
Overview of The Theory and Practice of
Induction by Alignment

CJ McCartney

April 2020

Abstract

Induction is the discovery of models given samples.
This paper demonstrates formally from first principles that there

exists an optimally likely model for any sample, given certain general
assumptions. Also, there exists a type of encoding, parameterised by
the model, that compresses the sample. Further, if the model has cer-
tain entropy properties then it is insensitive to small changes. In this
case, approximations to the model remain well-fitted to the sample.
That is, accurate classification is practicable for some samples.

Then the paper derives directly from theory a practicable unsuper-
vised machine learning algorithm that optimises the likelihood of the
model by maximising the alignment of the model variables. Align-
ment is a statistic which measures the law-likeness or the degree of
dependency between variables. It is similar to mutual entropy but is
a better measure for small samples. If the sample variables are not
independent then the resultant models are well-fitted. Furthermore,
the models are structures that can be analysed because they consist
of trees of context-contingent sub-models that are built layer by layer
upwards from the substrate variables. In the top layers the variables
tend to be diagonalised or equational. In this way, the model variables
are meaningful in the problem domain.

If there exist causal alignments between the induced model vari-
ables and a label variable, then a semi-supervised sub-model can be
obtained by minimising the conditional entropy. Similar to a Bayesian
network, this sub-model can then make predictions of the label.

The paper shows that this semi-supervised method is related to the
supervised method of optimising artificial neural networks by least-
squares gradient-descent. That is, some gradient-descent parameter-
isations satisfy the entropy properties required to obtain likely and
well-fitted neural nets.
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1 Preface

This paper consists of the ‘Overview’ section extracted from the paper ‘The
Theory and Practice of Induction by Alignment‘. The ‘Overview’ section
covers the important points of the theory and some interesting parts of the
practice. The overview also has a summary of the set-theoretic notation used
throughout.

Terms in italics have a mathematical definition to avoid ambiguity. So
‘independent ’ is a well defined property, whereas ‘independent’ has its dic-
tionary definition.

For further discussion see https://greenlake.co.uk/.

2 Overview

This section provides an overview of the main points of the paper. Detailed
explanations are excluded for brevity. The overview is presented as a series
of assertions of fact, but only some are proven and many are conjectured, es-
pecially statements regarding correlations. In some cases, however, there are
multiple strands of evidence that corroborate a conjecture. This is particu-
larly true for the conjectures regarding the general induction of models given
samples. Given a set of induction assumptions these conjectures relate (i)
the maximisation of the likelihood of a sample, and also the minimisation of
the likelihood’s sensitivity to model and distribution, to (ii) properties such
as encoding space, entropy and alignment. The different sets of induction
assumptions can be categorised in various complementary ways: (a) classical
induction versus aligned induction, (b) law-like conditional draws of samples
from distributions versus the compression of encodings of samples by model,
(c) simple transform models versus layered, contingent models, and (d) in-
tractable theoretical induction assumptions versus tractable and practicable
induction assumptions. The existence of working implementations of prac-
ticable induction such as artificial neural networks and alignment inducers
provides concrete support to the theory.

2.1 Notation

The notation is briefly summarised below. The appendices contain further
details.
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The notation used throughout this discussion is conventional set-theoretic
with some additions. Sets are often defined using set-builder notation, for
example Z = {f(x) : x ∈ X, p(x)} where f(x) is a function, X is another set
and p(x) is a predicate.

Tuples, or lists, can be defined similarly where the order is not important,
for example,

∑
(f(x) : x ∈ X, p(x)).

The powerset function is defined as P(A) := {X : X ⊆ A}.

The partition function B is the set of all partitions of an argument set. A par-
tition is a set of non-empty disjoint subsets, called components, which union
to equal the argument, ∀P ∈ B(A) ∀C ∈ P (C 6= ∅), ∀P ∈ B(A) ∀C,D ∈
P (C 6= D =⇒ C ∩D = ∅) and ∀P ∈ B(A) (

⋃
P = A).

A relation A ∈ P(X ×Y) between the set X and the set Y is a set of pairs,
∀(x, y) ∈ A (x ∈ X ∧ y ∈ Y). The domain of a relation is dom(A) := {x :
(x, y) ∈ A} and the range is ran(A) := {y : (x, y) ∈ A}.

Functions are special cases of relations such that each element of the do-
main appears exactly once. Functions can be finite or infinite. For example,
{(1, 2), (2, 4)} ⊂ {(x, 2x) : x ∈ R}. The powerset of functional relations
between sets is denoted →. For example, {(x, 2x) : x ∈ R} ∈ R → R. The
application of the function F ∈ X → Y to an argument x ∈ X is denoted
by F (x) ∈ Y or Fx ∈ Y . Functions F ∈ X → Y and G ∈ Y → Z can
be composed G ◦ F ∈ X → Z. The inverse of a function, inverse ∈ (X →
Y) → (Y → P(X )), is defined inverse(F ) := {(y, {x : (x, z) ∈ F, z = y}) :
y ∈ ran(F )}, and is sometimes denoted F−1. The range of the inverse is a
partition of the domain, ran(F−1) ∈ B(dom(F )).

Functions may be recursive. Algorithms are represented as recursive func-
tions.

The powerset of bi-directional relations, or one-to-one functions, is denoted
↔. The cardinality of the domain of a bi-directional function equals the
range, F ∈ dom(F )↔ ran(F ) =⇒ |dom(F )| = |ran(F )|.

Total functions are denoted with a colon. For example, the left total function
F ∈ X :→ Y requires that dom(F ) = X but only that ran(F ) ⊆ Y .
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An order D on some set X is a choice of the enumerations, D ∈ X :↔:
{1 . . . |X|}. Given the order, any subset Y ⊆ X can be enumerated. De-
fine order(D, Y ) ∈ Y :↔: {1 . . . |Y |} such that ∀a, b ∈ Y (Da ≤ Db =⇒
order(D, Y )(a) ≤ order(D, Y )(b)).

The set of natural numbers N is taken to include 0. The set N>0 excludes 0.
The space of a non-zero natural number is the natural logarithm, space(n) :=
lnn. The set of rational numbers is denoted Q. The set of log-rational
numbers is denoted ln Q>0 = {ln q : q ∈ Q>0}. The set of real numbers is
denoted R.

The factorial of a non-zero natural number n ∈ N>0 is written n! =∏
{1 . . . n}.

The unit-translated gamma function is the real function that corresponds
to the factorial function. It is defined (Γ!) ∈ R→ R as Γ!x = Γ(x+1) which
is such that ∀n ∈ N>0 (Γ!n = Γ(n+ 1) = n!).

Given a relation A ⊂ X ×Y such that an order operator is defined on the
range, Y , the max function returns the maximum subset, max ∈ P(X×Y)→
(X → Y)

max(A) := {(x, y) : (x, y) ∈ A, ∀(r, s) ∈ A (s ≤ y)}

For convenience define the functions maxd(A) := dom(max(A)) and maxr(A) :=
m, where {m} = ran(max(A)). The corresponding functions for minimum,
min, mind and minr, are similarly defined.

Given a relation A ⊂ X×Y such that the arithmetic operators are defined on
the range, Y , the sum function is defined sum(A) :=

∑
(y : (x, y) ∈ A). The

relation can be normalised, normalise(A) := {(x, y/sum(A)) : (x, y) ∈ A}.
Define notation Â := normalise(A). A normalised relation is such that its
sum is one, sum(Â) = 1.

The set of probability functions P is the set of rational valued functions
such that the values are bounded [0, 1] and sum to 1, P ⊂ X → Q[0,1] and
∀P ∈ P (sum(P ) = 1). The normalisation of a positive rational valued func-
tion F ∈ X → Q≥0 is a probability function, F̂ ∈ P .

The entropy of positive rational valued functions, entropy ∈ (X → Q≥0) →
Q≥0 ln Q>0, is defined as entropy(N) := −

∑
(N̂x ln N̂x : x ∈ dom(N), Nx >
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0). The entropy of a singleton is zero, entropy({(·, 1)}) = 0. Entropy is max-
imised in uniform functions as the cardinality tends to infinity, entropy(X ×
{1/|X|}) = ln |X|.

Given some finite function F ∈ X → Y , where 0 < |F | < ∞, a probabil-
ity function may be constructed from its distribution, {(y, |X|) : (y,X) ∈
F−1}∧ ∈ (Y → Q≥0) ∩ P . The probability function of an arbitrarily chosen
finite function is likely to have high entropy.

A probability function P (z) ∈ (X :→ Q≥0) ∩ P , parameterised by some
parameter z ∈ Z = dom(P ), has a corresponding likelihood function L(x) ∈
Z :→ Q≥0, parameterised by coordinate x ∈ X, such that L(x)(z) =
P (z)(x). The maximum likelihood estimate z̃ of the parameter, z, at co-
ordinate x ∈ X is the mode of the likelihood function,

{z̃} = maxd(L(x))

= maxd({(z, P (z)(x)) : z ∈ Z})
= {z : z ∈ Z, ∀z′ ∈ Z (P (z)(x) ≥ P (z′)(x))}

A list is a object valued function of the natural numbers L(X ) ⊂ N→ X ,
such that ∀L ∈ L(X ) (L 6= ∅ =⇒ dom(L) = {1 . . . |L|}). Two lists L,M ∈
L(X ) may be concatenated, concat(L,M) := L ∪ {(|L|+ i, x) : (i, x) ∈M}.

A tree is recursively defined as a tree valued function of objects, trees(X ) =
X → trees(X ). The nodes of the tree T ∈ trees(X ) are nodes(T ) := T ∪⋃
{nodes(R) : (x,R) ∈ T}, and the elements are elements(T ) := dom(nodes(T )).

The paths of a tree paths(T ) ⊂ L(X ) is a set of lists. Given a set of lists
Q ⊂ L(X ) a tree can be constructed tree(Q) ∈ trees(X ).

2.2 Maximum Entropy

Let X ⊂ X be a finite set of micro-states, 0 < |X| < ∞. Consider
a system of n distinguishable particles, each in a micro-state. The set of
states of the system is the set of micro-state functions of particle identifier,
{1 . . . n} :→ X. The cardinality of the set of states is |X|n.

Each state implies a distribution of particles over micro-states,

I =
{

(R, {(x, |C|) : (x,C) ∈ R−1}) : R ∈ {1 . . . n} :→ X
}

That is, a state R ∈ {1 . . . n} :→ X has a particle distribution I(R) ∈ X →
{1 . . . n} such that sum(I(R)) = n.
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The cardinality of states for each particle distribution, I(R), is the multi-
nomial coefficient,

W = {(N, |D|) : (N,D) ∈ I−1}

= {(N, n!∏
(x,·)∈N Nx!

) : (N, ·) ∈ I−1}

That is, there are W (I(R)) states that have the same particle distribution,
I(R), as state R. The normalisation of the state distribution over particle
distributions is a probability function, Ŵ ∈ ((X → {1 . . . n})→ Q>0) ∩ P .

In the case where the number of particles is large, n � lnn, the logarithm
of the multinomial coefficient of a particle distribution N ∈ X → {1 . . . n}
approximates to the scaled entropy,

ln
n!∏

(x,·)∈N Nx!
≈ n× entropy(N)

so the probability of the particle distribution varies with its entropy, Ŵ (N) ∼
entropy(N).

The least probable particle distributions are singletons,

mind(W ) =
{
{(x, n)} : x ∈ X

}
because they have only one state, ∀x ∈ X (W ({(x, n)}) = 1). The entropy
of a singleton distribution is zero, entropy({(x, n)}) = 0.

In the case where the number of particles per micro-state is integral, n/|X| ∈
N>0, the modal particle distribution is the uniform distribution,

maxd(W ) =
{
{(x, n/|X|) : x ∈ X}

}
The entropy of the uniform distribution is maximised, entropy({(x, n/|X|) :
x ∈ X}) = ln |X|.

The normalisation of a particle distribution N ∈ X → {1 . . . n} is a micro-
state probability function, N̂ ∈ (X → Q≥0) ∩P , which is independent of the

number of particles, sum(N̂) = 1.

So in the case where a problem domain is parameterised by an unknown
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micro-state probability function otherwise arbitrarily chosen from a known
subset Q ⊆ (X → Q≥0) ∩ P , where the number of particles is known to
be large, the maximum likelihood estimate P̃ ∈ Q is the probability func-
tion with the greatest entropy, ∀P ∈ Q (entropy(P̃ ) ≥ entropy(P )) or
P̃ ∈ maxd({(P, entropy(P )) : P ∈ Q}).

2.3 Histograms

2.3.1 States, histories and histograms

The set of all variables is V . The set of all values is W . A system
U ∈ V → P(W) is a functional mapping between variables and non-empty
sets of values, ∀(v,W ) ∈ U (|W | > 0). The variables of a system is the
domain, vars(U) := dom(U).

In a system of finite variables, ∀v ∈ vars(U) (|Uv| <∞), each variable has a
set of discrete values. The values need not be ordered. The valency of a vari-
able v is the cardinality of its values, |Uv|. The volume of a set of variables
in a system V ⊆ vars(U) is the product of the valencies,

∏
v∈V |Uv| ≥ 1.

The set of states is the set of value valued functions of variable, S =
V → W . The variables of a state S ∈ S is the function domain, vars(S) :=
dom(S).

The state, S, is in a system U if (i) the variables of the state are vari-
ables of the system, vars(S) ⊆ vars(U), and (ii) the value of each variable in
the state is in the system, ∀v ∈ vars(S) (Sv ∈ Uv).

Given a set of variables in a system V ⊆ vars(U), the cartesian set of all
possible states is

∏
v∈V ({v}×Uv), which has cardinality equal to the volume∏

v∈V |Uv|.

The variables V = vars(S) of a state S may be reduced to a given subset
K ⊆ V by taking the subset of the variable-value pairs,

S % K := {(v, u) : (v, u) ∈ S, v ∈ K}

A set of states Q ⊂ S in the same variables ∀S ∈ Q (vars(S) = V ) may be
split into a subset of its variables K ⊆ V and the complement V \K,

split(K,Q) = {(S % K, S % (V \K)) : S ∈ Q}
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Two states S, T ∈ S are said to join if their union is also a state, S ∪ T ∈ S.
That is, a join is functional,

S ∪ T ∈ S ⇐⇒ |vars(S) ∪ vars(T )| = |S ∪ T |
⇐⇒ ∀v ∈ vars(S) ∩ vars(T ) (Sv = Tv)

States in disjoint variables always join, ∀S, T ∈ S (vars(S) ∩ vars(T ) =
∅ =⇒ S ∪ T ∈ S). States in the same variables only join if they are equal,
∀S, T ∈ S (vars(S) = vars(T ) =⇒ (S ∪ T ∈ S ⇐⇒ S = T )).

The set of event identifiers is the universal set X . An event (x, S) is a
pair of an event identifier and a state, (x, S) ∈ X ×S. A history H is a state
valued function of event identifiers, H ∈ X → S, such that all of the states
of its events share the same set of variables, ∀(x, S), (y, T ) ∈ H (vars(S) =
vars(T )). The set of histories is denoted H ⊂ X → S.

The set of variables of a history is the set of the variables of any of the
events of the history, vars(H) = vars(S) where (x, S) ∈ H.

The event identifiers of a history need not be ordered, so a history is not
necessarily sequential or chronological.

The inverse of a history, H−1, is called the classification. So a classifica-
tion is an event identifier set valued function of state, H−1 ∈ S → P(X ).
The event identifier components are non-empty, ∀(S,X) ∈ H−1 (X 6= ∅).

The reduction of a history is the reduction of its events, H%V := {(x, S%V ) :
(x, S) ∈ H}.

The addition operation of histories is defined as the disjoint union of the
events if both histories have the same variables,

H1 +H2 := {((x, ·), S) : (x, S) ∈ H1} ∪ {((·, y), T ) : (y, T ) ∈ H2}

where vars(H1) = vars(H2). The size of the sum equals the sum of the sizes,
|H1 +H2| = |H1|+ |H2|.

The multiplication operation of histories is defined as the product of the
events where the states join,

H1 ∗H2 := {((x, y), S ∪ T ) : (x, S) ∈ H1, (y, T ) ∈ H2,

∀v ∈ vars(S) ∩ vars(T ) (Sv = Tv)}
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The size of the product equals the product of the sizes if the variables are
disjoint, vars(H1) ∩ vars(H2) = ∅ =⇒ |H1 ∗ H2| = |H1| × |H2|. The
variables of the product is the union of the variables if the size is non-zero,
H1 ∗H2 6= ∅ =⇒ vars(H1 ∗H2) = vars(H1) ∪ vars(H2).

The set of all histograms A is a subset of the positive rational valued func-
tions of states, A ⊂ S → Q≥0, such that each state of each histogram has
the same set of variables, ∀A ∈ A ∀S, T ∈ dom(A) (vars(S) = vars(T )).

The set of variables of a histogram A ∈ A is the set of the variables of
any of the elements of the histogram, vars(A) = vars(S) where (S, q) ∈ A.
The dimension of a histogram is the cardinality of its variables, |vars(A)|.
The counts of a histogram is the range. The states of a histogram is the
domain. Define the shorthand AS := dom(A). The size of a histogram
is the sum of the counts, size(A) := sum(A). The size is always positive,
size(A) ≥ 0. If the size is non-zero the normalised histogram has a size of
one, size(A) > 0 =⇒ size(Â) = 1. In this case the normalised histogram is
a probability function, size(A) > 0 =⇒ Â ∈ P .

The volume of a histogram A of variables V in a system U is the volume
of the variables,

∏
v∈V |Uv|.

A histogram with no variables is called a scalar. The scalar of size z
is {(∅, z)}. Define scalar(z) := {(∅, z)}. A singleton is a histogram with
only one state, {(S, z)}. A uniform histogram A has unique non-zero count,
|{c : (S, c) ∈ A, c > 0}| = 1.

The set of integral histograms is the subset of histograms which have integal
counts Ai = A ∩ (S → N). A unit histogram is a special case of an integral
histogram in which all its counts equal one, ran(A) = {1}. The size of a
unit histogram equals its cardinality, size(A) = |A|. A set of states Q ⊂ S in
the same variables may be promoted to a unit histogram, QU := Q×{1} ∈ Ai.

The unit effective histogram of a histogram is the unit histogram of the states
where the count is non-zero. Define the shorthand AF := {(S, 1) : (S, c) ∈
A, c > 0} ∈ Ai.

Given a system U define the cartesian histogram of the set of variables V as
V C :=

(∏
v∈V ({v} × Uv)

)
× {1} ∈ Ai. The size of the cartesian histogram

equals its cardinality which is the volume of the variables, size(V C) = |V C| =
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∏
v∈V |Uv|. The unit effective histogram is a subset of the cartesian histogram

of its variables, AF ⊆ V C, where V = vars(A). A complete histogram has the
cartesian set of states, AS = V CS.

A partition P is a partition of the cartesian states, P ∈ B(V CS). The parti-
tion is a set of disjoint components, ∀C,D ∈ P (C 6= D =⇒ C ∩ D = ∅),
that union to equal the cartesian states,

⋃
P = V CS. The unary partition is

{V CS}. The self partition is V CS{} = {{S} : S ∈ V CS}. A partition variable
P ∈ vars(U) in a system U is such that its set of values equals its set of com-
ponents, UP = P . So the valency of a partition variable is the cardinality of
the components, |UP | = |P |.

A regular histogram A of variables V in system U has unique valency of
its variables, |{|Uv| : v ∈ V }| = 1. The volume of a regular histogram is
dn = |V C| =

∏
v∈V |Uv|, where valency d is such that {d} = {|Uv| : v ∈ V }

and dimension n = |V |.

The counts of the integral histogram A ∈ Ai of a history H ∈ H are the
cardinalities of the event identifier components of its classification, A =
histogram(H) where histogram(H) := {(S, |X|) : (S,X) ∈ H−1}. In this case
the histogram is a distribution of events over states. If the history is bijective,
H ∈ X ↔ S, then its histogram is a unit histogram, A = ran(H)× {1}.

A sub-histogram A of a histogram B is such that the effective states of A are
a subset of the effective states of B and the counts of A are less than or equal
to those of B, A ≤ B := AFS ⊆ BFS ∧ ∀S ∈ AFS (AS ≤ BS). The histogram
of a sub-history G ⊆ H is a sub-histogram, histogram(G) ≤ histogram(H).

The reduction of a histogram is the reduction of its states, adding the counts
where two different states reduce to the same state,

A%V := {(R,
∑

(c : (T, c) ∈ A, T ⊇ R)) : R ∈ {S%V : S ∈ AS}}

Reduction leaves the size of a histogram unchanged, size(A%V ) = size(A),
but the number of states may be fewer, |(A%V )S| ≤ |AS|. The reduction to
the empty set is a scalar, A%∅ = {(∅, z)}, where z = size(A). The histogram
of a reduction of a history equals the reduction of the histogram of the history,

histogram(H % V ) = histogram(H) % V
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The addition of histograms A and B is defined,

A+B :=

{(S, c) : (S, c) ∈ A, S /∈ BS} ∪
{(S, c+ d) : (S, c) ∈ A, (T, d) ∈ B, S = T} ∪
{(T, d) : (T, d) ∈ B, T /∈ AS}

where vars(A) = vars(B). The sizes add, size(A + B) = size(A) + size(B).
The histogram of an addition of histories equals the addition of the histograms
of the histories,

histogram(H1 +H2) = histogram(H1) + histogram(H2)

The multiplication of histograms A and B is the product of the counts where
the states join,

A∗B := {(S∪T, cd) : (S, c) ∈ A, (T, d) ∈ B, ∀v ∈ vars(S)∩vars(T ) (Sv = Tv)}

If the variables are disjoint, the sizes multiply, vars(A) ∩ vars(B) = ∅ =⇒
size(A ∗ B) = size(A) × size(B). Multiplication by a scalar scales the size,
size(scalar(z)∗A) = z×size(A). The histogram of a multiplication of histories
equals the multiplication of the histograms of the histories,

histogram(H1 ∗H2) = histogram(H1) ∗ histogram(H2)

The reciprocal of a histogram is 1/A := {(S, 1/c) : (S, c) ∈ A, c > 0}. Define
histogram division as B/A := B ∗ (1/A).

