,m)(T ) = ln |TU,i,≤y|.
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Consider the transform coder

CT = coderTransform(U, y,DV, DS) ∈ coders(TU,i,≤y)

where U ∈ U is a system, y ∈ N is the cardinality of the identifier set,
DV and DS are orders on the variables and states in U . The space of the
transform coder CT is that of the trimmed integral histogram coder, CA, plus
space required to define the subset of the transform’s variables which are the
derived variables. This extra space is that of a pair N×N, the first of which
defines the cardinality of the subset derived variables, |W |, and the second
of which defines the combination

space(CT)((X,W )) = space(CA)(X) + space(n+ 1) + spaceSubset(n, |W |)

where n = |vars(X)|. An alternative method would be to encode the defi-
nition of W in a list L(bits) which would have space n ln 2 instead. A third
method is to define all the variables together in a weak composition for the
three sets of variables, V = und(T ), W = der(T ) and dom(U), plus a classifi-
cation, spCom(3, |U |)+spCl({(V, |V |), (W, |W |), (U, |U |−|V |−|W |)}), where
spCom = spaceCompositionWeak and spCl = spaceClassification.

Now consider a coder having a subset coder domain which is the unit trans-
forms CT,U ∈ coders(TU,i,≤y ∩ TU). In this special case the space of the weak
composition that defines the counts of transform T , spaceCounts(U)(X)
where (X,W ) = T , is not needed. Instead the histogram X is simply defined
by means of a subset of the volume

space(CT,U)((X,W )) = spaceVariables(U)(n) +

space(n+ 1) + spaceSubset(n, |W |) +

space(|XC|+ 1) + spaceSubset(|XC|, |XF|)

where n = |vars(X)|. Again, the subset of the volume could be encoded
instead in a list of space |XC| ln 2.

To move on to functional transforms, first consider the coder of partitions.
The partition coder is constructed

CP = coderPartition(U,DV, DS) ∈ coders(RU)

where U ∈ U is a system, DV and DS are orders on the variables and states in
U , and the coder domain RU is the finite set of all partitions of the variables
of the system U

RU =
⋃
{B(WCS) : W ∈ P(vars(U))}
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where B is the partition function. A partition P ∈ RU can be encoded in
an intermediate tuple ((n,NV ), RP ) ∈ N2 ×N. The first element, (n,NV ),
encodes the variables in the same way as the history coder CH, above. The
space is spaceVariables(U)(n) where V = vars(P ) and n = |V |. The last
element of the tuple, RP , chooses one of the partitions. Given order DS

choose R ∈ enums(B(V CS)). Then

RP ∈ {1 . . . |B(V CS)|} = {1 . . . bell(v)}

where volume v = |V C|. Define spacePartition(U) ∈ P(VU)→ ln N>0 as

spacePartition(U)(V ) := ln bell(v)

Define spacePartition(U)(∅) := 0. The space of the partition is

space(CP)(P ) = spaceVariables(U)(|V |) + spacePartition(U)(V )

where V = vars(P ).

The set of binary partitions isRU,b = {{C, WCS\C} : W ∈ P(vars(U)), C ∈
P(WCS)} = {P : P ∈ RU , |P | = 2}. The binary partition coder is con-
structed

CP,b = coderPartitionBinary(U,DV, DS) ∈ coders(RU,b)

Define spacePartitionBinary(U) ∈ P(VU)→ ln N>0 as

spacePartitionBinary(U)(V ) := v ln 2

Define spacePartitionBinary(U)(∅) := 0. The space of the binary partition is

space(CP,b)(P ) = spaceVariables(U)(|V |) + spacePartitionBinary(U)(V )

where V = vars(P ).

The partition transform T ∈ TU,P = {PT ∈ RU} ⊂ TU,f,1 has a single derived
partition variable P from which it is constructed, T = PT = ({S ∪{(P,C)} :
C ∈ P, S ∈ C}U, {P}). The partition variable, P = TP, is not in the system,
P /∈ vars(U), but is in the infinite implied system, P ∈ vars(implied(U)).
The coder of partition transforms

CT,P = coderTransformPartition(U,DV, DS) ∈ coders(TU,P)

is exactly equal to partition coder, CP, after mapping bijectively between
the coder domains, TU,P :↔: RU . The space is equal, space(CT,P)(T ) =
space(CP)(TP).

Similarly, the space of the binary partition transform coder CT,P,b equals
the space of the binary partition coder, Cs

T,P,b(T ) = Cs
P,b(TP).
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To encode a one functional transform T ∈ TU,f,1, where all of the trans-
form’s variables are in the system, vars(T ) ∈ dom(U), map the transform’s
subset of the derived variables’ cartesian states, (X%W )S ⊆ WCS where
(X,W ) = T , to the components of the partition P = TP ∈ B(V CS) of the
underlying variables V = und(T ), such that |X%W | = |P |. The space to en-
code the map between the derived and underlying is spaceSubset(|WC|, |P |)
plus the space of the permutation ln |P |!, or, equivalently, the space of the
falling factorial ln |WC||P |. The space to define the partition is smaller than
for the partition coder because the number of components is fixed by the
definition of the derived variables W in the system U and by the functional
mapping, X%W :↔: P , of the components to the derived states. Instead use
the Stirling number of the second kind stir ∈ N>0 ×N → N>0 rather than
the Bell number. The partition space is ln(stir(|V C|, |P |)). Let

CT,f,1 = coderTransformOneFunc(U,DV, DS) ∈ coders(TU,f,1)

in

space(CT,f,1)(T ) = spaceVariables(U)(n) +

space(n+ 1) + spaceSubset(n, |W |) +

space(|WC|) + spaceSubset(|WC|, |TP|) + space(|TP|!) +

space(stir(|V C|, |TP|))

where n = |vars(T )|, W = der(T ) and V = und(T ).

The coder CT,f,U ∈ coders(TU,f,U) is intermediate between coders CT,U ∈
coders(TU,i,≤y ∩ TU) and CT,f,1 ∈ coders(TU,f,1). It requires space to define
both the partition and the subset of the volume and so is larger than the one
functional coder.

Conjecture that the space of a one functional transform T ∈ TU,f,1 having at
least one derived variable, |der(T )| ≥ 1, must be such that

space(CT,P)(TPT) ≤ space(CT,f,1)(T ) ≤ space(CT,f,U)(T ) ≤ space(CT,U)(T )

Of course, this conjecture depends on the exact definition of CT,f,U which is
not made explicit here.

A.10 Functional definition set space and Decomposi-
tion space

If system U is finite then the set of functional definition sets, FU ⊆
P(TU,f,U), in that system is also finite. Therefore there exists a minimal coder
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CF,m ∈ coders(FU) such that the space of a member of the coder domain F ∈
FU is constant, space(CF,m)(F ) = ln |FU |. Similarly there can be constructed
a minimal coder of the set of one functional definition sets, FU,1 ⊆ P(TU,f,1),
CF,1,m ∈ coders(FU,1), such that space(CF,1,m)(F ) = ln |FU,1| where F ∈ FU,1.

The set of functional definition sets is a subset of the powerset of the set of
unit functional transforms in the finite system U , FU ⊆ P(TU,f,U), so a similar
method of coder would be to encode the subset of transforms. Let CF,S ∈
coders(FU) and F ∈ FU , and define the encoding such that space(CF,S)(F ) =
space(|TU,f,U| + 1) + spaceSubset(|TU,f,U|, |F |). This coder is not minimal in
non-trivial systems because there are members of the powerset of the set of
one functional transforms, P(TU,f,U), which are not functional definition sets.

It is possible to avoid the necessity of calculating FU or TU,f,U (or, in the
case of one functional fuds and transforms, FU,1 or TU,f,1), required by the
methods above, by means of list coders (see appendix ‘List and tree coders’).
List coders encode a list in a generic manner, leaving the details of the
encoding of the elements of the list to an underlying coder. Convert the fud
F ∈ FU to a list of transforms L ∈ L(TU,f,U) and then encode the list in one
of the list coders coders(L(TU,f,U)). The list L is the inverse of one of the
enumerations of F , L = flip(M) where M ∈ enums(F ). Any ordering of the
list may be chosen. In particular, there is no need to order by dependency.
If we choose to limit the cardinality of the fud, |F | ≤ y, we can use a limited
list coder

CF,L = coderListLimited(CT,f,U, y) ∈ coders(Ly(TU,f,U))

where Ly(TU,f,U) is the set of lists of unit functional transforms in system U
of length less that or equal to y. The underlying coder CT,f,U is described
above in the section ‘Transform and partition space’. The parameter y need
not be greater than the maximum possible cardinality of a fud in the system
U , y ≤ |TU,f,U|. Fuds which exclude null transforms have at least one derived
variable per transform. Non-empty fuds which exclude disjoint transforms
have at least one underlying variable. Let FX ⊂ F be the set of fuds which
exclude both special cases, ∀F ∈ FX ∀T ∈ F (der(T ) 6= ∅ ∧ und(T ) 6= ∅).
To encode only fuds in FX places a maximum on the list length, y ≤ r − 1
where r = |vars(U)|.

If we do not wish to explicitly limit the cardinality of the fud we can use the
unlimited list coder

CF,U = coderListTerminating(CT,f,U) ∈ coders(L(TU,f,U))
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Neither the limited list coder of functional definition sets, CF,L, nor the un-
limited list coder, CF,U, are minimal coders, because of the cost of the list
overhead space, and because the set of fuds is a proper subset of the powerset
of unit functional transforms in non-trivial systems, FU ⊂ P(TU,f,U).

The space of a transform list coder of a fud is the sum the spaces of the trans-
forms

∑
T∈F space(CT,f,U)(T ) plus the overhead space. The overhead space

is a constant, ln(y + 1), in CF,L, and a linear function of |F |, (|F | + 1) ln 2,
in CF,U.

Consider partition functional definition set coders, coders(FU,P). Partition
fuds are a subset of one fuds, FU,P ⊂ FU,1, and so are a subset of the set of
sets of unit functional transforms, FU,P ⊂ P(TU,f,U). So a fud F ∈ FU,P could
be encoded in list coder such as CF,L or CF,U with underlying coder CT,f,U.
However if the system U were to contain all of the partition variables of the
partition fuds in FU,P then both the system and the set of partition fuds would
be necessarily infinite. So an underlying coder cannot be constructed from
system U or implied(U). A finite system can be constructed from the parti-
tion fuds in finite system U , U ′ = {(P, P ) : F ∈ FU,P, P ∈ dom(def(F ))}∪U .
The list coders CF,U, CF,L ∈ coders(L(TU ′,f,U)) and underlying coder CT,f,U

are then parameterised by the finite system U ′.

A more efficient partition functional definition set coder implementation in
a list coder is to use the partition transform coder, CT,P, as the underlying
coder and to construct the system incrementally by looking back at the list
of partition transforms so far. In this way, the underlying coder need not
choose the underlying variables of the partition from all of the variables in
the fuds of FU,P. That is, instead of using system U ′, the partition transform
coder, CT,P, can use the much smaller system U plus the partition variables
previously defined in the list of the fud’s transforms. Of course, the list must
be ordered by fud dependency so that the references exist. Let

CF,U,P = coderFudPartition(U,DV, DS) ∈ coders(FU,P)

In the non-minimal coders above, the fud has been treated as a unordered
collection of transforms, ignoring the definitions constraint on the fud. See
appendix ‘Functional definition set coders’ for the details of the implementa-
tion of CF,U,P and a discussion of other fud coders that use the fud constraints
to reduce space.

At this stage note that the space of the partition fud coder, CF,U,P, is at
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least the sum of the space of the set of partitions

space(CF,U,P)(F ) >
∑
T∈F

spacePartition(U ′)(und(T ))

=
∑
T∈F

ln bell(volume(U ′)(vars(TP))

Consider the partition space of F = {PT
K , P

T
V \K} ∈ FU,P where V ⊂ vars(U),

K ⊂ V and PX ∈ B(XCS). Let V be regular having even dimension n = |V |,
n/2 ∈ N and valency {d} = {|Uu| : u ∈ V }. Let the subset K be such that
|K| = n/2. Then the partition space of F is

spacePartition(U)(K) + spacePartition(U)(V \K) = 2 ln bell(dn/2)

The partition space of the equivalent transform FTPT ∈ TU,P is

spacePartition(U)(V ) = ln bell(dn)

Conjecture that ∀i ∈ N ((bell(i))2 ≤ bell(i2)) because the Bell number is
log convex. Therefore conjecture that the partition space of the fud F is
less than or equal to the partition space of its equivalent transform, FT,
2 ln bell(dn/2) ≤ ln bell(dn).

A coder of multi-partition transforms, CT,P∗ , may be implemented as a special
case of the partition fud coder, CF,U,P, by exploding the contracted transform,
explode(T%) ∈ FU,P where T ∈ TU,P∗ .

Now consider a coder of partition fud decompositions. The set of partition
fud decompositions is defined

DF,U,P = DF ∩ trees(SU ′ ×FU,P)

where the finite system U ′ is defined U ′ = {(P, P ) : F ∈ FU,P, P ∈
dom(def(F ))} ∪ U . The unlimited partition fud decomposition coder is con-
structed

CD,F,U,P = coderDecompFudPartition(U,DV, DS) ∈ coders(DF,U,P)

The fud decomposition coder implements the encoding of the decomposition
tree of state-fud pairs by means of an unlimited list tree coder, CU,T, defined
in appendix ‘List and tree coders’. The fuds of the state-fud pairs are en-
coded by an unlimited partition fud coder, CF,U,P. Let D ∈ DF,U,P. The
state S of the pair is in the derived states of the parent fud G in the tree,
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S ∈ WCS, where ((·, G), (S, ·)) ∈ steps(D) and W = der(G). So the encoding
and decoding of the state, S, is preceded by the encoding and decoding of
the parent fud, G. The state may be encoded by indexing the cartesian of
the derived variables of the parent fud. That is, by choosing an enumeration
from enums(WCS). The space of the state encoding is ln |WC|.

The fud decomposition coder space is greater than the space of the parti-
tion fud encodings, and so is greater than the total space of the partition
transforms of the fuds,

Cs
D,F,U,P(D) >

∑
F∈fuds(D)

Cs
F,U,P(F )

>
∑

F∈fuds(D)

∑
T∈F

spacePartition(U ′)(und(T ))

=
∑

F∈fuds(D)

∑
T∈F

ln bell(volume(U ′)(vars(TP))

An unlimited partition transform decomposition coder, CD,U,P, is a special
case of the unlimited partition fud decomposition coder, CD,F,U,P, constructed

CD,U,P = coderDecompPartition(U,DV, DS) ∈ coders(DU,P)

where DU,P = D ∩ trees(SU ′ × TU,P).

A.11 Functional definition set coders

Consider the finite coder domain of functional definition sets, FU ⊆ P(TU,f,U),
in the finite system U . In the section ‘Functional definition set space and De-
composition space’, above, the non-minimal fud coders treated a fud F ∈ FU
as a collection of transforms, ignoring the definitions constraint on the fud.
That is, that no derived variable of a transform in the fud can be a de-
rived variable in another transform, ran(F ) \ ∅ ∈ B(dom(def(F ))) where
def(F ) 6= ∅ and def = definitions. The space of the fud coder can be reduced
by making use of this constraint. The classification definition fud coders
CF,L,C ∈ coders(FU) and CF,L,C,1 ∈ coders(FU,1) encode part of the fud in
initial space, followed by a limited list coder of the remaining parts of the
transforms. Treat the fud as a classification of the derived variables of the
transforms. In order to do this first encode the cardinality of the fud, |F |. Do
this by using a limited list coder of maximum length y, in which case the space
of the cardinality is the up-front overhead space ln(y + 1). Then the space
required to specify the cardinalities of derived variables in the transforms
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of F ∈ FU is weak composition space spaceCompositionWeak(|F | + 1, |U |).
If the coder domain is constrained to fuds which exclude null transforms
and disjoint transforms, FU ∩ FX, then y ≤ |U | − 1 and the space of the
cardinality of the fud is at most ln |U |. In this case, the space to spec-
ify the cardinalities of derived variables is only strong composition space
spaceComposition(|F | + 1, |U |), where spaceComposition ∈ N>0 × N>0 →
ln N>0 is defined as spaceComposition(k, n) := ln |C({1 . . . k}, n)|. In both
cases, FU and FU ∩ FX, the space required to specify the classification
of derived variables in the transforms is spaceClassification({(T, |der(T )|) :
T ∈ F}). The space of the underlying variables in the limited list coder is∑

(spaceVariables(U)(|und(T )|) : T ∈ F ). The remaining space of the states
of the histograms of the transforms is the same as defined in the respective
underlying coders, CT,f,U for fud coder CF,L,C and CT,f,1 for one fud coder
CF,L,C,1. In the case of one functional definition sets, F ∈ FU,1, this space for
the limited list coder of each T ∈ F is space(|WC|) + spaceSubset(|WC|, p) +
space(p!) + space(stir(|V C|, p)) where p = |inverse(T )|, W = der(T ) and
V = und(T ). The overhead space of the limited list coder of ln(y+1) performs
the dual purpose of defining the length of the list, |L| where L ∈ Ly(TU,f,U)
or L ∈ Ly(TU,f,1), and encoding the cardinality of the fud, |F | = |L|, for the
definition classification above.

