AMES - Model induction
AMES - House Prices/Model induction
AMES_model1.json is induced by the following script -
from AMESDev import *
(uub,aab,aatrb,aateb) = amesBucketedIO(20)
vvb = uvars(uub) - sset([VarStr("Id")])
vvbl = sset([VarStr("SalePriceB")])
vvbk = vvb - vvbl
hhb = hrhrred(aahr(uub,aab),vvb)
model = "AMES_model1"
(wmax,lmax,xmax,omax,bmax,mmax,umax,pmax,fmax,mult,seed) = (2919, 8, 2919, 20, (20*3), 3, 1459, 1, 15, 7, 5)
(uu1,df1) = decomperIO(uub,vvbk,hhb,wmax,lmax,xmax,omax,bmax,mmax,umax,pmax,fmax,mult,seed)
open(model+".json","w").write(decompFudsPersistentsEncode(decompFudsPersistent(df1)))
(a,ad) = summation(mult,seed,uu1,df1,hhb)
print("alignment: %.2f" % a)
print("alignment density: %.2f" % ad)
The first section loads the sample,
from AMESDev import *
(uub,aab,aatrb,aateb) = amesBucketedIO(20)
vvb = uvars(uub) - sset([VarStr("Id")])
vvbl = sset([VarStr("SalePriceB")])
vvbk = vvb - vvbl
hhb = hrhrred(aahr(uub,aab),vvb)
Then the parameters are defined,
model = "AMES_model1"
(wmax,lmax,xmax,omax,bmax,mmax,umax,pmax,fmax,mult,seed) = (2919, 8, 2919, 20, (20*3), 3, 1459, 1, 15, 7, 5)
Here the limit of the underlying volume, xmax
, is set to the histogram size, 2919
,
size(aab)
# 2919 % 1
In general, the maximum-roll-by-derived-dimension decomper is such that increasing any of the parameters generally increases the summed alignment valency-density at the cost of computation time and space. In this case the parameters are chosen such that AMES_engine1
runs on a Windows 7 Xeon CPU 5150 @ 2.66GHz in less than 1GMB memory in 5017 seconds.
Then the decomper (defined in AMESDev
) is run,
def decomperIO(uu,vv,hr,wmax,lmax,xmax,omax,bmax,mmax,umax,pmax,fmax,mult,seed):
return parametersSystemsHistoryRepasDecomperMaxRollByMExcludedSelfHighestFmaxIORepa(wmax,lmax,xmax,omax,bmax,mmax,umax,pmax,fmax,mult,seed,uu,vv,hr)
(uu1,df1) = decomperIO(uu,vvk,hr,wmax,lmax,xmax,omax,bmax,mmax,umax,pmax,fmax,mult,seed)
Then the model is is written to AMES_model1.json,
open(model+".json","w").write(decompFudsPersistentsEncode(decompFudsPersistent(df1)))
Finally, the summed alignment and the summed alignment valency-density are calculated,
(a,ad) = summation(mult,seed,uu1,df1,hhb)
print("alignment: %.2f" % a)
print("alignment density: %.2f" % ad)
The summed alignment is,
alignment: 23920.39
alignment density: 10661.49