A histogram A is causal in a subset of its variables K ⊂ V if the reduc-
tion of the effective states to the subset, K, is functionally related to the
reduction to the complement, V \K,

{(S % K, S % (V \K)) : S ∈ AFS} ∈ KCS → (V \K)CS

or

split(K,AFS) ∈ KCS → (V \K)CS

A histogram A is diagonalised if no pair of effective states shares any value,
∀S, T ∈ AFS (S 6= T =⇒ S ∩ T = ∅). A diagonalised histogram A is fully
diagonalised if its effective cardinality equals the minimum valency of its
variables, |AF| = minr({(v, |Uv|) : v ∈ V }). The cardinality of the effective
states of a fully diagonalised regular histogram is the valency, |AF| = d, where
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{d} = {|Uv| : v ∈ V }. In a diagonalised histogram the causality is bijective
or equational,

∀u,w ∈ V ({(S%{u}, S%{w}) : S ∈ AFS} ∈ {u}CS ↔ {w}CS)

Given some slice state R ∈ KCS, where K ⊂ V and V = vars(A), the slice
histogram, A ∗ {R}U ⊂ A, is said to be contingent on the incident slice state.
For example, if the slice histogram is diagonalised, diagonal(A∗{R}U % (V \
K)), then the histogram, A, is said to be contingently diagonalised.

The perimeters of a histogram A ∈ A is the set of its reductions to each of
its variables, {A%{w} : w ∈ V }, where V = vars(A). The independent of a
histogram is the product of the normalised perimeters scaled to the size,

AX := Z ∗
∏
w∈V

Â%{w}

where z = size(A) and Z = scalar(z) = A%∅. The independent of a his-
togram is such that (i) the states are a superset, AXS ⊇ AS, (ii) the size
is unchanged, size(AX) = size(A), and (iii) the variables are unchanged,
vars(AX) = vars(A). A histogram is said to be independent if it equals
its independent, A = AX. The independent of an independent histogram
is the independent, AXX = AX. The scaled product of (i) any reduction
of a normalised independent histogram to any subset of its variables K ⊆
V , and (ii) the reduction to the complement, V \ K, is the independent,
Z ∗ (ÂX % K) ∗ (ÂX % (V \K)) = AX.

Scalar histograms are independent, {(∅, z)} = {(∅, z)}X. Singleton histograms,
|AF| = 1, are independent, {(S, z)} = {(S, z)}X. If the histogram is mono-
variate, |V | = 1, then it is independent A = A%{w} = AX where {w} = V .
Uniform-cartesian histograms, which are scalar multiples of the cartesian,
A = V C

z where V C
z = scalar(z/v) ∗ V C, z = size(A) and v = |V C|, are inde-

pendent, V C
z = V CX

z .

A completely effective pluri-variate independent histogram, AXF = V C where
|V | > 1, for which all of the variables are pluri-valent, ∀w ∈ V (|Uw| > 1),
must be non-causal,

∀K ⊂ V (K /∈ {∅, V } =⇒
{(S % K, S % (V \K)) : S ∈ AXFS} /∈ KCS → (V \K)CS)
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The set of substrate histories HU,V,z is the set of histories having event
identifiers {1 . . . z}, fixed size z and fixed variables V ,

HU,V,z := {1 . . . z} :→ V CS

= {H : H ⊆ {1 . . . z} × V CS, dom(H) = {1 . . . z}, |H| = z}

The cardinality of the substrate histories is |HU,V,z| = vz where v = |V C|. If
the volume, v, is finite, the set of substrate histories is finite, |HU,V,z| <∞.

The corresponding set of integral substrate histograms AU,i,V,z is the set of
complete integral histograms in variables V with size z,

AU,i,V,z := {histogram(H) : H ∈ HU,V,z}
= {A : A ∈ V CS :→ {0 . . . z}, size(A) = z}

Note that the histogram function is redefined here to return complete his-
tograms, histogram(H) := {(S, |X|) : (S,X) ∈ H−1} + V CS × {0}.

The cardinality of integral substrate histograms is the cardinality of weak
compositions,

|AU,i,V,z| =
(z + v − 1)!

z! (v − 1)!

If the volume, v, is finite, the set of integral substrate histograms is finite,
|AU,i,V,z| <∞.

2.3.2 Entropy and alignment

The entropy of a non-zero histogram A ∈ A is defined as the expected
negative logarithm of the normalised counts,

entropy(A) := −
∑
S∈AFS

ÂS ln ÂS

(Note that in conventional terminology the entropy would be written H[V ].)
The sized entropy is z × entropy(A) where z = size(A). The entropy of a
singleton is zero, z × entropy({(·, z)}) = 0. Entropy is highest in cartesian
histograms, which are uniform and have maximum effective volume. The
maximum sized entropy is z × entropy(V C

z ) = z ln v where v = |V C|.

Given a histogram A and a set of query variables K ⊂ V , the scaled label
entropy is the degree to which the histogram is ambiguous or non-causal in
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the query variables, K. It is the sum of the sized entropies of the contingent
slices reduced to the label variables, V \K,∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

The scaled label entropy is also known as the scaled query conditional en-
tropy, ∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

= −
∑
S∈AFS

AS ln
AS

(A%K ∗ V C)S

= −
∑
S∈AFS

AS ln(A/(A%K))S

= z × entropy(A)− z × entropy(A%K)

The query conditional entropy is a special case of negative relative entropy,
entropy(A)− entropy(A%K) = − entropyRelative(A,A%K). See appendix
‘Entropy and Gibbs’ inequality’. (Note that in conventional terminology the
query conditional entropy would be written H[V \K | K] = H[V ] −H[K].
See the discussion of Bayes’ theorem in section ‘Transforms and probability’,
below.)

When the histogram, A, is causal in the query variables, split(K,AFS) ∈
KCS → (V \K)CS, the label entropy is zero because each slice is an effective
singleton, ∀R ∈ (A%K)FS (|AF ∗ {R}U| = 1). In this case the label state is
unique for every effective query state. By contrast, when the label variables
are independent of the query variables, A = Z ∗ Â%K ∗ Â%(V \K), the label
entropy is maximised.

The multinomial coefficient of a non-zero integral histogram A ∈ Ai is

z!∏
S∈AS AS!

∈ N>0

where z = size(A) > 0. In the case where the histogram is non-integral the
multinomial coefficient is defined by the unit-translated gamma function,

Γ!z∏
S∈AS Γ!AS
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Given an arbitrary substrate history H ∈ HU,V,z and its histogram A =
histogram(H), the cardinality of histories having the same histogram, A, is
the multinomial coefficient,

|{G : G ∈ HU,V,z, histogram(G) = A}| =
z!∏

S∈AS AS!

In the case where the counts are not small, z � ln z, the logarithm of the
multinomial coefficient approximates to the sized entropy,

ln
z!∏

S∈AS AS!
≈ z × entropy(A)

so the entropy, entropy(A), is a measure of the probability of the histogram
of a randomly chosen history. Singleton histograms are least probable and
uniform histograms are most probable.

The sized relative entropy between a histogram and its independent is the
sized mutual entropy, ∑

S∈AFS

AS ln
AS
AX
S

It can be shown that the size scaled expected logarithm of the independent
with respect to the histogram equals the size scaled expected logarithm of
the independent with respect to the independent,∑

S∈AFS

AS lnAX
S =

∑
S∈AXFS

AX
S lnAX

S

so the sized mutual entropy is the difference between the sized independent
entropy and the sized histogram entropy,∑

S∈AFS

AS ln
AS
AX
S

= z × entropy(AX)− z × entropy(A)

The sized mutual entropy can be viewed as a measure of the probability of
the independent, AX, relative to the histogram, A, given arbitrary substrate
history. Equivalently, sized mutual entropy can be viewed as a measure of
the surprisal of the histogram, A, relative to the independent, AX. That is,
sized mutual entropy is a measure of the dependency between the variables
in the histogram, A.
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The sized mutual entropy is the sized relative entropy so it is always pos-
itive,

z × entropy(AX)− z × entropy(A) ≥ 0

and so the independent entropy is always greater than or equal to the his-
togram entropy

entropy(AX) ≥ entropy(A)

That is, histograms of substrate histories arbitrarily chosen from a uniform
distribution are probably independent or nearly independent. The expected
sized mutual entropy is low.

An example of a dependency between variables is where a histogram A is
causal in a subset of its variables K ⊂ V . In this case the histogram cannot
be independent, A 6= AX, and so the sized mutual entropy must be greater
than zero,

{(S % K, S % (V \K)) : S ∈ AFS} ∈ KCS → (V \K)CS =⇒
z × entropy(AX)− z × entropy(A) > 0

The alignment of a histogram A ∈ A is defined

algn(A) :=
∑
S∈AS

ln Γ!AS −
∑
S∈AXS

ln Γ!A
X
S

where Γ! is the unit-translated gamma function.

In the case where both the histogram and its independent are integral, A,AX ∈
Ai, then the alignment is the difference between the sum log-factorial counts
of the histogram and its independent,

algn(A) =
∑
S∈AS

lnAS!−
∑
S∈AXS

lnAX
S !

Alignment is the logarithm of the ratio of the independent multinomial coef-
ficient to the multinomial coefficient,

algn(A) = ln

(
z!∏

S∈AXS AX
S !
/

z!∏
S∈AS AS!

)
so alignment is the logarithm of the probability of the independent, AX, rel-
ative to the histogram, A. Equivalently, alignment is the logarithm of the
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surprisal of the histogram, A, relative to the independent, AX. Alignment is
a measure of the dependency between the variables in the histogram, A.

Alignment is approximately equal to the sized mutual entropy,

algn(A) ≈ z × entropy(AX)− z × entropy(A)

=
∑
S∈AFS

AS ln
AS
AX
S

so the histogram of an arbitrary history usually has low alignment. Note
that, because sized entropy is only an approximation to the logarithm of the
multinomial coefficient, especially at low sizes, alignment is the better mea-
sure of the surprisal of the histogram, A, relative to the independent, AX,
than sized mutual entropy.

The alignment of an independent histogram, A = AX, is zero. In particu-
lar, scalar histograms, V = ∅, mono-variate histograms, |V | = 1, uniform
cartesian histograms, A = V C

z , and effective singleton histograms, |AF| = 1,
all have zero alignment.

The maximum alignment of a histogram A occurs when the histogram is
both uniform and fully diagonalised. No pair of effective states shares any
value, ∀S, T ∈ AFS (S 6= T =⇒ S ∩ T = ∅), and all counts are equal along
the diagonal, ∀S, T ∈ AFS (AS = AT ). The maximum alignment of a regular
histogram with dimension n = |V | and valency d is

d ln Γ!
z

d
− dn ln Γ!

z

dn

The maximum alignment is approximately z ln dn−1 = z ln v/d, where v = dn.
It can be compared to the maximum sized entropy of the ‘co-histogram’ re-
duced by one variable along the diagonal.

Although alignment varies against sized entropy, algn(A) ∼ −z×entropy(A),
the maximum alignment does not occur when the entropy is minimised. At
minimum entropy the histogram is a singleton, but the alignment is zero be-
cause singletons are independent.

An example of an aligned histogram A is where the histogram is causal in a
subset of its variables K ⊂ V . In this case the histogram cannot be indepen-
dent, A 6= AX, and so the alignment must be greater than zero,

{(S%K, S%(V \K)) : S ∈ AFS} ∈ KCS → (V \K)CS =⇒ algn(A) > 0
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At maximum alignment the histogram is fully diagonalised, so all pairs of
variables are necessarily bijectively causal or equational,

∀u,w ∈ V ({(S%{u}, S%{w}) : S ∈ AFS} ∈ {u}CS ↔ {w}CS)

The alignment is approximately equal to the scaled mutual entropy, so the
alignment varies against the scaled label entropy or scaled query conditional
entropy,

algn(A) ≈ z × entropy(AX)− z × entropy(A)

∼ z × entropy(A%K) + z × entropy(A%(V \K))− z × entropy(A)

∼ −(z × entropy(A)− z × entropy(A%K))

= −
∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

The conditional entropy is directed from the query variables to the label
variables, whereas the alignment is symmetrical with respect to the variables.

2.3.3 Encoding and compression

A substrate history probability function P ∈ (HU,V,z :→ Q≥0) ∩ P is a
normalised distribution over substrate histories,

∑
(PH : H ∈ HU,V,z) = 1.

The entropy of the probability function is entropy(P ). Note that history
probability function entropy is not to be confused with histogram entropy. A
history probability function is a distribution over histories, HU,V,z → Q≥0,
whereas a histogram is a distribution of events over states, V CS → Q≥0.

History coders define the conversion of lists of histories, L(H), to and from
the natural numbers, N. A substrate history coder C ∈ coders(HU,V,z) defines
an encode function of any list of substrate histories into a positive integer,
encode(C) ∈ L(HU,V,z) :→ N, and the corresponding decode function of the
integer back into the list of histories, decode(C) ∈ N × N →: L(HU,V,z),
given the length of the list.

A third function is the space function, space(C) ∈ HU,V,z :→ ln N>0, which
defines the logarithm of the cardinality of the encoding states of a substrate
history. The encoding integer of a single history is always less than this
cardinality, ∀H ∈ HU,V,z (encode(C)({(1, H)}) < exp(space(C)(H))). The
space of an encoded list of histories is the sum of the spaces of the histories.
The space function is also denoted Cs = space(C).
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Given a substrate history probability function P ∈ (HU,V,z :→ Q≥0) ∩ P , the
expected substrate history space is

∑
(PHC

s(H) : H ∈ HU,V,z). The expected
space is always greater than or equal to the probability function entropy (or
Shannon entropy in nats),

∑
(PHC

s(H) : H ∈ HU,V,z) ≥ entropy(P ).

A minimal history coder Cm,U,V,z ∈ coders(HU,V,z) encodes the history by
encoding the index of an enumeration of the entire set of substrate histories,
encode(Cm,U,V,z)({(1, H)}) ∈ {0 . . . vz−1}. The space is fixed, Cs

m,U,V,z(H) =
ln |HU,V,z| = z ln v. In the case where the probability function is uniform,
P = HU,V,z × {1/vz}, the expected space equals the probability function en-
tropy,

∑
(PHC

s
m,U,V,z(H) : H ∈ HU,V,z) = entropy(P ) = z ln v. In other

words, when the history is arbitrary then the minimal history coder has the
least expected space.

There are two canonical history coders, the index history coder CH and
the classification coder CG. The index substrate history coder CH,U,V,z ∈
coders(HU,V,z) is the simpler of the two. It encodes each history by indexing
the volume for each event. The space of an index into a volume v = |V CS| is
ln v. So the total space of any substrate history H ∈ HU,V,z is

Cs
H,U,V,z(H) = z ln v

The space is fixed because it does not depend on the histogram, A. The index
history space equals the minimal history space, Cs

H,U,V,z(H) = Cs
m,U,V,z(H) =

z ln v, but the encode functions are different. In the case of an arbitrary
history, or uniform history probability function, the index history coder also
has least expected space.

The classification substrate history coder CG,U,V,z ∈ coders(HU,V,z) encodes
each history in two steps. First the histogram is encoded by choosing one of
the integral substrate histograms, AU,i,V,z. The choice has fixed space

ln |AU,i,V,z| = ln
(z + v − 1)!

z! (v − 1)!

Given the histogram, A, the cardinality of classifications equals the multino-
mial coefficient. Now the choice of the classification, H−1, is encoded in a
space equal to the logarithm of the multinomial coefficient,

ln
z!∏

S∈AS AS!
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The total space to encode the history in the classification substrate history
coder is

Cs
G,U,V,z(H) = ln

(z + v − 1)!

z! (v − 1)!
+ ln

z!∏
S∈AS AS!

The space is not fixed because it depends on the histogram, A.

The classification space may be approximated in terms of sized entropy,

Cs
G,U,V,z(H) ≈ (z + v) ln(z + v) − z ln z − v ln v + z × entropy(A)

The maximum sized entropy, z × entropy(A), is z ln v, so when the entropy
is high the classification space is greater than the index space, Cs

G,U,V,z(H) >
Cs

H,U,V,z(H), but when the entropy is low the classification space is less than
the index space, Cs

G,U,V,z(H) < Cs
H,U,V,z(H). The break-even sized entropy is

approximately

z × entropy(A) ≈ z ln v − ((z + v) ln(z + v) − z ln z − v ln v)

In the case where the size is much less than the volume, z � v, the break-even
sized entropy is approximately z × entropy(A) ≈ z ln z.

2.4 Induction without model

Induction may be defined as the determination of the likely properties of
unknown history probability functions.

Let P be a substrate history probability function, P ∈ (HU,V,z :→ Q≥0) ∩ P .
Let the domain of the probability function, dom(P ) = HU,V,z, be known. The
simplest case of induction is that nothing else is known about the probability
function, P . If the probability function is assumed to be the normalisation
of the distribution of a finite history valued function of undefined particle,
X → H, and this particle function is assumed to be chosen arbitrarily, then
the maximum likelihood estimate P̃ for the probability function, P , max-
imises the entropy, entropy(P̃ ), at the mode. So the likely history probability
function, P̃ , is the uniform distribution,

P̃ = HU,V,z × {1/vz}

That is, the likely substrate histories are arbitrary or random.
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The next case is where a history H ∈ HU,V,z is known to be necessary,
P (H) = 1. In this case the probability function, P , is,

P = {(H, 1)} ∪
{(G, 0) : G ∈ HU,V,z, G 6= H}

If the history, H, is known, then the probability function, P , is known. The
maximum likelihood estimate equals the probability function, P̃ = P . The
entropy is zero, entropy(P̃ ) = 0.

2.4.1 Classical induction

In classical induction the history probability functions are constrained by
histogram.

Let his = histogram. Now consider the case where the histogram A ∈ AU,i,V,z
is known to be necessary,

∑
(P (H) : H ∈ HU,V,z, his(H) = A) = 1. The

maximum likelihood estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ∈ HU,V,z, his(H) = A}∧ ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

= {(H, 1/ z!∏
S∈AS AS!

) : H ∈ HU,V,z, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

where ()∧ = normalise. That is, the maximum likelihood estimate, P̃ , is such
that all histories with the histogram, his(H) = A, are uniformly probable and
all other histories, his(G) 6= A, are impossible, P̃ (G) = 0. If the histogram,
A, is known, then the likely probability function, P̃ , is known. Note that the
likely history probability function entropy varies with the histogram entropy,
entropy(P̃ ) ∼ entropy(A).

Next consider the case where either histogram A or histogram B are known
to be necessary,

∑
(P (H) : H ∈ HU,V,z, (his(H) = A ∨ his(H) = B)) = 1.

The maximum likelihood estimate which maximises the entropy, entropy(P̃ ),
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is

P̃ = {(H, 1) : H ∈ HU,V,z, (his(H) = A ∨ his(H) = B)}∧ ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

= {(H, 1/
(

z!∏
S∈AS AS!

+
z!∏

S∈BS BS!

)
) :

H ∈ HU,V,z, (his(H) = A ∨ his(H) = B)} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

That is, the maximum likelihood estimate, P̃ , is such that all histories with
either histogram, A or B, are uniformly probable and all other histories,
his(G) 6= A and his(G) 6= B, are impossible, P̃ (G) = 0. If the histograms, A
and B, are known, then the likely probability function, P̃ , is known.

Given a history HE ∈ HU,V,zE , of size zE = |HE|, consider the case where
its subsets of size z are known to be necessary,

∑
(P (H) : H ⊆ HE, |H| =

z) = 1. The given history, HE, is called the distribution history. A subset
H ⊆ HE is a sample history drawn from the distribution history, HE. The
maximum likelihood estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, |H| = z}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, |G| 6= z}

= {(H, 1/
(
zE
z

)
) : H ⊆ HE, |H| = z} ∪

{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, |G| 6= z}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE of size |H| = z are uniformly probable and all other histories,
G * HE or |G| 6= z, are impossible, P̃ (G) = 0. If the distribution histogram,

HE, is known, then the likely probability function, P̃ , is known.

Now consider the case where the drawn histogram A is known to be nec-
essary,

∑
(P (H) : H ⊆ HE, his(H) = A) = 1. The maximum likelihood
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estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, his(H) = A}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

= {(H, 1/
∏
S∈AS

(
ES
AS

)
) : H ⊆ HE, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

where the distribution histogram E = his(HE).

That is, the maximum likelihood estimate, P̃ , is such that all drawn his-
tories H ⊆ HE with the histogram, his(H) = A, are uniformly probable and
all other histories, G * HE or his(G) 6= A, are impossible, P̃ (G) = 0. If the
histogram, A, is known and the distribution histogram, HE, is known, then
the likely probability function, P̃ , is known.

The historical distribution Qh,U is defined

Qh,U(E, z)(A) :=
∏
S∈AS

(
ES
AS

)
=
∏
S∈AS

ES!

AS! (ES − AS)!

where A ≤ E. The frequency of histogram A in the historical distribution,
Qh,U , parameterised by draw (E, z), is the cardinality of histories drawn
without replacement having histogram A,

Qh,U(E, z)(A) = |{H : H ⊆ HE, his(H) = A}|

The historical probability distribution is normalised,

Q̂h,U(E, z)(A) := 1/

(
zE
z

)
×Qh,U(E, z)(A)

The likely history probability function, P̃ , can be re-written in terms of the
historical distribution,

P̃ = {(H, 1/Qh,U(E, z)(A)) : H ⊆ HE, his(H) = A} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}
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So the likely history probability function entropy, entropy(P̃ ), is maximised
when the historical distribution frequency, Qh,U(E, z)(A), is maximised.