The method of definition classification does not address the space that can be
saved in the underlying variables by utilising the depends relations between
the transforms of the fud. The underlying variables of a transform T ∈ F
need not be chosen as a subset of the entire system U , but only need to be cho-
sen from the underlying variables of the fud and the definition of the underly-
ing depends fud of the transform, und(F )∪vars(depends(F, der(T ))\{T}) ⊆
vars(U). In this method the space of the underlying variables of transform
T in fud F is not spVar(U)(|und(T )|), but rather spVar(Q)(|und(T )|) where
system Q ⊆ U is defined

Q = {(v, Uv) : v ∈ und(F ) ∪ vars(depends(F, der(T )) \ {T})}

and spVar = spaceVariables. Define system(U) ∈ FU → U as

system(U)(F ) := {(v, Uv) : v ∈ vars(F )}

First encode the underlying variables of the fud in space spVar(U)(|und(F )|).
These underlying variables imply a subset of the system R ⊆ U such that
R = {(v, Uv) : v ∈ und(F )}. Then choose a list ordered such that the
system Q so far can be implied from a lookback list coder. A finite system
cannot be implied where there are fud circularities, so consider only one
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functional definition sets FU,1. Choose a list L = flip(M) ∈ L(TU,f,1) where
M ∈ enums(F ) ordered such that all of the underlying depends set of any
transform precedes the transform

∀(i, T ) ∈ L (depends(F, der(T )) ⊆ {S : (j, S) ∈ L, j ≤ i})

Define a variation on the one functional transform coder that takes the un-
derlying variables from system Q ⊆ U and the derived variables from system
U \Q. Let

CT,F,1,S = coderTransformOneFuncSplitSystem(U,Q,DV, DS) ∈ coders(TU,f,1)

in

space(CT,F,1,S)(T ) = space(|U |+ 1) + space(n) +

spaceSubset(|U \Q|, |W |) + spaceSubset(|Q|, |V |) +

space(|WC|) + spaceSubset(|WC|, p) + space(p!) +

space(stir(|V C|, p))

where n = |vars(T )|, p = |inverse(T )|, W = der(T ) and V = und(T ). By
splitting the system into Q and U \ Q the coder partly addresses the space
saved by definitions constraint on the fud. By contrast, the definition classi-
fication coders, which also use the definitions constraint to reduce space, do
not need to order the underlying list by dependency.

Let BT,F,1,S ∈ L(TU,f,1)→ coders(TU,f,1) in

CF,U,S,B = coderListTerminatingLookback(BT,F,1,S) ∈ coders(L(TU,f,1))

be defined as

BT,F,1,S(L) := enc(U, system(U)(ran(L)) ∪R,DV, DS)

where enc = coderTransformOneFuncSplitSystem.

The overall space for this coder CF,U,S ∈ coders(FU,1), including the up-
front encoding of the underlying variables of the fud F and the list coder
with an underlying split system one functional transform coder is

space(CF,U,S)(F ) := spVar(U)(|und(F )|) + space(CF,U,S,B)(L)

However, the order of the list in the list coder does not necessarily minimise
the cardinality of the system Q given to the underlying coder to encode
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the transform’s underlying variables. Typically there are more underlying
variables than derived variables, |V | > |W |, in a transform, so we wish to
minimise |Q| in order to use the least space. Ideally |system(U)(ran(L))| =
|vars(depends(F, der(T )) \ {T})|, but sometimes it is larger. A method of
minimising |Q| is to use a list tree having the same layout as the fud’s vari-
ables tree, fudsTreeVariable(F ) ∈ trees(V). The list tree is encoded using a
lookback list tree coder which can construct the underlying variables system
Q from the child list tree. If the tree has duplicate nodes then it is a graph
and we could use a referencing coder to avoid duplicating the encoding of
transforms. Of course, list tree and list graph coders would have additional
overhead space.

Now consider partition functional definition set coders, coders(FU,P). Parti-
tion fuds are a subset of one fuds, FU,P ⊂ FU,1, so we could use a coder such
as CF,L,C,1 or CF,U,S above. However, the additional constraint imposed on
the transforms of partition fuds that the set of derived variables is a singleton
set of the partition variable, ∀T ∈ F (der(T ) = {partition(T )}), allows us to
both simplify and reduce the space of the coder of a partition fud F ∈ FU,P.
First, the defined variables of the fud dom(def(F )) can imply a system dis-
joint of the system R where R contains the underlying variables of the fud,
und(F ) ⊆ vars(R). Define system ∈ F → U as

system(F ) := {(P, P ) : P ∈ dom(def(F ))}

Note that the system function here is defined for all fuds, F ∈ F , but we
are only interested in partition fuds, F ∈ FU,P where system(F ) ∪ R ⊆ U .
Second, while encoding the list in the lookback unlimited list coder we do not
need to encode the derived variable explicitly because it is encoded in the
space defined by the Bell number of the underlying volume rather than the
lesser space defined by the Stirling number of the second kind. Let

CF,U,P = coderFudPartition(R,DV, DS) ∈ coders(FU,P)

Again, the subset of the underlying variables of the fud are encoded first
before the list encoding takes place, spVar(R)(|und(F )|). Then choose a list
L = flip(M) ∈ L(TU,P) where M ∈ enums(F ) ordered such that all of the
underlying depends set of any transform precedes the transform in the same
way as the one fud coder CF,U,S above. LetBT,F,P ∈ L(TU,P)→ coders(TU,Q,P)
in

CF,U,P,B = coderListTerminatingLookback(BT,F,P) ∈ coders(L(TU,P))

be defined as

BT,F,P(L) := coderTransformPartition(system(ran(L)) ∪R,DV, DS)
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Here the restricted coder domain, TU,Q,P is defined by Q = system(ran(L))∪
R. So, strictly speaking, CF,U,P,B has a coder domain which is a proper subset
of L(TU,P). That is, only the dependency ordered lists of partition transforms.

The overall space of the fud F in this coder CF,U,P ∈ coders(FU,P ), including
the up-front encoding of the underlying variables, und(F ), and the unlimited
list coder CF,U,P,B, with underlying partition transform coder CT,P, of the list
of transforms, L ∈ L(TU,P), is

space(CF,U,P)(F ) := spVar(R)(|und(F )|) + space(CF,U,P,B)(L)

The fud space is subject to an inequality which does not depend on L

space(CF,U,P)(F ) ≤
spVar(R)(|und(F )|) +

∑
T∈F

space(CT,P)(T ) + (|F |+ 1) ln 2

where

CT,P = coderTransformPartition(U,DV, DS) ∈ coders(TU,P)

and system(F ) ∪R ⊆ U . Now space(CT,P)(T ) = space(CP)(partition(T )) so

space(CF,U,P)(F ) ≤
spVar(R)(|VF |) +

∑
T∈F

(spVar(U)(|VT |) + spPart(U)(PT )) + (|F |+ 1) ln 2

where V = und, P = partition, spVar = spVar and spPart = spacePartititon.

The variables space is minimised in the inequality when U = system(F )∪R.
An unlimited list coder minimises the variables space of a fud in the partition
fud coder. For example, if a power partition set, X = power(U)(V ) ∈ FU,P,
has large cardinality and hence a large system, |U | > |X|, even small subsets
F ⊂ X, where und(F ) ⊆ V and |F | � |X|, would require large variables
space. Conversely, the use of an unlimited list coder also avoids setting a
maximum effective limit on the cardinality of the system implied by limited
list coders, y ≤ |U | − 1.

A.12 Derived history coders and search

The derived history coders discussed in section ‘Derived history space’,
above, such as the specialising derived substrate history coder, CG,V,T,H, are

1128



substrate history coders in that they are given a model such as a transform T
as a constructor parameter. The substrate history coder domain is then re-
stricted to the histories in the underlying variables of the transform, HU,V,X ,
where V = und(T ).

Now consider how the derived substrate history coders may be generalised
to the unrestricted history coder domain where the histories may be in any
of the system variables, HU,X =

⋃
{X → V CS : V ⊆ vars(U)}. The generali-

sation may be accomplished by removing the transform from the parameters
altogether and (i) computing a transform, TH , at the beginning of the encod-
ing, (ii) encoding the transform, TH , in a transform coder, and (iii) encoding
the history, H, by means of a newly instantiated derived substrate history
coder parameterised by the constructed transform, TH . A subsequent de-
coding of the history, H, then proceeds by (i) decoding the transform TH in
the transform coder, and (ii) decoding the history, H, by means of a newly
instantiated derived substrate history coder parameterised by the decoded
transform, TH .

The derived history coders need not be restricted to one functional trans-
forms of a substrate, but can be generalised to any model (i) that can be a
model parameter of the history coder and (ii) for which a model coder exists.

In particular, of the substrate models (i) the partition transforms of the
base fud, FU,V = {PT : P ∈ B(V CS)} ⊂ FU,V ⊂ FU,P, can be encoded in
a partition transform coder, CT,P, (ii) the substrate fuds, FU,V ⊂ FU,P, can be
encoded in an unlimited partition fud coder, CF,U,P, and (iii) the substrate fud
decompositions, DF,U,V ⊂ DF,U,P, can be encoded in an unlimited partition
fud decomposition coder, CD,F,U,P.

The process of computing the model for each encoded history can be gen-
eralised also. This is done by defining the computation as a maximisation of
a logarithm extended rational valued function of the models for the history.
Let Z ∈ H → (M → (Q ∪ Q ln Q>0)) be a search function parameterised
by history, where M is the set of models. The search function, Z, is con-
strained such that the underlying variables of the models equal the history
variables, ∀H ∈ dom(Z) ∀M ∈ dom(Z(H)) (und(M) = vars(H)). Then
for history H ∈ HU,X the model M ∈ M chosen for encoding is such that
M ∈ maxd(Z(H)). If there is more than one model in the maximum func-
tion’s domain, |maxd(Z(H))| > 1, then a model is chosen arbitrarily. For
example, {M} = maxd(order(DX ,maxd(Z(H)))), where DX ∈ enums(X ) is
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an arbitrary ordering.

In the particular case where a derived history coder is implemented by en-
coding some subset of the substrate models, MU,V , the search function is
constrained Z(H) ∈MU,V → (Q ∪Q ln Q>0).

An instance of the class of derived history coders may then be constructed
by specifying (i) the model coder CM ∈ coders(M), (ii) the model search func-
tion Z ∈ H → (M→ (Q∪Q ln Q>0)), and (iii) the derived substrate history
coder function parameterised by model CV ∈M→ coders(H). The parame-
ters of the constructor are constrained ∀H ∈ HU,X ∀M ∈ dom(Z(H)) (M ∈
domain(CM) ∧M ∈ dom(CV)).

The generic derived history coder is constructed

C(CM, Z, CV) =

coderHistoryDerivedGeneric(U,X,CM, Z, CV, DS, DX) ∈ coders(HU,X)

A history H ∈ HU,X is encoded as a tuple (EM(M), EV(H)) ∈ N×N where
M ∈ maxd(Z(H)), (EM, ·, ·) = def(CM) and (EV, ·, ·) = def(CV(M)).

The space of the history in the generic derived history coder, C(CM, Z, CV),
is the space of the model, M , in the given model coder, CM, plus the space of
the history, H, in the given derived substrate history coder, CV(M),

C(CM, Z, CV)s(H) = Cs
M(M) + CV(M)s(H)

Derived history coders require more space to encode a history than their
underlying derived substrate history coders do to encode the same history,
C(CM, Z, CV)s(H) > CV(M)s(H), because of the necessity of the additional
space to encode the model, Cs

M(M). However, derived history coders are more
flexible. Not only do they allow histories with arbitrary substrates within
the system, but they also allow different models for histories in the same
substrate. So vars(H1) = vars(H2), where H1, H2 ∈ HU,X , does not nec-
essarily imply maxd(Z(H1)) = maxd(Z(H2)). That is, a derived substrate
history coder of domain HU,V,X must encode all of the histories of the do-
main with the same model M , where und(M) = V , defined as a parameter
at coder instantiation. In contrast, a derived history coder can have different
instantiations of its derived substrate history coder depending on the history,
possibly with different space.
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In addition, the model space typically varies with the volume rather than
the size, whereas the substrate history space varies with volume and size.
So the proportion of derived history coder space corresponding to the model
decreases as the size of the history increases. For example, consider a de-
rived history coder C(CT,P, Z, CH,V,T,H) ∈ coders(HU,X) constructed with a
partition transform coder, CT,P, and index derived substrate history coder
CH,V,T,H. Let H ∈ HU,X and T ∈ maxd(Z(H)). The partition transform
coder space is

space(CT,P)(T ) = spaceVariables(U)(|V |) + spacePartition(U)(V )

where V = und(T ). The index derived substrate history coder space is

space(CH,V,T,H)(H) = spaceIds(|X|, |H|) +

spaceEventsDerived(U)(H,T ) +

spaceEventsPartition(A, T )

where A = histogram(H). So the space is

C(CT,P, Z, CH,V,T,H)s(H) = spaceVariables(U)(|V |) +

spaceIds(|X|, |H|) +

spacePartition(U)(V )

spaceEventsDerived(U)(H,T ) +

spaceEventsPartition(A, T )

Partition space does not depend on size, but varies as ln bell(v) < v ln v
where v = |V C|. The events space is spaceEventsDerived(U)(H,T ) :=
z lnw′, where w′ = |(V C ∗ T )F| = |T−1|, and the partitioned events space
is spaceEventsPartition(A, T ) :=

∑
(R,C)∈T−1(A ∗ T )R ln |C|. Both the events

space and the partitioned events space scale with size, z. In this example the
fraction of space which is model space varies as v/z.

A special case of a model search function is the minimum space model
search function Zm(CM, CV) ∈ H → (M → (Q ∪ Q ln Q>0)), which is pa-
rameterised by a model coder, CM, and a derived substrate history coder
function, CV. Here the model is chosen to minimise the space of the history
encoding,

Zm(CM, CV)(H) =

{(M,−(Cs
M(M) + CV(M)s(H))) : M ∈ domain(CM), und(M) = vars(H)}
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The minimum space model search function is such that for any search func-
tion Z ∈ H → (M → (Q ∪ Q ln Q>0)) the minimum space model search
function always has least space

∀H ∈ HU,X (C(CM, Z, CV)s(H) ≥ C(CM, Zm(CM, CV), CV)s(H))

For any generic derived history coder C(CM, Z, CV) there exists a minimum
space derived history coder C(CM, Zm(CM, CV), CV). That is, the search of
the models can always be performed by a complete traversal of the finite
model set such that the space of the encoding is minimised.

Consider the subset of histories for which a state is uniquely associated
with an event identifier. Define the unit histories

HU,X,U =
⋃
{X ↔ V CS : V ⊆ vars(U)}

These histories are such that the histograms are unit, ∀H ∈ HU,X,U ♦A =
histogram(H) (A = AF). The size z equals the effective volume, z = |AF| ≤
v, where z = |H|, V = vars(H) and v = |V C|.

A minimum space derived history coder of the unit histories may be im-
plemented with the binary partition transform coder, CT,P,b, and the spe-
cialising derived substrate history coder CG,V,T,H. Define the binary partition
minimum space specialising derived history coder

CP,b,m,G,T,H =

coderHistoryDerivedGeneric(U,X,CT,P,b, Zm(CT,P,b, CG,V,T,H), CG,V,T,H, DS, DX)

The space is

Cs
P,b,m,G,T,H(H) = spaceVariables(U)(|V |) +

spaceIds(|X|, |H|) +

spacePartitionBinary(U)(V )

spaceCountsDerived(U)(A, T ) +

spaceClassification(A ∗ T ) +

spaceEventsPartition(A, T )

where V = vars(H) and A = histogram(H). The minimum space binary
partition is always {AFS, V CS \ AFS}. So the space is Cs

P,b,m,G,T,H(H) =
spVar(U)(|V |) + spIds(|X|, |H|) + v ln 2 + ln(z + 1) + z ln z. Compare the
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space to the canonical history coders. The difference in space for the index
history coder, CH, is

Cs
P,b,m,G,T,H(H)− Cs

H(H) = v ln 2 + ln(z + 1) + z ln z − z ln v

The difference is necessarily positive. Similarly, the difference in space for
the classification history coder, CG, is

Cs
P,b,m,G,T,H(H)− Cs

G(H) = v ln 2 + ln(z + 1) + z ln z − z ln v

which is also always positive. That is, the binary partition minimum space
specialising derived history coder, CP,b,m,G,T,H, always requires more space to
encode a unit history than both of the canonical coders, CH and CG, even
though the search is the minimum space search. This is because the model
space, v ln 2, varies with the volume, as is typical, while the canonical coder
space, z ln v and z ln v, varies with the size.

For fixed volume the coder space, Cs
P,b,m,G,T,H(H), varies with the size, z,

which equals the component cardinality, |AF|. So the space varies against the
component size cardinality relative entropy.