Consider the case where the histogram, A, is known, but the distribution
histogram, E, is unknown and hence the likely history probability function,
P̃ , is unknown. The historical probability distribution is a probability func-
tion, Q̂h,U(E, z) ∈ P , parameterised by the distribution histogram, E, so
there is a corresponding likelihood function Lh,U(A) ∈ AU,i,V,zE → Q≥0 such

that Lh,U(A)(E) = Q̂h,U(E, z)(A). The maximum likelihood estimate Ẽ for
the distribution histogram, E, is a modal value of this likelihood function,

Ẽ ∈ maxd(Lh,U(A))

= maxd({(D,Qh,U(D, z)(A)) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the histogram, A, is known. If it is assumed that
the distribution histogram equals the likely distribution histogram, E = Ẽ,
then the likely history probability is known, P̃ (H) = 1/Qh,U(Ẽ, z)(A) where
his(H) = A.

The multinomial distribution Qm,U is defined

Qm,U(E, z)(A) :=
z!∏

S∈AS AS!

∏
S∈AS

EAS
S

where AF ≤ EF. The frequency of histogram A in the multinomial distri-
bution, Qm,U , parameterised by draw (E, z), is the cardinality of histories
drawn with replacement having histogram A,

Qm,U(E, z)(A) = |{L : L ∈ Hz
E, his({((i, x), S) : (i, (x, S)) ∈ L}) = A}|

where Hz
E ∈ L(HE) is the set of lists of the distribution history events of

length z.

The multinomial probability distribution is normalised,

Q̂m,U(E, z)(A) :=
1

zzE
×Qm,U(E, z)(A)

=
z!∏

S∈AS AS!

∏
S∈AS

ÊAS
S

so the multinomial probability, Q̂m,U(E, z)(A) = Q̂m,U(Ê, z)(A), does not de-
pend on the distribution histogram size, zE.
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As the distribution histogram size, zE, tends to infinity, the historical prob-
ability tends to the multinomial probability. That is, for large distribution
histogram size, zE � z, the historical probability may be approximated by
the multinomial probability, Q̂h,U(E, z)(A) ≈ Q̂m,U(E, z)(A).

In the case where the distribution histogram is known to be cartesian, E =
V C
zE

, but the distribution histogram size, zE, is unknown, except that it is
known to be large, zE � z, then the case where the drawn histogram, A,
is known to be necessary,

∑
(P (H) : H ⊆ HE, his(H) = A) = 1, approxi-

mates to the case where the substrate histogram, A, is known to be necessary,∑
(P (H) : H ∈ HU,V,z, his(H) = A) = 1. That is,

P̃ = {(H, 1/
∏
S∈AS

(
V C
zE

(S)

A(S)

)
) : H ⊆ HE, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

≈ {(H, 1/ z!∏
S∈AS AS!

) : H ∈ HU,V,z, his(H) = A} ∪

{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

In this case, the likely history probability function entropy varies with the
histogram entropy, entropy(P̃ ) ∼ entropy(A).

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,Qm,U(D, z)(A)) : D ∈ AU,V,1})

The mean of the multinomial probability distribution is the sized distribution
histogram,

mean(Q̂m,U(E, z)) = scalar(z) ∗ Ê

so the maximum likelihood estimate, Ẽ, for the distribution probability his-
togram, Ê, is the sample probability histogram, Â,

Ẽ = Â
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If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then the likely history proba-
bility varies against the sample-distributed multinomial probability, P̃ (H) ∼
1/Q̂m,U(Â, z)(A).

The sample-distributed multinomial log-likelihood is

ln Q̂m,U(A, z)(A) = ln z!− z ln z −
∑
S∈AS

lnAS! +
∑
S∈AFS

AS lnAS

which varies against the sum of the logarithms of the counts

ln Q̂m,U(A, z)(A) ∼ −
∑
S∈AFS

lnAS

So the log-likelihood varies weakly against the histogram entropy,

ln Q̂m,U(A, z)(A) ∼ − entropy(A)

If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then the likely history prob-
ability function entropy varies against the histogram entropy, entropy(P̃ ) ∼
− entropy(A), in contrast to the case where the distribution histogram is
cartesian.

The Fisher information of a probability function varies with the negative
curvature of the likelihood function near the maximum likelihood estimate of
the parameter. So the Fisher information is a measure of the sensitivity of
the likelihood function with respect to the maximum likelihood estimate. The
Fisher information of the multinomial probability distribution, Q̂m,U(E, z), is
the sum sensitivity

sum(sensitivity(U)(Q̂m,U(E, z))) =
∑
S∈V CS

z

ÊS(1− ÊS)

The sum sensitivity varies against the sized entropy,

sum(sensitivity(U)(Q̂m,U(E, z))) ∼ −z × entropy(E)

So, in the case of sample-distributed multinomial probability distribution,
Q̂m,U(A, z), the sum sensitivity varies weakly with the log-likelihood,

sum(sensitivity(U)(Q̂m,U(A, z))) ∼ −z × entropy(A)

∼ ln Q̂m,U(A, z)(A)
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If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then, as the likely history
probability function entropy, entropy(P̃ ), increases, the sensitivity to the dis-
tribution histogram, Ẽ, increases.

The lower the entropy of the sample the more likely the normalised sam-
ple histogram, Â, equals the normalised distribution histogram, Ê, but the
larger the likely difference between them if they are not equal.

Now consider the case where either the drawn histogram A or the drawn
histogram B are known to be necessary,

∑
(P (H) : H ⊆ HE, (his(H) =

A ∨ his(H) = B)) = 1. The maximum likelihood estimate which maximises
the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, (his(H) = A ∨ his(H) = B)}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

= {(H, 1/(Qh,U(E, z)(A) +Qh,U(E, z)(B))) :

H ⊆ HE, (his(H) = A ∨ his(H) = B)} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A, his(G) 6= B}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with either histogram, A or B, are uniformly probable and all other
histories, G * HE or his(G) 6= A and his(G) 6= B, are impossible, P̃ (G) = 0.
If the histograms, A and B, are known and the distribution histogram, HE,
is known, then the likely probability function, P̃ , is known.

The likely probability of drawing histogram A from necessary drawn his-
tograms A or B is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =
Qh,U(E, z)(A)

Qh,U(E, z)(A) +Qh,U(E, z)(B)

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the historical frequencies, Qh,U(E, z)(A) + Qh,U(E, z)(B),
is maximised.

Consider the case where the drawn histograms, A and B, are known, but
the distribution histogram, E, is unknown and hence the likely history prob-
ability function, P̃ , is unknown. The maximum likelihood estimate Ẽ for the
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distribution histogram, E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D,Qh,U(D, z)(A) +Qh,U(D, z)(B)) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the drawn histograms, A and B, are known. If
it is assumed that the distribution histogram equals the likely distribution
histogram, E = Ẽ, then the likely history probability is known, P̃ (H) =
1/(Qh,U(Ẽ, z)(A) +Qh,U(Ẽ, z)(B)) where his(H) = A or his(H) = B.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,Qm,U(D, z)(A) +Qm,U(D, z)(B)) : D ∈ AU,V,1})

Now the likely distribution histogram, Ẽ, is known if there is a computable
solution and the drawn histograms, A and B, are known.

Consider the case where the histogram is uniformly possible. Instead of
assuming the substrate history probability function P ∈ (HU,V,z :→ Q≥0)∩P
to be the distribution of an arbitrary history valued function of undefined
particle, X → H, assume that it is the distribution of an arbitrary history
valued function, X → H, given an arbitrary histogram valued function, X →
A. In this case, the history valued function is chosen arbitrarily from the
constrained subset

{G : F ∈ X → (A× (X → H)),

(·, (A,G)) ∈ F, ∀(·, H) ∈ G (his(H) = A)} ⊂ X → H

In the case where there is no distribution history, the maximum likelihood
estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ∈ HU,V,z, his(H) = A}∧ : A ∈ AU,i,V,z
})∧

= {(H, 1/|AU,i,V,z| × 1/
z!∏

S∈AS AS!
) : H ∈ HU,V,z, A = his(H)}

That is, the maximum likelihood estimate, P̃ , is such that all histograms are
uniformly probable, ∀A ∈ AU,i,V,z (

∑
(P̃ (H) : H ∈ HU,V,z, his(H) = A) =
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1/|AU,i,V,z|), and then all histories with the same histogram, his(H) = A, are
uniformly probable. The likely probability function, P̃ , is known.

In the case where there is a distribution history HE, the maximum likeli-
hood estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H) = A}∧ : A ∈ AU,i,V,z
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/Qh,U(E, z)(A)) : H ⊆ HE, his(H) = A} :

A ∈ AU,i,V,z
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn his-
tograms, A ≤ E, are uniformly probable, and then all drawn histories H ⊆
HE with the same histogram, his(H) = A, are uniformly probable. If the
distribution histogram, HE, is known, then the likely probability function, P̃ ,
is known.

Consider the case where a drawn sample A is known, but the distribution
histogram, E, is unknown and hence the likely history probability function,
P̃ , is unknown. The maximum likelihood estimate Ẽ for the distribution
histogram, E, is the same as for necessary histogram,

Ẽ ∈ maxd({(D,Qh,U(D, z)(A)) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the histogram, A, is known. If it is assumed that the
distribution histogram equals the likely distribution histogram, E = Ẽ, then
the likely history probability is known, P̃ (H) = 1/|{B : B ∈ AU,i,V,z, B ≤
Ẽ}| × 1/Qh,U(Ẽ, z)(A) where his(H) = A.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,Qm,U(D, z)(A)) : D ∈ AU,V,1})
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Again, the maximum likelihood estimate, Ẽ, for the distribution probability
histogram, Ê, is the sample probability histogram, Â,

Ẽ = Â

If it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = Â, then the likely history proba-
bility varies against the sample-distributed multinomial probability, P̃ (H) ∼
1/|AU,i,V,z| × 1/Q̂m,U(Â, z)(A).

So the properties of uniform possible histogram are similar to necessary his-
togram except that more histories are possible but less probable.

2.4.2 Aligned induction

In aligned induction the history probability functions are constrained by
independent histogram.

The independent histogram valued function of integral substrate histograms
YU,i,V,z is defined

YU,i,V,z := {(A,AX) : A ∈ AU,i,V,z}

The finite set of iso-independents of independent histogram AX is

Y −1U,i,V,z(A
X) = {B : B ∈ AU,i,V,z, BX = AX}

Given any subset of the integral substrate histograms I ⊆ AU,i,V,z that con-
tains the histogram, A ∈ I, the degree to which the subset is said to be
aligned-like is called the iso-independence. The iso-independence is defined
as the ratio of (i) the cardinality of the intersection between the integral sub-
strate histograms subset and the set of integral iso-independents, and (ii) the
cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ Y −1U,i,V,z(A

X)|
|I ∪ Y −1U,i,V,z(A

X)|
≤ 1

Consider the case where the independent AX of drawn histories is known
to be necessary,

∑
(P (H) : H ⊆ HE, his(H)X = AX) = 1. The maximum
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likelihood estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, his(H)X = AX}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X 6= AX}

= {(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1U,i,V,z(A
X))) :

H ⊆ HE, his(H)X = AX} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X 6= AX}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with the independent, his(H)X = AX, are uniformly probable and
all other histories, G * HE or his(G)X 6= AX, are impossible, P̃ (G) = 0. If
the independent, AX, is known and the distribution histogram, HE, is known,
then the likely probability function, P̃ , is known.

The likely probability of drawing histogram A from necessary drawn inde-
pendent AX is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1U,i,V,z(A

X)

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the iso-independent historical frequencies,

∑
Qh,U(E, z)(B) :

B ∈ Y −1U,i,V,z(A
X), is maximised.

Consider the case where the independent, AX, is known, but the distribution
histogram, E, is unknown and hence the likely history probability function,
P̃ , is unknown. The maximum likelihood estimate Ẽ for the distribution
histogram, E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ Y −1U,i,V,z(A
X))) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the independent, AX, is known. If it is assumed that
the distribution histogram equals the likely distribution histogram, E = Ẽ,
then the likely history probability is known, P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) :

B ∈ Y −1U,i,V,z(A
X)) where his(H)X = AX.
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In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1U,i,V,z(A
X))) : D ∈ AU,V,1})

which has a solution Ẽ = ÂX. So the maximum likelihood estimate, Ẽ,
for the distribution probability histogram, Ê, is the independent probability
histogram, ÂX,

Ẽ = ÂX

In the case where the independent is integral, AX ∈ Ai, the sum of the iso-
independent independent-distributed multinomial probabilities varies with the
independent independent-distributed multinomial probability,∑

(Qm,U(AX, z)(B) : B ∈ Y −1U,i,V,z(A
X)) ∼ Qm,U(AX, z)(AX)

So, if it is assumed that the distribution probability histogram equals the
likely distribution probability histogram, Ê = Ẽ = ÂX, then the likely history
probability varies against the independent-distributed multinomial probability
of the independent, P̃ (H) ∼ 1/Q̂m,U(AX, z)(AX).

In this case, the likely probability of drawing histogram A from necessary
drawn independent AX is approximately∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A)

≈ Qm,U(AX, z)(A)∑
Qm,U(AX, z)(B) : B ∈ Y −1U,i,V,z(A

X)

∼ Qm,U(AX, z)(A)

Qm,U(AX, z)(AX)

The negative logarithm of the ratio of the histogram independent-distributed
multinomial probability to the independent independent-distributed multino-
mial probability equals the alignment,

− ln
Qm,U(AX, z)(A)

Qm,U(AX, z)(AX)
= algn(A)
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So the logarithm of the likely probability of drawing histogram A from neces-
sary drawn independent AX varies against the alignment,

ln
∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) ∼ − algn(A)

The independent, AX, which has zero alignment, algn(AX) = 0, is the most
probable histogram, ∀B ∈ Y −1U,i,V,z(A

X) (Qm,U(AX, z)(AX) ≥ Qm,U(AX, z)(B)).
As the alignment increases, algn(A) > 0, the likely histogram probability,
Qm,U(AX, z)(A)/

∑
(Qm,U(AX, z)(B) : B ∈ Y −1U,i,V,z(A

X)), decreases.

The likely history probability function entropy varies with the independent
entropy, entropy(P̃ ) ∼ entropy(AX).

Define the dependent histogram AY ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
histogram A conditional that it is an iso-independent,

{AY} = maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1U,i,V,z(A

X)
) : D ∈ AU,V,z})

Note that the dependent, AY, is not always computable, but an approxima-
tion to any accuracy can be made to it. In the case where the histogram is
independent, the dependent equals the independent, A = AX =⇒ AY =
A = AX. The dependent alignment is greater than or equal to the histogram
alignment, algn(AY) ≥ algn(A) ≥ algn(AX) = 0. In the case where the his-
togram is uniformly diagonalised, the histogram alignment, algn(A), is at the
maximum, and the dependent equals the histogram, AY = A.

Now consider the case where, given necessary drawn independent AX, it
is known, in addition, that the sample histogram A is the most probable his-
togram, regardless of its alignment. That is, the likely probability of drawing
histogram A from necessary drawn independent AX,∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1U,i,V,z(A

X)

is maximised.

In the case where the sample, A, is known, but the distribution histogram,
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E, is unknown, the maximum likelihood estimate Ẽ for the distribution his-
togram, E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1U,i,V,z(A

X)
) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known and the sample, A, is known. If it is assumed that the
distribution histogram equals the likely distribution histogram, E = Ẽ, then
the likely history probability is known, P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) : B ∈

Y −1U,i,V,z(A
X)) where his(H)X = AX.

If the histogram is independent, A = AX, then the additional constraint
of probable sample makes no change to the maximum likelihood estimate, Ẽ,

A = AX =⇒

maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1U,i,V,z(A

X)
) : D ∈ AU,i,V,zE})

= maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ Y −1U,i,V,z(A
X))) : D ∈ AU,i,V,zE})

If the histogram is not independent, algn(A) > 0, however, then the likely
history probability function entropy, entropy(P̃ ), is lower than it is in the
case of necessary independent unconstrained by probable sample.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, is now approximated by a modal value of the
conditional likelihood function,

Ẽ ∈ maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1U,i,V,z(A

X)
) : D ∈ AU,V,1})

The solution to this is the normalised dependent, Ẽ = ÂY. The maximum
likelihood estimate is near the sample, Ẽ ∼ Â, only in as much as it is far from
the independent, Ẽ � ÂX. This may be compared to the case unconstrained
by probable sample where the maximum likelihood estimate equals the inde-
pendent, Ẽ = ÂX. In the probable sample case the sized maximum likelihood
estimate is aligned, algn(AY) > 0, so there are fewer ways to draw the iso-
independents and the likely history probability function entropy, entropy(P̃ ),
is lower. At maximum alignment, where the histogram is uniformly diago-
nalised, the dependent equals the histogram, AY = A, and the likely history
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probability function entropy, entropy(P̃ ), is least.

The iso-independent conditional multinomial probability distribution is de-
fined,

Q̂m,y,U(E, z)(A) :=
1

|ran(YU,i,V,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ Y −1U,i,V,z(A
X)

So the optimisation can be rewritten,

Ẽ ∈ maxd({(D, Q̂m,y,U(D, z)(A)) : D ∈ AU,V,1})

The logarithm of the independent-distributed iso-independent conditional multi-
nomial probability varies against the alignment,

ln
Qm,U(AX, z)(A)∑

Qm,U(AX, z)(B) : B ∈ Y −1U,i,V,z(A
X)
∼ − algn(A)

Conversely, the logarithm of the dependent-distributed iso-independent con-
ditional multinomial probability varies with the alignment,

ln
Qm,U(AY, z)(A)∑

Qm,U(AY, z)(B) : B ∈ Y −1U,i,V,z(A
X)
∼ algn(A)

That is, the log-likelihood varies with the sample alignment,

ln Q̂m,y,U(AY, z)(A) ∼ algn(A)

In the case where the alignment is low the sum sensitivity varies with the
alignment

sum(sensitivity(U)(Q̂m,y,U(AY, z))) ∼ algn(A)

and in the case where the alignment is high the sum sensitivity varies against
the alignment

sum(sensitivity(U)(Q̂m,y,U(AY, z))) ∼ − algn(A)

At intermediate alignments the sum sensitivity is independent of the align-
ment.

So, in the probable sample case, if it is assumed that the distribution proba-
bility histogram equals the likely distribution probability histogram, Ê = Ẽ =
ÂY, then the likely history probability function entropy varies against the
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alignment, entropy(P̃ ) ∼ − algn(A).

As the alignment, algn(A), increases towards its maximum, the likely dis-
tribution probability histogram tends to the histogram, Ẽ = ÂY ∼ Â, and the
log-likelihood, ln Q̂m,y,U(AY, z)(A), increases, but the sensitivity to distribu-
tion histogram, E, decreases. In other words, the more aligned the sample
the more likely the normalised sample histogram, Â, equals the normalised
distribution histogram, Ê, and the smaller the likely difference between them
if they are not equal.

Consider the case where the independent is uniformly possible. Assume
that the substrate history probability function P ∈ (HU,V,z :→ Q≥0) ∩ P is
the distribution of an arbitrary history valued function, X → H, given an
arbitrary independent valued function, X → A. In this case, the history
valued function is chosen arbitrarily from the constrained subset

{G : F ∈ X → (A× (X → H)),

(·, (A,G)) ∈ F, ∀(·, H) ∈ G (his(H)X = A)} ⊂ X → H

Uniformly possible independent is a weaker constraint than uniformly possi-
ble histogram, so the subset of history valued functions is larger.

In the case where there is a distribution history HE, the maximum likeli-
hood estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H)X = A}∧ : A ∈ ran(YU,i,V,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1U,i,V,z(A
X))) :

H ⊆ HE, his(H)X = A} : A ∈ ran(YU,i,V,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn indepen-
dents are uniformly probable, and then all drawn histories H ⊆ HE with the
same independent, his(H)X = A, are uniformly probable. If the distribution
histogram, HE, is known, then the likely probability function, P̃ , is known.

The properties of uniformly possible independent are the same as for nec-
essary independent, except that the probabilities are scaled. So, in the case
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where the distribution histogram, E, is unknown, and the distribution his-
togram size, zE, is also unknown, except that it is known to be large, zE � z,
then the likely history probability varies against the independent-distributed
multinomial probability of the independent,

P̃ (H) ∼ 1/|ran(YU,i,V,z)| × 1/Q̂m,U(AX, z)(AX)

That is, more histories are possible but less probable.

2.5 Models

2.5.1 Transforms

Transforms are the simplest models. All models can be converted to trans-
forms.

Given a histogram X ∈ A and a subset of its variables W ⊆ vars(X), the pair
T = (X,W ) forms a transform. The variables, W , are the derived variables.
The complement V = vars(X) \W are the underlying variables. The set of
all transforms is

T := {(X,W ) : X ∈ A, W ⊆ vars(X)}

The transform histogram is X = his(T ). The transform derived is W =
der(T ). The transform underlying is V = und(T ). The set of underlying
variables of a transform is also called the substrate.

The null transform is (X, ∅). The full transform is (X, vars(X)).

Given a histogram A ∈ A, the multiplication of the histogram, A, by the
transform T ∈ T equals the multiplication of the histogram, A, by the trans-
form histogram X = his(T ) followed by the reduction to the derived variables
W = der(T ),

A ∗ T = A ∗ (X,W ) := A ∗X % W

If the histogram variables are a superset of the underlying variables, vars(A) ⊇
und(T ), then the histogram, A, is called the underlying histogram and the
multiplication, A ∗ T , is called the derived histogram. The derived histogram
variables equals the derived variables, vars(A ∗ T ) = der(T ).

The application of the null transform of the cartesian is the scalar, A ∗
(V C, ∅) = A%∅ = scalar(size(A)), where V = vars(A). The application of
the full transform of the cartesian is the histogram, A∗(V C, V ) = A%V = A.
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Given a histogram A ∈ A and a transform T ∈ T , the formal histogram is
defined as the independent derived, AX ∗T . The abstract histogram is defined
as the derived independent, (A ∗ T )X.

In the case where the formal and abstract are equal, AX ∗ T = (A ∗ T )X,
the abstract equals the independent abstract, (A∗T )X = AX ∗T = (AX ∗T )X,
and so only depends on the independent, AX, not on the histogram, A. The
formal equals the formal independent, AX ∗ T = (A ∗ T )X = (AX ∗ T )X, and
so is itself independent.

A transform T ∈ T is functional if there is a causal relation between the
underlying variables V = und(T ) and the derived variables W = der(T ),

split(V,XFS) ∈ V CS → WCS

where X = his(T ). The set of functional transforms Tf ⊂ T is the subset of
all transforms that are causal.

A functional transform T ∈ Tf has an inverse,

T−1 := {((S%V, c), S%W ) : (S, c) ∈ X}−1

A transform T is one functional in system U if the reduction of the transform
histogram to the underlying variables equals the cartesian histogram, X%V =
V C. So the causal relation is a derived state valued left total function of
underlying state, split(V,XS) ∈ V CS :→ WCS. The set of one functional
transforms TU,f,1 ⊂ Tf is

TU,f,1 = {({(S ∪R, 1) : (S,R) ∈ Q},W ) :

V,W ⊆ vars(U), V ∩W = ∅, Q ∈ V CS :→ WCS}

The application of a one functional transform to an underlying histogram
preserves the size, size(A ∗ T ) = size(A).

The one functional transform inverse is a unit component valued function
of derived state, T−1 ∈ WCS → P(V C). That is, the range of the in-
verse corresponds to a partition of the cartesian states into components,
ran(T−1) ∈ B(V C).

The application of a one functional transform T to its underlying cartesian
V C is the component cardinality histogram, V C ∗ T = {(R, |C|) : (R,C) ∈
T−1}. The effective cartesian derived volume is less than or equal to the
derived volume, |(V C ∗ T )F| = |T−1| ≤ |WC|.
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A one functional transform T ∈ TU,f,1 may be applied to a history H ∈ H
in the underlying variables of the transform, vars(H) = und(T ), to construct
a derived history,

H ∗ T := {(x,R) : (x, S) ∈ H, {R} = ({S}U ∗ T )FS}

The size is unchanged, |H ∗T | = |H|, and the event identifiers are conserved,
dom(H ∗ T ) = dom(H).

Given a partition P ∈ B(V CS) of the cartesian states of variables V , a one
functional transform can be constructed. The partition transform is

PT := ({(S ∪ {(P,C)}, 1) : C ∈ P, S ∈ C}, {P})

The set of derived variables of the partition transform is a singleton of the
partition variable, der(PT) = {P}. The derived volume is the component
cardinality, |{P}C| = |P |. The underlying variables are the given variables,
und(PT) = V .

The unary partition transform is Tu = {V CS}T. The self partition trans-
form is Ts = V CS{}T.

Given a one functional transform T ∈ TU,f,1, the natural converse is

T † := (X/(X%W ), V )

where (X,W ) = T and V = und(T ). The natural converse may be expressed
in terms of components,

T † := (
∑

(R,C)∈T−1

{R}U ∗ Ĉ, V )

Given a histogram A ∈ A in the underlying variables, vars(A) = V , the
naturalisation is the application of the natural converse transform to the
derived histogram, A ∗ T ∗ T †. The naturalisation can be rewritten A ∗
X % W ∗X / (X%W ) % V . The naturalisation is in the underlying variables,
vars(A ∗ T ∗ T †) = V . The size is conserved, size(A ∗ T ∗ T †) = size(A). The
naturalisation derived equals the derived, A ∗ T ∗ T † ∗ T = A ∗ T .

The naturalisation equals the sum of the scaled components, A ∗ T ∗ T † =∑
scalar((A ∗ T )R) ∗ Ĉ : (R,C) ∈ T−1. So each component is uniform,

∀(R,C) ∈ T−1 (|ran(A ∗ T ∗ T † ∗ C)| = 1).
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The naturalisation of the unary partition transform, Tu = {V CS}T, is the
sized cartesian, A ∗ Tu ∗ T †u = V C

z , where z = size(A). The naturalisation of
the self partition transform, Ts = V CS{}T, is the histogram, A ∗ Ts ∗ T †s = A.

A histogram is natural when it equals its naturalisation, A = A ∗ T ∗ T †.
The cartesian is natural, V C = V C ∗ T ∗ T †.

Given a one functional transform T ∈ TU,f,1 with underlying variables
V = und(T ), and a histogram A ∈ A in the same variables, vars(A) = V ,
the sample converse is

(Â ∗X, V )

where X = his(T ).

Related to the sample converse, the actual converse is defined as the summed
normalised application of the components to the sample histogram,

T�A := (
∑

(R,C)∈T−1

{R}U ∗ (A ∗ C)∧, V )

The application of the actual converse transform to the derived histogram
equals the histogram, A ∗ T ∗ T�A = A.

Given a one functional transform T ∈ TU,f,1 with underlying variables
V = und(T ), and a histogram A ∈ A in the same variables, vars(A) = V ,
the independent converse is defined as the summed normalised independent
application of the components to the sample histogram,

T †A := (
∑

(R,C)∈T−1

{R}U ∗ (A ∗ C)∧X, V )

The idealisation is the application of the independent converse transform to
the derived histogram, A∗T ∗T †A. The idealisation is in the underlying vari-
ables, vars(A∗T ∗T †A) = V . The size is conserved, size(A∗T ∗T †A) = size(A).
The idealisation derived equals the derived, A ∗ T ∗ T †A ∗ T = A ∗ T .

The idealisation equals the sum of the independent components, A ∗ T ∗
T †A =

∑
(A ∗ C)X : (R,C) ∈ T−1. So each component is independent,

∀(R,C) ∈ T−1 (A ∗ T ∗ T †A ∗ C = (A ∗ T ∗ T †A ∗ C)X = (A ∗ C)X).
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The idealisation of the unary partition transform, Tu = {V CS}T, is the sized
cartesian, A∗Tu ∗T †Au = V C

z . The idealisation of the self partition transform,
Ts = V CS{}T, is the histogram, A ∗ Ts ∗ T †As = A.

The idealisation independent equals the independent, (A ∗ T ∗ T †A)X = AX.
The idealisation formal equals the formal, (A ∗ T ∗ T †A)X ∗ T = AX ∗ T . The
idealisation abstract equals the abstract, (A ∗ T ∗ T †A ∗ T )X = (A ∗ T )X.

A histogram is ideal when it equals its idealisation, A = A ∗ T ∗ T †A.

The sense in which a transform is a simple model can be seen by considering
queries on a sample histogram. Let histogram A have a set of variables
V = vars(A) which is partitioned into query variables K ⊂ V and label
variables V \ K. Let T = (X,W ) be a one functional transform having
underlying variables equal to the query variables, und(T ) = K. Given a
query state Q ∈ KCS that is ineffective in the sample, Q /∈ (A%K)FS, but is
effective in the sample derived, R ∈ (A ∗ T )FS where {R} = ({Q}U ∗ T )FS,
the probability histogram for the label is

({Q}U ∗ T ∗ (Â ∗X, V ))∧ % (V \K) ∈ A ∩ P

where the sample converse transform is (Â ∗ X, V ). This can be expressed
more simply in terms of the actual converse,

{Q}U ∗ T ∗ T�A % (V \K) ∈ A ∩ P

The query of the sample via model can also be written without the trans-
forms, ({Q}U∗X % W ∗X ∗A)∧ % (V \K). The query state, Q, in the query
variables, K, is raised to the query derived state, R, in the derived variables,
W , then lowered to effective sample states, in the sample variables, V , and
finally reduced to label states, in the label variables, V \K. Even though the
sample itself does not contain the query, {Q}U ∗ Â = ∅, the sample derived
does contain the query derived, {R}U ∗ (Â ∗ T ) 6= ∅, and so the resultant la-
bels are those of the corresponding effective component, (A ∗C)∧ % (V \K),
where (R,C) ∈ T−1.

The set of substrate histories HU,V,z is defined above as the set of histories
having event identifiers {1 . . . z}, fixed size z and fixed variables V ,

HU,V,z := {1 . . . z} :→ V CS
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The corresponding set of integral substrate histograms AU,i,V,z is the set of
complete integral histograms in variables V with size z,

AU,i,V,z := {A : A ∈ V CS :→ {0 . . . z}, size(A) = z}

The set of substrate transforms TU,V is the subset of one functional trans-
forms, TU,V ⊂ TU,f,1, that have underlying variables V and derived variables
which are partitions,

TU,V = {(
∏

(X,·)∈F

X,
⋃

(·,W )∈F

W ) : F ⊆ {PT : P ∈ B(V CS)}}

Let v be the volume of the substrate, v = |V C|. The cardinality of the
substrate transforms set is |TU,V | = 2bell(v), where bell(n) is Bell’s number,
which has factorial computation complexity. If the volume, v, is finite, the
set of substrate transforms is finite, |TU,V | <∞.

2.5.2 Transform entropy

Let T be a one functional transform, T ∈ TU,f,1, having underlying vari-
ables V = und(T ). Let A be a histogram, A ∈ A, in the underlying vari-
ables, vars(A) = V , having size z = size(A) > 0. The underlying volume is
v = |V C|. The derived volume is w = |T−1|.

The derived entropy or component size entropy is

entropy(A ∗ T ) := −
∑

(R,·)∈T−1

(Â ∗ T )R × ln (Â ∗ T )R

The derived entropy is positive and less than or equal to the logarithm of the
derived volume, 0 ≤ entropy(A ∗ T ) ≤ lnw.

Complementary to the derived entropy is the expected component entropy,

entropyComponent(A, T ) :=
∑

(R,C)∈T−1

(Â ∗ T )R × entropy(A ∗ C)

=
∑

(R,·)∈T−1

(Â ∗ T )R × entropy({R}U ∗ T�A)

The cartesian derived entropy or component cardinality entropy is

entropy(V C ∗ T ) := −
∑

(R,·)∈T−1

(V̂ C ∗ T )R × ln (V̂ C ∗ T )R
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The cartesian derived entropy is positive and less than or equal to the loga-
rithm of the derived volume, 0 ≤ entropy(V C ∗ T ) ≤ lnw.

The cartesian derived derived sum entropy or component size cardinality sum
entropy is

entropy(A ∗ T ) + entropy(V C ∗ T )

The component size cardinality cross entropy is the negative derived his-
togram expected normalised cartesian derived count logarithm,

entropyCross(A ∗ T, V C ∗ T ) := −
∑

(R,·)∈T−1

(Â ∗ T )R × ln (V̂ C ∗ T )R

The component size cardinality cross entropy is greater than or equal to the
derived entropy, entropyCross(A ∗ T, V C ∗ T ) ≥ entropy(A ∗ T ).

The component cardinality size cross entropy is the negative cartesian de-
rived expected normalised derived histogram count logarithm,

entropyCross(V C ∗ T,A ∗ T ) := −
∑

(R,·)∈T−1

(V̂ C ∗ T )R × ln (Â ∗ T )R

The component cardinality size cross entropy is greater than or equal to the
cartesian derived entropy, entropyCross(V C ∗ T,A ∗ T ) ≥ entropy(V C ∗ T ).

The component size cardinality sum cross entropy is,

entropy(A ∗ T + V C ∗ T )

The component size cardinality sum cross entropy is positive and less than or
equal to the logarithm of the derived volume, 0 ≤ entropy(A ∗T +V C ∗T ) ≤
lnw.

In all cases the cross entropy is maximised when high size components are low
cardinality components, (Â∗T )R � (V̂ C ∗T )R or size(A∗C)/z � |C|/v, and
low size components are high cardinality components, (Â ∗ T )R � (V̂ C ∗ T )R
or size(A ∗ C)/z � |C|/v, where (R,C) ∈ T−1.

The cross entropy is minimised when the normalised derived histogram equals
the normalised cartesian derived, Â ∗ T = V̂ C ∗ T or ∀(R,C) ∈ T−1 (size(A ∗
C)/z = |C|/v). In this case the cross entropy equals the corresponding com-
ponent entropy.
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The component size cardinality relative entropy is the component size cardi-
nality cross entropy minus the component size entropy,

entropyRelative(A ∗ T, V C ∗ T )

:=
∑

(R,·)∈T−1

(Â ∗ T )R × ln
(Â ∗ T )R

(V̂ C ∗ T )R

= entropyCross(A ∗ T, V C ∗ T ) − entropy(A ∗ T )

The component size cardinality relative entropy is positive, entropyRelative(A∗
T, V C ∗ T ) ≥ 0.

The component cardinality size relative entropy is the component cardinality
size cross entropy minus the component cardinality entropy,

entropyRelative(V C ∗ T,A ∗ T )

:=
∑

(R,·)∈T−1

(V̂ C ∗ T )R × ln
(V̂ C ∗ T )R

(Â ∗ T )R

= entropyCross(V C ∗ T,A ∗ T ) − entropy(V C ∗ T )

The component cardinality size relative entropy is positive, entropyRelative(V C∗
T,A ∗ T ) ≥ 0.

The size-volume scaled component size cardinality sum relative entropy is
the size-volume scaled component size cardinality sum cross entropy minus
the size-volume scaled component size cardinality sum entropy,

(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

The size-volume scaled component size cardinality sum relative entropy is
positive, (z+v)×entropy(A∗T+V C∗T )−z×entropy(A∗T )−v×entropy(V C∗
T ) ≥ 0. The size-volume scaled component size cardinality sum relative en-
tropy is less than the size-volume scaled logarithm of the derived volume,
(z+v)×entropy(A∗T+V C∗T ) −z×entropy(A∗T ) −v×entropy(V C∗T ) <
(z + v) lnw.

In all cases the relative entropy is maximised when (a) the cross entropy
is maximised and (b) the component entropy is minimised. That is, the
relative entropy is maximised when both (i) the component size entropy,
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entropy(A ∗T ), and (ii) the component cardinality entropy, entropy(V C ∗T ),
are low, but low in different ways so that the component size cardinality sum
cross entropy, entropy(A ∗ T + V C ∗ T ), is high.

Let histogram A have a set of variables V = vars(A) which is partitioned
into query variables K ⊂ V and label variables V \ K. Let T ∈ TU,f,1 be
a one functional transform having underlying variables equal to the query
variables, und(T ) = K. As shown above, given a query state Q ∈ KCS that
is effective in the sample derived, R ∈ (A ∗ T )FS where {R} = ({Q}U ∗ T )FS,
the probability histogram for the label is

{Q}U ∗ T ∗ T�A % (V \K) ∈ A ∩ P

If the normalised histogram, Â ∈ A∩P , is treated as a probability function of
a single-state query, the scaled expected entropy of the modelled transformed
conditional product, or scaled label entropy, is∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K))

=
∑

(R,·)∈T−1

(A ∗ T )R × entropy({R}U ∗ T�A % (V \K))

This is similar to the definition of the scaled expected component entropy,
above,

z × entropyComponent(A, T ) :=
∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C)

=
∑

(R,·)∈T−1

(A ∗ T )R × entropy({R}U ∗ T�A)

but now the component is reduced to the label variables, V \K.

The label entropy, may be contrasted with the alignment between the derived
variables, W , and the label variables, V \K,

algn(A ∗ his(T ) % (W ∪ V \K))
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The alignment varies against the scaled label entropy or scaled query condi-
tional entropy. Let B = A ∗ his(T ) % (W ∪ V \K),

algn(A ∗ his(T ) % (W ∪ V \K))

= algn(B)

≈ z × entropy(BX)− z × entropy(B)

∼ z × entropy(B%W ) + z × entropy(B%(V \K))− z × entropy(B)

∼ −(z × entropy(B)− z × entropy(B%W ))

= −
∑

R∈(B%W )FS

(B%W )R × entropy(B ∗ {R}U % (V \K))

= −
∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K))

The label entropy, may also be compared to the slice entropy, which is the
sum of the sized entropies of the contingent slices reduced to the label vari-
ables, V \K, ∑

R∈(A%K)FS

(A%K)R × entropy(A ∗ {R}U % (V \K))

In the case where the relation between the derived variables and the label
variables is functional or causal,

split(W, (A ∗ his(T ) % (W ∪ V \K))FS) ∈ WCS → (V \K)CS

the label entropy is zero,∑
(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K)) = 0

So label entropy is a measure of the ambiguity in the relation between the
derived variables and the label variables. Negative label entropy may be
viewed as the degree to which the derived variables of the model predict
the label variables. In the cases of low label entropy, or high causality, the
derived variables and the label variables are correlated and therefore aligned,
algn(A ∗ his(T ) % (W ∪ V \ K)) > 0. In these cases the derived histogram
tends to the diagonal, algn(A ∗ T ) > 0.

2.5.3 Functional definition sets

This section may be skipped until section ‘Artificial neural networks’.
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A functional definition set F ∈ F is a set of unit functional transforms,
∀T ∈ F (T ∈ Tf). Functional definition sets are also called fuds. Fuds are
constrained such that derived variables can appear in only one transform.
That is, the sets of derived variables are disjoint,

∀F ∈ F ∀T1, T2 ∈ F (T1 6= T2 =⇒ der(T1) ∩ der(T2) = ∅)

The set of fud histograms is his(F ) := {his(T ) : T ∈ F}. The set of fud
variables is vars(F ) :=

⋃
{vars(X) : X ∈ his(F )}. The fud derived is

der(F ) :=
⋃
T∈F der(T ) \

⋃
T∈F und(T ). The fud underlying is und(F ) :=⋃

T∈F und(T ) \
⋃
T∈F der(T ). The set of underlying variables of a fud is also

called the substrate.

A functional definition set is a model, so it can be converted to a functional
transform,

FT := (
∏

his(F ) % (der(F ) ∪ und(F )), der(F ))

The resultant transform has the same derived and underlying variables as
the fud, der(FT) = der(F ) and und(FT) = und(F ).

The set of one functional definition sets FU,1 in system U is the subset
of the functional definition sets, FU,1 ⊂ F , such that all transforms are one
functional and the fuds are not circular. The transform of a one functional
definition set is a one functional transform, ∀F ∈ FU,1 (FT ∈ TU,f,1).

A dependent variable of a one functional definition set F ∈ FU,1 is any vari-
able that is not a fud underlying variable, vars(F ) \ und(F ). Each dependent
variable depends on an underlying subset of the fud, depends ∈ F ×P(V)→
F where ∀w ∈ vars(F ) \ und(F ) (depends(F, {w}) ⊆ F ).

Each dependent variable is in a layer. The layer is the length of the longest
path of underlying transforms to the dependent variable. Given fud F ∈ FU,1,
let l be the highest layer, l = layer(F, der(F )), where layer ∈ F ×P(V)→ N
is defined in terms of depends ∈ F × P(V) → F . Let Fi be the subset of
the fud in a particular layer, Fi = {T : T ∈ F, layer(F, der(T )) = i}. Then
F =

⋃
i∈{1...l} Fi.

A one functional definition set F ∈ FU,1 is non-overlapping if the sets
of variables of the underlying transforms of each of the fud derived vari-
ables are disjoint, ∀v, w ∈ der(F ) (v 6= w ∧ vars(depends(F, {v})) ∩
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vars(depends(F, {w})) = ∅). A one functional transform T ∈ TU,f,1 is non-
overlapping if it is equal to the transform of a non-overlapping fud, T = FT.
If the transform, T , is non-overlapping, then its formal is always independent,
AX ∗T = (AX ∗T )X, where A is any underlying histogram, vars(A) ⊇ und(T ).

Given a set of substrate variables V , the set of substrate functional defi-
nition sets FU,V is the subset of one functional definition sets, FU,V ⊂ FU,1,
that (i) have underlying variables which are subsets of the substrate, ∀F ∈
FU,V (und(F ) ⊆ V ), and (ii) consist of partition transforms, ∀F ∈ FU,V ∀T ∈
F ∃P ∈ B(und(T )CS) (T = PT). In addition, partition circularities are ex-
cluded by ensuring that the partitions are unique in the fud when flattened
to substrate.

Let v be the volume of the substrate, v = |V C|. If the volume, v, is fi-
nite, the set of substrate fuds is finite, |FU,V | <∞.

Avoiding partition circularities is computationally expensive. The infinite-
layer substrate functional definition sets F∞,U,V is the superset of the sub-
strate functional definition sets, F∞,U,V ⊃ FU,V , that drop the exclusion of
partition circularities. The infinite-layer substrate fud set is defined recur-
sively,

F∞,U,V = {F : F ⊆ powinf(U, V )(∅), und(F ) ⊆ V }

where

powinf(U, V )(F ) := F ∪G ∪ powinf(U, V )(F ∪G) :

G = {PT : K ⊆ vars(F ) ∪ V, P ∈ B(KCS)}

The cardinality of the infinite-layer substrate fud set is infinite, |F∞,U,V | =∞.

2.5.4 Decompositions

This section may be skipped until section ‘Tractable and practicable aligned
induction’.

A functional definition set decomposition is a model that consists of a tree
of fuds that are contingent on components.

The set of functional definition set decompositions DF is a subset of the
trees of pairs of (i) states, S, and (ii) functional definition sets, F

DF ⊂ trees(S × F)
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Let D be a fud decomposition, D ∈ DF. The set of fuds is fuds(D) :=
{F : ((·, F ), ·) ∈ nodes(D)}. The underlying is und(D) :=

⋃
{und(F ) : F ∈

fuds(D)}. The set of underlying variables of a decomposition is also called
the substrate.