In order to construct a minimum space specialising derived history coder
that requires a smaller space to encode a unit history than the canonical
coders, a model M is needed such that its encoding space in coder CM is
approximately constrained

Cs
M(M) < z ln

v + z

2z

Note that the discussion above of the process of encoding in derived history
coders does not address the computational tractability or practicability. Es-
pecially in the case of the minimum space search, where the entire set of the
model coder domain is traversed, the computation may be infeasible. The
discussion in later sections below considers search functions that (i) traverse
only subsets of the model set, and (ii) have different metrics, not necessarily
an encoding space valued function of the models.

Given a system U and event identifiers X, a history coder domain proba-
bility function P ∈ (HU,X :→ Q≥0) ∩ P is defined as entropic with respect
to history coder C ∈ coders(HU,X) if the coder is an entropy coder. See
appendix ‘Coders and entropy’ for the definition of the entropy coder. The
coder is an entropy history coder if and only if the space of a history equals
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the negative logarithm of the non-zero probability, ∀H ∈ HU,X (PH > 0 =⇒
Cs(H) = − lnPH). Then the expected space of the coder equals the entropy
of the history probability function.

expected(P )(Cs) =
∑

H∈HU,X

PH × Cs(H)

= −
∑

(PH lnPH : H ∈ HU,X , PH > 0)

= entropy(P )

An entropy coder has the smallest expected space of all coders given the
probability function.

Similar to the definition of entropic history probability functions, a history
coder domain probability function P ∈ (HU,X :→ Q≥0)∩P is defined as struc-
tured with respect to derived history coder C(CM, Z, CV) ∈ coders(HU,X), if
the expected space of the derived history coder is less than the expected
lesser space of the canonical history coders, (i) index history coder, CH, and
(ii) classification history coder, CG,

expected(P )(C(CM, Z, CV)s) < expected(P )(minimum(Cs
H, C

s
G))

where minimum(Cs
H, C

s
G) ∈ HU,X → ln N>0. That is, history H ∈ HU,X in

structured history probability function P with respect to derived history coder
C(CM, Z, CV) has a model M ∈ mind(Z(H)) for which it is expected that
Cs

M(M) +CV(M)s(H) < minimum(Cs
H(H), Cs

G(H)), where minimum(x, y) =
if(x < y, x, y).

The degree of structure is defined structure(U,X) ∈ ((HU,X :→ Q≥0)∩P)×
coders(HU,X)→ Q ln Q>0/ ln Q>0 as

structure(U,X)(P,C) :=
canonical(U,X)(P )− expected(P )(Cs)

canonical(U,X)(P )− entropy(P )

where canonical(U,X) ∈ ((HU,X :→ Q≥0) ∩ P)→ Q≥0 ln N>0 is defined

canonical(U,X)(P ) := expected(P )(minimum(Cs
H, C

s
G))

The degree of structure is undefined if the canonical coders are already en-
tropic, canonical(U,X)(P ) = entropy(P ). The degree of structure is defined
for all history coders, not just derived history coders.

Define the compression of coder C with respect to probability function P
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as a synonym for the degree of structure of probability function P with re-
spect to the coder C.

The degree of structure is always less than or equal to one,

∀P ∈ (HU,X :→ Q≥0) ∩ P (structure(U,X)(P,C) ≤ 1)

If the degree of structure equals one, structure(U,X)(P,C) = 1, the coder,
C, is an entropy coder of the probability function, P , expected(P )(Cs) =
entropy(P ).

If the degree of structure less than or equal to zero, structure(U,X)(P,C) ≤ 0,
the probability function, P , is structureless with respect to the coder, C, or,
equivalently, the coder, C, is non-compressing with respect to the probability
function, P . For example, the theoretical variable-width history coder, CE,
is non-compressing with respect to all probability functions for which it can
be defined, because the space is always greater than or equal to the space of
the classification coder, Cs

E(H) ≥ Cs
G(H).

Structured history probability functions are less strongly constrained than
entropic history probability functions because entropy coders have least ex-
pected space, 0 < structure(U,X)(P,C) ≤ 1.

Histories that are structured with respect to derived history coders,

structure(U,X)(P,C(CM, Z, CV)) > 0

are expected to be lawlike in that the structures can be encapsulated in a
model such that encoding space of the history plus the additional space of the
model is less than the cost of encoding the history in the structureless canon-
ical coders. If a history probability function is structured with respect to some
derived history coder C(CM, Z, CV), then it is also at least as structured with
respect to the minimum space derived history coder C(CM, Zm(CM, CV), CV),

structure(U,X)(P,C(CM, Zm(CM, CV), CV)) ≥ structure(U,X)(P,C(CM, Z, CV))

Structured histories are not necessarily assumed to be each encoded with the
same model, ∃M ∈ dom(Z) ∀H ∈ HU,X (maxd(Z(H)) = {M}), only that
there exists some model for some histories such that the expected space is
smaller than the canonical space, ∃H ∈ HU,X ∃M ∈ maxd(Z(H)) (Cs

M(M)+
CV(M)s(H) < minimum(Cs

H(H), Cs
G(H))).
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There is no structured probability function of unit histories, HU,X,U, with
respect to the binary partition minimum space specialising derived history
coder, CP,b,m,G,T,H,

∀P ∈ (HU,X :→ Q≥0) ∩ P (structure(U,X)(P,CP,b,m,G,T,H) < 0)

because the space of any non-empty history is always greater than in both
canonical coders

∀H ∈ HU,X,U \ {∅} (Cs
P,b,m,G,T,H(H) > minimum(Cs

H(H), Cs
G(H)))

A history coder Cmin(H,G) of the lesser space of the canonical history coders
can be implemented with a flag to indicate which of the canonical coders was
chosen. The space is Cs

min(H,G)(H) = minimum(Cs
H(H), Cs

G(H)) + ln 2. The
lesser canonical history coder, Cmin(H,G), is necessarily structureless,

∀P ∈ (HU,X :→ Q≥0) ∩ P (structure(U,X)(P,Cmin(H,G)) < 0)

because of the additional space of the flag.

Conjecture that there is no coder such that the uniform history probability
function, ĤU,X = HU,X × {1/|HU,X |} ∈ P , has structure,

∀C ∈ coders(HU,X) (structure(U,X)(ĤU,X , C) < 0)

where canonical(U,X)(ĤU,X) 6= entropy(ĤU,X).

The degree of structure has two arguments, (i) the probability function
P ∈ (HU,X :→ Q≥0) ∩ P , and (ii) the coder C ∈ coders(HU,X). The func-
tion can be viewed as (i) a measure of the structure of the histories of the
probability function, P , with respect to a fixed coder, C, or (ii) a measure of
the compression, or canonical-entropic relative space, of the coder, C, given
a probability function, P .

In the first case, probability functions may be compared by structure given
the partition minimum space specialising derived history coder,

CP,m,G,T,H =

coderHistoryDerivedGeneric(U,X,CT,P, Zm(CT,P, CG,V,T,H), CG,V,T,H, DS, DX)

The speciality is the degree of structure of probability function P with respect
to the partition minimum space specialising derived history coder. Define
speciality(U,X) ∈ (HU,X :→ Q≥0) ∩ P → Q ln Q>0/ ln Q>0 as

speciality(U,X)(P ) := structure(U,X)(P,CP,m,G,T,H)

1136



For an example of comparison by structure, let P1, P2 ∈ (HU,X :→ Q≥0) ∩
P . Then P1 is more specially structured than P2 if speciality(U,X)(P1) >
speciality(U,X)(P2). Here the given coder, CP,m,G,T,H, has a simply defined
model space, requiring only that the partition be encoded. The minimum
search function, Zm(CT,P, CG,V,T,H), does a brute force search over the parti-
tion transforms, domain(CT,P) ⊂ TU,P, choosing the transform with the least
encoding space of the history, so the speciality structure is maximised with
respect to search function.

Similarly, the generality is the degree of structure of probability function
P with respect to the partition minimum space generalising derived history
coder. Define generality(U,X) ∈ (HU,X :→ Q≥0) ∩P → Q ln Q>0/ ln Q>0 as

generality(U,X)(P ) := structure(U,X)(P,CP,m,H,T,G)

In the second case, coders may be compared by compression given the prob-
ability function, P . For example, let C1, C2 ∈ coders(HU,X). Then C1 is more
compressing than C2 if structure(U,X)(P,C1) > structure(U,X)(P,C2).

A probability function P can be characterised by the relative compression
of coders that differ only in model. The generic minimum space specialising
derived history coder is parameterised by model CM,

Cm,G,T,H(CM) =

coderHistoryDerivedGeneric(U,X,CM, Zm(CM, CG,V,T,H), CG,V,T,H, DS, DX)

Similarly, define (i) the generic minimum space specialising fud history coder
Cm,G,F,H(CM), (ii) the generic minimum space specialising decomposition his-
tory coder Cm,G,D,H(CM) and (iii) the generic minimum space specialising fud
decomposition history coder Cm,G,D,F,H(CM).

The relative redundant speciality of the probability function P is the rela-
tive compression between the multi-partition transform coder, CT,P∗ , and the
partition transform coder, CT,P,

structure(U,X)(P,Cm,G,T,H(CT,P∗))− structure(U,X)(P,Cm,G,T,H(CT,P))

The relative layered redundant speciality of the probability function P is the
relative compression between the unlimited partition fud coder, CF,U,P, and
the multi-partition transform coder, CT,P∗ ,

structure(U,X)(P,Cm,G,F,H(CF,U,P))− structure(U,X)(P,Cm,G,T,H(CT,P∗))
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The relative contingent speciality of the probability function P is the relative
compression between the unlimited partition transform decomposition coder,
CD,U,P, and the partition transform coder, CT,P,

structure(U,X)(P,Cm,G,D,H(CD,U,P))− structure(U,X)(P,Cm,G,T,H(CT,P))

The relative layered redundant contingent speciality of the probability function
P is the relative compression between the unlimited partition fud decompo-
sition coder, CD,F,U,P, and the unlimited partition transform decomposition
coder, CD,U,P,

structure(U,X)(P,Cm,G,D,F,H(CD,F,U,P))−structure(U,X)(P,Cm,G,D,H(CD,U,P))

Note that, while the partition transform coder, CT,P, is straightforwardly im-
plemented by encoding the partition TP in space spacePartition(U)(TP) :=
ln bell(v), where v = |V C| and V = und(T ), the other model coders re-
quire the encoding of the structure in lists and trees, and so there are
various implementations. This includes the multi-partition transform coder,
CT,P∗ , which is implemented by encoding the exploded contracted transform,
explode(T%) ∈ FU,P in a partition fud coder such as the unlimited partition
fud coder, CF,U,P.

A probability function P can also be characterised by the relative compres-
sion of coders that differ only in derived substrate history coder. The generic
partition minimum space history coder is parameterised by substrate history
coder CV,

CP,m(CV) =

coderHistoryDerivedGeneric(U,X,CT,P, Zm(CT,P, CV), CV, DS, DX)

The midity of the probability function P is the difference in compression be-
tween (a) the sum of (i) the index derived substrate history coder CH,V,T,H,
and (ii) the classification derived substrate history coder CG,V,T,G, and (b)
the sum of (iii) the specialising derived substrate history coder CG,V,T,H,
and (iv) the generalising derived substrate history coder CH,V,T,G. Define
midity(U,X) ∈ (HU,X :→ Q≥0) ∩ P → Q ln Q>0/ ln Q>0 as

midity(U,X)(P ) :=(
structure(U,X)(P,CP,m(CH,V,T,H)) + structure(U,X)(P,CP,m(CG,V,T,G))

)
−

(
structure(U,X)(P,CP,m(CG,V,T,H)) + structure(U,X)(P,CP,m(CH,V,T,G))

)
=

(
structure(U,X)(P,CP,m(CH,V,T,H)) + structure(U,X)(P,CP,m(CG,V,T,G))

)
−

(
speciality(U,X)(P ) + generality(U,X)(P )

)
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Consider a history probability function which is defined in terms of a his-
torical distribution, Qh. The historical distribution is defined for sample
histogram A of size z drawn from distribution histogram E as

Qh(E, z)(A) =
∏
S∈AS

(
ES
AS

)
=
∏
S∈AS

ES!

AS! (ES − AS)!
∈ N>0

The historical probability distribution is normalised,

Q̂h(E, z)(A) = Qh(E, z)(A)/
(
zE
z

)
where zE = size(E).

Let HE ⊆ HU,X be a distribution history and E be its distribution histogram,
E = histogram(HE). The distribution history, HE, has substrate VE equal to
the system variables, VE = vars(E) = vars(U). Its volume is vE = |V C

E |. Its
domain is the entire set of event identifiers, ids(HE) = X, so that the distri-
bution history is a left total function, HE ∈ X :→ V CS

E , and its size zE equals
the cardinality of the event identifiers, zE = size(E) = |X|. The historically
distributed history probability function PU,X,HE

∈ (HU,X :→ Q≥0) ∩ P is
defined

PU,X,HE
:= {(H, 1/(zE2vE

(
zE
zH

)
)) : H ∈ HU,X , H ⊆ HE%VH , H 6= ∅} ∪

{(H, 0) : H ∈ HU,X , H * HE%VH} ∪ {(∅, 0)}

where VH = vars(H) and zH = |H|. The historically distributed history
probability, PU,X,HE

(H), is independent of the event identifiers, ids(H) ⊆ X,
because the probability depends only on the history size, zH . The historically
distributed history probability function, PU,X,HE

, is uniform with respect to
the substrate subset of the system variables, VH ⊆ VE, and the draw size,
zH ≤ zE. That is,

PU,X,HE
= {(H, 1/

(
zE
z

)
) : V ⊆ VE, z ∈ {1 . . . zE}, H ⊆ HE%V, |H| = z}∧ ∪

{(H, 0) : H ∈ HU,X , H * HE%VH} ∪ {(∅, 0)}

where Ŷ = (Y )∧ = normalise(Y ). Or

∀V ⊆ VE ∀z ∈ {1 . . . zE}
(
∑

(PU,X,HE
(H) : H ∈ HU,X , VH = V, |H| = z) = 1/(zE2vE))

The historically distributed history probability function, PU,X,HE
, is the prob-

ability function of the first drawn history H ⊆ HE%VH of arbitrary variables
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VH ⊆ VE and size zH ∈ {1 . . . zE} from distribution history HE ⊆ HU,X .

Now for arbitrary drawn history H ⊆ HE%VH , the historical probability
of drawing without replacement its histogram AH = histogram(H) from the
distribution histogram, E = histogram(HE), is the expected historically dis-
tributed history probability of the histogram, AH , times the normalising factor,

Q̂h(E%VH , zH)(AH) = zE2vE
∑

(PU,X,HE
(G) : G ∈ HU,X , AG = AH)

The set of sized cardinal substrate histograms Az, defined above in section
‘Distinct geometry sized cardinal substrate histograms’, is the set of complete
integral cardinal substrate histograms of size z and dimension less than or
equal to the size such that the independent is completely effective

Az = {A : A ∈ Ac ∩ Ai, size(A) = z, |VA| ≤ z, AU = AXF = AC}

Each substrate histogram A ∈ Az has |VA|!
∏

w∈VA |UA(w)|! cardinal substrate
permutations. These frame mappings partition the substrate histograms into
equivalence classes having the same geometry. Let Pz be the partition, Pz ∈
B(Az), such that the components of Pz are the equivalence classes by cardi-
nal substrate permutation, ∀C ∈ Pz ∀A ∈ C (|C| = |VA|!

∏
w∈VA |UA(w)|).

Each of the substrate histograms in a component of Pz, that are equivalent
by cardinal substrate permutation, have the same entropy, ∀C ∈ Pz ∀A,B ∈
C (entropy(A) = entropy(B)).

The expected function of the renormalised geometry-weighted probability func-
tion, R̂z, that operates on real-valued functions of the sized cardinal sub-
strate histograms, Az → R, is defined ex(z)(F ) := expected(R̂z)(F ) where
R̂z = normalise({(A, 1/(|VA|!

∏
w∈VA |UA(w)|!)) : A ∈ dom(F )}).

The set of non-trivially ideal sized cardinal substrate histograms Az,† is a
subset defined

Az,† = {A : A ∈ Az, z > |V C
A |,

∃T ∈ TUA,VA (TP /∈ {V CS{}
A , {V CS

A }} ∧ A = A ∗ T ∗ T †A)}

where VA = vars(A) and UA = implied(A). Each non-trivially ideal histogram
A ∈ Az,† has an ideal transform such that the transform’s partition is neither

(i) the self partition, V
CS{}
A , nor (ii) the unary partition, {V CS

A }. Thus (i)
the partition cannot be a reframe, and (ii) the histogram is not necessarily
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independent. The size is constrained to be greater than the volume, z >
v, so at least one component of the partition has a size greater than one,
∃(·, C) ∈ T−1 (size(A ∗ C) > 1). Therefore a trimmed non-trivially ideal
histogram cannot be the histogram of a unit history H /∈ HU,X,U where
A = histogram(H) ∈ trim(Az,†).

The historically distributed history probability function PU,X,HE
∈ (HU,X :→

Q≥0) ∩ P is a function only of the distribution histogram E if (i) the sys-
tem is the implied system, U = implied(E), (ii) the distribution history
is constructed from the distribution histogram, HE = history(E), and (iii)
the set of event identifiers is the domain of the constructed history, X =
ids(HE) ∈ S × N>0. So the degree of structure of the historically non-
trivially ideal distributed history probability function with respect to the
partition minimum space specialising derived history coder is the speciality,
speciality(U,X)(PU,X,HE

) where E ∈ trim(AzE ,†).