Fud decompositions are constrained such that each of the states in child
pairs are states in the derived variables of the parent fud,

∀D ∈ DF ∀((·, F ), E) ∈ nodes(D) ∀((S, ·), ·) ∈ E (S ∈ dom((FT)−1))

The root nodes have no parent and so their states are constrained to be null,
∀D ∈ DF ∀((S, ·), ·) ∈ D (S = ∅). Given a fud decomposition D ∈ DF hav-
ing underlying variables V = und(D), each fud F ∈ fuds(D) is contingent
on the component C ∈ B(V C) implied by the union of the ancestor derived
states in the derived variables of the union of the ancestor fuds. Let L be
a path in the fud decomposition, L ∈ paths(D). Then for each child fud
(·, F ) = Li, where i ∈ {2 . . . |L|}, the union of the ancestor derived states
is R =

⋃
{S : j ∈ {2 . . . i}, (S, ·) = Lj}, the union of the ancestor fuds is

G =
⋃
{H : j ∈ {1 . . . i− 1}, (·, H) = Lj}, and so the contingent component

is (GT)−1(R). In the case where the underlying of the ancestor fud, G, is the
whole substrate, und(G) = V , then the component is C = (GT)−1(R) ⊆ V C.

The function cont ∈ DF → P(A × F) returns the set of component-fud
pairs of the fud decomposition. When the fud decomposition, D, is applied to
a histogram A ∈ A in variables vars(A) = V , each fud transform is applied
to the contingent slice, A ∗ C ∗ FT where (C,F ) ∈ cont(D). Two fuds on
the same path (·, F1) ∈ Lj and (·, F2) ∈ Li where L ∈ paths(D) and j < i,
are such that the fud (C1, F1) ∈ cont(D) nearer the root has a component
which is a superset of the component of the fud (C2, F2) ∈ cont(D) nearer
the leaves, C1 ⊃ C2. So the slice nearer the root is greater than or equal to
the slice nearer the leaves, A ∗ C1 ≥ A ∗ C2. That is, the fuds are more and
more selectively contingent along the fud decomposition’s paths, and so are
applied to smaller and smaller slices.

In the case where each of the slice derived are diagonalised, ∀(C,F ) ∈
cont(D) (diagonal(A ∗ C ∗ FT)), the fud decomposition, D, is a contingent,
layered, redundant model of the sample histogram, A.

A fud decomposition is a model, so it can be converted to a functional
transform, DT ∈ Tf . The partition of the fud decomposition transform is
equal to the set of components corresponding to those fud derived states that
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are not parent derived states in the decomposition tree,
⋃
{dom((FT)−1)\{S :

((S, ·), ·) ∈ E} : ((·, F ), E) ∈ nodes(D)}. The resultant transform has the
same underlying variables as the fud decomposition, und(DT) = und(D).

The tree of a fud decomposition is sometimes unwieldy, so consider the
fud decomposition fud, DF ∈ F , which is the intermediate fud used in the
construction of the fud decomposition transform, DT. The decomposition
fud is defined as the union of the decomposition fuds and the nullable fud,
DF :=

⋃
fuds(D) ∪ nullable(U)(DD). The nullable fud, nullable(U)(DD), is

defined in section ‘Decompositions’, below. It consists of a layer of transforms
which is added on top of the union of the decomposition fuds,

⋃
fuds(D).

Each derived variable in the fud union, w ∈ der(F ) where F ∈ fuds(D), is
in the underlying of a corresponding transform, w ∈ und(Tw), in the nullable
layer. The transform derived consists of a nullable variable {w′} = der(Tw).
This nullable variable, w′, has the same values as its underlying variable, w,
but with an additional null value, Uw′ = Uw ∪ {null}. If the fud, F , is not
the root fud, there is also a contingent variable c with values corresponding
to the fud’s in-slice and out-slice states, Uc = {in, out}. That is, given
contingent state S ∈ CS, where (C,F ) ∈ cont(D), the derived state, R, is
such that (c, in) ∈ R. Similarly, if S ∈ V CS \ CS, then (c, out) ∈ R. The
underlying of nullable variable’s transform will also contain the contingent
variable, {c, w} = und(Tw). The nullable variable, w′, is constrained by the
transform, Tw, to be in the null value whenever the contingent variable, c, is in
the out value, and to be in the value of the underlying variable, w, otherwise.
That is, (c, out) ∈ R =⇒ (w′, null) ∈ R, and (c, in) ∈ R =⇒ (w′, Rw) ∈ R.
In this way, there is no need to navigate the slices of the decomposition. The
fud decomposition fud, DF, can be analysed by examining the effective states
of reductions to its nullable derived variables, der(DF).

Given a set of substrate variables V , the set of substrate fud decompositions
DF,U,V is a subset of fud decompositions, DF,U,V ⊂ DF, that contain only sub-
strate fuds, ∀D ∈ DF,U,V ∀F ∈ fuds(D) (F ∈ FU,V ). In addition, each fud is
unique in a path, ∀D ∈ DF,U,V ∀L ∈ paths(D) (|{F : (·, (·, F )) ∈ L}| = |L|).

Let v be the volume of the substrate, v = |V C|. If the volume, v, is fi-
nite, the set of substrate fud decompositions is finite, |DF,U,V | <∞.

Similarly, the infinite-layer substrate fud decompositions DF,∞,U,V is the su-
perset of the substrate fud decompositions, DF,∞,U,V ⊃ DF,U,V , that contain
only infinite-layer substrate fuds, ∀D ∈ DF,∞,U,V ∀F ∈ fuds(D) (F ∈ F∞,U,V ).
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The cardinality of the infinite-layer substrate fud decomposition set is infinite,
|DF,∞,U,V | =∞.

2.6 Induction with model

2.6.1 Classical induction

Given substrate transform T ∈ TU,V , the derived histogram valued integral
substrate histograms function DU,i,T,z is defined

DU,i,T,z := {(A,A ∗ T ) : A ∈ AU,i,V,z}

The finite set of iso-deriveds of derived histogram A ∗ T is

D−1U,i,T,z(A ∗ T ) = {B : B ∈ AU,i,V,z, B ∗ T = A ∗ T}

The degree to which an integral iso-set I ⊆ AU,i,V,z that contains the his-
togram, A ∈ I, is said to be law-like is called the iso-derivedence. The
iso-derivedence is defined as the ratio of (i) the cardinality of the intersec-
tion between the integral iso-set and the set of integral iso-deriveds, and (ii)
the cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ D−1U,i,T,z(A ∗ T )|
|I ∪ D−1U,i,T,z(A ∗ T )|

≤ 1

In classical modelled induction the history probability functions are con-
strained by derived histogram.

Let P be a substrate history probability function, P ∈ (HU,V,z :→ Q≥0) ∩ P .
Given a history HE ∈ HU,V,zE , of size zE = |HE|, consider the case where
the derived histogram A ∗ T of drawn histories is known to be necessary,∑

(P (H) : H ⊆ HE, his(H) ∗ T = A ∗ T ) = 1. The maximum likelihood
estimate which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1) : H ⊆ HE, his(H) ∗ T = A ∗ T}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) ∗ T 6= A ∗ T}

= {(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ D−1U,i,T,z(A ∗ T ))) :

H ⊆ HE, his(H) ∗ T = A ∗ T} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) ∗ T 6= A ∗ T}
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That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with the derived, his(H) ∗ T = A ∗ T , are uniformly probable and
all other histories, G * HE or his(G) ∗T 6= A ∗T , are impossible, P̃ (G) = 0.
If (i) the transform, T , is known, (ii) the derived, A ∗ T , is known and (iii)
the distribution histogram, HE, is known, then the likely probability function,
P̃ , is known.

The likely probability of drawing histogram A from necessary drawn derived
A ∗ T is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the iso-derived historical frequencies,

∑
Qh,U(E, z)(B) :

B ∈ D−1U,i,T,z(A ∗ T ), is maximised.

Consider the case where the transform, T , is known and the derived, A ∗ T ,
is known, but the distribution histogram, E, is unknown and hence the likely
history probability function, P̃ , is unknown. The maximum likelihood esti-
mate Ẽ for the distribution histogram, E, is a modal value of the likelihood
function,

Ẽ ∈ maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ D−1U,i,T,z(A ∗ T ))) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known and the derived, A ∗ T , is
known. If it is assumed that the distribution histogram equals the likely
distribution histogram, E = Ẽ, then the likely history probability is known,
P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) : B ∈ D−1U,i,T,z(A∗T )) where his(H)∗T = A∗T .

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ D−1U,i,T,z(A ∗ T ))) : D ∈ AU,V,1})

The normalised naturalisation, Â ∗ T ∗ T †, is a solution. The naturalisation,
A ∗ T ∗ T †, is the independent analogue of the iso-deriveds. So the maximum
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likelihood estimate, Ẽ, for the distribution probability histogram, Ê, is the
naturalisation probability histogram, Â ∗ T ∗ T †,

Ẽ = Â ∗ T ∗ T †

In the case where the naturalisation is integral, A ∗ T ∗ T † ∈ Ai, the sum
of the iso-derived naturalisation-distributed multinomial probabilities varies
with the naturalisation naturalisation-distributed multinomial probability,∑

Qm,U(A ∗ T ∗ T †, z)(B) : B ∈ D−1U,i,T,z(A ∗ T ) ∼

Qm,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

So, if it is assumed that the distribution probability histogram equals the
likely distribution probability histogram, Ê = Ẽ = Â ∗ T ∗ T †, then the likely
history probability varies against the naturalisation-distributed multinomial
probability of the naturalisation, P̃ (H) ∼ 1/Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †).

The cardinality of the set of integral iso-deriveds may be stated explicitly
as the product of the weak compositions of the components,

|D−1U,i,T,z(A ∗ T )| =
∏

(R,C)∈T−1

((A ∗ T )R + |C| − 1)!

(A ∗ T )R! (|C| − 1)!

So the integral iso-deriveds log-cardinality varies against the size-volume
scaled component size cardinality sum relative entropy,

ln |D−1U,i,T,z(A ∗ T )| ∼
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

where size z = size(A) = size(A ∗ T ) and volume v = |V C|. In the do-
main where the size is less than or equal to the volume, z ≤ v, the integral
iso-deriveds log-cardinality varies against the size scaled component size car-
dinality relative entropy,

ln |D−1U,i,T,z(A ∗ T )| ∼ −z × entropyRelative(A ∗ T, V C ∗ T )

So the logarithm of the likely probability of drawing histogram A from neces-
sary drawn derived A ∗ T varies with the relative entropy,

ln
∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) ∼

z × entropyRelative(A ∗ T, V C ∗ T )
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The naturalisation, A∗T∗T †, is the most probable histogram, ∀B ∈ D−1U,i,T,z(A∗
T ) (Qm,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †) ≥ Qm,U(A ∗ T ∗ T †, z)(B)). In the case
where the histogram is natural, A = A ∗ T ∗ T †, then, as the relative entropy,
entropyRelative(A ∗ T, V C ∗ T ), increases, the likely histogram probability,
Qm,U(A, z)(A)/

∑
(Qm,U(A, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )), increases.

The likely history probability function entropy varies with the naturalisation
entropy, entropy(P̃ ) ∼ entropy(A ∗ T ∗ T †), and against the relative entropy,
entropy(P̃ ) ∼ − entropyRelative(A ∗ T, V C ∗ T ).

Consider the case where a drawn histogram A is known, but neither the
distribution histogram, E, is known nor the transform, T , is known, and
hence the likely history probability function, P̃ , is unknown. The maximum
likelihood estimate (Ẽ, T̃ ) for the pair of the distribution histogram, E, and
the transform, T , is a modal value of the likelihood function,

(Ẽ, T̃ ) ∈
maxd({((D,M),

∑
(Qh,U(D, z)(B) : B ∈ D−1U,i,M,z(A ∗M))) :

D ∈ AU,i,V,zE , M ∈ TU,V })

All solutions are such that the transform maximum likelihood estimate is
unary, T̃ = Tu where Tu = {V CS}T. This is the trivial case where the set of
iso-derived histograms is the entire set of substrate histograms, D−1U,i,Tu,z(A ∗
Tu) = AU,i,V,z. In this case necessary derived, H ⊆ HE and his(H) ∗ Tu =
A∗Tu, reduces to drawn history, H ⊆ HE. If it is assumed that the transform
equals the likely transform, T = T̃ = Tu, then the likely history probability
function which maximises the entropy, entropy(P̃ ), is

P̃ = {(H, 1/
(
zE
z

)
) : H ⊆ HE, |H| = z} ∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, in the case of unknown transform, the maximum likelihood estimate,
P̃ , is such that all drawn histories H ⊆ HE of size |H| = z are uniformly
probable and all other histories, G * HE, are impossible, P̃ (G) = 0.

Define the derived-dependent AD(T ) ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
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histogram, A, conditional that it is an iso-derived,

{AD(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

) : D ∈ AU,V,z})

The derived-dependent, AD(T ), is the dependent analogue of the iso-deriveds.
Note that the derived-dependent, AD(T ), is not always computable, but an
approximation to any accuracy can be made to it. In the case where the
histogram is natural, the derived-dependent equals the naturalisation, A =
A ∗ T ∗ T † =⇒ AD(T ) = A = A ∗ T ∗ T †.

Now consider the case where, given necessary drawn derived A ∗ T , it is
known, in addition, that the sample histogram A is the most probable his-
togram of the iso-derived. That is, the likely probability of drawing histogram
A from necessary drawn derived A ∗ T ,∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

is maximised.

In the case where the transform, T , is known and the sample, A, is known,
but the distribution histogram, E, is unknown, the maximum likelihood esti-
mate Ẽ for the distribution histogram, E, is a modal value of the likelihood
function,

Ẽ ∈ maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

) : D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known and the sample, A, is known.
If it is assumed that the distribution histogram equals the likely distribu-
tion histogram, E = Ẽ, then the likely history probability is known, P̃ (H) =
1/
∑

(Qh,U(Ẽ, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )) where his(H) ∗ T = A ∗ T .

If the histogram is natural, A = A ∗ T ∗ T †, then the additional constraint of
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probable sample makes no change to the maximum likelihood estimate, Ẽ,

A = A ∗ T ∗ T † =⇒

maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

) : D ∈ AU,i,V,zE})

= maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ D−1U,i,T,z(A ∗ T ))) : D ∈ AU,i,V,zE})

If the histogram is not natural, A 6= A ∗ T ∗ T †, however, then the likely his-
tory probability function entropy, entropy(P̃ ), is lower than it is in the case
of necessary derived unconstrained by probable sample.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, is now approximated by a modal value of the
conditional likelihood function,

Ẽ ∈ maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

) : D ∈ AU,V,1})

The solution to this is the normalised derived-dependent, Ẽ = ÂD(T ). The
maximum likelihood estimate is near the sample, Ẽ ∼ Â, only in as much as
it is far from the naturalisation, Ẽ � Â ∗ T ∗ T †.

The iso-derived conditional multinomial probability distribution is defined

Q̂m,d,T,U(E, z)(A) :=
1

|ran(DU,i,T,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

So the optimisation can be rewritten,

Ẽ ∈ maxd({(D, Q̂m,d,T,U(D, z)(A)) : D ∈ AU,V,1})
In the case where the histogram is natural, A = A ∗ T ∗ T †, the log likelihood
varies against the iso-derived log-cardinality,

ln Q̂m,d,T,U(A, z)(A) ∝ ln
Qm,U(A, z)(A)∑

Qm,U(A, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

∼ − ln |D−1U,i,T,z(A ∗ T )|
So the log likelihood varies with the size-volume scaled component size car-
dinality sum relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
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In the domain where the size is less than or equal to the volume, z ≤ v, the
log likelihood varies with the size scaled component size cardinality relative
entropy,

ln Q̂m,d,T,U(A, z)(A) ∼ z × entropyRelative(A ∗ T, V C ∗ T )

In other words, the log likelihood is maximised where (i) the derived entropy,
entropy(A ∗ T ), is minimised, and (ii) the cross entropy, entropyCross(A ∗
T, V C ∗ T ), is maximised, so that high counts are in low cardinality compo-
nents and high cardinality components have low counts.

If the histogram is natural, A = A ∗ T ∗ T †, and the component size car-
dinality relative entropy is high, entropyCross(A ∗ T, V C ∗ T ) > ln |T−1|, it
can also be shown that the log likelihood varies against the derived multino-
mial probability,

ln Q̂m,d,T,U(A, z)(A) ∼ − ln Q̂m,U(A ∗ T, z)(A ∗ T )

In this case the sum sensitivity of the iso-derived conditional multinomial
probability distribution varies with the underlying-derived multinomial prob-
ability distribution sum sensitivity difference,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼
sum(sensitivity(U)(Q̂m,U(A, z)))− sum(sensitivity(U)(Q̂m,U(A ∗ T, z)))

and so is less than or equal to the sum sensitivity of the multinomial proba-
bility distribution,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ≤ sum(sensitivity(U)(Q̂m,U(A, z)))

Furthermore, the sum sensitivity varies against the log-likelihood,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼ − ln Q̂m,d,T,U(A, z)(A)

That is, in the high relative entropy natural case, the maximisation of the
log-likelihood also tends to minimise the sum sensitivity to the maximum
likelihood estimate. This is opposite to the relationship between the sum
sensitivity and the log-likelihood in classical non-modelled induction, which
was found to be weakly positively correlated.

As the relative entropy, entropyRelative(A ∗ T, V C ∗ T ), increases, the log-
likelihood, ln Q̂m,d,T,U(A, z)(A), increases, but the sensitivity to distribution
histogram, E, decreases. In other words, the higher the sample relative en-
tropy the more likely the normalised sample histogram, Â, equals the nor-
malised distribution histogram, Ê, and the smaller the likely difference be-
tween them if they are not equal.
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Given necessary derived and probable sample, consider the case where a
drawn histogram A is known, but neither the distribution histogram, E, is
known nor the transform, T , is known, and hence the likely history probability
function, P̃ , is unknown. The maximum likelihood estimate (Ẽ, T̃ ) for the
pair of the distribution histogram, E, and the transform, T , is a modal value
of the likelihood function,

(Ẽ, T̃ ) ∈

maxd({((D,M),
Qh,U(D, z)(A)∑

Qh,U(D, z)(B) : B ∈ D−1U,i,M,z(A ∗M)
) :

D ∈ AU,i,V,zE , M ∈ TU,V })

All solutions are such that the transform maximum likelihood estimate is
self, T̃ = Ts where Ts = V CS{}T. This is the trivial case where the set of
iso-derived histograms is just the sample, D−1U,i,Ts,z(A ∗ Ts) = {A}. In this
case necessary derived, his(H) ∗ Ts = A ∗ Ts, reduces to necessary histogram,
his(H) = A. If it is assumed that the transform equals the likely transform,
T = T̃ = Ts, then the likely history probability function which maximises the
entropy, entropy(P̃ ), is

P̃ = {(H, 1/Qh,U(E, z)(A)) : H ⊆ HE, his(H) = A} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G) 6= A}

That is, in the case of unknown transform, the maximum likelihood estimate,
P̃ , is such that all drawn histories H ⊆ HE with the histogram, his(H) = A,
are uniformly probable and all other histories, G * HE or his(G) 6= A, are

impossible, P̃ (G) = 0.

In this case the maximum likelihood estimate, Ẽ, for the distribution proba-
bility histogram, Ê, is the sample probability histogram, Â,

Ẽ = Â = Â ∗ Ts ∗ T †s

Consider the case where the derived is uniformly possible. Given substrate
transform T ∈ TU,V , assume that the substrate history probability function
P ∈ (HU,V,z :→ Q≥0) ∩ P is the distribution of an arbitrary history valued
function, X → H, given an arbitrary derived valued function, X → A. In this
case, the history valued function is chosen arbitrarily from the constrained
subset

{G : F ∈ X → (A× (X → H)),

(·, (A′, G)) ∈ F, ∀(·, H) ∈ G (his(H) ∗ T = A′)} ⊂ X → H
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Uniformly possible derived is a weaker constraint than uniformly possible his-
togram, so the subset of history valued functions is larger.

This subset of the substrate history probability functions can be generalised
for all substrate transforms as the subset derived from⋃

T∈Tf

(X → (A ×T (X → H)))

where Tf is the set of all functional transforms, and the fibre product ×T is
defined

A ×T (X → H) :=

{(A′, G) : (A′, G) ∈ A× (X → H), ∀(·, H) ∈ G (his(H) ∗ T = A′)}

In the case where there is a distribution history HE and a substrate transform
T ∈ TU,V , the maximum likelihood estimate which maximises the entropy,
entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H) ∗ T = A′}∧ : A′ ∈ ran(DU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ D−1U,i,T,z(A
′))) :

H ⊆ HE, his(H) ∗ T = A′} : A′ ∈ ran(DU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn deriveds
are uniformly probable, and then all drawn histories H ⊆ HE with the same
derived, his(H) ∗ T = A′, are uniformly probable. If the distribution his-
togram, HE, is known and the substrate transform, T , is known, then the
likely probability function, P̃ , is known.

In the case where the distribution histogram is uniform, Ê = V̂ C, so that
all histories are substrate histories, {H : H ∈ HU,V,z, his(H) ∗ T = A′}, the
more probable histograms, A ∈ maxd({(B,

∑
(P̃H : H ∈ HU,V,z, his(H) =

B)) : B ∈ AU,i,V,z}), tend to be such that they are uniform within the com-
ponent, ∀C ∈ TP ∀R, S ∈ C (AR ≈ AS), or naturalised, A ≈ A ∗ T ∗ T †.

The properties of uniformly possible derived are the same as for necessary
derived, except that the probabilities are scaled. So, in the case where the dis-
tribution histogram, E, is unknown, and the distribution histogram size, zE,
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is also unknown, except that it is known to be large, zE � z, then the likely
history probability varies against the naturalisation-distributed multinomial
probability of the naturalisation,

P̃ (H) ∼ 1/|ran(DU,i,T,z)| × 1/Q̂m,U(A ∗ T ∗ T †, z)(A ∗ T ∗ T †)

That is, more histories are possible but less probable.

Now consider the case where, given uniform possible derived, it is known,
in addition, that the sample histogram A is the most probable histogram of
its iso-derived.

The iso-derived conditional multinomial probability distribution, is defined
above as

Q̂m,d,T,U(E, z)(A) :=
1

|ran(DU,i,T,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ D−1U,i,T,z(A ∗ T )

The iso-derived conditional multinomial probability already includes the uni-
form possible scaling factor of 1/|ran(DU,i,T,z)|.

The cardinality of the derived, |ran(DU,i,T,z)|, is equal to the cardinality of
the derived substrate histograms,

|ran(DU,i,T,z)| =
(z + w′ − 1)!

z! (w′ − 1)!

where w′ = |T−1|. So the additional term, − ln |ran(DU,i,T,z)|, in the uniform

possible log likelihood, ln Q̂m,d,T,U(E, z)(A), varies against the derived volume,
w′, where the derived volume is less than the size, w′ < z, otherwise against
the size scaled log derived volume, z lnw′,

− ln |ran(DU,i,T,z)| ∼ − ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

In the case where the sample is natural, A = A ∗T ∗T †, the uniform possible
log likelihood varies (i) against the derived volume, w′, where the derived
volume is less than the size, w′ < z, otherwise against the size scaled log
derived volume, z lnw′, and (ii) with the size-volume scaled component size
cardinality sum relative entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ (z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
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In other words, the log likelihood is maximised where (i) the derived volume,
w′, is minimised, (ii) the derived entropy, entropy(A ∗ T ), is minimised, and
(iii) the cross entropy, entropyCross(A ∗ T, V C ∗ T ), is maximised, so that
high counts are in low cardinality components and high cardinality compo-
nents have low counts.

As in the case of necesary derived and probable sample, above, if the his-
togram is natural, A = A∗T ∗T †, and the component size cardinality relative
entropy is high, entropyCross(A ∗ T, V C ∗ T ) > lnw′, the sum sensitivity of
the iso-derived conditional multinomial probability distribution is less than
or equal to the sum sensitivity of the multinomial probability distribution,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ≤ sum(sensitivity(U)(Q̂m,U(A, z)))

and varies against the log-likelihood,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼ − ln Q̂m,d,T,U(A, z)(A)

Given uniform possible derived and probable sample, consider the case
where a drawn histogram A is known, but neither the distribution histogram,
E, is known nor the transform, T , is known, and hence the likely history
probability function, P̃ , is unknown. In the case where the distribution his-
togram size, zE, is also unknown, except that it is known to be large, zE � z,
then the maximum likelihood estimate (Ẽ, T̃ ) for the pair of the distribution
histogram, E, and the transform, T , is approximated by a modal value of the
conditional likelihood function,

(Ẽ, T̃ ) ∈ maxd({((D,M), Q̂m,d,M,U(D, z)(A)) : D ∈ AU,V,1, M ∈ TU,V })

If there is a unique maximum for the distribution probability histogram, Ẽ,
this can be rewritten in terms of the derived-dependent,

T̃ ∈ maxd({(M, Q̂m,d,M,U(AD(M), z)(A)) : M ∈ TU,V })

The derived-dependent, AD(T ), is not always computable, but an approxima-
tion to any accuracy can be made to it, so a computable approximation of the
maximum likelihood estimate, T̃ , can be made for the unknown transform, T .
In some cases the likely transform, T̃ , is not trivial, T̃ 6= Tu and T̃ 6= Ts.

If it is also known that the sample is natural, the optimisation can be re-
stricted to natural transforms, A = A ∗ T ∗ T † =⇒ AD(T ) = A. In this case
the optimisation is

T̃ ∈ maxd({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})
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or

T̃ ∈ maxd({(M,
1

|ran(DU,i,M,z)|
Qm,U(A, z)(A)∑

Qm,U(A, z)(B) : B ∈ D−1U,i,M,z(A ∗M)
) :

M ∈ TU,V , A = A ∗M ∗M †})

The numerator is constant, so the optimisation can be simplified,

T̃ ∈ mind({(M, |ran(DU,i,M,z)|
∑

Qm,U(A, z)(B) : B ∈ D−1U,i,M,z(A ∗M)) :

M ∈ TU,V , A = A ∗M ∗M †})

In this case the maximum likelihood estimate, Ẽ, for the distribution proba-
bility histogram, Ê, is the sample probability histogram, Â,

Ẽ = Â = Â ∗ T̃ ∗ T̃ †

Note that, although computable, this optimisation is intractable because the
cardinality of the substrate transforms, |TU,V |, is factorial in the volume, v.
Tractable optimisations require the computation to be at most polynomial.

Note, also, that, although the sensitivity to distribution, E, is defined above
for uniform possible derived, the sensitivity to model, T , is not yet defined.

2.6.2 Specialising coder induction

It is shown above that there are two canonical history coders, the index
history coder CH and the classification coder CG. Given variables V and size
z, the index substrate history coder, CH,U,V,z, encodes each substrate history
H ∈ HU,V,z in a fixed space of Cs

H,U,V,z(H) = z ln v, where volume v = |V C|.
By contrast, the classification substrate history coder, CG,U,V,z, encodes each
history in a space which depends on the histogram A = his(H),

Cs
G,U,V,z(H) = ln

(z + v − 1)!

z! (v − 1)!
+ ln

z!∏
S∈AS AS!

When the histogram entropy, entropy(A), is high the classification space is
greater than the index space, Cs

G,U,V,z(H) > Cs
H,U,V,z(H), but when the entropy

is low the classification space is less than the index space, Cs
G,U,V,z(H) <

Cs
H,U,V,z(H). In the case where the size is much less than the volume, z � v,

the break-even sized entropy is approximately z × entropy(A) ≈ z ln z.
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Given substrate transform T ∈ TU,V , the specialising derived substrate
history coder, CG,H,U,T,z, is intermediate between the classification coder,
CG,U,V,z, and the index coder, CH,U,V,z. Given a substrate history H ∈ HU,V,z,
the derived history, H ∗T , is encoded in a classification coder, CG,U,W,z, where
derived variables W = der(T ). Then each sub-history HC , corresponding to
a component of the partition, HC ⊆ H, where (R,C) ∈ T−1, is encoded in a
index coder, CH,U,C,zC , where zC = (A ∗ T )R. The specialising space is

Cs
G,H,U,T,z(H) = ln

(z + w′ − 1)!

z! (w′ − 1)!
+ ln

z!∏
(R,·)∈T−1(A ∗ T )R!

+∑
(R,C)∈T−1

(A ∗ T )R ln |C|

where w′ = |T−1|.

In the case where the transform is self, T = Ts where Ts = V CS{}T, then the
specialising space equals the classification space, Cs

G,H,U,Ts,z
(H) = Cs

G,U,V,z(H).
In the case where the transform is unary, T = Tu where Tu = {V CS}T, then
the specialising space equals the index space, Cs

G,H,U,Tu,z
(H) = Cs

H,U,V,z(H).

The specialising space depends only on the transform, T , and the derived,
A ∗ T . Define the specialising space function sp(T )(A ∗ T ) := Cs

G,H,U,T,z(H).

The specialising space varies (i) with the derived volume, w′, where the de-
rived volume is less than the size, w′ < z, otherwise with the size scaled
log derived volume, z lnw′, and (ii) against the size scaled component size
cardinality relative entropy,

Cs
G,H,U,T,z(H) ∼ (w′ : w′ < z) + (z lnw′ : w′ ≥ z)

− z × entropyRelative(A ∗ T, V C ∗ T )

In general, the specialising space is less than either of the two canonical
spaces where the derived entropy, entropy(A ∗ T ), is low, but the expected
component entropy, entropyComponent(A, T ), is high. So the specialising
space is minimised when (a) the derived volume, w′, is minimised, (b) the
derived entropy, entropy(A ∗ T ), is minimised, (c) high size components are
low cardinality components and low size components are high cardinality
components, and (d) the expected component entropy is maximised.

In specialising induction the history probability functions are constrained
by specialising space which in turn depends on derived histogram.
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In the discussion of ‘Maximum Entropy’, above, it was shown that, of a
subset of the micro-state valued functions of distinguishable particle, the
maximum likelihood estimate of the implied probability function is the prob-
ability function with the greatest entropy.

Consider a system of r undefined particles where the micro-state is a sub-
strate history, H ∈ HU,V,z. The set of substrate history valued functions hav-
ing exactly r particles with integer identifier is {1 . . . r} :→ HU,V,z ⊂ X →
H. Given substrate transform T ∈ TU,V , let the subset S ⊂ {1 . . . r} :→
HU,V,z be such that the expected specialising space is a constant, ∀R ∈
S (
∑

(Cs
G,H,U,T,z(H)/r : (·, H) ∈ R) = ε). Of this subset, S, the implied

probability function with the greatest entropy, P̃ ∈ maxd({(N, entropy(N)) :
R ∈ S, N = {(H, |C|/r) : (H,C) ∈ R−1}}), approximates to a Boltzmann
distribution.

Given substrate transform T ∈ TU,V , the maximum likelihood estimate P̃
of the substrate history probability function P ∈ (HU,V,z :→ Q≥0)∩P , which
maximises the entropy, entropy(P̃ ), is

P̃ = {(H, exp(−Cs
G,H,U,T,z(H))) : H ∈ HU,V,z}∧

= {(H, exp(−sp(T )(his(H) ∗ T ))) : H ∈ HU,V,z}∧

= {(H, exp(−sp(T )(his(H) ∗ T ))∑
exp(−sp(T )(his(G) ∗ T )) : G ∈ HU,V,z

) : H ∈ HU,V,z}

where exp is the exponential function. The likely probability of a history,
P̃ (H), is inversely proportional to the bounding integer, for which the space
is the logarithm, of the integer encoding of the history in the specialising
coder. The maximum likelihood estimate, P̃ , is such that all substrate histo-
ries H ∈ HU,V,z with the same specialising space, Cs

G,H,U,T,z(H), are equally

probable and all histories are possible, P̃ (H) > 0. If the transform, T , is
known, then the likely probability function, P̃ , is known and an approxima-
tion to the expected specialising space, ε, is known.

The specialising space, sp(T )(his(H) ∗ T ) = Cs
G,H,U,T,z(H), depends only on

the transform, T , and the derived, his(H) ∗ T , so all substrate histories with
the same derived, his(H) ∗ T = A ∗ T , are equally probable. All histories are
possible, P̃ (H) > 0, so specialising coder induction is similar to uniformly
possible derived induction, above, except that the deriveds are not necesssar-
ily equally probable.
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The likely history probability function entropy, entropy(P̃ ), is maximised
when the expected numerator, exp(−sp(T )(his(H) ∗ T )), is minimised. The
expected specialising space is

∑
(P̃ (H)× sp(T )(his(H)∗T ) : H ∈ HU,V,z) ≈ ε,

so the likely history probability function entropy varies with the expected spe-
cialising space, entropy(P̃ ) ∼ ε.

Now consider the case where, given specialising, it is known, in addition,
that the sample histogram A is the most probable histogram. That is, the
likely probability of histogram A,∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

z!∏
S∈AS AS!

× exp(−sp(T )(A ∗ T ))∑
exp(−sp(T )(his(G) ∗ T )) : G ∈ HU,V,z

is maximised.

The specialising probability distribution is defined

Q̂G,H,T,U(z) := {(A, z!∏
S∈AS AS!

× exp(−sp(T )(A ∗ T ))) : A ∈ AU,i,V,z}∧

The specialising log likelihood varies (i) with the size scaled underlying en-
tropy (ii) against the derived volume, w′, where the derived volume is less
than the size, w′ < z, otherwise against the size scaled log derived volume,
z lnw′, and (iii) with the size scaled component size cardinality relative en-
tropy,

ln Q̂G,H,T,U(z)(A) ∼ z × entropy(A)

− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ z × entropyRelative(A ∗ T, V C ∗ T )

In other words, the log likelihood is maximised where (i) the derived vol-
ume, w′, is minimised, (ii) the derived entropy, entropy(A ∗ T ), is min-
imised, (iii) the cross entropy, entropyCross(A ∗ T, V C ∗ T ), is maximised,
so that high counts are in low cardinality components and high cardinal-
ity components have low counts, and (iv) the expected component entropy,
entropyComponent(A, T ), is maximised.

In the case of probable sample, the likely history probability function en-
tropy varies against the relative entropy, entropy(P̃ ) ∼ − entropyRelative(A∗
T, V C ∗ T ). Similarly, the expected specialising space varies against the rela-
tive entropy, ε ∼ − entropyRelative(A ∗ T, V C ∗ T ).
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Given specialising and probable sample, consider the case where the histogram
A is known, but the transform, T , is unknown, and hence the likely history
probability function, P̃ , is unknown. The maximum likelihood estimate T̃
for the transform, T , is approximated by a modal value of the specialising
likelihood,

T̃ ∈ maxd({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })

Note that, as in the case of uniform possible derived induction, although
computable, this optimisation is intractable because the cardinality of the
substrate transforms, |TU,V |, is factorial in the volume, v.

Unlike uniform possible derived induction, in specialising induction there is
no distribution history, HE, and so no sensitivity to distribution, E. A sensi-
tivity to model, T , can be defined, however, as the negative logarithm of the
cardinality of the maximum likelihood estimate models,

− ln |max({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })|

That is, as the cardinality of the modal models of the log likelihood func-
tion increases, the sensitivity to model decreases. It can be shown that the
sensitivity to model varies against the size-volume scaled component size
cardinality sum relative entropy,

− ln |max({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })| ∼
−
(
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )
)

So the sensitivity to model varies against the log likelihood,

− ln |max({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })| ∼ − ln Q̂G,H,T,U(z)(A)

As the relative entropy, entropyRelative(A ∗ T, V C ∗ T ), increases, the log-
likelihood, ln Q̂G,H,T,U(z)(A), increases, but the sensitivity to model, T , de-
creases. In other words, the higher the sample relative entropy the more likely
the maximum likelihood estimate, T̃ , equals the model, T , and the smaller
the likely difference between them if they are not equal.

It is shown above, in the case of uniform possible derived and natural
sample, A = A ∗ T ∗ T †, that the log likelihood varies against the derived vol-
ume and with the size-volume scaled component size cardinality sum relative
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entropy,

ln Q̂m,d,T,U(A, z)(A) ∼
− ((w′ : w′ < z) + (z lnw′ : w′ ≥ z))

+ (z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

so the iso-derived conditional log likelihood varies with the specialising log
likelihood,

ln Q̂m,d,T,U(A, z)(A) ∼ ln Q̂G,H,T,U(z)(A)

and the iso-derived conditional model sensitivity varies against the iso-derived
conditional log likelihood,

− ln |max({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})| ∼
− ln Q̂m,d,T,U(A, z)(A)

The iso-derived conditional model sensitivity may be compared to the iso-
derived conditional distribution sensitivity which also varies against the iso-
derived conditional log likelihood,

sum(sensitivity(U)(Q̂m,d,T,U(A, z))) ∼ − ln Q̂m,d,T,U(A, z)(A)

That is, in classical modelled induction, the log likelihood is maximised and
the sensitivities to both distribution and model are minimised where (i) the
derived volume is minimised, (ii) the derived entropy is minimised, (iii) the
cross entropy is maximised, so that high counts are in low cardinality compo-
nents and high cardinality components have low counts, and (iv) the expected
component entropy is maximised.

2.6.3 Artificial neural networks

In the discussion of classical modelled induction, above, it is shown that,
given uniform possible derived and probable sample A ∈ AU,V,z, where the
sample is natural, A = A ∗ T ∗ T †, the maximum likelihood estimate T̃ for
unknown transform T ∈ TU,V , is

T̃ ∈ maxd({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})

Similarly, given specialising and probable sample, the maximum likelihood
estimate, T̃ , for the transform, T , is approximated by a modal value of the
specialising likelihood,

T̃ ∈ maxd({(M, Q̂G,H,M,U(z)(A)) : M ∈ TU,V })
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In both cases, although computable, the optimisations are intractable be-
cause the cardinality of the substrate transforms, |TU,V |, is factorial in the
volume, v. In order to make the optimisation tractable and then practicable,
the search must be restricted to a subset of the models.

Artificial neural network induction is an example of practicable classical
modelled induction. Here the models are artificial neural networks which
correspond to functional definition sets of transforms representing the neu-
rons. The optimisation consists of a sequence of these networks. The graph of
the network remains constant, but the weights between neurons of successive
networks are altered to decrease a loss function step by step. The weights of
the initial network are chosen at random. The optimisation proceeds until
the loss falls below a threshold. The fud of the terminating network is then
the practicable model. The network graph is chosen depending on the given
sample. In some cases of configuration the entropy properties of the resultant
model are those of classical induction.

The one functional transforms, TU,f,1, are derived state valued left total
functions of underlying state,

∀T ∈ TU,f,1 (split(V,XS) ∈ V CS :→ WCS)

where (X,W ) = T and V = und(T ). In order to construct a coordinate from
a state define ()[] ∈ S → L(W) as

S[] := {(i, u) : ((v, u), i) ∈ order(DV×W , S)}

where DV×W is an order on the variables and values. The converse function
to construct a state from a coordinate ()V ∈ L(W)→ S is

SV := {(v, Si) : (v, i) ∈ order(DV , V )}

Now one functional transforms may be represented as derived value coordi-
nate valued left total functions of underlying value coordinate,

{(S[], R[]) : (S,R) ∈ split(V,XS)} ∈ {S[] : S ∈ V CS} :→ {R[] : R ∈ WCS}
⊂ Wn →Wm

where n = |V | and m = |W |.

So an alternative definition for a one functional transform is a tuple of (i)
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the underlying variables, V , (ii) the derived variables, W , and (iii) a derived
value coordinate valued left total function of underlying value coordinate, f ,

TU,f,1 =

{(V,W, f) : V,W ∈ P(vars(U)), V ∩W = ∅,
f ∈ {S[] : S ∈ V CS} :→ {R[] : R ∈ WCS}}

The histogram of a function-defined one functional transform T = (V,W, f) ∈
TU,f,1 is

histogram(T ) := {S ∪ f(S[])W : S ∈ V CS} × {1}

In the special case where the transform is mono-derived-variate, T = (V, {w}, f),
the function may be simplified to f ∈ {S[] : S ∈ V CS} :→ Uw, and the his-
togram is

histogram(T ) := {S ∪ {(w, f(S[]))} : S ∈ V CS} × {1}

In the further special case of mono-derived-variate transform where its vari-
ables are real, ∀v ∈ V (Uv = R) and Uw = R, then the function is a real
valued left total function of a real coordinate, f ∈ Rn :→ R. Here the
cartesian states are V CS =

∏
v∈V ({v} ×R), so the histogram is

histogram(T ) = {S ∪ {(w, f(S[]))} : S ∈
∏
v∈V

({v} ×R)} × {1}

= {SV ∪ {(w, f(S))} : S ∈ Rn} × {1}

The cartesian volume is infinite, |V C| = |Rn|, so the cardinality of the his-
togram is infinite, |histogram(T )| = |Rn|.

The reals form a metric space so a real valued function of real coordinates
may be discretised given a finite subset of the reals D ⊂ R : |D| < ∞. The
discretised function is

discrete(D,n)(f) := {(X, nearest(D, f(X))) : X ∈ Dn} ∈ Dn :→ D

where nearest ∈ P(R)×R→ R is defined

nearest(D, r) := t : {t} ∈ mind({(s, (|r − s|, s)) : s ∈ D})

The cardinality of the discretised transform’s histogram is finite,

|histogram((V, {w}, discrete(D,n)(f)))| = |Dn| = |D|n
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An example of a transform defined by a real valued function occurs in the
function composition of artificial neural networks. Here a transform repre-
sents a model of a neuron called a perceptron, T = (V,w, fσ(Q)), where the
dimension is n = |V | and the function fσ(Q) ∈ Rn :→ R is parameterised by
(i) some differentiable function σ ∈ R :→ R, called the activation function,
and (ii) a vector of weights, Q ∈ Rn+1, and is defined

fσ(Q)(S) := σ(
∑

i∈{1...n}

QiSi + Qn+1)

The function composition of artificial neural networks may be represented
by fuds of these transforms. Define nets as a subset of the set of lists of
tuples of the graph and real weights,

nets := {G : G ∈ L(P(V)× V × L(R)), ∀(·, (V, ·, Q)) ∈ G (|Q| = |V |+ 1)}

Define the set of transforms, fud(σ) ∈ nets→ P(Tf) as

fud(σ)(G) :=

{({SV ∪ {(w, fσ(Q)(S))} : S ∈ Rn} × {1}, {w}) :

(·, (V,w,Q)) ∈ G, n = |V |}

The fud search is restricted to the neural net substrate fud set, F∞,U,V,σ =
F∞,U,V ∩ (fud(σ) ◦ nets).

An example of a neural net substrate fud F ∈ F∞,U,V,σ has l = layer(F, der(F ))
layers of fixed breadth equal to the underlying dimension, ∀i ∈ {1 . . . l} (|Fi| =
n) where n = |V | and Fi = {T : T ∈ F, layer(F, der(T )) = i}, such
that the underlying of each transform is the derived of the layer below,
∀T ∈ F1 (und(T ) = V ) and ∀i ∈ {2 . . . l} ∀T ∈ Fi (und(T ) = der(Fi−1)).