Conjecture that the expected geometry-permutation-weighted speciality varies
with distribution history size

ex(zE)({(E ′, speciality(UE, XE)(PU,X,HE
)) : E ′ ∈ AzE ,†, E = trim(E ′)}) ∼ zE

where UE = implied(E) and XE = ids(history(E)).

That is, conjecture that as the size of the non-trivially ideal distribution his-
togram, E, increases, the corresponding historically distributed history prob-
ability function, PU,X,HE

, tends to have increasing degree of structure with
respect to the specialising coder, CP,m,G,T,H.

A.13 Computers

The set of computers, computers, is a type class that formalises compu-
tation time and representation space. Define the application of a computer,
apply ∈ computers → (X → Y), where X and Y are universal sets. Define
the domain of the application of a computer, domain ∈ computers→ P(X ),
and the range of the application of a computer, range ∈ computers→ P(Y),
such that

∀I ∈ computers (apply(I) ∈ domain(I)→ range(I))

and

∀I ∈ computers (dom(apply(I)) = domain(I))
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Define the shorthand I∗ := apply(I). The definition here of the application
is left total, but not necessarily right total, so the application of a subsequent
computer, J∗(I∗(x)), requires the domain of J to be a superset of the range
of I, domain(J) ⊇ range(I). In the cases where the range of I is a subset of
its own domain, range(I) ⊆ domain(I), the computer I may be applied to
itself recursively, I∗ ◦ I∗, I∗ ◦ I∗ ◦ I∗, and so on.

An inverse computer J ∈ computer of a computer I is such that domain(J) =
range(I), range(J) = domain(I) and ∀x ∈ domain(I) (J∗(I∗(x)) = x). Note
that if an inverse computer J exists, the computer I must be right total.

The computation or application time is defined as time ∈ computers →
(X → N>0). Define the shorthand It := time(I). If the time of some given
argument x is finite, It(x) <∞, then x is computable.

Note that the range is available to the compute time calculation via apply.
If it is necessary to perform the application in order to calculate the compu-
tation time then the computation is non-deterministic and the time of the
time calculation itself must be greater than the application time. For exam-
ple, let I, J ∈ computers, domain(J) = {I} × domain(I), range(J) = N>0

and ∀x ∈ domain(I) (apply(J)((I, x)) = time(I)(x)). Let I and J be such
that time(J) depends on apply(I), then ∀x ∈ domain(I) (time(J)((I, x)) >
time(I)(x)).

The representation space is defined as space ∈ computers→ (X → ln N>0).
Define the shorthand Is := space(I). If the space of some given argument x
is finite, Is(x) <∞, then x is representable.

A computer is tractable if both the time complexity and the space complexity
is no worse than polynomial with respect to any underlying variable.

A possible definition of a computer could be in terms of a Turing Machine.
For example, the tuple (in, out, step, term) of (i) an input function, in ∈ X →
N, (ii) an output function, out ∈ N→ X , (iii) a transition function, step ∈
N→ N, and (iv) a set of terminating states, term ⊂ N. Let L ∈ L(N) \ {∅}
be the list of the states such that L1 = in(x), ∀i ∈ {1 . . . t− 1} (Li /∈ term ∧
Li+1 = step(Li)) and Lt ∈ term where t = |L|. Then I∗(x) = out(Lt) and the
time to compute x is the number of states in the sequence, It(x) = t. The
time cannot be zero, because the conversion from and to the representation,
N, is treated as a step. The space to represent x is ln(maxr(L) + 1). The
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space is zero if L = {(1, 0)}.

Define I+ = adder ∈ computers such that domain(I+) = Q × Q and
range(I+) = Q, such that

∀(a, b) ∈ domain(I+) (apply(I+)((a, b)) = a+ b)

The adder is also constrained such that the self addition of zero has least
time, ∀q1, q2 ∈ domain(I+) (It

+((q1, q2)) ≥ It
+((0, 0)).

Define I× = multiplier ∈ computers such that domain(I×) = Q × Q and
range(I×) = Q, such that

∀(a, b) ∈ domain(I×) (apply(I×)((a, b)) = ab)

The multiplier is also constrained such that the self multiplication of one has
least time, ∀q1, q2 ∈ domain(I×) (It

×((q1, q2)) ≥ It
×((1, 1)).

Define I0 = resetter ∈ computers such that domain(I0) = range(I0) = Q,
such that

∀a ∈ domain(I0) (apply(I0)(a) = 0)

Define IL,s = listSetter(X) ∈ computers such that domain(IL,s) = {(L, (i, x)) :
L ∈ L(X), i ∈ {1 . . . |L|}, x ∈ X}, range(IL,s) = L(X), such that

∀(L, (i, x)) ∈ domain(IL,s) (apply(IL,s)((L, (i, x))) = L \ {(i, Li)} ∪ {(i, x)})

Define IL,g = listGetter(X) ∈ computers such that domain(IL,g) = {(L, i) :
L ∈ L(X), i ∈ {1 . . . |L|}}, range(IL,g) = X, such that

∀(L, i) ∈ domain(IL,g) (apply(IL,g)((L, i)) = Li)

The time complexity of the list get and set operations is constant

∃m ∈ N>0 (It
L,s ∈ O(domain(IL,s)× {1},m))

and
∃m ∈ N>0 (It

L,g ∈ O(domain(IL,g)× {1},m))

The space complexity of the list get and set operations varies as the length
of the list, assuming the space of the elements of the list is constant

∃m ∈ N>0 (Is
L,s ∈ O({((L, (i, x)), n) : (L, (i, x)) ∈ domain(IL,s), n = |L|},m))

and

∃m ∈ N>0 (Is
L,g ∈ O(({((L, i), n)) : (L, i) ∈ domain(IL,g), n = |L|},m))
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Define IB,s = mapBinarySetter(X) ∈ computers such that domain(IB,s) =
{(B, (i, x)) : B ∈ B(X), i ∈ domain(B), x ∈ X}, range(IB,s) = B(X), such
that

∀(B, (i, x)) ∈ domain(IB,s) ((i, x) ∈ function(apply(IB,s)((B, (i, x)))))

Define IB,g = mapBinaryGetter(X) ∈ computers such that domain(IB,g) =
{(B, i) : B ∈ B(X), i ∈ domain(B)}, range(IB,g) = X, such that

∀(B, i) ∈ domain(IB,g) (apply(IB,g)((B, i)) = find(B, i))

The time complexity of the binary map accessors is that of the find operation
which is lnn where n = |function(B)|

∃m ∈ N>0

(It
B,s ∈ O({((B, (i, x)), lnn) : (B, (i, x)) ∈ domain(IB,s), n = |f(B)|},m))

and

∃m ∈ N>0

(It
B,g ∈ O({((B, i), lnn) : (B, i) ∈ domain(IB,g), n = |f(B)|},m))

where f = function.

The space complexity of the binary map accessors is n lnn where n =
|function(B)|

∃m ∈ N>0

(It
B,s ∈ O({((B, (i, x)), n lnn) : (B, (i, x)) ∈ domain(IB,s), n = |f(B)|},m))

and

∃m ∈ N>0

(It
B,g ∈ O({((B, i), n lnn) : (B, i) ∈ domain(IB,g), n = |f(B)|},m))

Set operations on a domain X ⊂ X can be implemented in a binary map
given some coder C ∈ coders such that domain(C) = X. For example, define
IB,S,i = setBinaryInserter(C) ∈ computers such that range(IB,S,i) = {B : B ∈
B(X), flip(function(B)) ⊆ E} and domain(IB,S,i) = range(IB,S,i)×X where
(E, ·, ·) = def(C)

∀(B, x) ∈ domain(IB,S,i) ((Ex, x) ∈ function(apply(IB,S,i)((B, x))))
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Again, the time complexity is that of the find function, lnn, assuming that
the encode opertion has constant time complexity. The space complexity is
also that of the binary map accessors, n lnn.

Given a coder C ∈ coders such that domain(C) = X nested in coder C ′ ∈
coders having a domain which is the powerset, domain(C ′) = P(X), the pow-
ersetter can be defined IB,S,P = setBinaryPowersetter(C ′, C) ∈ computers
such that domain(IB,S,P) = {B : B ∈ B(X), flip(function(B)) ⊆ E} and
range(IB,S,P) = {B : B ∈ B(X), flip(function(B)) ⊆ E ′} where (E, ·, ·) =
def(C) and (E ′, ·, ·) = def(C ′)

∀B ∈ domain(IB,S,P)

(
⋃
{range(Q) : Q ∈ range(apply(IB,S,P)(B))} = P(range(B)))

In other words, the application I∗B,S,P(B) on a binary set B of set Y ⊆ X,
range(B) = Y , is equivalent to computing P(Y ). Implementation of the pow-
ersetter can be done by folding over the given binary set with the current
accumulated powerset, creating a singleton and adding the current element
to each of the sets in the current powerset. The list of cardinalities of the
powersets is such that Li+1 = 2Li + 1 where L ∈ L(N). Thus sum(L) < n2n

where n = |L| = |Y |. The time complexity of the powersetter is n2n lnn.

Similarly, given C ′′ ∈ coders having a domain which is the powerset of the
powerset, domain(C ′′) = P(P(X)), the partitioner can be defined IB,S,B =
setBinaryPartitioner(C ′′, C ′, C) ∈ computers which is such that the applica-
tion I∗B,S,B(B) on a binary set B of set Y ⊆ X, range(B) = Y , is equivalent to
computing B(Y ). Implementation of the partitioner can be done by folding
over the given binary set with the current accumulated set of partitions. The
list of cardinalities of the sets of partitions is such that Li+1 = (i+1)Li where
L ∈ L(N). Thus sum(L) < nn! where n = |L| = |Y |. The time complexity
of the partitioner is nn! lnn.

Contrast the computation of the natural number binary map setter to the
poset binary map setter. Define IB,P,s = mapBinaryPosetSetter(I±, Y,X) ∈
computers such that

domain(IB,P,s) = {(B, (y, x)) : B ∈ mapBinaryPosets(Y,X), y ∈ Y, x ∈ X}

and range(IB,P,s) = mapBinaryPosets(Y,X), such that

∀(B, (y, x)) ∈ domain(IB,P,s) ((y, x) ∈ function(apply(IB,P,s)((B, (y, x)))))
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The find computation of the poset binary map setter is implemented with a
nested computer, comparator I± ∈ computers, which is such that domain(I±) =
Y ×Y , range(I±) = {−1, 0, 1}, and ∀y1, y2 ∈ Y ((y1 < y2 =⇒ I∗±((y1, y2)) =
−1) ∧ (y1 = y2 =⇒ I∗±((y1, y2)) = 0) ∧ (y1 > y2 =⇒ I∗±((y1, y2)) = 1)).

Define IB,P,g = mapBinaryPosetGetter(I±, Y,X) ∈ computers such that
domain(IB,P,g) = {(B, y) : B ∈ mapBinaryPosets(Y,X), y ∈ domain(B)},
range(IB,P,g) = X, such that

∀(B, y) ∈ domain(IB,P,g) (apply(IB,P,g)((B, y)) = find(B, y))

The time of the poset binary map getter is at least that of the time of
the self comparison in the comparator of the given index, It

B,P,g((B, y)) >
It
±((y, y)). If it is the case that self comparison has the greatest time,
∀(y1, y2) ∈ Y (It

±((y1, y1)) ≥ It
±((y1, y2))), then the time complexity of the

poset binary map accessors is that of the find operation, which is lnn where
n = |function(B)|, times the self comparison time of the comparator

∃m ∈ N>0 (It
B,P,s ∈ O({((B, (y, x)), It

±((y, y))× lnn) :

(B, (y, x)) ∈ domain(IB,P,s), n = |function(B)|},m))

and

∃m ∈ N>0 (It
B,P,g ∈ O({((B, y), It

±((y, y))× lnn) :

(B, y) ∈ domain(IB,P,g), n = |function(B)|},m))

A.14 Search and optimisation

Searchers, searchers(X ), encapsulate partial or complete traversal of some
search set by neighbourhood. There are two sub-types of searcher, (i) tree
searchers

searchTreers(X ) ⊂ searchers(X )

and (ii) list searchers

searchListers(X ) ⊂ searchers(X )

Both types have (i) some set X ⊂ X to search, (ii) an initial subset of the
search set R ⊆ X, and (iii) a total neighbourhood function on the search set.
Tree searchers have a total neighbourhood function having a domain equal
to the search set and a range of subsets of the search set, N ∈ X :→ P(X)
where dom(N) = X. List searchers have a neighbourhood function having
a domain equal to the powerset of the search set and a range of subsets of
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the search set, P ∈ P(X) :→ P(X) where dom(P ) = P(X). Define the
constructor of a tree searcher as

searchTreer ∈
P(X )× (X → P(X ))× P(X )→ searchTreers(X )

such that searchTreer(X,N,R) ∈ searchTreers(X) ⊂ searchers(X).

Define the constructor of a list searcher as

searchLister ∈
P(X )× (P(X )→ P(X ))× P(X )→ searchListers(X )

such that searchLister(X,P,R) ∈ searchListers(X) ⊂ searchers(X).

Given a tree searcher Z = searchTreer(X,N,R) the function tree returns
a tree of elements of the search set, tree(Z) ∈ trees(X), of all possible non-
circular partial or complete traverses of X from R via successive neighbouring
elements of X. Define

tree ∈ searchTreers(X )→ trees(X )

as tree(Z) := ts(R, ∅) where searchTreer(X,N,R) = Z and ts ∈ P(X ) ×
P(X )→ trees(X ) is defined

ts(Y, J) := {(y, ts(N(y) \ (J ∪ {y}), J ∪ {y})) : y ∈ Y }

Define elements ∈ searchTreers(X )→ P(X ) as

elements(Z) := elements(tree(Z))

The elements of the search tree T = tree(Z) form a subset of the search
set, elements(Z) = elements(T ) ⊆ X. If the elements equals the search
set, elements(Z) = X, then the search is said to be a complete traversal.
Otherwise the search is a partial traversal, elements(Z) 6= X. The roots of
the search tree equal the initial subset, roots(T ) = R. If the search set, X,
is finite then the neighbourhood function, N , and the initial subset, R, are
finite, and hence the search tree is finite, |leaves(T )| < ∞, depth(T ) < ∞
and |elements(T )| <∞.

The paths of the trees exclude circularities and thus contain each element
no more than once, ∀L ∈ paths(T ) (|set(L)| = |L|). The first element of
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each path is in the subset R, ∀L ∈ paths(T ) (L1 ∈ R). The successive ele-
ment of each element in a path must be in the neighbourhood of the element
excluding the elements of the path up to that point, ∀L ∈ paths(T ) ∀i ∈
{1 . . . |L| − 1} (Li+1 ∈ N(Li) \ set(L{1...i})).

In the case where the tree neighbourhood function returns X for all ele-
ments and the initial set is X, Z = searchTreer(X,X × {X}, X), then the
paths of the search form the set of all permutations, |paths(tree(Z))| = |X|!.
In the case where the neighbourhood function returns the empty set, Z =
searchTreer(X,X × {∅}, X), then the search tree nodes equals the roots,
tree(Z) = X×{∅}, and the cardinality of the paths equals that of the initial
set, |paths(tree(Z))| = |X|.

An example of a tree neighbourhood function returns decremented cardi-
nality parent partitions given a partition of some set J , X = B(J), and N =
{(Q, {P : P ∈ X, parent(P,Q), |P | = |Q| − 1}) : Q ∈ X} ∈ X :→ P(X).

Given a list searcher Z = searchLister(X,P,R) the function list returns a
list of subsets of the search set, list(Z) ∈ L(P(X)). The list, list(Z), is a non-
circular partial or complete traverse of X from R via successive neighbouring
subsets of X. Define

list ∈ searchListers(X )→ L(P(X))

as list(Z) := list(ls(R, ∅)) where searchLister(X,P,R) = Z and ls ∈ P(X )×
P(X )→ K(P(X )) is defined

ls(Y,K) := (Y, ls(P (Y ) \ (K ∪ Y ), K ∪ Y ))

ls(∅, ·) := ∅

Define elements ∈ searchListers(X )→ P(X ) as

elements(Z) :=
⋃

set(list(Z))

The elements of the search list L = list(Z) form a subset of the search
set, elements(Z) =

⋃
set(L) ⊆ X. If the elements equals the search set,

elements(Z) = X, then the search is said to be a complete traversal. Other-
wise the search is a partial traversal, elements(Z) 6= X. The first element of
the list is the initial subset, L1 = R. If the search set, X, is finite then the
neighbourhood function, P , and the initial subset, R, are finite, and hence
the search list is finite, |L| <∞ and |set(L)| <∞.
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The list excludes circularities and thus contains each element no more than
once, ∀i ∈ {1 . . . |L| − 1} (

⋃
set(L{1...i}) ∩ Li+1 = ∅).

In the case where the initial set is X, Z = searchLister(X,P,X), then the list
is a singleton, list(Z) = {(1, X)}, whatever the neighbourhood function, P .
In the case where the list neighbourhood function returns X for all subsets
of the search set, Z = searchLister(X,P(X)× {X}, R), and the initial set is
a proper subset of the search set, R 6= X, then the list has a length of two,
list(Z) = {(1, R), (2, X \R)}. In the case where the neighbourhood function
returns the empty set, Z = searchLister(X,P(X) × {∅}, R), then the list is
a singleton, list(Z) = {(1, R)}.

The set of optimisers optimisers(X ) is a subset of searchers,

optimisers(X ) ⊂ searchers(X )

which constrain the application of the neighbourhood function by post-applying
an inclusion function. On a search set X the inclusion function I ∈ P(X) :→
P(X) returns a subset of the argument, ∀Y ⊆ X (I(Y ) ⊆ Y ). Given
an extensive tree neighbourhood function N ∈ X :→ P(X) the appli-
cation of the inclusion function results in a new neighbourhood function
M = {(x, I(N(x))) : x ∈ X} ∈ X :→ P(X), so that ∀x ∈ X (M(x) ⊆ N(x)).
Given an extensive list neighbourhood function P ∈ P(X) :→ P(X) the ap-
plication of the inclusion function results in a new neighbourhood function
Q = {(Y, I(P (Y ))) : Y ⊆ X} ∈ P(X) :→ P(X), so that ∀Y ⊆ X (Q(Y ) ⊆
P (Y )).

Consider two sub-types of optimisers, (i) tree optimisers

optimiseTreer(X ) ⊂ optimisers(X )

and (ii) list optimisers

optimiseListers(X ) ⊂ optimisers(X )

Define the constructor of a tree optimiser

optimiseTreer ∈
P(X )× (X → P(X ))× (P(X )→ P(X ))× P(X )→ optimiseTreers(X )

such that optimiseTreer(X,N, I, R) ∈ optimiseTreers(X) ⊂ optimisers(X).
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Define the constructor of a list optimiser

optimiseLister ∈
P(X )× (P(X )→ P(X ))× (P(X )→ P(X ))× P(X )→ optimiseListers(X )

such that optimiseLister(X,P, I, R) ∈ optimiseListers(X) ⊂ optimisers(X).

Re-define the tree optimiser tree function

tree ∈ optimiseTreers(X )→ trees(X )

as tree(Z) := tree(searchTreer(X,M, I(R))) where optimiseTreer(X,N, I, R) =
Z and M = {(x, I(N(x))) : x ∈ X}.

Re-define the list optimiser list function

list ∈ optimiseListers(X )→ L(P(X))

as list(Z) := list(searchLister(X,Q, I(R))) where optimiseLister(X,P, I, R) =
Z and Q = {(Y, I(P (Y ))) : Y ⊆ X}.

Define the tree optimiser searched set as the union of the extensive neigh-
bourhoods searched ∈ optimiseTreers(X )→ P(X ) as

searched(Z) :=
⋃
{N(x) : x ∈ elements(Z)} ∪R

Define the list optimiser searched set as the union of the extensive neigh-
bourhoods searched ∈ optimiseListers(X )→ P(X ) as

searched(Z) :=
⋃
{P (Y ) : Y ∈ set(list(Z))} ∪R

Define the traversable set as the elements of the search of the extensive
neighbourhoods traversable ∈ optimiseTreers(X )→ P(X ) as

traversable(Z) := elements(searchTreer(X,N,R))

and traversable ∈ optimiseListers(X )→ P(X ) as

traversable(Z) := elements(searchLister(X,P,R))

An optimiser is potentially traversable if traversable(Z) = X.

Thus, for all Z ∈ optimisers(X)

I(elements(Z)) ⊆ elements(Z) ⊆ searched(Z) ⊆ traversable(Z) ⊆ X
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Consider a variation in which the optimisers do not apply the inclusion
function to the initial set. Consider two sub-types of optimisers, (i) tree tail
optimisers

optimiseTailTreers(X ) ⊂ optimisers(X )

and (ii) list tail optimisers

optimiseTailListers(X ) ⊂ optimisers(X )

Define the constructor of a tree tail optimiser

optimiseTailTreer ∈
P(X )× (X → P(X ))× (P(X )→ P(X ))× P(X )→ optimiseTailTreers(X )

Define the constructor of a list tail optimiser

optimiseTailLister ∈
P(X )× (P(X )→ P(X ))× (P(X )→ P(X ))× P(X )→ optimiseTailListers(X )

Re-define the tree tail optimiser tree function

tree ∈ optimiseTailTreers(X )→ trees(X )

as tree(Z) := tree(searchTreer(X,M,R)) where optimiseTailTreer(X,N, I, R) =
Z and M = {(x, I(N(x))) : x ∈ X}.

Re-define the list tail optimiser list function

list ∈ optimiseTailListers(X )→ L(P(X))

as list(Z) := list(searchLister(X,Q,R)) where optimiseTailLister(X,P, I, R) =
Z and Q = {(Y, I(P (Y ))) : Y ⊆ X}.

Consider the optimisation of some real-valued total function on the search
set F ∈ X :→ R. In particular, consider the maximisation inclusion func-
tion, I = {(Y,maxd({(y, F (y)) : y ∈ Y })) : Y ⊆ X}, applied to some
tree neighbourhood function N ∈ X :→ P(X). The true maximum value
is maxr({(y, F (y)) : y ∈ dom(F )}) and the optimised maximum value from
initial set R of optimiser Z = optimiseTreer(X,N, I, R) is maxr({(y, F (y)) :
y ∈ elements(Z)}).

Computationally it is inefficient to apply the function F to each element
of the searched neighbourhoods, searched(Z), and then to re-apply it to the
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maximum subsets of these, elements(Z). If the function F is the search set
rather than X then the values, ran(F ), are carried around in the search tree.
Let Z ′ = optimiseTreer(F,N ′,max, R′) where N ′ := {((x, r), {(y, F (y)) : y ∈
N(x)}) : (x, r) ∈ F} = {((x, r), filter(N(x), F )) : (x, r) ∈ F} ∈ F → P(F )
and R′ = filter(R,F ) ⊆ F . The application of function F need only be done
once for the set dom(searched(Z ′)). The true maximum value is maxr(F )
and the optimised maximum value is maxr(elements(Z ′)).

The maximisers maximisers(X ) is a subset of the optimisers,

maximisers(X ) ⊂ optimisers(X ×R)

which constrain the search set to real-valued functions.

Consider two sub-types of maximisers, (i) tree maximisers

maximiseTreers(X ) ⊂ maximisers(X )

and (ii) list maximisers

maximiseListers(X ) ⊂ maximisers(X )

Define the constructor of a tree maximiser

maximiseTreer ∈
(X → R)× ((X ×R)→ (X → R))× ((X → R)→ (X → R))× (X → R)→

maximiseTreers(X )

such that maximiseTreer(X,N, I, R) = optimiseTreer(X,N, I, R).

Define the constructor of a list maximiser

maximiseLister ∈
(X → R)× ((X → R)→ (X → R))× ((X → R)→ (X → R))× (X → R)→

maximiseListers(X )

such that maximiseLister(X,P, I, R) = optimiseLister(X,P, I, R).

Consider two sub-types of maximisers, (i) tree tail maximisers

maximiseTailTreers(X ) ⊂ maximisers(X )

and (ii) list tail maximisers

maximiseTailListers(X ) ⊂ maximisers(X )
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Define the constructor of a tree tail maximiser

maximiseTailTreer ∈
(X → R)× ((X ×R)→ (X → R))× ((X → R)→ (X → R))× (X → R)→

maximiseTailTreers(X )

such that maximiseTailTreer(X,N, I, R) = optimiseTailTreer(X,N, I, R).

Define the constructor of a list tail maximiser

maximiseTailLister ∈
(X → R)× ((X → R)→ (X → R))× ((X → R)→ (X → R))× (X → R)→

maximiseTailListers(X )

such that maximiseTailLister(X,P, I, R) = optimiseTailLister(X,P, I, R).

Define the constructor of a single maximiser which is a special case of a
list maximiser with an empty neighbourhood function

maximiseSingler ∈
(X → R)× ((X → R)→ (X → R))× (X → R)→

maximiseListers(X )

such that maximiseSingler(X, I,R) = optimiseLister(X,P(X)× {∅}, I, R).

Note that although the maximiser functions are defined in terms of the max
aggregation function below, the inclusion function need not be equal to the
max function. For example, I = top(n). The inclusion function could also
terminate a search by returning the empty set.

The true value is the maximum value of the search set. Define true ∈
maximisers(X )→ R as

true(Z) := maxr(X)

where maximiseTreer(X,N, I, R) = Z or maximiseLister(X,P, I, R) = Z.

The optimum is the maximum value of the elements. Define optimum ∈
maximisers(X )→ R as

optimum(Z) := maxr(elements(Z))
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The optimum value is not necessarily a leaf value in the case of tree max-
imisers, maxr(leaves(tree(Z))) ≤ optimum(Z). Nor is the optimum value
necessarily in the last element in the case of list maximisers, maxr(L|L|) ≤
optimum(Z) where L = list(Z).

The error value is the difference between the true value and the optimum
value. Define error ∈ maximisers(X )→ R

error(Z) := true(Z)− optimum(Z)

The arbitrary value is the expected maximum of arbitrarily chosen subsets
of the search set, Y ⊆ X, having cardinality equal to that of the searched
set, |Y | = |searched(Z)|. Define arbitrary ∈ maximisers(X )→ R as

arbitrary(Z) := average({(Y,maxr(Y )) : Y ⊆ X, |Y | = |searched(Z)|})

The difference between the optimum value and the arbitrary value is the
gain. Define gain ∈ maximisers(X )→ R as

gain(Z) := optimum(Z)− arbitrary(Z)

Note that the gain value is not necessarily positive. If the gain is zero then
the maximiser is equivalent to a brute force search. The gain rate is the gain
per cardinality of the searched set. Define rate ∈ maximisers(X )→ R as

rate(Z) := gain(Z)/|searched(Z)|

The rate is undefined if the search set is empty, searched(Z) = ∅.

The gain may be conjectured to depend on several factors. First, the gain
is conjectured to increase with the difference between (i) the expected max-
imum of a neighbourhood and (ii) the expected maximum of an arbitrarily
chosen neighbourhood. For tree maximisers that is

average({(x,maxr(N(x))) : x ∈ X})−
average({(x, average({(Y,maxr(Y )) : Y ⊆ X, |Y | = |N(x)|})) : x ∈ X})

where maximiseTreer(X,N, I, R) = Z. Secondly, the optimisation gain is
conjectured to increase with the difference between (i) the expected maxi-
mum of a neighbourhood per cardinality of the neighborhood and (ii) the
expected maximum of an arbitrarily chosen neighbourhood per cardinality

average({(x,maxr(N(x))/|N(x)|) : x ∈ X})−
average({(x, average({(Y,maxr(Y )/|Y |) : Y ⊆ X, |Y | = |N(x)|})) : x ∈ X})
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Conjecture that smaller neighbourhoods require longer paths and deeper
trees, and therefore more elements to traverse the searched set, searched(Z).
Similarly for list maximisers smaller neighbourhoods require a longer list,
and therefore more elements to traverse the searched set.

Thirdly, the gain is conjectured to increase with the cardinality of the initial
set, |R|. Larger initial sets allow more paths to be searched in a tree max-
imiser or larger subsets of the search set in a list maximiser, increasing the
cardinality of the searched set, |searched(Z)|.

A.15 Likelihood functions and Fisher information

Let the m-parameter n-dimensional parameterised probability density func-
tions

ppdfs(m,n) ⊂ Rm → (Rn :→ R[0,1])

be such that for all P ∈ ppdfs(m,n) and for all θ ∈ dom(P ), the probability
density function, P (θ) ∈ Rn :→ R[0,1] is continuous and∫

X∈Rn

P (θ)(X) dX = 1

The corresponding set of n-dimensional m-parameter likelihood functions

lfs(n,m) ⊂ Rn :→ (Rm → R[0,1])

is such that for all L ∈ lfs(n,m) and for all X ∈ Rn, the likelihood function,
L(X) ∈ dom(L(X))→ R[0,1] is continuous and

lfs(n,m) :=⋃{{
(X, {(θ, P (θ)(X)) : θ ∈ dom(P )}) : X ∈ Rn

}
: P ∈ ppdfs(m,n)

}
So the likelihood functions are such that ∀P ∈ ppdfs(m,n) ∀θ ∈ dom(P ) ∃L ∈
lfs(n,m) ∀X ∈ Rn (L(X)(θ) = P (θ)(X)).

Given a parameterised probability density function P ∈ ppdfs(m,n) and
its corresponding likelihood function L ∈ lfs(n,m), the maximum likelihood
estimate of the parameters θ̃ ∈ Rm, under certain regularity conditions, at
observation coordinate Xo ∈ Rn is the mode of the likelihood function,

{θ̃} = maxd(L(Xo))
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At θ̃ the gradient of the likelihood function is zero,

∀j ∈ {1 . . .m}(∂j(L(Xo))(θ̃) = 0)

where ∂j ∈ (L(R)→ R)→ (L(R)→ R) is defined ∂i(F ) := {(Z, ∂F (Z)/∂Zi) :
Z ∈ dom(F )} and F is a continuous function.

At θ̃ the curvature of the likelihood function is negative,

∀j ∈ {1 . . .m}(∂2
j (L(Xo))(θ̃) < 0)

so the set of modes of the likelihood function atX is a singleton, |maxd(L(Xo))| =
1.

The score of the j-th parameter at coordinate X ∈ Rn is the gradient of
the likelihood function per likelihood or probability density, which equals the
gradient of the log-likelihood,

{(θ, ∂j(L(X))(θ)

L(X)(θ)
) : θ ∈ dom(L(X))} = ∂j(ln ◦L(X))

which is undefined where L(X)(θ) = 0.

The expected value of the score is always zero,

∀θ ∈ dom(P ) ∀j ∈ {1 . . .m}∫
(∂j(ln ◦L(X))(θ)× P (θ)(X) dX : X ∈ Rn, P (θ)(X) > 0)

=

∫
(
∂j(L(X))(θ)

L(X)(θ)
× P (θ)(X) dX : X ∈ Rn, P (θ)(X) > 0)

=

∫
X∈Rn

∂j(L(X))(θ) dX

= ∂j({(θ′,
∫
X∈Rn

L(X)(θ′) dX) : θ′ ∈ dom(P )})(θ)

= ∂j({(θ′, 1) : θ′ ∈ dom(P )})(θ) = 0

That is, the expected first order sensitivity of the probability density function,
P , to the parameters is zero.

The Fisher information of the j-th parameter on the diagonal IP,j ∈ dom(P )→
R≥0 is defined as the second moment,

IP,j(θ) :=

∫
(∂j(ln ◦L(X))(θ))2 × P (θ)(X) dX : X ∈ Rn, P (θ)(X) > 0
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Under the regularity conditions, the Fisher information is always greater
than zero, IP,j(θ) > 0. Under certain further conditions the Fisher informa-
tion is the negative of the second derivative,

IP,j(θ) = −
∫
∂2
j (ln ◦L(X))(θ)× P (θ)(X) dX : X ∈ Rn, P (θ)(X) > 0

Given some observation coordinate Xo ∈ Rn the maximum likelihood esti-
mate is also the mode of log-likelihood function, {θ̃} = maxd(ln ◦L(Xo)) =
maxd(L(Xo)), because the natural logarithm function, ln, is monotonic,
∀j ∈ {1 . . .m}(∂j(ln ◦L(Xo))(θ̃) = 0). Thus the second derivative of the j-th
parameter at the maximum likelihood estimate, θ̃, is the curvature of the log-
likelihood function, ∂2

j (ln ◦L(Xo))(θ̃), which is negative under the conditions.

In the case where (i) the modal probability density parameterised by the
maximum likelihood estimate occurs at the observation coordinate, Xo ∈
maxd(P (θ̃)), and (ii) the sum negative curvature of the probability density
function at the maximum likelihood estimate, −

∑
i∈{1...n} ∂

2
i (P (θ̃))(Xo), is

high, the Fisher information of the j-th parameter at the maximum likeli-
hood estimate of the parameters, IP,j(θ̃), approximates to the negative curva-
ture of the log-likelihood at the maximum likelihood estimate times the modal
likelihood,

IP,j(θ̃) = −
∫
∂2
j (ln ◦L(X))(θ̃)× P (θ̃)(X) dX : X ∈ Rn, P (θ̃)(X) > 0

≈ − ∂2
j (ln ◦L(Xo))(θ̃)×maxr(P (θ̃))

= − ∂2
j (ln ◦L(Xo))(θ̃)× L(Xo)(θ̃)

Therefore the Fisher information for arbitrary probability density function
would be expected to vary with the log-likelihood, IP,j(θ̃) ∼ lnL(Xo)(θ̃).
That is, in some cases, the sensitivity of the probability density function to
parameter at the maximum likelihood estimate varies with the log-likelihood.