The optimisation of artificial neural networks can be divided into unsuper-
vised and supervised types. In the supervised case there is additional knowl-
edge. First, there exists an unknown distribution histogram E from which the
known sample histogram, A, is drawn, A < E. Secondly, the substrate can be
partitioned into query variables K ⊂ V and label variables, V \K, such that
the distribution histogram, E, is causal between the query variables and the
label variables,

split(K,EFS) ∈ KCS → (V \K)CS

and so the sample histogram, A, is also causal,

split(K,AFS) ∈ KCS → (V \K)CS
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That is, in the supervised case, there is a functional relation such that there
is exactly one label state for every effective query state. In an optimisation,
a fud F ∈ F∞,U,K,σ has its underlying variables restricted to the query vari-
ables, und(F ) ⊆ K. The optimisation maximises the causality between the
derived variables and the label variables by minimising the loss function. At
the optimum there is no error and the relation is functional,

split(WF , (A ∗XF % (WF ∪ V \K))FS) ∈ WCS
F → (V \K)CS

where XF = histogram(FT) and WF = der(F ). At zero loss the label state
is implied for all query states that are effective in the sample derived,

split(K, (KC ∗ FT ∗ (A ∗XF ) % (V \K))FS) ∈ KCS → (V \K)CS

That is, a query state Q ∈ KCS that is effective in the sample derived
R ∈ (A ∗ FT)FS, where {R} = ({Q}U ∗ FT)FS, but that is not necessar-
ily effective in the sample itself, Q /∈ (A%K)FS, still has an implied label
state, {L} = (A ∗XF ∗ {R}U % (V \K))FS where L ∈ (V \K)CS.

In the case where the derived variables of the fud is a literal frame of the
label variables, WF :↔: (V \K) and ∀v ∈ (V \K) (Uv ⊆ R), the least squares
loss function lsq ∈ A× F × P(V)→ R is

lsq(A,F,K) :=
∑

(S,c)∈A∗XF

(
c×

∑
i∈{1...m}

((S%WF )
[]
i − (S%(V \K))

[]
i )

2
)

where m = |WF | = |(V \K)|. The loss function is a continuous real valued
function and so its derivative with respect to each weight can be defined. In
this case the optimisation is least squares gradient descent.

If the optimisation of artificial neural networks is of the unsupervised type,
there is no knowledge of a causal label. Here the method of least squares
gradient descent is still used but the label is simply a copy of the substrate,
V , itself. Usually the network graph is constrained so that a middle layer
a ∈ {2 . . . l − 1} has narrower breadth than the substrate, |Fa| < n.

In the computations of alignment and entropy that follow, the derived vari-
ables are discretised to the values of the label variables, D = ∪{Uv : v ∈
(V \K)}.

In some cases of sample and network optimisation configuration, the neg-
ative least squares loss (a) varies against the effective derived volume

− lsq(A,FD, K) ∼ − |(A ∗ FT
D)F|
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(b) varies against the derived entropy of the fud transform,

− lsq(A,FD, K) ∼ − entropy(A ∗ FT
D)

(c) varies with the component size cardinality relative entropy,

− lsq(A,FD, K) ∼ entropyRelative(A ∗ FT
D , V

C ∗ FT
D)

and (d) varies with the expected component entropy,

− lsq(A,FD, K) ∼ entropyComponent(A,FT
D)

The initial fud FR has arbitrary weights, so is likely to have a high least
squares loss. That is, far from the derived variables and the label variables
being causally related, WCS

D → (V \K)CS, they are likely to be independent,

algn(A ∗XFR
∗ {WCS{}T

D , (V \K)CS{}T}T) ≈ 0

where {WCS{}T
D , (V \ K)CS{}T} is the fud of the self transforms of the (i)

discretised derived variables and (ii) label variables.

As the optimisation proceeds from the initial fud, FR, to the optimal fud
F , the loss decreases and the relation between the top layer and the label
becomes more causal,

algn(A ∗XF ∗ {WCS{}T
D , (V \K)CS{}T}T) > 0

The negative least squares loss varies with the alignment of the self partition
transforms, so varies against the derived entropy of the fud transform,

− lsq(A,FD, K) ∼ algn(A ∗XF ∗ {WCS{}T
D , (V \K)CS{}T}T)

∼ −z × entropy(A ∗ FT
D)

That is, as the loss, lsq(A,FD, K), is minimised, the derived entropy, entropy(A∗
FT
D), tends to be minimised. The minimisation of derived entropy is a prop-

erty of classical induction.

The negative least squares loss only varies with the component size cardi-
nality relative entropy, entropyRelative(A ∗ FT

D , V
C ∗ FT

D), in the case where
the histogram, A, is clustered by the label variables. This requires alignment
within the query variables, algn(A%K) > 0. Clustering may be described as
follows.
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Consider the case of a multi-variate set of real valued query variables K,
where k = |K| ≥ 2 and ∀x ∈ K (Ux ⊆ R), and a neural net fud F ∈ F∞,U,K,σ
consisting of two transforms, F = {T1, T2}, each having the query variables
as the underlying, und(T1) = und(T2) = K. For a coordinate S ∈ Rk the
weights of the transforms form a pair of hyperplanes,∑

i∈{1...k}

Q1,iSi + Q1,k+1 = 0

and ∑
i∈{1...k}

Q2,iSi + Q2,k+1 = 0

where Q1, Q2 ∈ Rk+1 are the weights correspondng to T1, T2. If the hyper-
planes of the arbitrarily weighted initial fud, FR, intersect, the acute angle
between them is expected to be 45◦. That is, given an activation function,
σ, which is a step function, or a binary set of discrete values, D = {0, 1},
the probability distribution of the component cardinalities of the initial fud
is bi-modal. If (·, C1), (·, C2) ∈ (FT

R,{0,1})
−1 are such that |C1| < |C2|, then it

is expected that 3|C1| = |C2|. So the component cardinality entropy of the
initial fud is expected to be less than maximal,

entropy(KC ∗ FT
R,D) < entropy(WC

D)

The derived entropy of the initial fud is expected to be approximately equal
to the component cardinality entropy,

entropy(A ∗ FT
R,D) ≈ entropy(KC ∗ FT

R,D)

and so the component size cardinality relative entropy of the initial fud is
expected to be small,

entropyRelative(A ∗ FT
R,D, K

C ∗ FT
R,D) ≈ 0

If the histogram, A, is approximately uniformly distributed over the volume,
then the component size cardinality relative entropy remains small during the
optimisation,

entropyRelative(A ∗ FT
D , K

C ∗ FT
D) ≈ 0

In contrast, consider the case where the histogram, A, is not uniformly dis-
tributed, but clustered by label state. Let YL ⊂ KCS be the set of the centres
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of the clusters for effective label state L ∈ (A%(V \K))FS. The maximum
radius rL ∈ R>0 is such that

∀S ∈ AFS ♦L = S%(V \K) ∃Q ∈ YL (
∑

i∈{1...k}

(Q
[]
i − S

[]
i )2 ≤ r2L)

Let rC be the radius of component C. In the case where the histogram is
clustered such that the cluster radius of a label state is much smaller than
the least initial component radius, ∀(·, C) ∈ (FT

R,{0,1})
−1 (rL � rC), then

optimised rotations of the hyperplanes, that sweep up nearby clusters in
the same label state, tend to be such that the magnitude of the change in
the fractional component size, |(A ∗ FT

2,D)(R) − (A ∗ FT
1,D)(R)|/z, is greater

than magnitude of the change in the fractional component cardinality, |(KC ∗
FT
2,D)(R)−(KC∗FT

1,D)(R)|/|KC|. So, in the clustered case, as the optimisation
decreases the derived entropy, entropy(A ∗ FT

D), the component sizes and
component cardinalities become less synchronised and the component size
cardinality relative entropy increases,

− lsq(A,FD, K) ∼ −z × entropy(A ∗ FT
D)

∼ z × entropyRelative(A ∗ FT
D , K

C ∗ FT
D)

= z × entropyRelative(A ∗ FT
D , V

C ∗ FT
D)

The same reasoning applies to fuds consisting of more than two transforms,
|F | > 2, but note that at higher fud cardinalities the initial component cardi-
nality entropy, entropy(KC ∗ FT

R,D), tends to be multi-modal and so approx-
imates more closely to the uniform cartesian derived entropy, entropy(WC

D).
So there is less freedom for the relative entropy of the fud to increase during
optimisation. In the case of multi-layer fuds, however, the breadth can be
constrained and so the relative entropy of deeper, narrrower fuds may be
higher than in shallower, wider fuds of the same cardinality.

In general, in the clustered case, the optimised fud is such that high counts
are in low cardinality components and high cardinality components have low
counts. The maximisation of relative entropy is a property of classical induc-
tion.

The accuracy of the approximation of artificial neural network induction to
classical induction can be defined as the ratio of the practicable model sample-
distributed iso-derived conditional log likelihood to the maximum model sample-
distributed iso-derived conditional log likelihood,

0 <
Q̂m,d,FT,U(A, z)(A)

Q̂m,d,T̃ ,U(A, z)(A)
≤ 1
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The accuracy varies against the sensitivity to model,

Q̂m,d,FT,U(A, z)(A)

Q̂m,d,T̃ ,U(A, z)(A)
∼ −(− ln |max({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V })|)

and so varies with the log-likelihood,

Q̂m,d,FT,U(A, z)(A)

Q̂m,d,T̃ ,U(A, z)(A)
∼ ln Q̂m,d,T,U(A, z)(A)

That is, although the model obtained from least squares gradient descent is
merely an approximation, in the cases where the log-likelihood is high, and so
the sensitivity to model is low, the approximation may be reasonably close
nonetheless.

2.6.4 Aligned induction

Given substrate transform T ∈ TU,V , the abstract histogram valued integral
substrate histograms function YU,i,T,W,z is defined

YU,i,T,W,z := {(A, (A ∗ T )X) : A ∈ AU,i,V,z}

The finite set of iso-abstracts of abstract histogram (A ∗ T )X is

Y −1U,i,T,W,z((A ∗ T )X) = {B : B ∈ AU,i,V,z, (B ∗ T )X = (A ∗ T )X}

The degree to which an integral iso-set I ⊆ AU,i,V,z that contains the his-
togram, A ∈ I, is said to be entity-like is called the iso-abstractence. The
iso-abstractence is defined as the ratio of (i) the cardinality of the intersec-
tion between the integral iso-set and the set of integral iso-abstracts, and (ii)
the cardinality of the union,

1

|AU,i,V,z|
≤
|I ∩ Y −1U,i,T,W,z((A ∗ T )X)|
|I ∪ Y −1U,i,T,W,z((A ∗ T )X)|

≤ 1

Law-like iso-sets are subsets of the set of iso-abstracts,

D−1U,i,T,z(A ∗ T ) ⊆ Y −1U,i,T,W,z((A ∗ T )X)

and so are also entity-like.
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The formal histogram valued integral substrate histograms function YU,i,T,V,z
is defined

YU,i,T,V,z := {(A,AX ∗ T ) : A ∈ AU,i,V,z}

The finite set of iso-formals of formal histogram AX ∗ T is

Y −1U,i,T,V,z(A
X ∗ T ) = {B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T}

Aligned-like iso-sets are subsets of the set of iso-formals,

Y −1U,i,V,z(A
X) ⊆ Y −1U,i,T,V,z(A

X ∗ T )

The formal-abstract pair valued integral substrate histograms function YU,i,T,z
is defined

YU,i,T,z := {(A, (AX ∗ T, (A ∗ T )X)) : A ∈ AU,i,V,z}

The finite set of iso-transform-independents of (AX ∗ T, (A ∗ T )X) is

Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X)) =

{B : B ∈ AU,i,V,z, BX ∗ T = AX ∗ T, (B ∗ T )X = (A ∗ T )X}

The iso-transform-independents is the intersection of the iso-formals and the
iso-abstracts,

Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X)) = Y −1U,i,T,V,z(A

X ∗ T ) ∩ Y −1U,i,T,W,z((A ∗ T )X)

In aligned modelled induction the history probability functions are con-
strained by formal and abstract histograms.

Let P be a substrate history probability function, P ∈ (HU,V,z :→ Q≥0) ∩ P .
Given a history HE ∈ HU,V,zE , of size zE = |HE|, consider the case where both
the formal histogram AX ∗T of drawn histories is known to be necessary and
the abstract histogram (A ∗ T )X of drawn histories is known to be necessary,∑

(P (H) : H ⊆ HE, his(H)X ∗ T = AX ∗ T, (his(H) ∗ T )X = (A ∗ T )X) = 1.
The maximum likelihood estimate which maximises the entropy, entropy(P̃ ),
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is

P̃ = {(H, 1) :

H ⊆ HE, his(H)X ∗ T = AX ∗ T, (his(H) ∗ T )X = (A ∗ T )X}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X ∗ T 6= AX ∗ T} ∪
{(G, 0) : G ∈ HU,V,z, (his(G) ∗ T )X 6= (A ∗ T )X}

= {(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X)))) :

H ⊆ HE, his(H)X ∗ T = AX ∗ T, (his(H) ∗ T )X = (A ∗ T )X} ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X ∗ T 6= AX ∗ T} ∪
{(G, 0) : G ∈ HU,V,z, (his(G) ∗ T )X 6= (A ∗ T )X}

That is, the maximum likelihood estimate, P̃ , is such that all drawn histories
H ⊆ HE with both the formal, his(H)X ∗ T = AX ∗ T and the abstract,
(his(H) ∗ T )X = (A ∗ T )X, are uniformly probable and all other histories,
G * HE or his(G)X ∗T 6= AX ∗T or (his(G)∗T )X 6= (A∗T )X, are impossible,

P̃ (G) = 0. If (i) the transform, T , is known, (ii) the formal, AX∗T , is known,
(iii) the abstract, (A ∗T )X, is known and (iv) the distribution histogram, HE,
is known, then the likely probability function, P̃ , is known.

The likely probability of drawing histogram A from necessary drawn formal
AX ∗ T and necessary drawn abstract (A ∗ T )X is∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗ T, (A ∗ T )X))

The likely history probability function entropy, entropy(P̃ ), is maximised
when the sum of the iso-transform-independent historical frequencies,∑

Qh,U(E, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X))

is maximised.

Consider the case where the transform, T , is known, the formal, AX ∗ T ,
is known, and the abstract, (A ∗ T )X, is known, but the distribution his-
togram, E, is unknown and hence the likely history probability function, P̃ , is
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unknown. The maximum likelihood estimate Ẽ for the distribution histogram,
E, is a modal value of the likelihood function,

Ẽ ∈ maxd({(D,
∑

(Qh,U(D, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X)))) :

D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known, the formal, AX ∗ T , is known,
and the abstract, (A ∗ T )X, is known. If it is assumed that the distribution
histogram equals the likely distribution histogram, E = Ẽ, then the likely his-
tory probability is known, P̃ (H) = 1/

∑
(Qh,U(Ẽ, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗
T, (A ∗ T )X))) where his(H)X ∗ T = AX ∗ T and (his(H) ∗ T )X = (A ∗ T )X.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, may be approximated by a modal value of a
likelihood function which depends on the multinomial distribution instead,

Ẽ ∈ maxd({(D,
∑

(Qm,U(D, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X)))) :

D ∈ AU,V,1})

If it is known, in addition, that the formal equals the abstract, AX ∗ T =
(A∗T )X, then the normalised naturalised abstract, (Â∗T )X∗T †, is a solution.
In this case the naturalised abstract, (A ∗ T )X ∗ T †, or naturalised formal,
AX ∗T ∗T † = (A∗T )X ∗T †, is the independent analogue of the iso-transform-
independents. So the maximum likelihood estimate, Ẽ, for the distribution
probability histogram, Ê, is the naturalised abstract probability histogram, (Â∗
T )X ∗ T †,

Ẽ = (Â ∗ T )X ∗ T †

Formal-abstract equivalence, AX ∗T = (A∗T )X, is also called mid transform.
In this case the abstract equals the independent abstract, (A∗T )X = AX∗T =
(AX∗T )X, and so does not depend on the histogram alignment, algn(A). The
formal equals the formal independent, AX ∗ T = (A ∗ T )X = (AX ∗ T )X, and
so does not depend on its own alignment, algn(AX ∗ T ) = 0.

The naturalised abstract is the independent analogue of the iso-transform-
independents, so, in the case where the naturalised abstract is integral, (A ∗
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T )X∗T † ∈ Ai, the sum of the iso-transform-independent naturalised-abstract-
distributed multinomial probabilities varies with the naturalised-abstract nat-
uralised abstract-distributed multinomial probability,∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X)) ∼

Qm,U((A ∗ T )X ∗ T †, z)((A ∗ T )X ∗ T †)

So, if it is assumed that the distribution probability histogram equals the likely
distribution probability histogram, Ê = Ẽ = (Â ∗ T )X ∗ T †, then the likely
history probability varies against the naturalised-abstract-distributed multi-
nomial probability of the naturalised abstract, P̃ (H) ∼ 1/Q̂m,U((A ∗ T )X ∗
T †, z)((A ∗ T )X ∗ T †). The likely history probability function entropy varies
with the naturalised abstract entropy, entropy(P̃ ) ∼ entropy((A ∗ T )X ∗ T †).

Given necessary formal, necessary abstract and mid transform, consider
the case where a drawn histogram A is known, but neither the distribution
histogram, E, is known nor the transform, T , is known, and hence the likely
history probability function, P̃ , is unknown. The maximum likelihood estimate
(Ẽ, T̃ ) for the pair of the distribution histogram, E, and the transform, T , is
a modal value of the likelihood function,

(Ẽ, T̃ ) ∈
maxd({((D,M),

∑
(Qh,U(D, z)(B) : B ∈ Y −1U,i,M,z((A

X ∗M, (A ∗M)X)))) :

D ∈ AU,i,V,zE , M ∈ TU,V , AX ∗M = (A ∗M)X})

In some cases of drawn sample, A, the transform maximum likelihood esti-
mate, T̃ , is not trivial. That is, the transform maximum likelihood estimate
is not necessarily unary, Tu = {V CS}T, nor self, Ts = V CS{}T. In the cases
where the transform maximum likelihood estimate is trivial, T̃ ∈ {Tu, Ts},
aligned modelled induction reduces to aligned non-modelled induction,

P̃ = {(H, 1) : H ⊆ HE, his(H)X = AX}∧ ∪
{(G, 0) : G ∈ HU,V,z, G * HE} ∪
{(G, 0) : G ∈ HU,V,z, his(G)X 6= AX}

Define the transform-dependent AY(T ) ∈ AU,V,z as the maximum likelihood
estimate of the distribution histogram of the multinomial probability of the
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histogram, A, conditional that it is an iso-transform-independent,

{AY(T )} =

maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗ T, (A ∗ T )X))
) :

D ∈ AU,V,z})

The transform-dependent, AY(T ), is the dependent analogue of the iso trans-
form independents. Note that the transform-dependent, AY(T ), is not always
computable, but an approximation to any accuracy can be made to it. In the
case where the formal equals the abstract, AX ∗ T = (A ∗ T )X, and the his-
togram equals the naturalised abstract, the transform-dependent equals the
naturalised abstract, A = (A ∗ T )X ∗ T † =⇒ AY(T ) = A = (A ∗ T )X ∗ T †.

Now consider the case where, given necessary formal, necessary abstract
and mid transform, it is known, in addition, that the sample histogram A
is the most probable histogram of the iso-transform-independents. That is,
the likely probability of drawing histogram A from necessary formal-abstract
(AX ∗ T, (A ∗ T )X),∑

(P̃ (H) : H ∈ HU,V,z, his(H) = A) =

Qh,U(E, z)(A)∑
Qh,U(E, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗ T, (A ∗ T )X))

is maximised.

In the case where the transform, T , is known and the sample, A, is known,
but the distribution histogram, E, is unknown, the maximum likelihood esti-
mate Ẽ for the distribution histogram, E, is a modal value of the likelihood
function,

Ẽ ∈ maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗ T, (A ∗ T )X))
) :

D ∈ AU,i,V,zE})

The likely distribution histogram, Ẽ, is known if the distribution histogram
size, zE, is known, the transform, T , is known and the sample, A, is known.
If it is assumed that the distribution histogram equals the likely distribu-
tion histogram, E = Ẽ, then the likely history probability is known, P̃ (H) =
1/
∑

(Qh,U(Ẽ, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X))) where his(H)X ∗ T =

AX ∗ T and (his(H) ∗ T )X = (A ∗ T )X.
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If the histogram is naturalised abstract, A = (A ∗ T )X ∗ T †, then the ad-
ditional constraint of probable sample makes no change to the maximum
likelihood estimate, Ẽ,

A = (A ∗ T )X ∗ T † =⇒

maxd({(D, Qh,U(D, z)(A)∑
Qh,U(D, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗ T, (A ∗ T )X))
) :

D ∈ AU,i,V,zE})
= maxd({(D,

∑
(Qh,U(D, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗ T, (A ∗ T )X)))) :

D ∈ AU,i,V,zE})

If the histogram is not naturalised abstract, A 6= (A ∗T )X ∗T †, however, then
the likely history probability function entropy, entropy(P̃ ), is lower than it is
in the case of necessary formal-abstract unconstrained by probable sample.

In the case where the distribution histogram, E, is unknown, and the dis-
tribution histogram size, zE, is also unknown, except that it is known to be
large, zE � z, then the maximum likelihood estimate Ẽ for the distribu-
tion probability histogram, Ê, is now approximated by a modal value of the
conditional likelihood function,

Ẽ ∈ maxd({(D, Qm,U(D, z)(A)∑
Qm,U(D, z)(B) : B ∈ Y −1U,i,T,z((A

X ∗ T, (A ∗ T )X))
) :

D ∈ AU,V,1})

The solution to this is the normalised transform-dependent, Ẽ = ÂY(T ). The
maximum likelihood estimate is near the sample, Ẽ ∼ Â, only in as much as
it is far from the naturalised abstract, Ẽ � (Â ∗ T )X ∗ T †.