The modal probability density, P (θ̃)(Xo), varies with the sum negative cur-
vature of the probability density function, so the Fisher information varies
with the sum negative curvature,

IP,j(θ̃) ∼ −
∑

i∈{1...n}

∂2
i (P (θ̃))(Xo)

For those centrally organised probability density functions which have a def-
inition of variance var(n) ∈ (Rn :→ R)→ R, the variance varies against the
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sum negative curvature at the maximum likelihood estimate, so the Fisher
information would be expected to vary against the variance of the probability
density function, at least in the case of low variance,

IP,j(θ̃) ∼ − var(n)(P (θ̃))

That is, in some cases, the sensitivity of the probability density function to
parameter at the maximum likelihood estimate varies against the variance of
the probability density function.

The binomial distribution is the discrete probability function defined

bpmf ∈ N>0 → (Q(0,1) → ((N→ Q(0,1)) ∩ P))

bpmf(n) ∈ Q(0,1) → (({0 . . . n} :→ Q(0,1)) ∩ P)

bpmf(n)(p)(k) :=

(
n

k

)
pk(1− p)n−k ∈ Q(0,1)

The binomial distribution can be generalised to a parameterised probability
density function defined in terms of the unit-translated gamma function,
Γ!x = Γ(x+ 1),

bppdf ∈ N>0 → ppdfs(1, 1)

bppdf(n) ∈ R(0,1) → (R :→ R[0,1))

bppdf(n)(p)(k) :=
n!

Γ!k Γ!(n− k)
pk(1− p)n−k ∈ R(0,1)

where 0 ≤ k ≤ n and 0 < p < 1, otherwise if 0 < p < 1, bppdf(n)(p)(k) := 0,
otherwise bppdf(n)(p)(k) is undefined. Note that, strictly speaking, the bi-
nomial parameterised probability density function, bppdf(n)(p), is only con-
inuous in the limit as n tends to infinity.

The corresponding likelihood function blf(n) ∈ lfs(1, 1) is defined blf(n)(k)(p) :=
bppdf(n)(p)(k). The likelihood, blf(n)(k)(p), and log-likelihood, ln(blf(n)(k)(p)),
are defined if and only if 0 < p < 1.

Given observation coordinate ko ∈ R(0,n) the maximum likelihood estimate
for the parameter of the probability density function is p̃ = ko/n, where
{p̃} = maxd(blf(n)(ko)). The Fisher information of the parameter p ∈ R(0,1)

is

Ibppdf(n)(p) =
n

p(1− p)
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which is minimised where p = 0.5. That is, the Fisher information of the
maximum likelihood estimate of the parameter, Ibppdf(n)(p̃), is minimised if
ko = n/2, where blf(n)(n/2) is expected to be least sensitive to p̃. The Fisher
information of the maximum likelihood estimate varies against the variance,
np̃(1− p̃).

The multiple binomial parameterised probability density function mbppdf(n) ∈
ppdfs(v, v), where v ∈ N>0, is defined

mbppdf(n)(P ) :=

{(K,
∏

i∈{1...v}

n!

Γ!Ki Γ!(n−Ki)
PKi
i (1− Pi)n−Ki) : K ∈ Rv

[0,n]} ∪

(Rv \Rv
[0,n])× {0}

where n ∈ N>0 and P ∈ Rv
(0,1), otherwise mbppdf(n)(P ) is undefined.

The multiple binomial likelihood function mblf(z) ∈ lfs(v, v) is defined

mblf(n)(K) := {(P,mbppdf(n)(P )(K)) : P ∈ Rv
(0,1)}

where K ∈ Rv.

Given observation coordinate Ko ∈ Rv
[0,n] the maximum likelihood estimate

for the parameter of the probability density function is P̃ = {(i,Ko(i)/n) :
i ∈ {1 . . . v}}, where {P̃} = maxd(mblf(n)(Ko)). The Fisher information of
the parameter Pj ∈ R(0,1) is

Imbppdf(n),j(Pj) =
n

Pj(1− Pj)

The multinomial parameterised probability density function mppdf(n) ∈
ppdfs(v, v), where v ∈ N>0, is defined

mppdf(n)(P ) :=

{(K, n!∏
i∈{1...v} Γ!Ki

∏
i∈{1...v}

PKi
i ) : K ∈ Rv

[0,n],
∑

i∈{1...v}

Ki = n} ∪

{(K, 0) : K ∈ Rv
[0,n],

∑
i∈{1...v}

Ki 6= n} ∪

(Rv \Rv
[0,n])× {0}
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where n ∈ N>0, P ∈ Rv
(0,1) and

∑
i∈{1...v} Pi = 1, otherwise mppdf(n)(P ) is

undefined.

The multinomial likelihood function mlf(z) ∈ lfs(v, v) is defined

mlf(n)(K) := {(P,mppdf(n)(P )(K)) : P ∈ Rv
(0,1)}

where K ∈ Rv. Note that the multinomial likelihood function only requires
that each parameter is in the open set between zero and one, P ∈ Rv

(0,1) =

{r : r ∈ R, 0 < r < 1}v, so P is not necessarily a probability function. That
is, in some cases P /∈ P or

∑
i∈{1...v} Pi 6= 1. This is to allow well defined

partial derivatives in free parameters. So ∂i(mlf(n)(K))(P ) is the sensitivity
of the likelihood to the i-th parameter at P , where ∂j ∈ (L(R) → R) →
(L(R) → R) is defined ∂j(F ) := {(Z, ∂F (Z)/∂Zj) : Z ∈ dom(F )} and F is
a continuous function.

Given observation coordinate Ko ∈ Rv
[0,n], where

∑
i∈{1...v}Ko(i) = n, the

maximum likelihood estimate for the parameter of the probability density
function is P̃ = {(i,Ko(i)/n) : i ∈ {1 . . . v}}. That is, although the multi-
nomial parameterised probability density function is constrained in the sum
of the coordinates,

∑
i∈{1...v}Ki = n, a Lagrangian multiplier can be used

to prove that the maximum likelihood estimate is equal to that for the pa-
rameter of the multiple binomial parameterised probability density function,
{P̃} = maxd(mlf(n)(Ko)) = maxd(mblf(n)(Ko)). Similarly, along the diag-
onal the Fisher information of the parameter Pj ∈ R(0,1) is also equal to that
for the parameter of the multiple binomial parameterised probability density
function

Imppdf(n),j(Pj) = Imbppdf(n),j(Pj) =
n

Pj(1− Pj)

B Useful functions

B.1 Entropy and Gibbs’ inequality

Define entropy ∈ (X → Q≥0)→ Q≥0 ln Q>0

entropy(N) := −
∑

(N̂x ln N̂x : x ∈ dom(N), Nx > 0)

where sum(N) > 0 and normalised N̂ = {(x, q/sum(N)) : (x, q) ∈ N}. De-
fine entropy(∅) := 0. Here entropy is defined such that it is independent of
sum(N).
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Define entropyCross ∈ (X → Q≥0)× (X → Q≥0)→ Q≥0 ln Q>0

entropyCross(N,M) := −
∑

(N̂x ln M̂x : x ∈ dom(N), Mx > 0)

where sum(N) > 0, sum(M) > 0 and dom(N) ⊆ dom(M).

Gibbs’ inequality states that

−
∑

(Px lnPx : x ∈ dom(P ), Px > 0) ≤ −
∑

(Px lnQx : x ∈ dom(P ), Qx > 0)

where P,Q ∈ X → Q≥0, sum(P ) = 1, dom(Q) ⊇ dom(P ) and sum(Q) ≤ 1.
P is a probability function, P ∈ P , but Q is not necessarily a probability
function.

Define entropyRelative ∈ (X → Q≥0)× (X → Q≥0)→ Q≥0 ln Q>0

entropyRelative(N,M) :=
∑

(N̂x ln
N̂x

M̂x

: x ∈ dom(N), Nx > 0, Mx > 0)

where sum(N) > 0, sum(M) > 0 and dom(N) ⊆ dom(M). The relative
entropy equals the cross entropy minus the entropy,

entropyRelative(N,M) = entropyCross(N,M)− entropy(N)

By Gibbs’ inequality the relative entropy is positive, entropyRelative(N,M) ≥
0. So the cross entropy is greater than or equal to the entropy,

entropyCross(N,M) ≥ entropy(N)

B.2 Probability functions

The set of probability functions P is the set of rational valued functions such
that the values are bounded [0, 1] and sum to 1,

P ⊂ X → {q : q ∈ Q, 0 ≤ q ≤ 1}

and
∀P ∈ P (sum(P ) = 1)

A probability function cannot be empty, ∅ /∈ P . Note that the events of a
probability definition, dom(P ) where P ∈ P , are defined here as elementary
events or outcomes. That is, the events are exclusive and do not form a
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σ-field.

Any non-empty, finite X -valued function of Y implies a distribution of Y
over X and hence a probability function by normalisation,

∀R ∈ Y → X (0 < |R| <∞ =⇒ {(x, |C|) : (x,C) ∈ R−1}∧ ∈ P)

where ()−1 := inverse and ()∧ := normalise. Conversely, any probability
function implies the existence of at least one non-empty, finite X -valued
function of integer,

∀P ∈ P ∃R ∈ N→ X
(0 < |R| <∞ ∧ {(x, |C|) : (x,C) ∈ R−1}∧ = {(x, p) : (x, p) ∈ P, p > 0})

The set of weak probability functions P ′ is superset of probability functions,
P ′ ⊃ P , that weakens the summation constraint such that the sum is less
than or equal to 1,

P ′ ⊂ X → {q : q ∈ Q, 0 ≤ q ≤ 1}

and
∀P ′ ∈ P ′ (sum(P ′) ≤ 1)

The empty function is a weak probability function, ∅ ∈ P ′.

The expected or mean of a probability function P ∈ P applied to a given
function F ∈ X → R is defined expected ∈ P → ((X → R) → R), and
expected(P ) ∈ (dom(P )→ R)→ R as

expected(P )(F ) :=
∑

x∈dom(F )

PxFx

Define expected(P )(∅) := 0. If F ∈ X → Q then expected(P )(F ) ∈ Q. If
F ∈ X → Q≥0 then expected(P )(F ) ∈ Q≥0.

The covariance of given functions F,G ∈ X → R is defined covariance ∈
P → ((X → R) × (X → R) → R), and covariance(P ) ∈ (dom(P ) →
R)× (dom(P )→ R)→ R as

covariance(P )(F,G) :=

expected(P )({(x, F (x)G(x)) : x ∈ dom(F ) ∩ dom(G)})−
expected(P )(filter(dom(G), F ))× expected(P )(filter(dom(F ), G))
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The variance of given function F ∈ X → R is defined variance ∈ P →
((X → R)→ R), and variance(P ) ∈ (dom(P )→ R)→ R as

variance(P )(F ) := covariance(P )(F, F )

Note that in the case of uniform probability function, P = dom(F )×{1/|F |},
the variance, variance(P )(F ), is the population variance, not the sample vari-
ance.

The correlation of given functions F,G ∈ X → R is defined correlation ∈
P → ((X → R) × (X → R) → R), and correlation(P ) ∈ (dom(P ) →
R)× (dom(P )→ R)→ R as

correlation(P )(F,G) :=

covariance(P )(F,G)√
var(P )(filter(dom(G), F ))×

√
var(P )(filter(dom(F ), G))

where var = variance. The correlation is undefined if either variance is zero.

The moment generating function of given function F ∈ X → R and mo-
ment parameter t ∈ R is defined mgf ∈ P → ((X → R) → (R → R)), and
mgf(P ) ∈ (dom(P )→ R)→ (R→ R) as

mgf(P )(F )(t) := expected(P )({(x, etFx) : x ∈ dom(F )})

The expression F ∼ G, where F,G ∈ X → R and dom(F ) = dom(G), can be
formalised in terms of the covariance of the functions in a uniform probability
function

F ∼ G ⇐⇒ covariance(dom(F )× {1/|F |})(F,G) > 0

B.3 Function composition

A pair of functions, F1, F2 ∈ X → X can be composed in an outer join
F2 ◦ F1. Define compose ∈ (X → X )× (X → X )→ (X → X ) as

compose(F1, F2) :=

{(x1, y2) : (x1, y1) ∈ F1, (x2, y2) ∈ F2, x2 = y1} ∪
{(x1, y1) : (x1, y1) ∈ F1, y1 /∈ dom(F2)} ∪
{(x2, y2) : (x2, y2) ∈ F2, x2 /∈ dom(F1)}

Define F2 ◦F1 := compose(F1, F2). The domain of a composition is the union
of the domains of the arguments, dom(F2 ◦ F1) = dom(F1) ∪ dom(F2). A
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sequence of compositions of functions is right associative, F3 ◦ F2 ◦ F1 =
F3 ◦ (F2 ◦ F1). A list of functions, L ∈ L(X → X ), can be composed
recursively from right to left. Define compose ∈ L(X → X ) → (X → X )
as compose(L) := compose(sequence(reverse(L))) and compose ∈ K(X →
X )→ (X → X ) as

compose((F,X)) := F ◦ compose(X)

compose(∅) := ∅

A composition L ∈ L(X → X ) is non-circular where no source subsequently
appears as a target, ∀i ∈ {1 . . . |L|} (dom(Li) ∩ ran(

⋃
set(drop(i− 1, L))) =

∅). A composition L is functional where unioned list is functional,
⋃

set(L) ∈
X → X .

B.4 Monoidal product

The product of a monoidal set (
∏

) ∈ P(X )→ X requires a product operator
(∗) ∈ X × X → X which is commutative, ∀x, y ∈ X (x ∗ y = y ∗ x).
The monoidal product

∏
X is defined by choosing some enumeration Q ∈

enums(X) and then folding over the list, flip(Q) ∈ L(X)∏
X = fold1((∗), flip(Q))

The product of the empty set,
∏
∅, is undefined.

In the case of sets of sets, (
∏

) ∈ P(P(X )) → P(X ), and in the absence
of an explicit monoidal operator, the operator is taken to be the union of the
self. Given argument Q ∈ P(P(X )), let S = {self(P ) : P ∈ Q}. Then let
the operator be X ∗ Y := {x ∪ y : x ∈ X, y ∈ Y }. Then

∏
Q =

∏
S. Al-

ternatively the product can be calculated from the product of a list of sets.
Choose some arbitrary enumeration of the argument Q, X ∈ enums(Q).
Then the product of a list of sets is a set of lists,

∏
flip(X) ∈ P(L(X )).

Then
∏
Q = {set(R) : R ∈

∏
flip(X)}.

B.5 Lists, tuples and sequences

A list is defined L(X ) ⊂ N → X , where X is the universal set (or type
variable), such that ∀L ∈ L(X ) (L 6= ∅ =⇒ dom(L) = {1 . . . |L|}). If a list
is a bijection L ∈ N↔ X ⊂ L(X ) then this constraint can also be expressed
flip(L) ∈ enums(ran(L)), which highlights the connection with enumerations.
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For the subset of tuples which have elements of type X define list ∈ {X i :
i ∈ N} → L(X ) as list() := ∅, list(x) := {(1, x)}, list(x, y) := {(1, x), (2, y)},
and so on. The inverse function is defined tuple ∈ L(X ) → {X i : i ∈ N} as
tuple(∅) := (), tuple({(1, x)}) := (x), tuple({(1, x), (2, y)}) := (x, y), and so
on.

The set of head/tail sequences is recursively defined in terms of null ter-
minated pairs

K(X ) := ((X \ {∅})×K(X )) ∪ {∅}
Define list ∈ K(X )→ L(X ) as

list(∅) := ∅
list((x, ∅)) := {(1, x)}

list((x,X)) := {(1, x)} ∪ {(i+ 1, y) : (i, y) ∈ list(X)}

Similarly, define sequence ∈ L(X )→ K(X ) as

sequence(∅) := ∅
sequence({(i, x)}) := (x, ∅)

And
sequence(L) := (x, sequence(L \ {(i, x)}))

where {(x, i)} ∈ min(flip(L)).

Define set ∈ L(X )→ P(X ) as

set(L) := ran(L)

We define the constructor of a list from a set as list ∈ P(X )→ L(X ) without
defining the method, except to say that the order is arbitrary and it is con-
strained such that set(list(X)) = X. Also define sequence ∈ P(X ) → K(X )
as sequence(X) = sequence(list(X)).

Define map ∈ (X → Y)×K(X )→ K(Y) as

map(F, ∅) := ∅
map(F, (x,X)) := (Fx,map(F,X))

Define filter ∈ (X → B)×K(X )→ K(X ) as

filter(F, ∅) := ∅
filter(F, (x,X)) := if(F (x), (x, filter(F,X)), filter(F,X))
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Define map ∈ (X → Y)× L(X )→ L(Y) as

map(F,L) := {(i, Fx) : (i, x) ∈ L}

where ∀(F,L) ∈ dom(map) (ran(L) ∈ dom(F )).

Define right associative fold ∈ (X × Y → Y)× Y ×K(X )→ Y as

fold(F, y, ∅) := y

fold(F, y, (x,X)) := F (x, fold(F, y,X))

Define fold1 ∈ (X × Y → Y)×K(X )→ Y as

fold1(F, (x,X)) = fold(F, x,X)

which is defined for an non-empty sequence. Define fold ∈ (X × Y →
Y) × Y × L(X ) → Y as fold(F, y, L) := fold(F, y, sequence(L)) and fold1 ∈
(X × Y → Y)× L(X )→ Y as fold1(F,L) := fold1(F, sequence(L)).

Define reverse ∈ L(X )→ L(X ) as

reverse(L) := {(|L|+ 1− i, x) : (i, x) ∈ L}

Define concat ∈ K(X )×K(X )→ K(X ) as

concat(∅, Y ) := Y

concat((x,X), Y ) := (x, concat(X, Y ))

Define concat ∈ L(X )× L(X )→ L(X ) as

concat(L,M) := L ∪ {(|L|+ i, x) : (i, x) ∈M}

Define concat ∈ L(L(X ))→ L(X ) as

concat(N) := fold(concat, ∅, sequence(N))

Define head ∈ L(X ) \ {∅} → X as

head(L) := x

where (1, x) ∈ L. head(∅) is undefined.

Define last ∈ L(X ) \ {∅} → X as

last(L) := x
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where (|L|, x) ∈ L. last(∅) is undefined.

Define tail ∈ L(X )→ L(X ) as

tail(L) := {(i− 1, x) : (i, x) ∈ L, i > 1}

Define take ∈ N× L(X )→ L(X ) as

take(j, L) := {(i, x) : (i, x) ∈ L, i ≤ j}

Define drop ∈ N× L(X )→ L(X ) as

drop(j, L) := {(i− j, x) : (i, x) ∈ L, i > j}

A selection of a list is defined select ∈ P(N>0)× L(X )→ L(X ) as

select(Q,L) := {(|{j : j ∈ Q, j ≤ i}|, Li) : i ∈ Q, i ≤ |L|}

Define shorthand LQ := select(Q,L) where Q ⊂ N>0. Then take(j, L) =
L{1...j} and drop(j, L) = L{j+1...|L|}.

Define sublists ∈ L(X )→ P(L(X )) as

sublists(L) := {take(i, L) : i ∈ {1 . . . |L|}} ∪ {∅}

There are |L| + 1 sublists, |sublists(L)| = |L| + 1. The empty list, ∅, is a
sublist of all lists. The immediate sublist is take(|L| − 1, L) ∈ sublists(L)
where L 6= ∅.

A pair of lists may be zipped together as far as the shorter list. Define
zip ∈ L(X )× L(Y)→ L(X × Y) as

zip(L,M) := {(i, (Li,Mi)) : i ∈ {1 . . .minimum(|L|, |M |)}}

The product of a list of sets is a set of lists, (
∏

) ∈ L(P(X )) → P(L(X )).
See ‘Monoidal product’, above. Let mul ∈ P(X ) × P(L(X )) → P(L(X )) be
defined as

mul(Q,R) := {concat(J, {(1, x)}) : J ∈ R, x ∈ Q}

Then ∏
L := fold(mul, {∅}, L)

The product of the empty set is a set of the empty list,
∏
∅ = {∅}. The

product of sequences, (
∏

) ∈ K(P(X )) → P(K(X )), and the product of tu-
ples, (

∏
) ∈ tuples(P(X ))→ P(tuples(X )), are similarly defined.

The power of a set is the product of a list of the set such that the length of the
list equals the power, Xn =

∏
({1 . . . n}× {X}) ⊂ {L : L ∈ L(X), |L| = n}.
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B.6 Trees

Trees, as defined here, are unordered functional relations between objects
and trees

trees(X ) = X → trees(X )

The function nodes ∈ trees(X )→ P(X × trees(X )) is defined

nodes(T ) := T ∪
⋃
{nodes(R) : (x,R) ∈ T}

where nodes(∅) := ∅.

The elements of the tree is defined elements ∈ trees(X )→ P(X )

elements(T ) := dom(nodes(T ))

The function roots ∈ trees(X )→ P(X ) is defined

roots(T ) := dom(T )

The function leaves ∈ trees(X )→ P(X ) is defined

leaves(T ) := {x : (x,R) ∈ nodes(T ), R = ∅}

The set of pairs of elements of the tree is defined steps ∈ trees(X )→ P(X ×
X )

steps(T ) := {(x, y) : (x,R) ∈ nodes(T ), y ∈ roots(R)}

Define map ∈ (X → Y)× trees(X )→ trees(Y) as

map(F, T ) := {(F (x),map(F,R)) : (x,R) ∈ T}

where F is such that elements(T ) ⊆ dom(F ).

Define mapNode ∈ (X × trees(X )→ Y)× trees(X )→ trees(Y) as

mapNode(F, T ) := {(F (x,R),mapNode(F,R)) : (x,R) ∈ T}

where F is such that elements(T )× trees(elements(T )) ⊆ dom(F ).

Define mapAccum ∈ (L(X )→ Y)× trees(X )→ trees(Y) as

mapAccum(F, T ) := mapAccum(F, ∅, T )
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and mapAccum ∈ (L(X )→ Y)× L(X )× trees(X )→ trees(Y) as

mapAccum(F,L, T ) :=

{(F (M),mapAccum(F,M,R)) : (x,R) ∈ T, M = concat(L, {(1, x)})}

where F is such that paths(T ) ⊂ dom(F ).

Define mapNodeAccum ∈ (L(X )× trees(X )→ Y)× trees(X )→ trees(Y) as

mapNodeAccum(F, T ) := mapNodeAccum(F, ∅, T )

and mapNodeAccum ∈ (L(X )×trees(X )→ Y)×L(X )×trees(X )→ trees(Y)
as

mapNodeAccum(F,L, T ) :=

{(F (M,R),mapNodeAccum(F,M,R)) : (x,R) ∈ T, M = concat(L, {(1, x)})}

where F is such that elements(T )× trees(elements(T )) ⊆ dom(F ).

Given a pair of trees, dot ∈ trees(X )× trees(Y)→ trees(X ×Y), returns the
zipped tree of pairs,

dot(S, T ) := {((x, y), dot(Sx, Ty)) : (x, y) ∈ dom(S) · dom(T )}

where dot(∅, ·) := {∅} and dot(·, ∅) := {∅}, and

X · Y := zip(flip(order(DX , X)), flip(order(DY , Y )))

where DX and DY are orders on X and Y .

Given a tree of pairs, distinct ∈ trees(X × Y) → P(trees(X × Y)), returns
the set of distinct trees such that the domains of the trees form a function,
∀T ∈ trees(X ×Y) ∀U ∈ distinct(T ) ∀V ∈ {U} ∪ ran(nodes(U)) (dom(V ) ∈
X → Y),

distinct(T ) :=

{U : U ⊆ {((x, y), R) : ((x, y), S) ∈ T, R ∈ distinct(S)},
dom(U) ∈ dom(dom(T )) :→ ran(dom(T ))}

where distinct(∅) := {∅}.

Define paths ∈ trees(X )→ P(L(X )) as

paths(T ) := paths(∅, T )
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where we define paths ∈ L(X )× trees(X )→ P(L(X ))

paths(L, T ) :=
⋃
{paths(concat(L, {(1, x)}), R) : (x,R) ∈ T}

where paths(L, ∅) := {L}.

Define tree ∈ P(L(X ))→ trees(X )

tree(Q) :=

{(h, tree({tail(J) : J ∈ Q, (1, h) ∈ J})) : h ∈ {head(L) : L ∈ Q, |L| > 0}}

where tree(∅) := ∅.

The function depth ∈ trees(X )→ N is defined

depth(T ) := maxr({(L, |L|) : L ∈ paths(T )})

The depth of the empty tree is defined as zero, depth(∅) := 0.

Define places ∈ trees(X )→ P(L(X )× trees(X )) as

places(T ) := places(∅, T )

where we define places ∈ L(X )× trees(X )→ P(L(X )× trees(X ))

places(L, T ) :=⋃
{{(M,R)} ∪ places(M,R) : (x,R) ∈ T, M = concat(L, {(1, x)})}

Define places(·, ∅) := ∅. The places function is related to nodes, {(L|L|, R) :
(L,R) ∈ places(T )} = nodes(T ). The places function is related to paths, {L :
(L,R) ∈ places(T ), R = ∅} = paths(T ). The places function can be defined
in terms of mapNodeAccum, places(T ) = elements(mapNodeAccum(id, T )),
where ∀x ∈ X (id(x) = x).

Define subpaths ∈ trees(X )→ P(L(X )) as

subpaths(T ) := dom(places(T ))

The set of subtrees can be constructed from the monoidal product of the
sublists of the paths. Define subtrees ∈ trees(X )→ P(trees(X )) as

subtrees(T ) := {tree(Q) : Q ∈
∏
{sublists(L) : L ∈ paths(T )}} ∪ {∅}
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The empty tree, ∅, is a subtree of all trees. The set of immediate subtrees is
the subset where exactly one path is an immediate sublist, {tree(paths(T ) \
{L} ∪ {take(|L| − 1, L)}) : L ∈ paths(T )} ⊆ subtrees(T ) where T 6= ∅. The
cardinality of the nodes of immediate subtrees is reduced by one, {S : S ∈
subtrees(T ), |nodes(S)| = |nodes(T )| − 1} where T 6= ∅.

An n-ary tree T is such that ∀X ∈ {T} ∪ ran(nodes(T )) (X 6= ∅ =⇒
|X| = n).

Define list trees listTrees(X ) = L(X × listTrees(X )). List trees are useful
for path-dependent traversal. List trees are constructed from trees given an
order D ∈ X ↔ N. The function order ∈ (X ↔ N)×P(X )→ (X ↔ N), de-
fined below, facilitates the construction of lists, inverse(order(D, Y )) ∈ L(Y ).
Define listTree ∈ (X ↔ N)× trees(X )→ listTrees(X ) as

listTree(D,T ) := {(i, (x, listTree(D,T (x)))) : (x, i) ∈ order(D, dom(T ))}

The converse function tree ∈ listTrees(X )→ trees(X ) is defined

tree(L) := {(x, tree(M)) : (i, (x,M)) ∈ L, set(L) ∈ X → listTrees(X )}

A list tree can be concatenated into a list in a depth-first traversal. Define
concat ∈ listTrees(X )→ L(X ) as

concat(L) := fold(accum, ∅, L)

where accum ∈ (X × listTrees(X ))× L(X )→ L(X ) is defined

accum((x,M), Q) := concat(concat(Q, {(1, x)}), concat(M))

B.7 Binary maps

Binary maps are defined

B(X ) ⊂ (N×X × B(X )× B(X )) ∪ {∅}

The function function ∈ B(X )→ (N→ X ) is defined

function((m,x, L,R)) := {(m,x)} ∪ function(L) ∪ function(R)

function(∅) := ∅

The function domain ∈ B(X )→ P(N) is defined as

domain(B) := dom(function(B))
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The function range ∈ B(X )→ P(X ) is defined as

range(B) := ran(function(B))

The function depth ∈ B(X )→ N is defined

depth((·, ·, L,R)) := 1 + maximum(depth(L), depth(R))

depth(∅) := 0

where maximum(a, b) := if(a < b, b, a).

Binary maps are constrained such that

∀(m, ·, L, ·) ∈ B(X ) ∀(l, ·) ∈ function(L) (l < m)

and
∀(m, ·, ·, R) ∈ B(X ) ∀(r, ·) ∈ function(R) (m < r)

The function mapBinary ∈ (N → X ) → B(X ) is constrained such that
∀Q ∈ N → X (function(mapBinary(Q)) = Q) and such that ∀M ∈ B(X ) \
{∅} (depth(M) ≤ log2|function(M)|+ 1).

The function find ∈ B(X )×N→ X is defined

find((m,x, L,R), i) := if(i = m,x, if(i < m, find(L, i), find(R, i)))

find(∅, i) := ∅

Note that if the binary map contains the empty set, ∅ ∈ range(M), then the
find is ambiguous.

A binary map can be represented in a list, L ∈ L(N × X × N × N). L
is constrained such that ∀(i, (m,x, p, q)) ∈ L (p 6= 0 =⇒ i < p ≤ |L|),
∀(i, (m,x, p, q)) ∈ L (q 6= 0 =⇒ i < q ≤ |L|) and bin(L) ∈ B(X ). The
constructor is defined bin(∅) := ∅ and bin(L) := (m,x, if(p 6= 0, bin(drop(p−
1, L)), ∅), if(q 6= 0, bin(drop(q − 1, L)), ∅)) where (m,x, p, q) = L1.

A binary map can represent a set where there exists an enumeration on the
domain. For example, consider order D on some set X, D ∈ enums(X), and
binary map B ∈ B(X) such that flip(function(B)) ⊆ D, then function(B) ∈
N↔ X and |function(B)| = |range(B)|.

The binary map type, B(X ), as defined above is an algebraic data type
representing a function that is constrained such that the domain is a subset
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of the natural numbers, domain(B) ⊂ N where B ∈ B(X ). The comparison
operator, (≤) ∈ N×N→ B, is that of the natural numbers. A generalisation
would be to supply a partially ordered set Y as the superset of the domain
and implement the find comparison with the poset relation Y × Y so that
(≤) ∈ Y × Y → B. The set of poset binary maps, mapBinaryPosets(Y ,X ),
is a type class having a constructor of a poset binary map which supplies the
poset relation and the function

mapBinaryPoset ∈ P(Y × Y)× (Y → X )→ mapBinaryPosets(Y ,X )

Given poset relation R, which is such that ∀(a, b) ∈ R (a ≤ b) and dom(R)∪
ran(R) = Y , and function F ∈ Y → X , let B = mapBinaryPoset(R,F ) ∈
mapBinaryPosets(Y ,X ). Then function(B) = F ∈ domain(B)→ range(B).
The binary map type, B(X ), is therefore the special case of the poset of
natural numbers, B = mapBinaryPoset({(i, j) : i, j ∈ N, i ≤ j}, F ) ∈
mapBinaryPosets(N,X ) where F ∈ N→ X . The logarithmic constraint on
the depth holds for poset binary maps just as it does for natural number
binary maps. Implementing a binary map with a poset may be represen-
tationally convenient if the natural number encoding of the domain is too
large, for example in cases of factorial complexity.

B.8 Definition of powerset

The powerset function P = powerset ∈ P(X ) → P(P(X )) is the set of all
subsets of the argument

P(A) := {X : X ⊆ A}

B.9 Definition of function predicate

The isfunc returns true if the given relation is functional. Let X be the
universal set, then isfunc ∈ P(X × X )→ B

isfunc(A) := ∀(a, b), (p, q) ∈ A (a = p =⇒ b = q)

or equivalently
isfunc(A) := |{a : (a, b) ∈ A}| = |A|

Empty relations are defined as functional.

B.10 Definition of cross operators

Define (×) ∈ P(X ) × P(Y) → P(X × Y) as the cartesian cross of sets to
create a relation,

A×B := {(x, y) : x ∈ A, y ∈ B}
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B.11 Definition of mapping operators

Define (→) ∈ P(X )×P(Y)→ P(X → Y) as a powerset of functional relations

A→ B := {X : X ∈ P(A×B), isfunc(X)}

So A → B ⊆ P(A × B) ∈ P(P(A × B)). Thus we can type the function
operator as (→) ⊂ (P(X )× P(Y))× P(P(X × Y)).

A→ B is sometimes denoted BA.

And (↔) ∈ P(X ) × P(Y) → P(X ↔ Y) is a powerset of bi-directional
functional relations

A↔ B := {X : X ∈ P(A×B), isfunc(X), isfunc(flip(X))}

B.12 Total specifiers

Given any relation function (⊗) ∈ P(X )×P(Y)→ P(X ×Y), define the left
total subsets (: ⊗) ∈ P(X )× P(Y)→ P(X × Y) as

A : ⊗ B := {X : X ∈ A⊗B, dom(X) = A}

Similarly for right total (⊗ :) ∈ P(X )× P(Y)× P(X → Y) as

A ⊗ : B := {X : X ∈ A⊗B, ran(X) = B}

And for both (: ⊗ :) ∈ P(X )× P(Y)→ P(X × Y) as

A : ⊗ : B := {X : X ∈ A⊗B, dom(X) = A, ran(X) = B}

For example

A :→ B := {X : X ∈ P(A×B), isfunc(X), dom(X) = A}

or

A :↔: B :=

{X : X ∈ P(A×B), isfunc(X), isfunc(flip(X)), dom(X) = A, ran(X) = B}
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B.13 Partitions

The partition function B is the set of all partitions of the argument. A
partition is a set of non-empty disjoint subsets, called components, which
union to equal the argument, B ∈ P(X )→ P(P(P(X ) \ {∅}))

B(A) :=

{X : X ⊆ (P(A) \ {∅}),
⋃

X = A, (∀C,D ∈ X (C 6= D =⇒ C ∩D = ∅))}

Define B(∅) := ∅.

The weak partition function B′ includes component sets that contain the
empty set

B′(A) := B(V ) ∪ {Y ∪ {∅} : Y ∈ B(V )}

where B′(∅) := {{∅}}.

The Bell number function bell ∈ N>0 → N>0 is defined

bell(n) := |B({1 . . . n})|

The fixed cardinality partition function S is the special case of the partition
function in which all partitions have the given cardinality. Define S ∈ P(X )×
N>0 → P(P(P(X ) \ {∅})) as

S(A, k) := {P : P ∈ B(A), |P | = k}

The Stirling number of the second kind stir ∈ N>0 × N → N>0 is is the
cardinality of the fixed cardinality partition function S,

stir(n, k) := |S({1 . . . n}, k)|

So
⋃
k∈{1...n}{S(A, k) = B(A) and

∑
k∈{1...n} stir(n, k) = bell(n).