The iso-transform-independent conditional multinomial probability distribu-
tion is defined

Q̂m,y,T,U(E, z)(A) :=

1

|ran(YU,i,T,z)|
Qm,U(E, z)(A)∑

Qm,U(E, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X))

So the optimisation can be rewritten,

Ẽ ∈ maxd({(D, Q̂m,y,T,U(D, z)(A)) : D ∈ AU,V,1})
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Consider the case where the distribution equals the transform-dependent,
Ê = ÂY(T ). First, the logarithm of the iso-transform-independent conditional
multinomial probability of the histogram, A, with respect to the dependent
analogue or transform-dependent, AY(T ), varies against the logarithm of the
iso-transform-independent conditional multinomial probability with respect
to the independent analogue or naturalised abstract, (A ∗ T )X ∗ T †,

ln
Qm,U(AY(T ), z)(A)∑

Qm,U(AY(T ), z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X))

∼ − ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X))

Second, the negative logarithm of the iso-transform-independent conditional
multinomial probability of the histogram, A, with respect to the naturalised
abstract, (A ∗ T )X ∗ T †, varies with the negative logarithm of the lifted iso-
transform-independent conditional multinomial probability of the derived, A∗
T , with respect to the abstract, (A ∗ T )X,

− ln
Qm,U((A ∗ T )X ∗ T †, z)(A)∑

Qm,U((A ∗ T )X ∗ T †, z)(B) : B ∈ Y −1U,i,T,z((A
X ∗ T, (A ∗ T )X))

∼ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ Y ′−1U,i,T,z((A
X ∗ T, (A ∗ T )X))

where Y
′−1
U,i,T,z((A

X ∗T, (A∗T )X)) = {B ∗T : B ∈ Y −1U,i,T,z((A
X ∗T, (A∗T )X))}.

Third, the negative logarithm of the lifted iso-transform-independent con-
ditional multinomial probability with respect to the abstract, (A ∗T )X, varies
with the negative logarithm of the relative multinomial probability with re-
spect to the abstract, (A ∗ T )X, which is the derived alignment,

− ln
Qm,U((A ∗ T )X, z)(A ∗ T )∑

Qm,U((A ∗ T )X, z)(B′) : B′ ∈ Y ′−1U,i,T,z((A
X ∗ T, (A ∗ T )X))

∼ − ln
Qm,U((A ∗ T )X, z)(A ∗ T )

Qm,U((A ∗ T )X, z)((A ∗ T )X)

= algn(A ∗ T )

So the log-likelihood varies with the derived alignment,

ln Q̂m,y,T,U(AY(T ), z)(A) ∼ algn(A ∗ T )

The mid transform constraint allows the log-likelihood, which is a function of
the histogram, A, to be lifted to the derived alignment, which is a function of
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the derived, A ∗ T . So a model optimisation need only search in the derived
volume, |T−1|, which is typically much smaller than the underlying volume,
|T−1| � |V C|. It is this relation between the log-likelihood and the derived
alignment that makes aligned induction practicable.

The case of classical modelled induction, where the derived is necessary,
may be termed law-like because the set of iso-derived, D−1U,i,T,z(A ∗T ), is law-
like. All drawn histories H ⊆ HE, are such that their derived histograms are
fixed, his(H) ∗ T = A ∗ T .

By contrast, the case of aligned modelled induction, where the abstract is nec-
essary, may be termed entity-like because the set of iso-abstracts, Y −1U,i,T,W,z((A∗
T )X), is entity-like. All drawn histories are such that their abstract histograms
are fixed, (his(H) ∗ T )X = (A ∗ T )X. That is, the derived variables are sepa-
rately necessary, ∀u ∈ W (his(H) ∗ T % {u} = A ∗ T % {u}). Necessary ab-
stract is a weaker constraint than necessary derived because the iso-abstracts
are a superset of the iso-derived, D−1U,i,T,z(A ∗ T ) ⊆ Y −1U,i,T,W,z((A ∗ T )X). In
fact, aligned induction is stricter than pure entity-like because the formal
is necessary too, his(H)X ∗ T = AX ∗ T , and so aligned induction is also
aligned-like, Y −1U,i,V,z(A

X) ⊆ Y −1U,i,T,V,z(A
X ∗ T ). Aligned induction, however, is

not necessarily law-like, his(H) ∗T 6= A ∗T , and so does not always approxi-
mate to classical induction. Mid transform is stricter still, but this constraint
does not necessarily increase law-likeness, but merely allows lifting.

Consider the case where, given necessary formal, necessary abstract, mid
transform and probable sample, it is known, in addition, that the sample his-
togram is ideal, A = A ∗ T ∗ T †A. The idealisation independent equals the
independent, (A∗T ∗T †A)X = AX, so the idealisation is aligned-like. The ideal
sample approximates to the independent analogue of the iso-derived, which
is the naturalisation, A ≈ A∗T ∗T †, and so, if it is also the case that derived
alignment is high, algn(A ∗ T ) � 0, the iso-transform-independent condi-
tional multinomial log-likelihood with respect to the dependent analogue or
transform-dependent, AY(T ), varies with the iso-derived conditional multino-
mial log-likelihood with respect to the independent analogue or naturalisation,
A ∗ T ∗ T †,

ln Q̂m,y,T,U(AY(T ), z)(A) ∼ ln Q̂m,d,T,U(A ∗ T ∗ T †, z)(A)

∼ ln Q̂m,d,T,U(A, z)(A)
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So the log likelihood varies with the size-volume scaled component size car-
dinality sum relative entropy,

ln Q̂m,y,T,U(AY(T ), z)(A) ∼
(z + v)× entropy(A ∗ T + V C ∗ T )

−z × entropy(A ∗ T ) − v × entropy(V C ∗ T )

and the maximum likelihood estimate derived approximates to the normalised
sample derived,

Ẽ ∗ T = ÂY(T ) ∗ T
≈ Â ∗ T

In the case where the underlying alignment is intermediate, algn(A) � 0,
and the component size cardinality relative entropy is high, entropyCross(A∗
T, V C ∗ T ) > ln |T−1|, the sum sensitivity varies against the log likelihood,

sum(sensitivity(U)(Q̂m,y,T,U(AY(T ), z))) ∼ − ln Q̂m,y,T,U(AY(T ), z)(A)

and the model sensitivity varies against the log likelihood,

− ln |max({(M, Q̂m,y,M,U(AY(M), z)(A)) : M ∈ TU,V ,
AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})|

∼ − ln Q̂m,y,T,U(AY(T ), z)(A)

That is, given mid-ideal transform, the maximisation of the derived alignment
tends to make the properties of aligned modelled induction similar to those
of classical modelled induction.

Given necessary formal-abstract, mid-ideal transform and probable sample,
consider the case where a drawn histogram A is known, but neither the dis-
tribution histogram, E, is known nor the transform, T , is known, and hence
the likely history probability function, P̃ , is unknown. In the case where the
distribution histogram size, zE, is also unknown, except that it is known to
be large, zE � z, then the maximum likelihood estimate (Ẽ, T̃ ) for the pair
of the distribution histogram, E, and the transform, T , is approximated by a
modal value of the conditional likelihood function,

(Ẽ, T̃ ) ∈

maxd({((D,M),
Qm,U(D, z)(A)∑

Qm,U(D, z)(B) : B ∈ Y −1U,i,M,z((A
X ∗M, (A ∗M)X))

) :

D ∈ AU,V,1, M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})
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So the likely distribution equals the likely transform-dependent, Ẽ = ÂY(T̃ ),
and the likely model is such that

T̃ ∈

maxd({(M,
Qm,U(AY(M), z)(A)∑

Qm,U(AY(M), z)(B) : B ∈ Y −1U,i,M,z((A
X ∗M, (A ∗M)X))

) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

The log-likelihood varies with the derived alignment, so an approximation to
the likely model is

T̃ ∈ maxd({(M, algn(A ∗M)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

This optimisation is still intractable, because the cardinality of the substrate
transforms, |TU,V |, is factorial in the volume, v. The computation of the
derived alignment, algn(A∗M), is tractable, however, and so limited searches
can be made tractable and then practicable.

In classical modelled induction the constraint must be weakened from nec-
essary derived to uniform possible derived if the likely model is to be non-
trivial, T̃ /∈ {Tu, Ts}. Uniform possible is not required for aligned modelled
induction because the likely model is sometimes non-trivial when constrained
by necessary formal-abstract, which is already weaker than necessary derived.

Consider, however, the case where the formal-abstract pair is uniformly pos-
sible. Given substrate transform T ∈ TU,V , assume that the substrate history
probability function P ∈ (HU,V,z :→ Q≥0) ∩ P is the distribution of an ar-
bitrary history valued function, X → H, given an arbitrary formal-abstract
valued function, X → A2. In this case, the history valued function is chosen
arbitrarily from the constrained subset

{G : F ∈ X → (A2 × (X → H)), (·, ((A′, B′), G)) ∈ F,
∀(·, H) ∈ G (his(H)X ∗ T = A′ ∧ (his(H) ∗ T )X = B′)} ⊂ X → H

In the case of mid transform, AX ∗ T = (A ∗ T )X, the constrained subset is
simpler,

{G : F ∈ X → (A× (X → H)), (·, (A′, G)) ∈ F,
∀(·, H) ∈ G (his(H)X ∗ T = (his(H) ∗ T )X = A′)} ⊂ X → H
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This subset of the substrate history probability functions can be generalised
for all substrate transforms as the subset derived from⋃

T∈Tf

(X → (A ×T (X → H)))

where Tf is the set of all functional transforms, and the fibre product ×T is
defined

A ×T (X → H) :=

{(A′, G) : (A′, G) ∈ A× (X → H),

∀(·, H) ∈ G (his(H)X ∗ T = (his(H) ∗ T )X = A′)}

In the case of uniform possible formal-abstract, where there is a distribution
history HE and a substrate transform T ∈ TU,V , the maximum likelihood
estimate which maximises the entropy, entropy(P̃ ), is

P̃ =
(⋃{

{(H, 1) : H ⊆ HE, his(H)X ∗ T = A′, (his(H) ∗ T )X = B′}∧ :

(A′, B′) ∈ ran(YU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

=
(⋃{

{(H, 1/
∑

(Qh,U(E, z)(B) : B ∈ Y −1U,i,T,z((A
′, B′))) :

H ⊆ HE, his(H)X ∗ T = A′, (his(H) ∗ T )X = B′} :

(A′, B′) ∈ ran(YU,i,T,z)
})∧

∪

{(G, 0) : G ∈ HU,V,z, G * HE}

That is, the maximum likelihood estimate, P̃ , is such that all drawn formal-
abstracts are uniformly probable, and then all drawn histories H ⊆ HE with
the same formal-abstract, his(H)X ∗ T = A′ and (his(H) ∗ T )X = B′, are
uniformly probable. If the distribution histogram, HE, is known and the sub-
strate transform, T , is known, then the likely probability function, P̃ , is known.

The properties of uniformly possible formal-abstract are the same as for nec-
essary formal-abstract, except that the probabilities are scaled by the fraction
1/|ran(YU,i,T,z)|.

Given uniform possible formal-abstract, mid-ideal transform and probable
sample, consider the case where a drawn histogram A is known, but neither
the distribution histogram, E, is known nor the transform, T , is known, and
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hence the likely history probability function, P̃ , is unknown. In the case where
the distribution histogram size, zE, is also unknown, except that it is known
to be large, zE � z, then the maximum likelihood estimate (Ẽ, T̃ ) for the
pair of the distribution histogram, E, and the transform, T , is approximated
by a modal value of the conditional likelihood function,

(Ẽ, T̃ ) ∈
maxd({((D,M), Q̂m,y,M,U(D, z)(A)) :

D ∈ AU,V,1, M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

So the likely distribution equals the likely transform-dependent, Ẽ = ÂY(T̃ ),
and the likely model is such that

T̃ ∈ maxd({(M, Q̂m,y,M,U(AY(M), z)(A)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

The log-likelihood varies with the derived alignment, so an approximation to
the likely model is

T̃ ∈ maxd({(M, algn(A ∗M)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

Note, however, that this approximation is looser than in the necessary formal-
abstract case because the scaling fraction, 1/|ran(YU,i,T̃ ,z)|, is ignored.

2.6.5 Tractable and practicable aligned induction

In the discussion of aligned induction above it is shown that, given neces-
sary formal-abstract, mid-ideal transform and probable sample, the maximum
likelihood estimate T̃ for the transform, T , is approximated by a maximisa-
tion of the derived alignment,

T̃ ∈ maxd({(M, algn(A ∗M)) :

M ∈ TU,V , AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})

This optimisation is intractable because the cardinality of the substrate trans-
forms, |TU,V |, is factorial in the volume, v. Consider how limited searches can
be made tractable and then practicable.

Given sample histogram A ∈ AU,i,V,z, the tractable limited-models summed
alignment valency-density substrate aligned non-overlapping infinite-layer fud
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decomposition inducer is defined

I
′∗
z,Sd,D,F,∞,n,q(A) =

{(M, I∗≈R(
∑

algn(A ∗ C ∗ FT)/w
1/mF

F : (C,F ) ∈ cont(M))) :

M ∈ DF,∞,U,V ∩ trees(S × (Fn ∩ Fq)),

∀(C,F ) ∈ cont(M) (algn(A ∗ C ∗ FT) > 0)}

where derived variables WF = der(F ), derived volume wF = |WC
F |, derived

dimension mF = |WF | and I∗≈R computes an approximation to a real num-

ber. The geometric average of the fud derived valencies is w
1/mF

F .

Here the model has been extended from transforms, M ∈ TU,V , to func-
tional definition set decompositions, M ∈ DF,∞,U,V . At the same time the
set of fud decompositions has been restricted to those having (a) fuds that
are non-overlapping, Fn, (b) fuds with a limited-underlying, limited-derived,
limited-layer and limited-breadth structure, Fq = Fu ∩Fd ∩Fh ∩Fb, and (c)
fuds with derived alignment, algn(A ∗ C ∗ FT) > 0. The tractable optimal
model is

DSd ∈ maxd(I
′∗
z,Sd,D,F,∞,n,q(A))

The maximisation of the contingent fud derived alignment valency-density,
algn(A∗C∗FT)/w

1/mF

F , of the non-overlapping fud (C,F ) ∈ cont(DSd) for the
sample slice A∗C, tends to mid fud transform, (A∗C)X∗FT ≈ (A∗C ∗FT)X.
Then the maximisation of the summed alignment valency-density,

∑
algn(A∗

C ∗FT)/w
1/mF

F : (C,F ) ∈ cont(DSd), for all of the contingent slices, tends to
mid-ideal fud decomposition transform, A ≈ A ∗ DT

Sd ∗ D
T†A
Sd . The summed

alignment valency-density varies with the derived alignment, algn(A ∗DT
Sd),

so the tractable model approximates to the likely model, DT
Sd ≈ T̃ , depend-

ing on the limits chosen.

The derived alignment accuracy of the approximation can be defined as the
exponential of the difference in derived alignments,

0 <
exp(algn(A ∗DT

Sd))

exp(algn(A ∗ T̃ ))
≤ 1

This definition of accuracy is consistent with the gradient of the likelihood
function at the mode, so the derived alignment accuracy varies against the
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sensitivity to model,

exp(algn(A ∗DT
Sd))

exp(algn(A ∗ T̃ ))
∼

−(− ln |max({(M, algn(A ∗M)) : M ∈ TU,V ,
AX ∗M = (A ∗M)X, A = A ∗M ∗M †A})|)

The log-likelihood varies against the sensitivity to model, so the derived align-
ment accuracy varies with the derived alignment,

exp(algn(A ∗DT
Sd))

exp(algn(A ∗ T̃ ))
∼ algn(A ∗ T )

That is, although the model obtained from the tractable summed align-
ment valency-density inducer is merely an approximation, in the cases where
the log-likelihood or derived alignment is high, and so the sensitivity to
model/distribution is low, the approximation may be reasonably close nonethe-
less.

The maximisation of derived alignment tends to make the properties of
mid-ideal aligned induction similar to those of natural classical induction.
This is also the case for the tractable optimisation, so the tractable model
approximates to the likely classical model, DT

Sd ≈ T̃ , where

T̃ ∈ maxd({(M, Q̂m,d,M,U(A, z)(A)) : M ∈ TU,V , A = A ∗M ∗M †})

That this is true may be seen by considering the entropy properties. The
correlations for summed alignment valency-density are similar to those for
iso-derived log-likelihood. The summed alignment valency-density (a) varies
against the derived volume w′ = |(DT

Sd)−1|,

algnValDensSum(U)(A,DSd) ∼ 1/w′

(b) varies against the derived entropy,

algnValDensSum(U)(A,DSd) ∼ −z × entropy(A ∗DT
Sd)

(c) varies with the component size cardinality relative entropy,

algnValDensSum(U)(A,DSd) ∼ z × entropyRelative(A ∗DT
Sd, V

C ∗DT
Sd)

and (d) varies with the expected component entropy,

algnValDensSum(U)(A,DSd) ∼ z × entropyComponent(A,DT
Sd)
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where

algnValDensSum(U)(A,D) :=∑
algn(A ∗ C ∗ FT)/w

1/mF

F : (C,F ) ∈ cont(D)

The maximisation of the derived alignment valency-density, algn(A ∗ C ∗
FT)/w

1/mF

F , of the contingent fud (C,F ) ∈ cont(DSd), tends to diagonalise
the mid fud transform, diagonal(A ∗ C ∗ FT), so minimising the fud derived
entropy, entropy(A ∗ C ∗ FT), and hence minimising the overall decomposi-
tion transform derived entropy, entropy(A∗DT

Sd). The component cardinality
entropy, entropy(C ∗FT), also decreases but is synchronised with the derived
entropy, entropy(A ∗C ∗ FT), so the mid component size cardinality relative
entropy tends to remain small, entropyRelative(A∗C ∗FT, C ∗FT) ≈ 0. The
maximisation of the valency-density, however, shortens the diagonal and so
the off-diagonal derived states tend to be ineffective. The recursive slicing
during the decomposition then removes the ineffective components, concen-
trating the effective derived states in smaller components, and so maximising
the overall decomposition transform component size cardinality relative en-
tropy, entropyRelative(A ∗DT

Sd, V
C ∗DT

Sd), when fully idealised.

The limited-models summed alignment valency-density substrate aligned
non-overlapping infinite-layer fud decomposition inducer, I

′

z,Sd,D,F,∞,n,q, lim-
its the optimisation to make aligned induction tractable. By additionally
imposing a sequence on the search and other constraints, tractable induction
is made practicable in the highest-layer summed shuffle content alignment
valency-density fud decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d. (The details of
the implementation are defined later.) Now, given a set of search parameters
P , the fud decomposition is

DScsd,P ∈ maxd(I
′∗
z,Scsd,D,F,∞,q,P,d(A))

The set of practicable searched models is approximately a subset of the
tractable searched models, so the practicable derived alignment is less than
or equal to the tractable derived alignment,

algn(A ∗DT
Scsd,P ) ≤ algn(A ∗DT

Sd)

Even so, in the cases where the log-likelihood or derived alignment is high,
and so both the sensitivity to model and the sensitivity to distribution are
low, the approximation to the maximum likelihood estimate, DT

Scsd,P ≈ T̃ ,
may be reasonably close nonetheless.
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The highest-layer summed shuffle content alignment valency-density fud
decomposition inducer, I

′

z,Scsd,D,F,∞,q,P,d, is an example of practicable aligned
induction. Artificial neural network induction is an example of practicable
classical induction. Let the ANN classical model FT

gr,lsq,P ≈ T̃ be obtained
by least squares gradient descent given a sample A subject to the constraints
of (i) real valued variables, (ii) causal histogram, (iii) a literal frame, and (iv)
clustered histogram. The ANN classical induction is supervised, requiring
that there is a causal relation between query variables K ⊂ V and label
variables, V \K,

split(K,AFS) ∈ KCS → (V \K)CS

At the optimum there is no error and the relation between the classical
derived variables and the label variables is functional,

split(W, (A ∗X % (W ∪ V \K))FS) ∈ WCS → (V \K)CS

where (X,W ) = FT
gr,lsq,P .

By contrast, aligned induction is unsupervised, so no label is required. Aligned
induction, however, must have alignments between the underlying variables,

algn(A) > 0

If there is a label, the aligned induction model does not necessarily have a
causal relation between the derived variables and the label variables, so the
label entropy may be non-zero,∑

(R,C)∈T−1

(A ∗ T )R × entropy(A ∗ C % (V \K)) ≥ 0

or ∑
(R,·)∈T−1

(A ∗ T )R × entropy({R}U ∗ T�A % (V \K)) ≥ 0

where T = DT
Scsd,P .

The ANN classical induction also requires that the sample, A, is clustered.
This implies that the query variables, K, are real-valued, so that there is a
metric. The practicable aligned inducer requires that the underlying vari-
ables be discrete, so they must be bucketed if they are in fact continuous.

The ANN fud, Fgr,lsq,P , has a fixed graph so that the derived variables have
a literal frame mapping to the label variables in the loss function. This
graph is defined a priori in the parameter set, P , and depends on the query
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variables, K, and the label variables, V \ K. The aligned inducer model,
DScsd,P , is a fud decomposition in which the fuds are built upwards from the
substrate, and the only parameters are limits to gross fud structure. In addi-
tion, a decomposition allows fuds to be built on contingent slices, A∗C where
(C,F ) ∈ cont(DScsd,P ), which depend on the components corresponding to
effective derived states of ancestor fuds. In this way, the derived variables
near the root of the decomposition are most general, applying to the largest
slices, while the derived variables near the leaves of the decomposition are
most specific, applying to the smallest slices as the alignments are removed
in the idealisation. So in the decomposition, DScsd,P , each contingent fud de-
rived, A ∗ C ∗ FT, may be meaningful in the problem domain. By contrast,
the ANN fud derived variables apply to the entire query volume, KC, and so
the derived, A ∗ FT

gr,lsq,P , is less context specific.
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