The partition function cardinality function bellcd ∈ N>0 → (L(N) →
N) computes the histogram of the histograms of the component cardinal-
ities. The partition function cardinality function is such that bellcd(n) ∈
({1 . . . n} :→ {0 . . . n})→ {0 . . . n}. It is defined

bellcd(n) :=

{(L, n!∏
(k,m)∈L(k!)mm!

) : L ∈
∏
{1 . . . n} × {{0 . . . n}},

∑
(k,m)∈L

mk = n}
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The partition function cardinality function recovers the Bell number,
∑

(c :
(·, c) ∈ bellcd(n)) = bell(n).

The partition function cardinality function may be constrained such that
the partitions have fixed cardinality. The function stircd ∈ N>0 ×N>0 →
(L(N)→ N) computes the special case of the histogram of the histograms of
the component cardinalities. The fixed cardinality partition function cardi-
nality function is such that stircd(n, i) ∈ ({1 . . . n} :→ {0 . . . n})→ {0 . . . n}.
It is defined

stircd(n, i) :=

{(L, n!∏
(k,m)∈L(k!)mm!

) : L ∈
∏
{1 . . . n} × {{0 . . . n}},∑

(k,m)∈L

mk = n,
∑

(·,m)∈L

m = i}

or, equivalently in terms of the weak composition function, C′ ∈ P(X )×N→
P(X → N),

stircd(n, i) :=

{(L, n!∏
(k,m)∈L(k!)mm!

) : L ∈ C′({1 . . . n}, i),
∑

(k,m)∈L

mk = n}

The fixed cardinality partition function cardinality function recovers the Stir-
ling number of the second kind,

∑
(c : (·, c) ∈ stircd(n, i)) = stir(n, i). The

union of the fixed cardinality partition function cardinality function equals
the partition function cardinality function,

⋃
i∈{1...n} stircd(n, i) = bellcd(n).

The self-partition or uni-partition S ∈ B(A) of non-empty A ∈ P(X ) \ {∅}
is the special case S = {{a} : a ∈ A}. The cardinality of the self-partition
is |S| = |A|. Define self ∈ P(X ) → P(P(X )) as self(X) := {{x} : x ∈ X}.
Define the shorthand X{} = self(X).

The unary-partition N ∈ B(A) is the special case N = {A}. The cardinality
of the unary-partition is |N | = 1. The unary-partition is the only partition
of a singleton set, B({a}) = {{{a}}}. Define unary ∈ P(X ) → P(P(X )) as
unary(X) := {X}.

Binary-partitionsQ ∈ B(A) are such thatQ ∈ {{X, A\X} : X ∈ P(A), X 6=
∅, X 6= A}. The cardinality of a binary-partition is |Q| = 2.
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A partition P is a parent of another partition Q if each component in Q
intersects with exactly one component in P . Define parent ∈ P(P(X ) \
{∅})× P(P(X ) \ {∅})→ B

parent(P,Q) :=

(
⋃

P =
⋃

Q) ∧ ({(D,C) : D ∈ Q, C ∈ P, D ∩ C 6= ∅} ∈ Q→ P )

An equivalent definition is

parent(P,Q) := (
⋃

P =
⋃

Q) ∧ (Q =
⋃
{R : C ∈ P, R ∈ B(C), R ⊆ Q})

The set of parents can be constructed explicitly. Define parents ∈ P(P(X ) \
{∅})→ P(P(P(X ) \ {∅})) as

parents(Q) := {{
⋃

C : C ∈ X} : X ∈ B(Q)}

so that ∀X ⊂ X ∀P,Q ∈ B(X) (parent(P,Q) ⇐⇒ P ∈ parents(Q)). The
cardinality of the set of parents is |parents(Q)| = bell(|Q|) ≤ bell(|

⋃
Q|).

A partition of disjoint sets can be exploded into a partition. Define explode ∈
P(P(P(X ))) → P(P(X )) as explode(X) := {

⋃
C : C ∈ X}. If X is a par-

tition of disjoint sets Q, X ∈ B(Q) where Q ∈ B(
⋃
Q), then the exploded

result is a partition, explode(X) ∈ B(
⋃
Q), and the exploded cardinality is

unchanged |explode(X)| = |X|. The set of parents can be defined in terms
of explode, parents(Q) = {explode(X) : X ∈ B(Q)}.

Define a partition sequence as a list L ∈ L(P(P(X ) \ {∅})) of partitions
such that each element in the list is a parent of the next

|L| ≥ 2 =⇒ (∀i ∈ {1 . . . |L| − 1} (parent(Li, Li+1)))

Similarly define a reverse partition sequence as a list L ∈ L(P(P(X ) \ {∅}))
of partitions such that each element in the list is a child of the next

|L| ≥ 2 =⇒ (∀i ∈ {1 . . . |L| − 1} (parent(Li+1, Li)))

Define a partition tree as a tree T ∈ trees(P(P(X ) \ {∅})) of partitions such
that each node in the tree is a parent-child

∀(P,Q) ∈ nodes(T ) (Q 6= ∅ =⇒ parent(P,Q))

and define a reverse partition tree as a tree T ∈ trees(P(P(X ) \ {∅})) of
partitions such that each node in the tree is a child-parent

∀(P,Q) ∈ nodes(T ) (Q 6= ∅ =⇒ parent(Q,P ))
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A partition P can be viewed as a disjoint set of equivalent classes. A weight-
ing can be assigned to each element of the partition, x ∈

⋃
P , equal to

its fraction of the cardinality of the component containing it, 1/|C|, where
x ∈ C ∈ P . Define weights ∈ P(P(X ) \ {∅})→ (X → Q>0) as

weights(P ) := {(x, 1/|C|) : C ∈ P, x ∈ C}

which is defined if P is a partition, P ∈ B(
⋃
P ). The weights are such that

sum(weights(P )) = |P | ≤ |
⋃
P |.

B.14 Compositions

A composition is a functional relation between some set of objects and the
natural numbers X → N. Given a set of objects X ⊂ X and a total n ∈ N,
composition functions return all compositions such that each has domain X
and sums to n. Define the composition function, which excludes 0, as

C ∈ P(X )×N>0 → P(X → N>0)

and the weak composition function, which includes 0, as

C′ ∈ P(X )×N→ P(X → N)

such that

∀C ∈ C(X,n) ∪ C′(X,n) ((dom(C) = X) ∧ (
∑
x∈X

Cx = n))

By implication, composition function C(X,n) is constrained

∀C ∈ C(X,n) (n ≥ |X|)

The cardinality of the composition function C({1 . . . k}, n) is

|C({1 . . . k}, n)| = (n− 1)!

(k − 1)! (n− k)!

The cardinality of the weak composition function C′({1 . . . k}, n) is

|C′({1 . . . k}, n)| = (n+ k − 1)!

(k − 1)! n!

Note that composition, as defined here, is not to be confused with composi-
tion of functions.
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B.15 Relation functions

Let X and Y be universal sets, then the domain is defined dom ∈ P(X×Y)→
P(X )

dom(A) := {x : (x, y) ∈ A}
and the range, ran ∈ P(X × Y)→ P(Y)

ran(A) := {y : (x, y) ∈ A}

The inverse, flip ∈ P(X × Y)→ P(Y × X )

flip(A) := {(y, x) : (x, y) ∈ A}

The function filter ∈ P(X )× P(X × Y)→ P(X × Y) is defined

filter(X,A) := {(x, y) : (x, y) ∈ A, x ∈ X}

The inverse of a function, inverse ∈ (X → Y)→ (Y → P(X )) is defined

inverse(F ) := {(y, ran(filter({y}, flip(F )))) : y ∈ ran(F )}
= {(y, {x : x ∈ dom(F ), F (x) = y}) : y ∈ ran(F )}

The inverse is sometimes denoted F−1. Note that this is a different definition
from the convention {(Y, {x : x ∈ dom(F ), F (x) ∈ Y }) : Y ⊆ ran(F )} ∈
P(Y)→ P(X ).

B.16 Dot operator

The set of all bidirectional mappings between two sets of the same cardinality
(·) ∈ P(X )× P(Y)→ P(X ↔ Y)

X · Y := {Z : Z ∈ X ↔ Y, |X| = |Y |, |Z| = |Y |}

where X and Y are the universal set.

The outer dot product is defined where the cardinality of the left argument is
greater than or equal to that of the right, (· =) ∈ P(X )×P(Y)→ P(X ↔ Y)

X· = Y := {Z : Z ∈ X ↔ Y, |X| ≥ |Y |, |Z| = |Y |}

B.17 Selections

The set of subsets of given cardinality of a given set, selections ∈ N×P(X )→
P(P(X )) is defined

selections(k,X) := {Y : Y ⊆ X, |Y | = k}

There are n!/(k!(n− k)!) of these where n = |X|.
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B.18 Enumerations

The set of all enumerations enums ∈ P(X )→ P(X ↔ N)

enums(X) := X · {1 . . . |X|}

The cardinality of this function is the number of permutations of its argu-
ment |enums(X)| = |X|!.

An order D on some set X is a choice of the enumerations, D ∈ enums(X).
Given the order, any subset can be enumerated, define order ∈ (X ↔
N)× P(X )→ (X ↔ N)

order(D, Y ) := {(y, |{(z, i) : (z, i) ∈ Q, i ≤ j}|) : (y, j) ∈ Q}

where Q = {(y,Dy) : y ∈ Y }. So order(D, Y ) ∈ enums(Y ).

B.19 Normalisation

Normalising a real valued function F ∈ X → R is defined normalise ∈ (X →
R)→ (X → R) as

normalise(F ) := {(x, r/sum(F )) : (x, r) ∈ F} ∈ X → R

Normalising is undefined if sum(F ) = 0. Define notation F̂ := normalise(F ).
If the function is rational valued, F ∈ X → Q, then the normalised function
is also rational valued, F̂ ∈ X → Q, and hence a probability function, F̂ ∈ P .

B.20 Aggregation and inclusion functions

The function singleton ∈ X → P(X ), sometimes called tip, creates a single-
ton set, singleton(x) := {x}. The converse function only ∈ P(X ) → X is
defined only(X) := x where |X| = 1 and X = {x}. The function only is
undefined if |X| 6= 1.

Given a relation, the count function creates a functional relation between
the domain of the argument and the count of the elements corresponding.
Let X and Y be the universal set, count ∈ P(X × Y)→ (X → N)

count(A) := {(a, |{q : (p, q) ∈ A, p = a}|) : a ∈ dom(A)}

Given a relation X × Y such that an order operator, enums(Y), or partially
ordered set, (Y ,≤), is defined on the range, Y , the min and max functions
returns the minimum/maximum subset, max ∈ P(X × Y)→ (X → Y)

max(A) := {(x, y) : (x, y) ∈ A, (∀(r, s) ∈ A (s ≤ y))}
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We also define the convenience functions

maxd(A) := dom(max(A))

and
maxr(A) := m

where {m} = ran(max(A)). Note that maxr is undefined for empty sets.

For minimum, min ∈ P((X × Y))→ (X → Y)

min(A) := {(x, y) : (x, y) ∈ A, (∀(r, s) ∈ A (s ≥ y))}

We also define mind(A) and minr(A) similarly.

Similar to the min and max functions are the bottom(n) and top(n) func-
tions. Define top ∈ N>0 → (P(X × Y)→ P(X × Y))

top(n)(A) := top(maximum(n− |max(A)|, 0))(A \max(A)) ∪max(A)

top(0)(A) := ∅

Define bottom ∈ N>0 → (P(X × Y)→ P(X × Y))

bottom(n)(A) := bottom(maximum(n− |min(A)|, 0))(A \min(A)) ∪min(A)

bottom(0)(A) := ∅

Thus top(1) = max, bottom(1) = min, and top(|A|)(A) = bottom(|A|)(A) =
A. Define topd(n)(A) := dom(top(n)(A)) and similarly bottomd(n)(A) :=
dom(bottom(n)(A)).

Given a zero element in the range, 0 ∈ Y , define inclusion function zero ∈
P(X × Y)→ (X → {0})

zero(A) := {(x, y) : (x, y) ∈ A, y = 0}

Define inclusion function nonzero ∈ P(X × Y)→ P(X × (Y \ {0}))

nonzero(A) := {(x, y) : (x, y) ∈ A, y 6= 0}

Define inclusion function positive ∈ P(X × Y)→ P(X × Y≥0)

positive(A) := {(x, y) : (x, y) ∈ A, y ≥ 0}

Define inclusion function negative ∈ P(X × Y)→ P(X × Y<0)

negative(A) := {(x, y) : (x, y) ∈ A, y < 0}
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Define aggregation function sum ∈ P(X ×R)→ R

sum(A) :=
∑

q : (x, q) ∈ A

Define arithmetic average as average ∈ P(X ×R)→ R

average(A) := sum(A)/|A|

which is defined where |A| ≥ 0.

Define product ∈ P(X ×R)→ R

product(A) :=
∏

q : (x, q) ∈ A

B.21 Convenience functions

Ceiling of positive reals ceil ∈ R→ N

ceil(r) := minr({(n, n) : n ∈ N, n ≥ r})

Floor of positive reals flr ∈ R→ N

flr(r) := maxr({(n, n) : n ∈ N, n ≤ r})

Greater of a pair maximum ∈ R×R→ R

maximum(a, b) := if(a < b, b, a)

Lesser of a pair minimum ∈ R×R→ R

minimum(a, b) := if(a < b, a, b)

B.22 Big O definition

The Big O function imposes an upper bound. It requires both a functional
map to a real and a real multiplier, O ∈ (X → R)×R>0 → P(X → R≥0)

O(A,m) :=

{X : X ∈ P({(x, r) : x ∈ dom(A), r ∈ R, 0 ≤ r ≤ mAx}), isfunc(X)}

Define O ∈ (X → R)→ P(X → R)

O(A) := O(A, 1)
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Similarly Big Omega function imposes an lower bound. It requires a func-
tional map to a real and a real multiplier, Ω ∈ (X → R)×R>0 → P(X → R)

Ω(A,m) :=

{X : X ∈ P({(x, r) : x ∈ dom(A), r ∈ R, r ≥ mAx}), isfunc(X)}

Define Ω ∈ (X → R)→ P(X → R)

Ω(A) := Ω(A, 1)

B.23 Let quantifier

A lozenge ♦ is used to signify the binding of a variable amongst quantifiers.
For example ∀a ∈ A ♦b = f(a) ∃c ∈ C(b) (. . .).

B.24 Set builder notation

This expression
Z = {z(x) : x ∈ X, p(x)}

where p(x) is a predicate, is shorthand for

∀x ∈ X (p(x) ⇐⇒ z(x) ∈ Z)

And
Z = {z(x, y) : x ∈ X, y ∈ Y, p(x), q(y)}

is shorthand for

∀x ∈ X ∀y ∈ Y (p(x) ∧ q(y) ⇐⇒ z(x, y) ∈ Z)

and so on.

B.25 if function

Let B be the set of booleans. Let X be the universal set. The logical switch
function, if ∈ B×X × X → X

∀b ∈ B ∀x, y ∈ X ((b =⇒ if(b, x, y) = x) ∧ (¬b =⇒ if(b, x, y) = y))
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B.26 Function definition

Let func be a functional relation with a type definition func ∈ A → Z.
Consider the expression

func(a) := z(a)

where z(a) is an expression with free variable a that evaluates to an element
in Z. In the case where func is a total function, that is, where there are no
other constraints imposed on the domain of the function dom(func) = A,
then the expression is shorthand for

∀a ∈ A ∃z(a) ∈ Z ((a, z(a)) ∈ func)

In the case that func is a partial function, that is, where there are other con-
straints r(func) ∈ B on the function, then the domain is taken (ambiguously)
to be one of the largest possible subsets

func ∈ maxd({(F, |dom(F )|) : F ∈ A → Z, r(F ), (∀(a, b) ∈ F (b = z(a)))})

Similarly, with the same caveat for constraints on the domain, if the type
definition is func ∈ A× B → Z then the expression

func(a, b) := z(a, b)

is shorthand for

∀a ∈ A ∀b ∈ B ∃z(a, b) ∈ Z (((a, b), z(a, b)) ∈ func)

and so on.

The identity function id ∈ X → X is defined

id(x) := x

B.27 Natural numbers

The set of natural numbers N is taken to include 0. The set N>0 excludes 0.

Define encode ∈ N↔ L(bits) which encodes a natural number in the short-
est list such that

∀(i, L) ∈ encode ((L = ∅ ∨ last(L) = 1) ∧ (i =
∑

(2j−1b : (j, b) ∈ L)))

Define decode ∈ L(bits)↔ N as decode = flip(encode).

Define space ∈ N>0 → ln N>0 as space(n) := lnn. The length of the encoded
natural number is an approximation to the space

(|encode(n)| − 1) ln 2 ≤ space(n) < (|encode(n)|) ln 2
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B.28 Booleans and bits
The set of boolean values B is not specified except to constrain the cardinal-
ity |B| = 2.

The set of bits is defined bits = {0, 1} ⊂ N. Define encode ∈ B → bits as
encode(b) := if(b, 1, 0), and define decode ∈ bits→ B as decode(i) := i = 1.
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